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Abstract

Tests of ARCH are a routine diagnostic in empirical econometric and financial
analysis. However, it is well known that misspecification of the conditional
mean may lead to spurious rejection of the null hypothesis of no ARCH.
Nonlinearity is a prime example of this phenomenon. There is little work
on the extent of the effect of neglected nonlinearity on the properties of
ARCH tests. We investigate this using new ARCH testing procedures that
are robust to the presence of neglected nonlinearity. Monte Carlo evidence
shows that the problem is serious and that the new methods alleviate this
problem to a very large extent. We apply the new tests to exchange rate data
and find substantial evidence of spurious rejection of the null hypothesis of
no ARCH. This is further evidence that exchange rates exhibit complicated
dynamic behaviour, with important nonlinearity and volatility effects.
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1 Introduction

Since the introduction of the autoregressive conditional heteroscedasticity

(ARCH) model by Engle (1982) testing for the presence of ARCH has be-

come a routine diagnostic in the econometric analysis of macroeconomic and

especially financial time series. Although a variety of different tests have

been developed the most widely applied one is based on an autoregression of

the squared residual on a constant and its p lags whereby the joint signifi-

cance of all the lags included is tested. A rejection leads to the conclusion

that ARCH is present.

As observed by a number of authors, tests for ARCH may also reject the

null if misspecification of the conditional mean of the model is present. No-

table cases include work by Bera, Higgins, and Lee (1992), Bera and Higgins

(1997) and Lumsdaine and Ng (1999). Lumsdaine and Ng (1999) suggest

procedures based on recursive residuals that may alleviate misspecifications

in the conditional mean and thereby reduce the potential for falsely rejecting

the null of no ARCH when other forms of misspecification are present in

the model. Bera and Higgins (1997) observe that bilinear and ARCH mod-

els have a similar moment structure raising the possibility that bilinear and

ARCH processes may be confused in practical applications.1

The current paper follows on from this literature. In particular we sug-

gest that other forms of nonlinearity in the conditional mean may be causing

false rejection in testing for ARCH. Examples include nonlinearities of the

smooth transition autoregressive (STAR) form or the self-exciting thresh-

old autoregressive (SETAR) form. This observation in itself is not novel.

However, there is little work that investigates the interplay of the degree of

nonlinearity with the degree of rejection of the no-ARCH null hypothesis.

1It should be noted that although ARCH and Bilinear models may have similarities,
their unconditional moment structures are potentially quite different. This makes the
relationship between these classes of models more complex than usually acknowledged in
the literature. Note that the results of Bera and Higgins (1997) mainly relate to bilinear
models with one lag and do not readily generalise to higher lag orders.

1



Taking this as a starting point we suggest new testing procedures that

enable valid detection of ARCH in the presence of such nonlinearity. The

approach we take is based on neural networks. Neural networks are a flex-

ible form of nonlinear model that are able to approximate nonlinearities of

unknown form (up to the choice of variables that enter the nonlinear con-

ditional mean function) arbitrarily well and thereby produce well behaved

residuals under the null of no ARCH on which standard ARCH tests may

then be carried out. We use a neural network to purge the residuals of the

effects of nonlinearity before applying an ARCH test. Thus, we intend to

correctly size the ARCH test while retaining good power for the ARCH test

in the case where ARCH effects are actually present.

However, obtaining the residuals from what are in effect neural network

models is not straightforward. Estimation using a standard neural network

specification based on the logistic function involves nonlinear least squares.

There are additional identification problems if the true DGP happens to be

linear. Lee, White, and Granger (1993) circumvented the identification prob-

lem by randomly generating the coefficients of an arbitrary neural network.

In this paper we avoid the need for complicated estimation techniques by

using two alternative strategies that also resolve potential identification is-

sues. The first uses an alternative to the logistic neural network model, the

radial basis function (RBF) artificial neural network model. This type of

neural network has been used in the econometric literature to test for ne-

glected nonlinearity (see Blake and Kapetanios (2003b)). Estimation of such

models can be carried out using ordinary least squares. The second strategy

uses polynomial approximations of the logistic neural network specification

following the work of Teräsvirta, Lin, and Granger (1993). Again, this leads

to a model that can be estimated using ordinary least squares.

This is not the first time neural networks have been used for ARCH test-

ing. Peguin-Feissolle (1999) and Blake and Kapetanios (2000) develop ARCH

tests where the form of ARCH is unknown and allowed to be quite general.
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Thus the potentially nonlinear process driving the ARCH part of the model

is detected using the neural network with the intention to increase the power

of the ARCH test. For the present paper, the problem addressed is different.

The nonlinearity that matters is (potentially) in the rest of the model, and

in particular in the conditional mean. This nonlinearity is removed from the

conditional mean using neural networks prior to applying an ARCH test on

the residuals. The test for ARCH applied as part of our procedure can be

of any form. Indeed, we use the Peguin-Feissolle (1999) test as one possi-

ble procedure. Given the different possible neural network specifications and

applicable ARCH tests we investigate a number of potential test procedures

using Monte Carlo experiments.

The plan of the paper is as follows. Section 2 gives more details about the

nature of the problem we consider by drawing on previous work in the area.

Section 3 discusses the new testing procedures we suggest. Section 4 provides

a Monte Carlo investigation of the new and existing testing procedures that

reveals the extent of the problem and the ability of the new tests to deal with

it. Although using the new tests is at the cost of slightly reduced power for

the detection of ARCH when it actually is present, it is offset by the enormous

gains in producing properly sized tests. In Section 5 we apply the new tests

to exchange-rate data and conclude that ARCH is absent for a substantial

number of cases where standard tests find otherwise. This has important

implications for the determination of exchange-rate dynamics. It would be

easy to conclude that pure volatility effects accounted for a substantial part

of changes in exchange rates, whereas it may be that nonlinear, threshold

effects are the determining factor. Section 6 concludes.
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2 Testing for ARCH under conditional mean

nonlinearity

We concentrate on the following univariate model for the series yt, t =

1, . . . , T :

yt = f(x1,t, . . . , xp,t; α) + εt (1)

where f(·; ·) is an unknown function. We make standard assumptions about

εt: It is mean zero, with variance conditional on a Borel measurable σ-

field2 with respect to the exogenous (or predetermined at time t) variables

x1,t, x2,t . . . , xp,t denoted by It−1, given by:

ht = β0 +

q∑
j=1

βjε
2
t−j (2)

and with unconditional variance given by σ2. The variables xj,t are assumed

to be stationary and ergodic with finite second moments. This setup encom-

passes both linear and nonlinear autoregressive stationary models. The null

hypothesis of interest is:

H0 : β1 = . . . = βq = 0. (3)

If one assumes linearity then the conditional mean model becomes:

yt = α0 +

p∑
j=1

αjxj,t + εt. (4)

The estimated OLS residual is given by:

ε̂t = εt +

(
f(x1,t, . . . , xp,t;α) − α̂0 −

p∑
j=1

α̂jxj,t

)
= εt + χt (5)

2Details on σ-fields and their use may be found in (Davidson, 1994, Ch. 8).
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where χt = f(x1,t, . . . , xp,t;α) − α̂0 −
∑p

j=1 α̂jxj,t, with the squared residual

given by:

ε2t +

(
f(x1,t, . . . , xp,t;α) − α̂0 −

p∑
j=1

α̂jxj,t

)2

+2εt

(
f(x1,t, . . . , xp,t;α) − α̂0 −

p∑
j=1

α̂jxj,t

)
= ε2t + ψt (6)

where we similarly define ψt = χ2
t + 2εtχt. The expectation of both (5) and

(6) conditional on It−1 is clearly not constant even if the null hypothesis

holds. Of course, this analysis holds for any misspecified conditional mean

function and the root of the false rejection in ARCH tests, under the null hy-

pothesis, lies in the presence of serial correlation in ψt as Lumsdaine and Ng

(1999) have observed. Our conjecture is that nonlinearity in χt may induce

large probabilities of rejection of the null hypothesis of ARCH tests, under

the null hypothesis, compared with linear misspecification arising by, say, the

omission of an extra lag for the conditional mean model. Clearly, this prob-

ability will depend on many things, chief among which is the actual values

of the parameters of the model and the nonlinearity considered. Therefore,

any rigorous theoretical demonstration is bound to be of limited use.

A heuristic argument for our conjecture may be given as follows: Assume

two cases of conditional mean misspecification. In the first case the condi-

tional mean is assumed to be constant when the true conditional mean model

is an AR(1) model. In the second case the assumed model is an AR(1) model

but the true model is a SETAR model of the form:

yt = γ0 + γ1I(yt−1 < r)yt−1 + γ2I(yt−1 ≥ r)yt−1 + εt (7)

where I(·) is the indicator function. In the first case:

χt = (α̂0 − α0) + α1yt−1. (8)
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In the second case:

χt = (γ̂0 − γ0) + γ̃1I(yt−1 < r)yt−1 + γ̃2I(yt−1 ≥ r)yt−1

= (γ̂0 − γ0) + γt−1yt−1 (9)

where γ̃i = α̂1 − γi, i = 1, 2 and:

γt−1 = γ̃1I(yt−1 < r) + γ̃2I(yt−1 ≥ r). (10)

In the first case variation in the conditional variance of the residual, under

the null of no ARCH, comes from yt−1 only. In the second case both γt−1

and yt−1 contribute to the variation.

This example serves to illustrate that neglected nonlinearity may induce

quite complicated variation in the conditional variance from very simple mod-

els. This, and other forms of nonlinearity, may possibly lead to acute prob-

lems of overrejection for standard ARCH tests. We indeed find this to be

the case with a variety of nonlinear models in Section 4. It is then reason-

able to suggest that methods for accounting for general forms of nonlinearity

prior to applying ARCH tests may be useful. The next section suggests such

methods.

3 Nonlinearity robust ARCH tests

Following on from the previous section it is clear that nonlinearity has the

potential to introduce problems in the detection of ARCH for dynamic mod-

els. As the form of nonlinearity is usually unknown we require a test for

ARCH that is robust to as large a class of nonlinearities as possible. Ar-

tificial neural network models provide an ideal framework for this analysis.

This is due to the useful property that they can approximate continuous

functions arbitrarily well. More specifically, a continuous function f(z) can

be arbitrarily well approximated in the supremum norm by
∑q

i=1 big(z
′
i) for

z′i = d0,i + d′iz if either (i) g(·) is sigmoidal, i.e. g(·) is non-decreasing with
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limz→−∞ g(z) = 0 and limz→∞ g(z) = 1 or (ii) g(·) has non-zero expectation

and is Lp bounded for some p ≥ 1. For more details see Hornik, Stinchcombe,

and White (1989), Stinchcombe and White (1989) and Cybenko (1989). A

good general reference on the theoretical properties of neural networks is

White (1992).3 Note that the above results are only a small subset of the

available results on the approximation capabilities of neural networks. The

universal approximator properties of neural networks have been put to effect

in the econometrics literature by, among others, Lee, White, and Granger

(1993) and Blake and Kapetanios (2003b) to construct tests for neglected

nonlinearity in stationary models, and by Blake and Kapetanios (2003a) to

test for unit roots against stationary nonlinear processes.

In the present context we wish to robustify ARCH tests by fitting a neural

network model to (1), obtaining the residuals and carrying out a standard

ARCH test. By the universal approximation property of the neural networks

for continuous functions discussed above we know that the model (1) may

be written as:

yt = a0 + a′1xt +

q∑
i=1

big(d0,i + d′ixt) + εt (11)

where xt = (x1,t, . . . , xp,t)
′ with g(·) now a known function. This specification

can then be estimated consistently and the residuals then tested for ARCH

using standard tests since ε̂t from the estimation of (11) will converge in

probability to εt. However estimation of (11), although feasible, may not be

easy as it requires nonlinear least squares for the function used for g(·). For

testing, however, this may not be necessary. There are neural network spec-

ifications or approximations of neural networks where such iterative schemes

are not needed for estimation. We consider two.

The first is a radial basis function (RBF) artificial neural network, which

is often referred to as a linear network. These are simple to define. Let

3See also Campbell, Lo, and MacKinlay (1997) for an excellent introduction to artificial
neural networks, which covers the RBF networks that we use below. Bishop (1995) gives
a thorough and very readable account.
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there be q centers, denoted cj, and a radius vector τ . Utilise a function

that is monotonically decreasing about cj. A natural choice is the Gaussian

function, and the appropriate RBF is:

g([c′j τ
′]′, xt) = e−‖(xt−cj)/τ‖2 (12)

where the division notation denotes element by element division. By the

monotonicity property, each RBF has maximum activation (of unity) when

the input vector coincides with the jth center independent of τ . Conversely,

if the input vector is far enough away from the center (controlled by τ) the

activation is almost zero.4 The linearity of this network derives from the

property that if the centers (cj) and radii (τ) are determined by some proce-

dure then the RBFs can be straightforwardly used as additional regressors.

The trick is to use data-based procedures to determine both. It is convenient

to use a simple function of the data, such as a multiple of the maximum

change from period t to period t + 1 for all t of each input as the radius

for that input. In fact, we follow the suggestion by Orr (1995) and set this

multiple to two. Note that in Blake and Kapetanios (2003b), we considered

the alternative of a unit variance for the normalised data and found that it

worked comparably to our choice in this paper. Thus, the performance of the

method does not seem to be very sensitive to the choice of τ . Following Orr

(1995), we then allow there to be T potential centers (the cj) for the RBFs

which is each of the vector of observations, i.e., xt, t = 1, . . . , T . The T RBFs

thus obtained are ranked according to their ability to reduce the unexplained

variance of (11) when entered individually. Then, we successively add the

sorted RBFs into (11) until we minimize an information criterion, chosen to

be AIC. This procedure is known as forward selection. Note that we sort the

RBFs only once at the beginning of the procedure. An alternative might be

4Other functional forms (such as the multiquadratic) have the same property and can
be used instead, although in experiments Blake and Kapetanios (2003b) found very little
difference in performance between various functions for the related problem of nonlinearity
testing.
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to sort the RBFs every time a new RBF is added to (11). For every added

RBF, the remaining RBFs would be sorted according to their ability to re-

duce the unexplained variance of (11) when all chosen RBFs are included

in the specification. However, our simulations, presented in the next sec-

tion, suggest that our chosen method performs well and avoids the increased

computational cost of repeated sortings.

The pair of data-based procedures (normalisation to set the radii and

center choice from the data points by forward selection) yield a linear esti-

mation problem for b as all the terms in (12) are defined by the process. In

summary, the algorithm for the RBF specification is as follows:

1. We construct T initial RBF terms given by:

g([x′1 τ
′]′, xt), . . . , g([x

′
T τ ′]′, xt).

2. These are ranked according to their ability to reduce the residual vari-

ance, when entered individually in (11).

3. The AIC information criterion is used to determine how many of the

T sorted RBF terms will eventually enter (11).

A second approach that is amenable to linear estimation is motivated by

a test of neglected nonlinearity that approximates the logistic neural network

developed by Teräsvirta, Lin, and Granger (1993). The logistic network uses:

g(d, xt) = 1/(1 + e−d′xt) (13)

for the activation function. As remarked above, to estimate the complete

nonlinear model (all the parameters a, b and d) is costly. Teräsvirta, Lin, and

Granger (1993) suggest a third-order Taylor expansion of the logistic neural

network is used instead. This choice of expansion is arbitrary, and can clearly

be replaced by the n-th order Taylor expansion of the logistic neural network.

This turns out to be an n-th order polynomial in (x1,t, . . . , xp,t), where the
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operational order of the Taylor expansion needs to be chosen. In common

with our treatment of the RBF network we use an information criterion, again

AIC. This is chosen from expansions of order two, three and four where

for simplicity for the third and fourth order Taylor expansions only cross

products of (powers of) up to two variables are considered. This approach

is based on an approximation of a neural network specification rather than

on a neural network specification. As Teräsvirta, Lin, and Granger (1993)

and Blake and Kapetanios (2003b) show through simulations, this method

is very effective in practice.

Note that there is a problem with the above methods since the model

we estimate is not necessarily appropriate for a linear specification. Indeed,

for a linear model the additional terms should be absent. This identifica-

tion problem was solved by Lee, White, and Granger (1993) by adding an

arbitrary fixed number of randomly generated logistic functions as regres-

sors.5 Our two procedures solve it by the use of the information criterion,

which is restricted to pick a minimum of one additional regressor. Our test

for ARCH, of course, uses the residuals from this model. Note, that unlike

nonlinearity tests, identification is not as important in our context where the

neural network construction is only used as a first step to remove nonlinear-

ities in the conditional mean. However, the above approaches are compu-

tationally cheaper compared to the application of nonlinear least squares to

estimate (11).6

5Considering the complete arbitrariness of this as a procedure, this is extraordinarily
effective. It does lead to the possibility that the ‘neurons’ have zero or unit activation
over the entire sample and hence are colinear, so this is avoided by using selected principle
components of the output of the neural network. Note that an advantage to RBF approach
is that centers would have to be the same for a similar problem to arise, which for our
implementation would mean that regressors had the same value for two different periods.
This is both unlikely (never having happened in our simulation experiments) and easily
dealt with by deleting one of the repeated centers.

6The RBF procedure we suggest, takes less than a second for a sample of 100 ob-
servations on a 1Ghz personal computer compared to more than a minute for nonlinear
least squares leaving aside problems of convergence of the algorithm, especially when no
nonlinearity is present in the data.
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After fitting the neural network model, or its approximation, the residuals

obtained can be tested using any residual-based ARCH test. The asymptotic

distribution of the usual LM ARCH test is still χ2
q under the null hypothe-

sis and assuming no nonlinearity. Further refinement of the new tests may

be contemplated if the techniques suggested by Lumsdaine and Ng (1999)

are combined with the neural network specifications. In particular if, as sug-

gested by Lumsdaine and Ng (1999), (functions of) lags of recursive residuals

from the original linear specification in (1), help in picking up misspecifica-

tions in the conditional mean then augmenting the variable set xt by (func-

tions of) this lagged recursive residual may further improve the performance

of the tests under the null hypothesis. Additionally, OLS residuals may be

used in place of recursive residuals. In small samples these will introduce

biases since they depend on the whole of the sample via the parameter es-

timates but asymptotically these parameter estimates will converge to some

limit and the lagged OLS residuals will not cause any further asymptotic

biases.

4 Monte Carlo experiments

In this section we carry out Monte Carlo experiments to illustrate the problem

arising out of pronounced nonlinearity in the context of ARCH testing and

the extent to which the new tests alleviate the problem. The issue occurs

under the null hypothesis and therefore the size performance of the existing

tests is under scrutiny. Nevertheless, it is important that the new methods

do not reduce the power of the ARCH tests unduly. Therefore, there is the

usual tradeoff between power and size which needs to be explored.

We concentrate on nonlinear autoregressive models and add a linear

AR(1) model given by yt = αyt−1 + εt for comparison. We consider three

different classes of nonlinear models under the null hypothesis. These are
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SETAR, STAR and bilinear models. The models are given by:

yt = γ1I(yt−1 < r)yt−1 + γ2I(yt−1 ≥ r)yt−1 + εt (14)

yt = δ1yt−1 + δ2(1 − e−δ3y2
t−1)yt−1 + εt (15)

and:

yt = ζεt−1yt−1 + εt (16)

respectively. Under the null hypothesis of no ARCH both the conditional

and unconditional variance of εt is equal to σ2 which is set to 1 for all size

experiments. We consider one DGP from the AR class, four DGPs from

SETAR models, four DGPs from STAR models and two DGPs from bilinear

models. The coefficients for each class are:

• AR Model

– Experiment 1: α = 0.5.

• SETAR Models

– Experiment 2: γ1 = 0.1, γ2 = 0.5, r = 0.

– Experiment 3: γ1 = −0.1, γ2 = 0.5, r = 0.

– Experiment 4: γ1 = −0.3, γ2 = 0.9, r = 0.

– Experiment 5: γ1 = −0.8, γ2 = 0.9, r = 0.

• STAR Models

– Experiment 7: δ1 = 0.5, δ2 = −0.5, δ3 = 0.05.

– Experiment 8: δ1 = 0.5, δ2 = −0.5, δ3 = 0.5.

– Experiment 9: δ1 = 0.9, δ2 = −1.4, δ3 = 0.05.

– Experiment 10: δ1 = 0.9, δ2 = −1.4, δ3 = 0.5.

• Bilinear Models
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– Experiment 12: ζ = 0.1.

– Experiment 13: ζ = 0.3.

Experiments 6 and 11 are described below. The above experiments are

based entirely on artificial models. Instead of relying on models based on

simple data generation processes, we have investigated additional empirically

based SETAR and STAR data generation processes. This provides a further

means for checking whether the proposed tests are empirically useful. More

specifically, we have considered two well known nonlinearity studies. The

first is Potter (1995) on SETAR models for the business cycle and the second

is Sarantis (1999) on real exchange rates.

The SETAR model is taken from Table II of Potter (1995) and is para-

meterised as:

yt = (−0.705 + 0.510yt−1 − 0.849yt−2 − 0.048yt−3

− 0.123yt−4 + 0.398yt−5)I{yt−2≤0}

+ (0.545 + 0.312yt−1 + 0.245yt−2 − 0.104yt−3

− 0.057yt−4 − 0.940yt−5)I{yt−2>0} + εt (17)

which we include as experiment 6. yt is the first difference of the logarithm

of quarterly US GNP at time t. The model is estimated during the period

1948Q3-1990Q4. The STAR model is taken from Table 4 of Sarantis (1999)

and is a model for Canada. It is given by:

yt = 0.099yt−1 − 0.196yt−2

+ (1 − e−0.324y2
t−1)(1.058yt−1 − 0.629yt−2) + εt. (18)

where yt is the first logarithmic difference of the Canadian real effective

exchange rate. This is experiment 11 in the tables.

We also need some power experiments. We therefore consider the fol-

lowing ARCH models. An AR(1) model above is used for the conditional

mean and an ARCH(1) model of E(ε2t |εt−1, . . .) = ht = β0 + β1ε
2
t−1 for the

conditional variance. For each of three experiments the parameters are:
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• ARCH Models

– Experiment 14: α = 0.5, β0 = 0.1, β1 = 0.1.

– Experiment 15: α = 0.5, β0 = 0.1, β1 = 0.5.

For each of the experiments all errors are obtained from the GAUSS nor-

mal pseudo-random number generator. For every sample, initial conditions

are set to zero and 20 observations are dropped to minimise dependence on

the choice of initial conditions. Throughout the lag order, p, is set to 1. The

obvious exception is experiments 6 and 11 where the lag order used corre-

sponds to the lag order of the data generation process which is based on the

relevant empirical application taken from the literature. We consider sam-

ples of 100 and 200 observations. In Table 1 we give the simulation values

of the unconditional means and variances for the Monte Carlo models, as an

indication of the degree of nonlinearity in each model.

The testing framework is then in two parts. We use the procedure outlined

in Section 3 to obtain residuals that are subsequently tested for ARCH. This

test can be any of those that are available. In this paper we consider two:

The first is the usual Engle (1982) LM-test (denoted LM in the tables) and

the second is the ARCH test developed by Peguin-Feissolle (1999). This is

a residual-based test using neural network ideas derived from the work of

Lee, White, and Granger (1993) (denoted NN in the tables). The Peguin-

Feissolle (1999) test assumes that the conditional variance of the error term

of the regression model can be approximated by a neural network. The

test is implemented by simply running the Lee, White, and Granger (1993)

artificial neural network (ANN) nonlinearity test on the squared residuals

of the regression model, where lagged residuals are used to construct the

neural network used by the ANN test.7 We choose this test because we wish

7In Blake and Kapetanios (2000) we used the RBF set-up proposed here for construct-
ing a test of ARCH along the lines of the test proposed by Peguin-Feissolle (1999) and
described in the text.
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Table 1: Sample unconditional means and variances

% time in % time in
ȳ σ2

y regime 1 regime 2
SETAR 2 0.263 1.136 40 60

3 0.344 1.103 37 63
4 1.475 2.619 18 82
5 1.609 2.484 14 86
6 0.769 1.373 24 76

STAR 7 0.012 1.232 — —
8 0.003 1.049 — —
9 0.006 1.708 — —

10 0.010 1.156 — —
11 0.005 1.708 — —

to illustrate that radically different ARCH tests suffer from the problem of

overrejection under the null to a similar extent and can benefit from the

approach we suggest.

Given our discussion of appropriate ways to approximate any possible

underlying nonlinear model we consider two nonlinear modelling choices.

The subscript tlg denotes the use of the Taylor expansion method and the

subscript rbf denotes use of the RBF neural network. Also we consider

two extended ARCH tests. The superscript r denotes augmentation of the

variable set, used to construct the neural network specification, by the lag of

the recursive residual, as suggested by Lumsdaine and Ng (1999), whereas the

superscript o denotes similar augmentation of the variable set using the lag of

the OLS residual. Results in the form of rejection probabilities are presented

in Tables 2–5. We do not report size corrected powers because it is not clear

what are the proper empirical critical values to use to correct the rejection

probabilities under the alternative. As we will see the rejection probabilities

under the null of no ARCH vary greatly depending on the nonlinear model

used. The columns headed simply LM and NN in Tables 2-5 apply the LM

and NN ARCH tests on residuals obtained from fitting AR(1) models to the
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Table 2: Monte Carlo Results for T = 100 and ARCH LM tests

LM LM r LMtlg LMrbf LM r
tlg LM r

rbf LMo
tlg LMo

rbf

Size
AR 1 0.050 0.037 0.029 0.027 0.031 0.034 0.027 0.024
SETAR 2 0.043 0.026 0.027 0.026 0.023 0.027 0.029 0.025

3 0.049 0.039 0.031 0.035 0.024 0.027 0.031 0.029
4 0.144 0.081 0.029 0.028 0.023 0.031 0.031 0.027
5 0.280 0.130 0.023 0.026 0.019 0.023 0.032 0.027
6 0.081 0.068 0.043 0.038 0.028 0.027 0.032 0.037

STAR 7 0.048 0.040 0.037 0.036 0.027 0.031 0.026 0.031
8 0.050 0.037 0.044 0.041 0.042 0.042 0.031 0.041
9 0.137 0.088 0.042 0.046 0.026 0.034 0.036 0.027

10 0.097 0.077 0.031 0.033 0.022 0.034 0.024 0.026
11 0.100 0.050 0.020 0.044 0.020 0.020 0.018 0.030

Bilin 12 0.051 0.030 0.026 0.023 0.021 0.026 0.023 0.021
13 0.458 0.127 0.046 0.046 0.037 0.033 0.018 0.032

Power
ARCH 14 0.112 0.085 0.074 0.074 0.036 0.044 0.039 0.057

15 0.701 0.567 0.491 0.464 0.246 0.314 0.236 0.333

data8.

The results make very interesting reading. The performance of the LM

and NN tests depend markedly on the nonlinear model used. Rejection

probabilities under the null reach 90% for the bilinear model, which accords

with the findings of Bera and Higgins (1997) who note the difficulties en-

countered, for ARCH tests, with bilinear models, but even for SETAR and

STAR models pronounced nonlinearity, measured by the difference between

γ1 and γ2 for SETAR models and the magnitude of δ2 for STAR models, in-

duces rejection probabilities of up to 50%. Clearly nonlinearity in the mean

and ARCH are difficult to distinguish using standard tests. The recursive

residual tests of Lumsdaine and Ng (1999) are considerable improvements on

the standard tests. Rejection probabilities fall substantially but still remain

8In the case of experiments 6 and 11 the lag order of the AR model corresponds to that
used for generating the data.
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Table 3: Monte Carlo Results for T = 200 and ARCH LM tests

LM LM r LMtlg LMrbf LM r
tlg LM r

rbf LMo
tlg LMo

rbf

Size
AR 1 0.047 0.037 0.037 0.040 0.027 0.032 0.033 0.033
SETAR 2 0.055 0.047 0.044 0.041 0.042 0.045 0.046 0.043

3 0.064 0.039 0.042 0.040 0.033 0.041 0.034 0.031
4 0.258 0.124 0.036 0.037 0.035 0.038 0.047 0.041
5 0.487 0.266 0.044 0.045 0.042 0.039 0.042 0.039
6 0.113 0.097 0.045 0.041 0.035 0.039 0.036 0.034

STAR 7 0.044 0.039 0.036 0.036 0.039 0.047 0.034 0.035
8 0.050 0.042 0.025 0.027 0.026 0.029 0.033 0.032
9 0.208 0.150 0.041 0.041 0.041 0.041 0.046 0.042

10 0.221 0.184 0.037 0.039 0.028 0.033 0.035 0.030
11 0.192 0.143 0.023 0.067 0.030 0.044 0.027 0.043

Bilin 12 0.080 0.030 0.030 0.027 0.024 0.025 0.028 0.027
13 0.777 0.173 0.071 0.066 0.043 0.051 0.034 0.047

Power
ARCH 14 0.255 0.204 0.175 0.176 0.114 0.132 0.121 0.141

15 0.955 0.915 0.887 0.874 0.749 0.799 0.715 0.814

quite high for very nonlinear conditional mean processes. For example for

the most extreme SETAR model, experiment 5, and 200 observations the

rejection probability for the LM test is 26%.

Moving on to the new testing procedures we observe a dramatic improve-

ment. Rejection probabilities are very close to 5%. None of the SETAR or

STAR nonlinear models can induce even minor departures from the correct

significance level. Bilinear models still produce overrejections. However this

is to be expected: The variables involved in the bilinear model include the

lagged error. This is not included in the set of variables used in the construc-

tion of the neural network. Therefore, the nonlinearity cannot be completely

captured. However, even for these models noticeable and worthwhile im-

provement is observed. In particular adding recursive or OLS residuals pro-

duces satisfactory rejection probabilities apart from the final Bilinear model,

experiment 14, where the nonlinearity is very pronounced and the model is,

17



Table 4: Monte Carlo Results for T = 100 and ARCH NN tests

NN NN r NNtlg NNrbf NN r
tlg NN r

rbf NNo
tlg NNo

rbf

Size
AR 1 0.052 0.046 0.039 0.036 0.025 0.029 0.026 0.029
SETAR 2 0.057 0.033 0.023 0.024 0.020 0.020 0.021 0.019

3 0.053 0.034 0.020 0.022 0.019 0.020 0.013 0.021
4 0.163 0.085 0.027 0.029 0.016 0.021 0.022 0.023
5 0.301 0.146 0.026 0.029 0.027 0.025 0.026 0.018
6 0.082 0.067 0.046 0.038 0.026 0.030 0.023 0.032

STAR 7 0.063 0.036 0.035 0.042 0.023 0.025 0.023 0.031
8 0.058 0.036 0.024 0.021 0.032 0.030 0.024 0.031
9 0.156 0.088 0.023 0.025 0.024 0.022 0.026 0.027

10 0.136 0.106 0.028 0.029 0.015 0.022 0.012 0.016
11 0.122 0.056 0.018 0.059 0.017 0.027 0.017 0.040

Bilin 12 0.072 0.034 0.025 0.025 0.025 0.022 0.018 0.028
13 0.451 0.128 0.054 0.051 0.023 0.040 0.021 0.036

Power
ARCH 14 0.130 0.096 0.087 0.089 0.055 0.062 0.050 0.070

15 0.734 0.654 0.615 0.577 0.378 0.438 0.352 0.444

in fact, noninvertible.

When we consider the rejection probabilities under the alternative we see

that the new procedures do not exhibit a very marked reduction in these

probabilities, as desired. In particular we observe a reduction of about 20%

for tests that do not include recursive or OLS residuals for samples of 100

observations and only a reduction of about 10% for samples of 200 observa-

tions. In some cases, as in Table 4, there is almost no loss of power for the

NNtlg and NNrbf tests. The results are indeed very encouraging and clearly

suggest that the new methods are useful.

5 An application to exchange rate data

Although the Monte Carlo experiments, including those on empirically based

models, are persuasive, it is interesting to set up an application on actual
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Table 5: Monte Carlo Results for T = 200 and ARCH NN tests

NN NN r NNtlg NNrbf NN r
tlg NN r

rbf NNo
tlg NNo

rbf

Size
AR 1 0.048 0.038 0.027 0.029 0.029 0.024 0.028 0.028
SETAR 2 0.066 0.039 0.035 0.029 0.031 0.026 0.023 0.029

3 0.077 0.038 0.026 0.028 0.026 0.023 0.021 0.023
4 0.282 0.128 0.045 0.038 0.025 0.028 0.026 0.025
5 0.502 0.264 0.036 0.038 0.024 0.030 0.021 0.033
6 0.109 0.099 0.049 0.045 0.041 0.047 0.040 0.045

STAR 7 0.048 0.038 0.032 0.032 0.025 0.022 0.028 0.025
8 0.065 0.047 0.014 0.014 0.027 0.017 0.023 0.016
9 0.240 0.178 0.031 0.033 0.023 0.023 0.031 0.026

10 0.275 0.213 0.035 0.038 0.031 0.043 0.023 0.037
11 0.221 0.165 0.027 0.093 0.034 0.033 0.023 0.044

Bilin 12 0.105 0.030 0.025 0.024 0.024 0.021 0.021 0.023
13 0.761 0.181 0.091 0.087 0.052 0.065 0.026 0.063

Power
ARCH 14 0.238 0.176 0.160 0.152 0.108 0.117 0.115 0.126

15 0.969 0.949 0.944 0.938 0.850 0.885 0.842 0.893

data. We consider the modelling of bilateral exchange rates. These have often

been modelled as a nonlinear process (see Sarantis (1999)). The interest here

is to see how often models which accept the presence of ARCH reject for the

new tests. The model we use is simple. We run an autoregressive model

on the differenced real exchange rates, choosing the lag length using BIC,

from a maximum lag order of 4 lags. We then performed ARCH tests on the

residuals from these models.

We construct the data in the following way. Every bilateral real exchange

rate, denoted q, for a given ‘home’ currency j against an alternative i-th

‘foreign’ currency at time t is

qi,t = si,t + pj,t − pi,t

where si,t is the corresponding nominal exchange rate (in i-th currency units

per unit of the home currency), pj,t the price level in the home country, and
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pi,t the price level of the i-th alternative country. That is, a rise in qi,t implies

a real appreciation of the home country against the i-th currency.

The j-denoted home currencies that we used were the US dollar, the

Deutsche Mark and the Yen with the foreign countries from 44 possible cur-

rencies.9 All data are quarterly, spanning from 1957Q1 to 1998Q4 and the

bilateral nominal exchange rates against the currencies other than the US

dollar are cross-rates computed using the US dollar rates. As noted above

we consider three different cases each one of which consists of up to 39 country

pairs and corresponds to a different home currency (US dollar, DM, Yen).

We use the average quarterly nominal exchange rates and the prices used

are consumer price indices. All variables are in logs and are not seasonally

adjusted. The data were obtained from IMF (2004) and OECD (2004) as

appropriate.

When we consider the Japan bilateral exchange rates, the Pacific Basin

countries of our sample represent approximately one fourth (24%) of Japan’s

total trade, the US represents another one fourth, and the remaining five G7

are 12%.10 This data is quarterly, spanning from 1960Q1 to 2000Q4 and as

before the bilateral nominal exchange rates against the currencies other than

the US dollar are cross-rates computed using the US dollar rates.

We give the results in Tables 7–6. In roughly half the cases that we

formerly rejected the hypothesis of no ARCH we now accept the null. Ta-

ble 6 illustrates this point. Using the standard LM ARCH provides evidence

against the null hypothesis of no ARCH in 18 out of 39 series of Yen bilat-

eral real exchange rates. When the new tests are used, evidence against the

null hypothesis of no ARCH appears in only a quarter of the series. As the

9The 44 currencies considered are those of Australia, Austria, Bangladesh, Belgium,
Bolivia, Brazil, Canada, Chile, Colombia, Cyprus, Czech Republic, Denmark, Finland,
France, Germany, Greece, Hong Kong, Hungary, Iceland, Indonesia, Italy, Japan, Korea,
Luxembourg, Malaysia, Malta, Mexico, Netherlands, New Zealand, Norway, Philippines,
Poland, Portugal, Singapore, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Thai-
land, Turkey, United Kingdom, United States, and Venezuela.

10This data was obtained from OECD (2004).

20



Monte Carlo study, in the previous section, does not suggest a significant loss

of power for samples sizes of 200 observations, we conclude that the standard

LM ARCH test can lead to spurious rejection of the null hypothesis of no

ARCH in a significant proportion of the data considered. Similar but less

striking results are obtained for the US and DM real exchange rates. These

results clearly demonstrate the utility of our approach.

6 Conclusions

It is well known that tests for ARCH are powerful against a wider variety of

mispecifications. In particular, it is well known from the work of Lumsdaine

and Ng (1999) and others that mispecification in the conditional mean may

lead to spurious rejection of the no ARCH hypothesis. However, apart from

the general heuristic methods of Lumsdaine and Ng (1999) there is little in

terms of methods to avoid this problem.

This paper suggests a solution in the case where the conditional mean

function suffers from neglected nonlinearity of unknown form. We initially

show, via simulations, that the problem of spurious rejection of the no ARCH

hypothesis is serious in the case of neglected conditional mean nonlinearity.

We then suggest the use of neural networks to approximate to an arbitrary

level of accuracy any unknown nonlinearity. Once nonlinearity has been

removed, the residuals are tested for ARCH using standard tests. Monte

Carlo evidence suggests that the new methods are able to remove the large

distortions introduced by nonlinearity at a rather modest cost in terms of

power loss. When we consider bilateral exchange rates we find that there

is substantial evidence that processes could be misunderstood as containing

ARCH while they are, in fact, processes with nonlinearity in the conditional

mean.

Our work relates to the larger topic of distinguishing nonlinearity in the

mean from ARCH. We deal with only one facet of this topic, namely spu-
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rious rejection of the no-ARCH hypothesis using standard ARCH tests. Of

course, application of both linearity tests of the conditional mean and ARCH

may provide a useful method of distinguishing between the two. In this con-

text it is worth noting the well known result that the LM ARCH test has

zero asymptotic relative efficiency compared to the typical LM linearity test,

shown by Luukkonen, Saikkonen, and Teräsvirta (1988). An implication of

this result is that the ARCH test is likely to have considerably less power

against mispecification of the conditional mean than the LM linearity test.

A related possibility, which is not the focus of our work, concerns the effect

of the presence of ARCH for the selection of the conditional mean model for

a particular process. It is hoped that our work will stimulate further inter-

est in the research of the interplay of ARCH and nonlinearity in time series

analysis.
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Table 6: Yen bilateral real exchange rates

LM LMtlg LMrbf LM LMtlg LMrbf

Probability value Probability value
Australia 0.000 0.145 0.142 Korea 0.000 0.012 0.013
Austria 0.018 0.115 0.114 Malaysia 0.060 0.061 0.059
Bangladesh 0.803 0.702 0.676 Mexico 0.006 0.002 0.002
Belgium 0.001 0.001 0.001 Netherlands 0.019 0.017 0.017
Bolivia 0.000 0.950 0.812 N. Zealand 0.021 0.039 0.038
Brazil 0.169 0.615 0.668 Norway 0.151 0.142 0.125
Canada 0.219 0.407 0.400 Philippines 0.924 0.904 0.902
Chile 0.513 0.467 0.628 Poland 0.013 0.133 0.130
Colombia 0.015 0.517 0.526 Portugal 0.032 0.093 0.089
Czech Rep. 0.773 0.786 0.795 Singapore 0.020 0.006 0.013
Denmark 0.014 0.020 0.020 Spain 0.898 0.746 0.751
Finland 0.293 0.671 0.744 Sri Lanka 0.905 0.892 0.883
France 0.261 0.291 0.290 Sweden 0.004 0.024 0.067
Germany 0.007 0.006 0.006 Switzerland 0.002 0.003 0.003
Greece 0.389 0.797 0.809 Thailand 0.743 0.610 0.698
Hong Kong 0.991 0.685 0.681 Turkey 0.993 0.994 0.994
Hungary 0.929 0.317 0.321 UK 0.769 0.997 0.997
Iceland 0.875 0.953 0.942 US 0.044 0.134 0.133
Indonesia 0.001 0.968 0.129 Venezuela 0.943 0.933 0.933
Italy 0.054 0.224 0.052

Total rejections for all countries 18 10 9

Note: Rejections at the 5% significance level in bold.

25



Table 7: US bilateral real exchange rates

LM LMtlg LMrbf

Probability value
Australia 0.005 0.030 0.031
Austria 0.001 0.019 0.017
Belgium 0.723 0.879 0.862
Canada 0.702 0.462 0.493
Cyprus 0.025 0.017 0.017
Finland 0.167 0.306 0.274
France 0.099 0.166 0.345
Germany 0.000 0.000 0.000
Greece 0.558 0.556 0.557
Italy 0.009 0.031 0.035
Japan 0.005 0.011 0.011
Luxembourg 0.004 0.005 0.005
Malta 0.001 0.001 0.016
Netherlands 0.000 0.004 0.000
New Zealand 0.338 0.445 0.445
Norway 0.050 0.059 0.059
Portugal 0.509 0.563 0.536
South Africa 0.246 0.192 0.188
Spain 0.770 0.790 0.789
Sweden 0.045 0.265 0.280
Switzerland 0.006 0.291 0.296
UK 0.160 0.150 0.168

No. of rejections 12 9 9

Note: Rejections at the 5% level in bold.
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Table 8: DM real exchange rates

LM LMtlg LMrbf

Probability value
Australia 0.145 0.428 0.423
Austria 0.024 0.625 0.626
Belgium 0.969 0.834 0.833
Canada 0.000 0.003 0.000
Cyprus 0.000 0.330 0.325
Finland 0.347 0.918 0.986
France 0.315 0.425 0.433
Greece 0.154 0.322 0.228
Italy 0.001 0.038 0.071
Japan 0.002 0.002 0.002
Luxembourg 0.154 0.536 0.558
Malta 0.005 0.079 0.075
Netherlands 0.657 0.855 0.854
New Zealand 0.318 0.587 0.598
Norway 0.001 0.160 0.156
Portugal 0.742 0.747 0.742
South Africa 0.007 0.005 0.006
Spain 0.901 0.834 0.834
Sweden 0.003 0.641 0.448
Switzerland 0.000 0.656 0.656
UK 0.013 0.152 0.156
US 0.000 0.000 0.000

No. of rejections 12 5 4

Note: Rejections at the 5% level in bold.

27


