
 
 
 
 
 
 

The Costs of Investment 
 
 
 
 
 
 

Adam Reiff#  
Central European University 

 
 

6 February, 2006 
 
 

 
 
 
 
 
Abstract: This paper describes a method of structural estimation of firm-level 
investment costs, based on a dynamic investment model that incorporates fix and 
irreversibility costs of investment. These cost components are consistent with the 
stylized facts documented by the empirical literature over the past decade. Our 
approach is novel in two respects: (1) the model makes distinction between cheap 
(cost- free) replacement investment and costly new investment, and we also make such 
a distinction at the empirical level; (2) we estimate the structural cost parameters of 
the model with a modified version of the indirect inference method. To estimate the 
model, we use an unbalanced panel of US manufacturing firms between 1959-87. Our 
results indicate that fixed and irreversibility costs are indeed significant. In particular, 
we find strong evidence of partial irreversibility, which is of much higher extent than 
estimated previously.  
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I - Introduction 
 

The importance of understanding investment cannot be overstated. For 
example, Hungarian data about investment (Gross Asset Formation) and GDP shows 
that investment is responsible for about 20-25% of total (nominal) GDP (Table 1). 
The GDP-share of investment is of similar magnitude in more developed countries; in 
the United States, for example, it was between 16.91% (1992) and 21.98% (1979) 
during the 1975-2004 period.1 

Year Gross Asset Formation 
(bn HUF)

Gross Domestic Product (bn 
HUF)

Gross Asset Formation as 
% of GDP

1995 1125.389 5700.278 19.74%
1996 1475.538 6900.262 21.38%
1997 1898.917 8550.109 22.21%
1998 2384.615 10031.925 23.77%
1999 2724.532 11198.808 24.33%
2000 3099.131 12834.343 24.15%
2001 3492.990 14694.638 23.77%
2002 3916.892 16657.534 23.51%  

Table 1. Investment (gross asset formation) and GDP in Hungary, 1995-2002. Source: Central 
Statistical Office of Hungary (KSH) 

Investment, however, not only constitutes a large proportion of the GDP, but it 
is also the most volatile part of it, and it is also one of the main determinants of 
medium- and long-term growth. These are just a few reasons why it has been one of 
the more pervasive questions in economics to understand the determinants of 
investment. 

Early investment models (known as accelerator models, see for example 
Koyck (1954)) relate investment to sales and output. Though these models performed 
relatively well to explain aggregate investment activity, they did not provide an 
underlying theory of why exactly these variables should be included into investment 
regressions. In search for an underlying theory, Jorgenson (1963) set up a model in 
which he assumed that firms could instantaneously and costlessly adjust their stock of 
capital. Under these assumptions he showed that firms always equate the marginal 
productivity of capital to the user cost of capital. Since there are no frictions in 
Jorgenson’s model, the firms’ decision about their capital stock (and hence 
investment) is a simple static problem. 

Later models departed from the unrealistic assumption of cost-free capital 
adjustment. If there are frictions to adjust capital stock, however, the investment 
decision becomes a dynamic problem in which firms have to consider future 
conditions when deciding about their current investment. The first models of this type 
considered the convex costs of investment as such a friction. Among others, Abel 
(1983) showed that in a dynamic model with convex adjustment costs investment is 
an increasing function of the marginal value of capital (known as Tobin’s marginal 
Q), connecting this way Tobin (1969)’s Q-theory to the neoclassical model with 
adjustment costs. 

                                                                 
1 This share was calculated as the ratio of gross fixed capital formation and nominal GDP. Source: 
International Financial Statistics online, http://ifs.apdi.net/imf/ifsBrowser.aspx. 
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Despite their theoretical appeal, however, these traditional models did not get 
much empirical support. As demonstrated by several surveys (see, for example, 
Caballero (1999)), in empirical specifications investment was found to have low or 
no responsiveness to investment fundamentals. 

Empirical work over the past decade has shown that there are at least two 
important factors missing from earlier models. First, by investigating the investment 
pattern of a panel of US manufacturing firms over 17 years, Doms and Dunne (1998) 
showed that firm-level investment is lumpy: a typical firm has huge investment bursts 
followed by periods of inactivity. This shows that the possibility of continuous 
adjustment of capital stock (a consequence of convex adjustment costs) is not 
realistic, and indicates the existence of other types of costs of capital adjustment. 

A second important factor missing from traditional models was documented in 
another influential paper by Ramey and Shapiro (2001), who show that capital sales 
can entail irreversibility costs: the sales price of capital can be significantly lower than 
the purchase price (or replacement value) of capital. Irreversibility is a cost of 
investment because it makes capital more expensive: if firms could sell their capital at 
the same price as they purchased them, then after a negative shock they would be able 
to get back the original price of investment, so the initial decision to invest would not 
entail any sunk cost. On the other hand, if the sales price of used capital is smaller 
than the purchase price, that is, if we have at least partial irreversibility, the decision 
to invest entails sunk costs. 

New investment models (for example Abel and Eberly (1994), Bertola and 
Caballero (1994)) incorporate fixed and irreversibility costs of investment. This paper 
presents a structural estimation of fixed, convex and irreversibility investment costs in 
a model that is similar to the model of Abel and Eberly. Our approach, however, has 
some novel elements. First, in our investment model we make distinction between the 
relatively cheap (cost-free) replacement investment and costly new investment. 
Second, the estimation technique is a somewhat modified version of indirect inference 
(for a description, see Gourieroux and Monfort (1996)), which was previously used in 
a similar framework by several studies (see for example Bayraktar, Sakellaris and 
Vermuelen (2005), though we use an unbalanced panel for the estimation). In the 
current paper we modify the indirect inference method in such a way that it leads to a 
better identification for all of the parameters. 

The estimation of the different investment cost parameters is important for at 
least two reasons. First, the estimate of the irreversibility parameter is interesting on 
its own right, because it is directly related to disinvestment; the ease of which is one 
of the major determinants of economic flexibility and speed of adjustment to shocks. 
Further, as data is generally available only for gross investment, negative investment 
is hidden behind the generally bigger positive investment; therefore disinvestment can 
be directly observed only on exceptional occasions. Currently we know about two 
direct estimations of the extent of ir reversibility. The first is the study of Ramey and 
Shapiro (2001) that we have already referred to: based on the asset sales of a closing 
US aerospace plant, they report that the average ratio of the sales price and calculated 
replacement value  of capital assets is only 28%. In other words, capital sales can be 
done by a discount as high as 72% on average, which is quite substantial. Besides this, 
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Reiff (2004) has similar findings on a data set about the asset auction of a 
discontinuing Hungarian manufacturing plant.2 

The second reason why the estimation of the different investment cost 
parameters is important is because with the estimated cost parameters we can gain 
better insights into micro- level investment behavior, and based on this we can also 
investigate the aggregate implications of the micro-based investment models. Using 
simulation techniques, we can examine the responsiveness of aggregate investment to 
aggregate shocks, which can be different from the corresponding micro- level 
responsiveness (see Caballero (1992) about the “fallacy of composition”). Better 
insights into this aggregate responsiveness can give us better understanding of 
investment related policies. 

The paper is organized as follows. In section II we set up the  basic investment  
model under our focus, and investigate the theoretical implications of fixed, 
irreversibility and convex costs to the responsiveness of investment to shocks (or, in 
the terminology of this paper, to the investment-shock relationships). The line of 
argument in doing so may seem straightforward, but this is still important as later we 
identify the different cost components based on this investment-shock relationships. 
Section III gives an overview of the general strategy of the estimation, highlighting 
the new elements of our estimation technique. In section IV we discuss the first stage 
of estimation: after describ ing the data, we present the estimation results. Section V 
discusses the second stage of estimation: it describes the steps of the simulation 
exercise, presents the results and discusses the estimated cost parameters. A short 
analysis of aggregate implications is also provided. Section VI is a summary of the 
main the results. 

 
II - The Model 

 

Let us consider a general investment model, in which firms maximize the 
present value of their future profits, net of future investment costs:3 
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where profit at time t is given by ( )tt KA ,Π , with tA  and tK  denoting profitability 
shock and capital stock at time t , respectively,4 the cost of investment tI  is 

( )tt KIC , , and β  is a discount factor. The capital stock depreciates at a rate of 0>δ , 
and the profitability shock is assumed to be a first-order Markov-process, so the 
transition equations are 

                                                                 
2 Of course, while these estimates on closing plants cannot be directly compared to other estimates of 
the extent of irreversibility that are based on panels of continuosly operating firms, they clearly indicate 
that the extent of irreversibility can be significant. 
3 The general structure of this  model is similar to the models presented by Abel and Eberly (1994)  and 
Stokey (2001). 
4 The “profitability shock” and the ( )tt KA ,Π  profit function will be defined explicitly in section 4 . 
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 ttt IKK +−=+ )1(1 δ , (2) 

 tt AA 1+  is a random variable with known distribution.  (3) 

 

Firms then maximize (1) with constraints (2) and (3).5 Omitting the time 
indices, and denoting future values of the variables by primes, the solution entails 
solving the following maximization problem in each time period: 
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and the solution is 
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This is a well-known optimum condition, stating that the (expected) discounted 
marginal value of capital for the firms (left-hand side) must be equal to the marginal 
cost of capital (right-hand side).8 

Obviously, this solution depends crucially on the exact formulation of the cost 
function. In this paper we use a general formulation of the investment cost function 

( )tt KIC , , and we assume that it has three components. In the following, along the 
lines of Stokey (2001), we examine these components one by one, with a special 
emphasis on their effect on investment decisions. 

The first component of the investment cost function is the fixed cost F , which 
has to be paid whenever investment is non-zero:9 

                                                                 
5 Thus we have a dynamic optimization problem with state variables ( )KA,  and control I . 
6 More precisely, the resulting value function is given by the Bellman equation 

( ) ( ) ( ) ( ){ }AKAVEKICKAKAV AAI
′′+−Π= ′ ,,,max,  

7 KV  is the marginal value of capital for the firm, often denoted by q (Tobin’s marginal q). 
8 The timing of the model is the following: firms have an initial capital stock K , and then they learn 
the value of the profitability shock A . This influences the expected discounted marginal value of 
capital (left -hand side of (5)). Finally, firms choose I  to make the marginal cost (right-hand side) 
equal to the marginal value of capital (taking into account that the choice of I  also influences the 
marginal value of capital through K ′ ), and enter the next period with their new capital stock K ′ . 
Effectively, we describe this sequence of events with the “investment-shock relationship”: in each time 

period, firms respond to profitability shock A  with an optimal investment rate I  or )(* AI . 
9 This fixed cost is assumed to be independent from I , but not necessarily from K . In fact it is a 
common assumption in the literature that the investment cost function is homogenous of degree 1 in 

),( KI , and therefore the fixed cost is assumed to be proportional to K . To ease exposition, for the 

time being we simply use F  instead of FK . 
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where ),( KIΓ  is the cost of investment other than fixed costs (time indices are 
dropped once again to ease exposition). 

The second component of the investment cost function is a linear term, which 
represents the buying (P) and selling (p) price of capital ( )0≥≥ pP . Thus ),( KIΓ  
can be further divided as 
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Finally, the third component of the investment cost function is ( )KI,γ , which 
is the usual convex adjustment cost; we make the general assumption that ( )KI,γ  is a 
parabola- like function, with a minimum value of 0, and also a possible kink at 

0=I .10 Therefore the partial derivative of this function with respect to I is non-
decreasing, with negative values for 0<I  and positive values for 0>I , and this 
derivative may be discontinuous at 0=I  if and only if there is a kink in the ( )KI,γ  
function there. 

More specifically, in this paper we define the fixed component of the 

investment cost function as FK , and the convex component as ( ) K
K
I

KI
2

2
, 






=

γ
γ , 

so that the investment cost function is linearly homogenous in ( )KI , . We normalize 
the model to the buying cost of capital, and assume that 1=P , from which it follows 
that for the selling cost of capital 10 ≤≤ p  must hold.11 

Additionally, we will also distinguish between replacement investment and 
new investment. There are several reasons why replacement investment is not as 
costly as new investment: (1) when undertaking replacement investment, firms often 
have their tools and machines checked, certain parts exchanged or upgraded, and this 
entails contacting well-known suppliers at much lower costs; (2) learning costs are 
also likely to be much lower in this case. Though replacement investment may also 
entail adjustment costs, it seems to be a reasonable approximation to treat replacement 
investment cost- free, as opposed to costly new investment. Specifically, we assume 
that investments up to the size of Kδ (the depreciated part of capital) have no convex 
or fixed costs, and firms have to pay adjustment costs after that part of investment that 

                                                                 
10 Specifically, ( ) 0, =KIγ  is assumed to be twice continuously differentiable except possibly at 

0=I , weakly convex, non-decreasing in I , with ( ) 0,0 =Kγ . 
11 So if 1=p , then there is no irreversibility. Complete irreversibility will be characterized by 

0=p . 
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exceeds this amount. (Of course, when undertaking replacement investment, firms 
still have to pay the unit purchase price of investment goods.) 

Thus the final specification of the investment cost function is the following: 
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For the remaining of this section we return to the general specification of the 
investment cost function (see expression (6)), and also neglect the distinction between 
replacement and new investment, with the purpose of investigating the effects of each 
cost components. A careful investigation of the effects of the various cost components 
is important because a full understanding of the role of the model’s key parameters 
will ease their empirical identification. 

Specifically, we examine the shape of ),( KIC I  on the right-hand side of (5); 
so let us make a graph about the partial derivatives of each cost components. First, 
denote the limits of the partial derivative of ),( KIγ  (with respect to I ) as 

),(lim
00

KIq IIa γ
−→

=  and ),(lim
00

KIq IIA γ
+→

=  (as in Figure 1); our assumptions ensure 

that Aa qq ≤≤ 0 . 

 
     ),( KIIγ  

  
 

    Aq  

                     I  

          aq  

 

Figure 1. The general shape of the function ),( KIIγ .  

 

Moreover, the partial derivative of ( )KI ,Γ  with respect to I  is ),( KIP Iγ+  
for 0>I , and ),( KIp Iγ+  for 0<I , so the shape of this function is as in Figure 2.12 

 

                                                                 
12 Here 21 qq ≥  follows from pP ≥  and aA qq ≥ . 
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Figure 2. The general shape of the function ),( KIIΓ  and ),( KIC I . 

 

Finally, we have ),(),( KIKIC II Γ=  by the definition of the cost function. 

Going back to the first order condition in (5), without fixed costs we have the 
following solution: 

• if for the current capital stock K  and profit shock A  we have 
1))1(,()( qKAVEq KAA >−′= ′ δ ,13 then the optimal level of investment 

will be positive; 

• if 2))1(,()( qKAVEq KAA <−′= ′ δ  then the optimal investment will be 

negative; 

• and if 21 ))1(,()( qKAVEqq KAA ≥−′=≥ ′ δ , then the optimal 

investment will be zero. 

In this case we have an inaction region as long as 21 qq >  (i.e., either if there 
is a kink at 0=I  in the adjustment cost function )( aA qq >  or if there is no perfect 

reversibility )( pP > ), so the investment function )(* qI  (i.e. investment as a function 
of the underlying fundamental, the Tobin’s q) is flat at 0* =I  for q -s in a certain 
region (if [ ]21;qqq ∈ ), but it is continuous: even small investment episodes will 
occur. 

 

                                                                 
13 ))1(,( KAVE KAA δ−′′  is the expected marginal value of capital when investment is zero; its value 

depends on the current value of the controls. 
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2qIEVI K ⋅=⋅  at 0=I  

Figure 3. The firms’ investment problem without fixed costs– graphically.  

 

If there are fixed costs, there is a slight difference. To see this, consider the 
( )KI ,Γ  function, which is the sum of a convex and a linear function, with 
( ) 0,0 =Γ K , and a possible kink at 0=I . Moreover, its derivative should be 

),( KIIΓ  as shown on Figure 2. Then Figure 3 illustrates the possible shape of 
( )KI ,Γ , with the additional assumption that currently 2))1(,( qKAVE KAA =−′′ δ  (that 

is, if there is no new investment, the marginal value of depreciating capital for the 
firm is exactly 2q ). 

If we have a situation like on Figure 3, then optimal investment is zero, but  
))1(,( KAVEEV KAAK δ−′= ′  has the smallest possible value ( )2q  (or the slope of the 

dashed line is the smallest) so that in the absence of fixed costs investment is non-
negative. If we decrease KKAA EVKAVE =−′′ ))1(,( δ  marginally, then, still assuming 

that fixed costs are 0, the optimal decision will be a marginal disinvestment, as the 
KIV  line, which represents the benefit from investment in terms of future profits, will 

be locally above the ),( KIΓ  function, the function representing the costs of 
investment. If there are positive fixed costs, however, then after a marginal decrease 
of KKAA EVKAVE =−′′ ))1(,( δ , it will be the zero investment that would be still 

optimal: the expected marginal net benefit ( ),( KIEVI K Γ−⋅ ) would be so small that 
it would not compensate for the fixed costs that would have to be paid. 

Indeed, if 0>F , then in case of the situation illustrated on Figure 3 we will 
only see a disinvestment if we decrease the value of KKAA EVKAVE =−′′ ))1(,( δ  

substantially enough below 2q ; so that the net benefit from disinvestment (the highest 
difference between KEVI ⋅  and ),( KIΓ  in the graph) should be at least F  (see 
Figure 4). 
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2qIEVI K ′⋅=⋅  

F  
Figure 4. The firms’ investment problem with fixed costs– graphically.  

 

In Figure 4 we can see that the highest 2q′  for which the optimal investment is 
negative, is smaller than 2q  in Figure 3, because of the fixed cost F . With similar 
reasoning it is easy to see that the lowest q for which the optimal decision is to have 
positive investment (i.e., the upper bound of the inaction region) is 11 qq >′ . 

It should be obvious from Figure 4 that the presence of fixed costs generates 
discontinuities in the investment function: the threshold between the inaction region 
and the disinvestment region is 2q′ , but for q-s slightly below this, the optimal 
disinvestment is not marginal. 

To conclude this section, it may be useful to summarize the role of the 
different cost parameters in the theoretical model. We have seen that: 

• irreversibility generates an inaction region (i.e., if the marginal value of 
capital is inside a certain band, firms will ne ither invest nor disinvest), but 
leaves the investment function continuous; 

• fixed costs also generate an inaction region (or in the presence of 
irreversibility costs they further widen it), and create discontinuities in the 
investment function (i.e., there will be no small investments undertaken). 

To further illustrate this point, we solved numerically the model for some 
simple cost structures.14 Appendix A contains the investment functions (investment as 

                                                                 
14 For the numerical solution, we assumed that 95.0=β , 07.0=δ , two common assumptions in the 
literature dealing with US data. We solved the dynamic optimization problem with parametric value 
function iteration as described by Judd (1998) , with a bi-variate cubic specification for the value 
function. (We also solved the problem with the more accurate value function iteration for appropriately 
discretised state space, and found that the cubic approximation of the value function was quite close to 
this more accurate solution.) We assume that the profitability shock behaves as estimated from real data 
(see section 4.). 
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a function of log(profitability shock)) in various cases: when investment is cost- free, 
when there are only convex costs of investment, when there are only fixed costs of 
investment, and when there is irreversibility. The effects of the various cost 
components can also be observed on these figures. 

 
III - Estimation of Cost Parameters: General Strategy 

 

In this paper, we use indirect inference (as described by Gourieroux and 
Monfort (1996)) to estimate structural investment cost parameters. The general idea 
behind the identification of the structural parameters is to match the investment-shock 
relationship obtained from the theoretical model to the observed investment-shock 
relationship. The “philosophy” of this approach is that we believe that we are able to 
observe the “true” investment-shock relationship fairly precisely; and then we choose 
those cost parameters in the theoretical model, for which the theoretical investment-
shock relationship is very close to the observed one. 

This identification strategy is an indirect one when compared to more 
conventional methods, which (for example) start out from the first-order conditions, 
and identify structural parameters on the basis that these conditions should be met 
empirically. This conventional method (or its variations), however, cannot be used 
directly in the context of our model, since the existence of an inaction region means 
that the conventional first-order conditions are not always equalities: for observations 
when there is inaction, we have only an inequality, stating that the current marginal 
value of capital, q  is somewhere between the left-hand side derivative of the 
investment cost function, 1q  and the right-hand side derivative of the investment cost 
function, 2q . So we use an indirect method because the direct, first-order condition 
based approach cannot be used in the usual manner.15 

However, our identification strategy is not straightforward either, as there is 
no closed-from solution of our model, and we can not derive analytically the 
theoretical investment-shock relationship as a function of structural cost parameters. 
As discussed in the previous section and also in Appendix A, the theoretical 
investment-shock relationship is non- linear, and in case of positive fixed costs it is not 
even continuous. In recent literature using indirect inference (see for example 
Bayraktar, Sakellaris, Vermeulen (2005) and the initial version of Cooper-
Haltiwanger (2005)), it has been very popular to identify the cost parameters based on 
a quadratic shock-investment relationship that captures non- linearity, but fails to 
capture discontinuity and inaction. In the following we argue that though this method 
can be useful in identifying the convexity and irreversibility parameters, it is not 
sufficient to identify the fixed cost parameter.16 

                                                                 
15 Cooper, Haltiwanger and Willis (2005)  investigate the possibility of modifying the usual first-order 
condition based approach so that it remains applicable in this context. Their modification solves the 
problem of inequality-type first-order conditions for inactive observations by using the data of the 
active firms only, together with the lengths of inactive spell of inactive firms. They also correct for the 
endogenous selection, which arises because of the exclusion of the inactive observations.  
16 This is not surprising: the fixed cost parameter is the one that creates discontinuity and inaction, none 
of which is present in the quadratic equation. 
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In recent literature, the usual quadratic reduced form regression (the “shock-
investment relationship“, based on which the parameters are identified) applied when 
using indirect inference is the following: 

 

 itttiititit uaaai +++++= − µφφφφ 1,3
2

210
~~~~

, (9) 

 

where i denotes the investment rate, a denotes the profitability shock, tµ   is a time-
dummy, u is a well-behaving error term, and the variables with tildes denote 
deviations from plant-specific means. In this specification the parameter 2φ  is meant 
to capture the non- linearity of the investment-shock relationship (as higher 
profitability shocks are assumed to lead to proportionally higher investment activity in 
absolute value). According to the usual arguments, parameter 3φ  represents the 
lumpiness of investment: because of inaction, shocks sometimes lead to lagged effects 
– following a positive profitability shock, for example, the investment threshold may 
be passed only in later periods. (Or, alternatively, current shocks may trigger 
immediate investment, and then inaction for many periods.) The parameter 3φ  
therefore is included to account for the possible inaction region, and captures both the 
effects of irreversibility and fixed costs. 

To investigate the effect of structural cost parameters to these regression 
parameters, we estimated the reduced regression parameters in certain simple cases. 
We have already referred to Appendix A to illustrate the investment-shock relationship 
under basic cost structures; now we examine the estimated reduced regression 
parameters for the same cases. 

• In the cost-free case )1,0,0( === pF γ , we have 5233.2ˆ1 =ψ , 
4384.0ˆ 2 =ψ , 5151.2ˆ 3 −=ψ . Here the significantly positive 2ψ̂  represents 

the slight convexity of this relationship due to diminishing returns to 
capital (a further discussion of this is provided in Appendix A), and we can 
also see that investment is highly responsive for shocks: the absolute 
values of the estimated parameters are relatively high. 

• When there are only irreversibility costs )95.0,0,0( === pF γ , we 
estimate 8520.0ˆ1 =ψ , 3928.0ˆ 2 =ψ , 5564.0ˆ 3 −=ψ . Because of the 
inaction region, the estimated shock- investment relationship became more 
convex, which is apparent from the increase in the relative magnitude of 

2ψ̂ . On the other hand, investment is much less responsive to shocks, also 
because of the inaction region; this is obvious from the smaller absolute 
values of the estimated reduced regression parameters. 

• If we have only convex costs of adjustment )1,2.0,0( === pF γ  we see 
the estimated reduced regression parameters as 4657.0ˆ1 =ψ , 

0672.0ˆ 2 =ψ , 2557.0ˆ3 −=ψ . As can be seen in Figure A/3, the only 
difference between this case and the cost-free case is that the investment-
shock relationship became flatter, and this is apparent from the 
proportional decrease of the estimated reduced regression parameters. 
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• When there are only fixed costs of investment )1,0,001.0( === pF γ , 
the shock- investment relationship is basically the same as in the 
frictionless case, with its middle part (when the absolute value of shocks is 
small) missing; see Figure A/4. It is not surprising, therefore, that the 
estimated regression coefficients are quite similar to the estimated 
regression coefficients in the cost- free case: now they are 4475.2ˆ1 =ψ , 

4423.0ˆ 2 =ψ , 4165.2ˆ 3 −=ψ .17 This indicates that changes in F do not lead 
to changes in the estimated reduced regression parameters. 

Thus the general responsiveness of investment to shocks (in other words, the 
absolute value of the estimated reduced regression parameters) identifies the convex 
component of the investment cost function (γ ). Also, the relative magnitude of 2ψ̂  
identifies the irreversibility costs ( p ). However, these regression parameters do not 
contain any information based on which one could identify F , the fixed cost of 
investment. 

 Therefore, while reduced form regression (9) is useful to estimate γ  and p , 
we should look for a different type of information if we also want to identify F . To 
do this, it seems to be obvious to use some property of the investment-shock 
relationship that is exclusively due to the presence of fixed costs. 

In section 2 we saw that in the theoretical model, increasing fixed costs lead to 
wider inaction region and larger discontinuity in the investment-shock relationship, 
while increasing irreversibility leads to higher inaction without affecting the 
continuity of the investment-shock relationship. This makes us think that matching 
theoretical discontinuity with empirically observed discontinuity in the investment-
shock relationship could easily identify fixed costs. But given that this discont inuity is 
very hard to observe empirically (see observed gross and new investment rate 
distributions in section 4, both of which are continuous), this method does not work.18 

Because of this, we chose a somewhat more indirect method to identify the 
fixed cost parameter: we try to match theoretical and observed inaction rates. (As 
discussed later, inaction is easily observable when we distinguish between new and 
replacement investment.) The general idea behind this is the following: inaction can 
emerge both because of fixed costs and irreversibility. But given that reduced 
regression (9) identifies irreversibility (and also irreversibility- induced inaction), from 
the observed inaction, together with the irreversibility- induced inaction, we can infer 
fixed cost-induced inaction and fixed costs themselves. 

An alternative way to identify irreversibility separately from fixed costs is to 
investigate the asymmetry of the investment rate distribution. It seems to be obvious 
that irreversibility creates asymmetric behavior on the positive and negative ends at 
the micro level, while fixed costs do not lead to such asymmetry. So when identifying 
the structural cost parameters, we will also control for the asymmetry of the 
theoretical investment distribution, hoping that the direct identification of the 
irreversibility parameter indirectly identifies fixed costs (through matching the 
inaction rates). Thus we also match the theoretical and observed asymmetry to each 
other. 
                                                                 
17 In the cost-free case they were 5233.2ˆ1 =ψ , 4384.0ˆ 2 =ψ , 5151.2ˆ 3 −=ψ . 
18 Cooper and Haltiwanger (2005)  also report continuous investment distribution, based on a different 
establishment-level data set. 
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To conclude this section, let us summarize our estimation strategy. To identify 
the investment cost function’s structural parameters, we will match the estimated 
regression parameters of equation (9), along with the inaction rate and investment 
rate distribution skewness in the theoretical model to similar parameters observed in 
real data. 

 
IV – Data and empirical results 
 

Data set and main variables 

 

To estimate the structural parameters of the investment cost function, we use a 
panel data set about balance sheet and income statement data of publicly traded US 
manufacturing firms between 1959-1987, a part of the COMPUSTAT database.19 This 
is a well-known data set, and for a detailed documentation we simply refer to Hall 
(1990). Here we give only a brief description of the main features of the data. 

The “Manufacturing Sector Master File” is a data set about 2,726 large US 
manufacturing firms between 1959-87. The unique feature of this data set is that it 
contains information about the reasons of exits, indicating any domestic/foreign 
acquisitions, privatizations, leveraged buyouts, bankruptcies, liquidations, 
reorganizations, and name changes. This makes it possible (by dropping only those 
firms who were acquisited, reorganized, bought out) to build a data set that contains 
companies with continuous operation together with companies that were either 
bankrupt or liquidated. Excluding also the bankrupt or liquidated firms could lead to 
selectivity bias by excluding many companies with presumably large negative 
profitability shocks and negative investment, which is a significant loss of information 
when (among others) we investigate irreversibility. 

The raw data set contains 49,225 year-observations about 2,726 companies. 
As a first step, we excluded all merged, acquired, privatized firms from the data set 
(along with those companies for which the reason of exit is unknown), and obtained a 
data set containing the continuously operating, bankrupt or liquidated firms. This 
reduced the size of our data set to 31,297 year-observations about 1,664 companies. 
We had to narrow our sample further as there are some companies for which we do 
not have any information about their net value of capital; due to this fact the size of 
the panel is decreased to 29,548 year-observations about 1,617 companies. Finally, at 
later stages we will use sales revenues as a weighting variable; in some cases this is 
missing, or it is unreasonably small. 20 After deleting these observations the size of the 
data set decreases to 29,500 year-observations about 1,616 firms. Table 2 contains 
information about the entry and exit dates of these 1,616 companies. 

From now on, we will refer to these 29,500 year-observations about 1,616 
companies as the “full sample”. But for comparison purposes we also created a 

                                                                 
19 I am grateful to Plutarchos Sakellaris for giving me access to these data. 
20 This latter category includes newly created firms: we can observe in case of these that the sales 
revenue is virtually zero, while having huge losses. We assume that this phenomenon is due to initial 
investment, and therefore does not represent normal operation, so we deleted these few cases from our 
data set. 
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balanced sub-sample between 1972-8721 of the entire data set, labeled thereafter as 
“balanced”. This sub-sample contains 15,088 year-observations about 943 firms, and 
its composition is as in the shaded-striped area of Table 2. 

 
75 76 77 78 79 80 81 82 83 84 85 86 87 SUM

59 1 1 2 4 278 286
60 1 3 2 2 2 2 3 1 2 1 2 124 145
61 1 1 1 1 1 2 24 31
62 1 1 1 1 60 64
63 1 1 3 2 42 49

F 64 1 1 1 1 1 26 31
I 65 1 2 1 33 37
R 66 1 1 37 39
S 67 1 2 1 1 1 1 1 46 54
T 68 1 2 1 1 3 1 2 2 2 2 126 143

69 1 1 2 3 1 1 1 38 48
70 1 2 1 21 25

O 71 1 2 1 1 1 4 1 1 42 54
B 72 1 1 2 2 1 46 53
S 73 1 2 1 43 47
E 74 1 1 1 2 1 3 86 95
R 75 1 12 13
V 76 1 1 14 16
A 77 1 1 7 9
T 78 24 24
I 79 1 2 1 34 38

O 80 2 1 1 1 43 48
N 81 1 23 24

82 1 1 65 67
83 1 1 55 57
84 37 37
85 44 44
86 38 38

SUM 2 9 7 9 11 14 29 7 16 16 19 9 1468 1616

LAST OBSERVATION

 
Table 2. Entry and exit dates of the firms in our sample 

 

To measure the capital stock of the firms, we use inflation-adjusted net plant 
value (NPLANT). This variable was calculated by “multiplying the book plant value 
by the ratio of the US GNP deflator for fixed nonresidential investment in the current 
year to the GNP deflator AA years ago”22, where AA stands for the average age of the 
plant and equipment for this particular firm. Thus this variable is a corrected book 
plant value of the firms, where the correction was made to express all previous capital 
purchases at current prices. 

To measure gross investment, we used the difference between gross capital 
expenditures (UFCAP) and sales of property, plant and equipment (SFPPE), both 
reported from firms’ statements of changes. We preferred these variables to the main 
investment variable of the data set (INVEST) as this latter also includes the amount 
spent to acquisitions and other not strictly investment-related expenditures. (Note, 
however, that in the vast majority of the observations we have UFCAP = INVEST, so 
our results would not change dramatically if we used the other investment variable.) 

To calculate an investment rate variable we first subtracted the capital sales 
(SFPPE) from gross capital expenditures (UFCAP), and then divided this by the 
previous year’s net plant value, and obtained the investment rate in year t: 

 

 
1−

−
=

t

tt
t NPLANT

SFPPEUFCAP
INVRATE . (10) 

 

                                                                 
21 Cooper and Haltiwanger (2005)  use a balanced sub-sample of the Longitudinal Research Database 
(LRD) between 1972-88. 
22 Hall (1990), page 18. 
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This observed investment rate, however, contains both new and replacement 
investments, while we are mainly interested in the costly new investment rate. To be 
consistent with the assumptions of the theoretical model, we separated new 
investment and replacement investment based on the relationship between observed 
net capital expenditures )( tt SFPPEUFCAP −  and depreciation )( tADJDEP .23 

• If ttt ADJDEPSFPPEUFCAP >− , then net capital expenditures exceeded 
depreciation, so net capital stock increased. We assume that in this 
“expansionary” case firms undertake as much replacement investment as 
possible (as this is relatively cheap), and only the increase in the value of 
net capital stock is the result of the costly new investment activity. So in 

this case, 
1

)(

−

−−
=

t

ttt
t NPLANT

ADJDEPSFPPEUFCAP
NEWINVRATE . 

• If 0≥−≥ ttt SFPPEUFCAPADJDEP , then the firm’s net capital 
expenditures were positive, but since they did not entirely cover 
depreciation, the firm’s former capital stock depreciated to some extent. 
We assume in this case all capital expenditures were maintenance-type 
replacement expenditures, and therefore 0=tNEWINVRATE . 

• if tt SFPPEUFCAP −>0 , then the firm is obviously shrinking. It seems to 
be logical to assume in this case that no replacement investment was 
undertaken, as this could have been compensated for by costly capital 

sales. In this case 
1−

−
==

t

tt
tt NPLANT

SFPPEUFCAP
INVRATENEWINVRATE . 

The distributions of the calculated gross and new investment rates are depicted 
on Figures 5-6. 

 

                                                                 
23 ADJDEP is an adjusted measure of the depreciation, where (similarly to the correction of NPLANT) 
observed depreciation is deflated by an investment deflator AA (average age of capital) years ago, to 
get a measure of depreciation that is expressed in current prices (as opposed to historical purchase 
prices represented in the book value). 
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Figure 5. The distribution of observed gross investment rates, full sample 

 
Figure 6. The distribution of observed new investment rates, full sample 
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The shape of the gross investment rate distribution is very similar to what is 
reported in Cooper and Haltiwanger (2005), even though we use firm-level (as 
opposed to establishment- level) data. The mode of the distribution is at about 8% 
investment rate, probably reflecting usual replacement investment activity. In the new 
investment rate distribution we have a large peak at zero, reflecting the fact that we 
had many observations with net investment expenditure between 0 and observed 
depreciation. We also see the mode of the distribution at very low positive investment 
levels: further 12.51% of observed investment rates is in the [0;3%] range, while the 
proportion of rates in the [0;5%] range is 21.18%. We also see that the observed 
distributions are skewed to the left. 

In certain steps of the analysis, we also use the following variables: operating 
income before depreciation (OPINC), sales revenue (SALES), and employment 
(EMPLY). Appendix C contains a full description of variable definitions. 

 

Estimating the reduced regression parameters from data 

 

As discussed in section 3, we estimate the investment cost parameters 
( )pF ,,γ  by matching the observed reduced regression parameters, inaction rate and 
asymmetry of investment distribution with the same parameters calculated from 
theoretical investment models. Therefore, as a first step we estimate the reduced form 
regression parameters, calculate the inaction rate and asymmetry of investment 
distribution for our data set. 

To estimate the reduced form regression (9) we first identify the yearly 
profitability shocks that hit the firms in our data. We do this by adopting the strategy 
of Cooper and Haltiwanger (2005). First we assume that firms have identical, 
constant returns-to-scale Cobb-Douglas production functions: 

  

 LL
itititit KLBY αα −= 1 , (11) 

 

where labor ( )itL   can be adjusted in the short-run and can therefore be regarded in 
our yearly sample as being optimized, but capital ( )itK  cannot be adjusted in the 
short-run. In this expression itY  denotes production, itB  is production shock,24 Lα  is 
labor share. We also assume that firms face a constant elasticity ( )ξ  demand curve 

ξppD =)( , so the inverse demand curve is ξ/1)( yyp = . Therefore the firms’ 
problem is: 

 

 max)(
1

)1(
111

→−=−=−=Π
+

−
+++

it

LL

Lititititititititititit wLKLBwLywLyyp ξ
ξ

α
ξ
ξ

α
ξ

ξ
ξ
ξ

,(12) 

 

                                                                 
24 Note that this is not the profitability shock that we have in reduced regression (9). 
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where w denotes the wage rate (assumed to be constant). The first-order condition of 

this problem is wLKB
LL

itititL =
+ −

++
−

+
1

11
)1(

1
1 ξ

ξ
α

ξ
ξ

α
ξ

ξ

ξ
ξ

α , from which the optimal labor 

usage is 

 

 )1(
)1)(1(

)1(
1

)1(
)1(

*

)1(
ξαξ

αξ
ξαξ

ξ
ξξα

ξ
ξξα

ξ

ξα
ξ +−

−+
+−

+
−+

−+









+

= L

L

LL
L

itit
L

it KBwL . (13) 

 

Substituting this into the profit function (11), the optimal profit of the firm is 

 

 ( ) =−=Π
+

−++
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1
)1(1
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1
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ξαξ
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ξαξ

ξ

L
itit

L

L

L

LL

L
L

KBw . (14) 

 

Hence if we write (14) as θ
ititit KA=Π * , where itA  denotes the profitability 

shock25 (as opposed to itB , which was productivity shock), then 
)1(
)1)(1(

ξαξ
αξ

θ
+−

−+
=

L

L , a 

function of the demand elasticity and the labor share in the production function. 

We identify firm-level profitability shocks simply by 
θ
it

it
it K

A
*Π

= , which can be 

calculated from our data set if we have an estimate for θ . We estimated 6911.0=θ  
in the full sample. (In the balanced sub-sample the estimated θ  is 4641.0ˆ =θ .26) 

We call the profitability shock calculated this way as type 1 shock. But as the 
resulting variance of the profitability shocks appears to be implausibly large (see 
Tables 3a-b later), replicating the strategy Cooper and Haltiwanger (2005), we 
estimated the profitability shocks in an alternative way. A little algebra shows that the 
optimal profit in (14) can also be written as 

  

                                                                 
25 So the profitability shock consists of wages, demand elasticities, labor shares and productivity 
shocks. We could argue that wages are also changing over time, but as one can easily see, any 
aggregate time-series variation of wages is captured by the time dummies in the reduced form 
regression. 
26 We estimated θ  from a non-linear model using firm-level fixed effects: ititiit KA εθ +=Π . We 

estimated this model with non-linear least-squares, and treated the heteroscedasticity by weighting the 
observations with itY/1 , where itY  stands for the sales revenues. For a more detailed description of 

our estimation method see Appendix B. 
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*** , (15) 

 

therefore the itA  profitability shock can also be calculated as 

 

 
L

L
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. (16) 

 

To compute the profitability shock this way, we should know the value of Lα . 
But as we only need the deviation of the (log) profit shocks from their plant-specific 
means (see reduced regression (9)), the parameter Lα  becomes unimportant: 








 −
+








=

L

L

it

it
it K

wL
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α

θ θ

1
loglog)log(

*

, so when subtracting the plant-specific means, the 

time- invariant term disappears. Therefore it is enough to calculate 
θθ it

it
it K

wL
A

*

= , for 

which we have data. We will call the profitability shock calculated this way as type 2 
shock.27 

With the calculated profitability shocks we are ready to estimate reduced 
regression (9). But later, when the theoretical model is solved numerically, we shall 
simulate the profitability shocks and draw random variables from the observed 
distribution of shocks, using the exact correlation structure. As this correlation 
structure is extremely rich (shocks are correlated both across individuals and through 
time), we decomposed the itA  profitability shocks (both types) into aggregate and 
idiosyncratic shocks.28 Following the method of Cooper and Haltiwanger (2005), we 

define the aggregate shock simply as 
t

N

i
it

t N

A
A

t

∑
== 1 , where tN  stands for the number of 

observations in year t. The idiosyncratic shock is what remains: 
t

it
it A

A
=ω . 

Tables 3a-b contain the descriptive statistics of the identified type 1 and type 2 
shocks in the full sample and balanced sub-sample. 

 

                                                                 
27 In fact we have data only on the size of labor force, not on labor costs. But similar considerations as 
in case of Lα  lead us to conclude that the value of w  is unimportant. 
28 Thus the common aggregate shock captures between-firm correlation of shocks; the autocorrelation 
of the aggregate and idiosyncratic shocks captures the within-firm correlation of shocks. 
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Type 1 shocks Full sample Balanced panel 
Aggregate shock standard deviation 0.1359 0.1196 
Aggregate shock autocorrelation 0.6979 0.5297 
Idiosyncratic shock standard deviation 1.8355 2.1477 
Idiosyncratic shock autocorrelation 0.4004 0.4975 

Table 3a. Standard deviations and autocorrelations of type 1 shocks 

 

Type 2 shocks Full sample Balanced panel 
Aggregate shock standard deviation 0.0822 0.0407 
Aggregate shock autocorrelation 0.9325 0.7449 
Idiosyncratic shock standard deviation 0.2891 0.2482 
Idiosyncratic shock autocorrelation 0.6410 0.7050 

Table 3b. Standard deviations and autocorrelations of type 2 shocks 

 

It is apparent from Tables 3a-b that type 2 shocks have much smaller variation 
than type 1 shocks, probably reflecting lower measurement error in the labor force 
variable than in the profit variable.29 It is also intuitive that in case of the more 
reliable type 2 shocks if we identify the profitability shocks in the full sample, as 
opposed to the balanced sub-sample, we find the standard deviation of the shocks 
significantly (25-30%) higher. This difference could be attributed to the variance-
increasing effect of the large negative shocks that probably hit the liquidated and 
bankrupt firms mostly excluded from the balanced panel. 

With the identified profitability shocks, we now estimate the reduced form 
regression (9): 

 

 ( ) itttiititit uaaai +++++= − µψψψψ 1,3
2

210
~~~~ .30 (9) 

 

Table 4 reports the estimated parameters of this regression for the full sample 
and balanced sub-sample. The estimated reduced regression coefficients are quite 
similar to each other, the only difference is in the estimated 2ψ  parameter, which is 
significant only at the 10% level in the balanced sub-sample.31 

                                                                 
29 Cooper and Haltiwanger (2005)  have similar findings on a different data set. 
30 Firms were quite heterogeneous with respect to the variation of shocks that hit them. To deal with 
this kind of firm-level heterogeneity, and to avoid larger influence of more volatile firms for the 
estimated parameters, we weighted each observation by one over the firm-level standard deviation of 
the identified shock. This makes our results more comparable to the simulation results (see next part), 
as in the simulation exercise we also assumed that the standard deviation of the shocks is the same for 
each firm. 
31 This is probably because we have relatively few large shocks in the balanced sample, and the 
reduced regression can detect relatively modest non-linearity. 
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 Full 
sample 

Balanced 
sub-sample 

1ψ  0.1150 
(0.0085) 

0.1032 
(0.0099) 

2ψ  0.0822 
(0.0147) 

0.0310 
(0.0289) 

3ψ  
-0.0251 
(0.0081) 

-0.0368 
(0.0092) 

R-squared 0.0711 0.0528 

No. of firms 1,554 941 

No. of obs. 23,413 12,847 

Table 4. Estimated reduced regression parameters. Standard errors are in parenthesis. 

 

Estimating the inaction rate and asymmetry of investment distribution from 
data 

 

We discussed in section 3 that we also match theoretical inaction rate (the 
proportion of zero investments) to the observed inaction rate, because this way we can 
better identify the fixed cost parameter of the investment cost function. The observed 
inaction rate is 42.35% in the full sample, with a standard error of 0.29%.32 Similar 
inaction rate is reported for the balanced sub-sample in Table 5. 

As usual, we use skewness to measure the asymmetry of the investment rate 
distribution. As discussed earlier, only the irreversibility parameter is likely to 
influence the asymmetry of this distribution, so this may lead to better identification 
of the irreversibility parameter. Table 5 contains the estimated skewness values of the 
investment rate distribution: it is 1.2182 for the full sample, and 0.9866 for the 
balanced sub-sample. (The corresponding standard errors of the estimated skewness 
figures33 are 0.0146 for the full sample, and 0.0200 for the balanced sub-sample.) 

 
 Full 

sample 
Balanced 

sub-sample 

Skewness of investment rate distribution 1.2182 
(0.0146) 

0.9866 
(0.0200) 

Inaction rate 0.4235 
(0.0029) 

0.4625 
(0.0041) 

Table 5. Skewness of investment rates and observed inaction. Standard errors are in parenthesis. 

                                                                 

32 The standard errors of the estimated proportions are 
n

pp )1( −
, with p denoting the estimated 

proportion, and n is the number of observations. We have apparently larger inaction rate in Figure 6 , 
but that is actually the proportion of new investment rates between -1% and 1%. 
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From now on, we will work with the parameter estimates for the full sample as 
benchmark parameters. In the second step of the estimation procedure we will choose 
the structural parameters of the investment cost function in such a way, that the 
estimated reduced regression parameters from the theoretical model, along with the 
inaction rate and skewness of investment rate distribution, should be sufficiently close 
to these benchmark parameters. 

Before finishing this section, it maybe useful to summarize those results that 
we will use to identify the theoretical cost parameters: 

• standard deviations and autocorrelations of the identified (type 2) 
aggregate and idiosyncratic shocks (for the full sample, these are in 
column 2 in Table 3b). This information will be used to simulate aggregate 
and idiosyncratic shocks that are similar to observed shocks when we 
solve numerically the theoretical model and simulate investment paths; 

• estimated parameters of the reduced form regression from the full sample 
(column 2 in Table 4), and the estimated variance-covariance matrix  
( )Ŵ of the estimated parameters ( )321 ˆ,ˆ,ˆ ψψψψ =TRUE ; 

• estimated skewness of the distribution of the investment rates in full 
sample, and the standard error of this (first entry of the 2nd column in 
Table 5); 

• observed inaction rate in full sample, and the standard error of this 
(second entry of the 2nd column in Table 5). 

 
V – Estimation Results 

 

The estimation of the structural cost parameters involves three steps. 

Step 1. We specify the investment cost function according to (8): 
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33 The standard error of estimated skewness is calculated as 
nnnn
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, with n 

denoting the number of observations. 
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Then we solve numerically the theoretical investment model for any cost 

parameter vector ),,( pF γ . When solving the model, we assume that 95.0
1

1
=

+
=

r
β , 

07.0=δ , common assumptions in the literature using US data. For the numerical 
solution we use parametric value function iteration (as described by Judd (1998)), 
with the value function assumed to be a bivariate cubic function of (A, K).34 During 
the solution we assume that the profitability shock itA  is the sum of aggregate and 
idiosyncratic shocks, where the aggregate shock is a 2-state Markov-process with 
standard deviation and autocorrelation estimated from real data (see Table 3b), and 
the idiosyncratic shock is an AR(1) process with normally distributed innovations 
(also matching the properties of idiosyncratic shocks reported in Table 3b). 

Step 2. With the numerical solution of the theoretical model, we simulate 
capital and investment paths of hypothetical firms. To do this, first we simulate 
(aggregate and idiosyncratic) profitability shocks, using the descriptive statistics of 
the “true” (type-2) profitability shocks identified from the data (Table 3b). We also 
simulate the initial capital of the firms, then with the policy function obtained in 
Step1, along with the simulated shocks, we generate the capital and investment path 
of each firm.35 Then we calculate the deviations from plant-specific means for both 
the investment rate and profitability shocks, and estimate the reduced form regression 
(9) on the simulated data set. We also calculate the skewness and the inaction rate in 
the simulated investment distribution. Let us denote the estimated set of parameters 
by ( )pF ,,γψ , which expresses that these estimated parameters will depend on the 
structural cost parameters.36 

Step 3. For any cost parameter vector ),,( pF γ , we calculate the “distance” 
between ( )pF ,,γψ  and the parameter vector estimated from real data. The distance 
function is 

 

 ( ) ( ) ( )TRUETRUE pFWpFpFD ψγψψγψγ −⋅⋅
′

−= − ),,(ˆ),,(,, 1 , (18) 

 

where Ŵ  is the variance-covariance matrix of TRUEψ  estimated from the data.37 That 
is, for any ),,( pF γ  the distance is the weighted sum of squared deviation of the 
estimated parameters on simulated data from the “true” parameter set estimated on 

                                                                 
34 We solved the model initially with the more precise (but computationally more demanding) value 
function iteration, and chose the cubic functional form based on these results. 
35 To avoid problems arising from the misspecified distribution of the initial capital of the firms, we 
prepare the capital path of each firm for 129 periods (instead of 29), and only consider the data of the 
last 29 periods, which are not influenced by the initial level of the capital. The number of simulated 
firms is the same as the number of firms in our data, 1616. 
36 Note that here ψ  is a vector containing 5 elements: ( )321 ,, ψψψ  from the reduced form regression, 

and the skewness and the inaction rate in the investment rate distribution. 
37 Ŵ  contains the estimated variance-covariance matrix of the reduced regression parameters, the 

estimated variance of the skewness of the investment distribution )0146.0( 2 , and the estimated 

variance of the observed inaction rate )0029.0( 2 . The pair-wise covariance between the estimated 
skewness, inaction rate and reduced regression parameters is assumed to be 0. 
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real data, with the weights being the estimated variance-covariance matrix of the 
“true” parameters. 38 

We estimate the structural cost parameters ),,( pF γ  by minimizing the 
distance function (18). The results for the “full sample” are in Tables 6-7. 

Table 6 contains the estimated structural cost parameters.39 The magnitude of 
the fixed costs seems to be very small, but the estimated parameter is about 4.69% of 
the “regular” purchase price of capital when investment rate is 1%.40 Moreover, the 
estimated irreversibility parameter indicates substantial irreversibility, a more than 
30% average discount on capital sales. The estimated convex cost parameter is 
0.4464. 

 

estimated F 0.000469 
(0.000151) 

estimated γ 0.4464 
(0.0252) 

estimated p 0.6962 

(0.0923) 

optimal LOSS 193.4723 

Table 6. Estimated cost parameters from the full sample. Standard errors are in parenthesis 

 

To further analyze the estimated cost parameters, suppose that we sell 1% of 
our existing capital stock. Then the fixed cost of this transaction is 0.000469, the 
convex cost is (0.4464/2)*(-0.01)*(-0.01) = 0.00002232, and the irreversibility cost is 
0.3038*0.01 = 0.003038 (the product of the discount at which we can sell capital, and 
the quantity sold). So the total adjustment cost to be paid is 0.003529, which is 
35.29% of the price we would get for this capital sale in the absence of frictions 
(0.01). The relative importance of the different cost components is the following: 
13.3% of total adjustment costs is fixed cost, 0.6% of total adjustment costs is convex 
cost, and the remaining 86.1% is irreversibility cost.41 The average positive 
investment rate in our data set is 6.34%; in this case the total adjustment costs are 
2.15% of the purchase price, of which 34.3% are due to fixed costs, and 65.7% are 
due to convex costs. (Obviously, in case of positive investment rate there are no direct 
irreversibility costs.)  

The estimated irreversibility parameter, 6962.0=p  (significantly smaller than 
1) indicates that firms can sell their used capital at a 31% discount, or on average 31% 
of any dollar spent on investment is sunk. This is quite far from the estimate of Ramey 
and Shapiro (2001), who find that at a discontinuing US plant the average discount on 
                                                                 
38 So parameters estimated with smaller standard errors have larger weights.  
39 Standard errors are calculated as described by Gourieroux and Monfort (1996). 
40 Note that we normalized the model to the buying price of capital, and therefore when investment rate 
is 1%, the price of new capital is 0.01. 
41 For different investment rates, these proportions change. Larger new investment activity generally 
increases the importance of adjustment costs, mainly because of relatively quickly increasing convex 
costs. Also, for larger investment projects convex costs will dominate fixed and irreversibility costs. 
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used capital is 72% of the replacement value. This value is also far from the findings 
of Reiff (2004), where more than 50% discount is documented for a discontinuing 
Hungarian manufacturing plant. However, our estimate of 69.0=p  is based on 
continuously operating plants, as opposed to the total sell-out of assets at 
discontinuing plants, so these results cannot be directly compared. On the other hand, 
our parameter estimate is much smaller (and therefore indicates much higher 
irreversibility) than those results in the literature that use similar techniques to ours. 
Based on indirect inference, with reduced form regression (9) in a somewhat modified 
model, the initial version of Bayraktar, Sakellaris and Vermuelen (2005) estimate 

902.0=p  for German manufacturing plants between 1992-2000. Further, for a 
balanced panel of US manufacturing plants Cooper and Haltiwanger (2005) estimate 

975.0=p  with a simulated maximum likelihood method. These latter two results are 
estimated from a balanced panel, which may lead to significantly different results than 
estimation from an unbalanced panel. Moreover, our result of substantial 
irreversibility is primarily due to the control for the skewness of investment rate 
distribution, which is missing from other studies. 

 

 simulated “true” 

reduced regression parameter 1ψ  0.1971 0.1150 

reduced regression parameter 2ψ  0.0778 0.0822 

reduced regression parameter 3ψ  -0.0767 -0.025 

inaction rate 0.4179 0.4235 

skewness of investment distribution 1.2087 1.2182 

total LOSS 193.4723 

Table 7. Estimated reduced regression parameters, inaction  rate and skewness 

 

Table 7 reports the simulated reduced regression parameters, inaction rate and 
investment rate skewness, together with the observed values of the same parameters. 
We can see from this that our matching technique does quite well to match simulated 
regression parameters, inaction rate and skewness to their observed values. 

 

Aggregate implications 

 

With the estimated cost parameters one can investigate the aggregate 
implications of our results. To do this, we simulated a panel of firms that have the 
investment cost function as we estimated, and calculated the aggregate investment and 
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aggregate shock over the years in our simulated data set. Table 8 contains the main 
descriptive statistics of the simulated aggregate variables with the corresponding 
descriptive statistics of the individual variables.  

 

 in plant-level 
data (real data) 

in plant-level 
data (simulation) 

in aggregate 
data (real data) 

in aggregate 
data (simulation) 

).(. tidevst  0.1258 0.0704 0.0354 0.0224 

),( 1−tt iicorr  0.2248 0.1143 0.3707 0.5695 

),( tt aicorr  0.0890 0.5179 0.5227 0.6416 

Table 8. Descriptive statistics of aggregate and plant-level investment and shocks 

 

It is obvious from Table 8 that the standard deviation of the aggregate 
investment rate is naturally much smaller than that of the individual investment rate. 
Moreover, the autocorrelation of the investment rate is also much higher in the 
aggregate level, and the correlation between the investment rate and the profitability 
shock also increases. Aggregate investment behaves quite differently from individual 
investment. 

We also estimated the investment-shock relationship on the aggregate level. 
Contrary to what we found on the plant- level, we could not detect any nonlinearity in 
this relationship. (The squared shock remained insignificant when we estimated a 
regression of investment on shocks.) We found that in the aggregate level there is a 
modest linear relationship between profitability shocks and investment – the estimated 
parameter of the profitability shock is 0.2392 in the real data, and 0.3394 in the 
simulated data (both of them are significant at the 5% level). 

 

VI – Summary 
 

The goal of this paper is to structurally estimate the most important costs of 
investment, based on a dynamic model. To estimate the cost components we use an 
unbalanced panel about US manufacturing plants between 1959-87. To do this, we 
estimate a reduced form regression that captures the effects (nonlinearity, lumpiness) 
of the above cost components, along with the inaction rate and skewness of 
investment distribution, for both real and simulated data. 

Our results indicate that fixed costs may be an economically significant factor 
for the firms’ investment activity, although their magnitude is relatively small if 
compared to the firms’ capital stock. On the other hand, we find strong evidence of 
non-perfect reversibility: we estimate that firms in our data set (that are not 
necessarily closing firms, as in Ramey and Shapiro (2001) and Reiff (2004)) can sell 
their used capital at significantly lower prices than the purchase price. The estimated 
irreversibility parameter is somewhat smaller than in comparable studies (Bayraktar, 
Sakellaris, Vermeulen (2003), and Cooper and Haltiwanger (2005)), indicating that 
the extent of irreversibility may be much higher than we thought earlier. Overall, our 
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parameter estimates support the generally accepted view about firm-level investment 
activity: there are investment peaks followed by periods of inactivity. 

In line with the findings of Caballero (1992), things are different at the 
aggregate level. Despite plant- level investment being non-linear (on terms of 
responses to shocks), no similar non- linearity can be detected at the aggregate level. 
We also find that aggregate investment is much more persistent than plant- level 
investment, and it is somewhat more responsive to aggregate profitability shocks. 
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Appendix A 
 

Investment functions with different simple cost structures 

Figure A/1 illustrates the investment-shock relationship in the cost-free case. 
)1,0,0( === pF γ . We see that investment is non-zero whenever the shock is non-

zero, that is, we have instantaneous adjustment. We see that this function is slightly 
convex even in this case. This reflects the law of diminishing returns for the capital: 
when a large shock increases the marginal value of capital ( q ), we need a 
proportionally higher increase in the capital stock to restore the optimality condition 
of β/1=q ; therefore the shock- investment relationship is slightly convex: 

5233.2ˆ1 =ψ , 4384.0ˆ 2 =ψ , 5151.2ˆ 3 −=ψ . We also see that as investment is cost-
free, investment rates are relatively high even for small shocks: a typical profitability 
shock (of one standard deviation, 0822.0~ =a ) triggers a 21.04% (2.5233*0.0822 + 
0.4384*0.0822*0.0822) investment rate. 

Figure A/2: the case of partially irreversible investment )95.0,0,0( === pF γ . 
Observe that irreversibility creates an inaction region, but the investment function 
remains continuous: small investments are still possible. Because of the inaction 
region, the shock-investment relationship became more convex, and as capital sales 
became more expensive, we need very large negative shocks (<-60%) to induce 
negative investments. The estimated parameters of the usual reduced form regression 

8520.0ˆ1 =ψ , 3928.0ˆ 2 =ψ , 5564.0ˆ 3 −=ψ . Convexity is stronger (the relative size of 

2ψ̂  increased), and the absolute value of the parameters decreased, so effect of 
profitability shocks is much smaller (a 1 standard deviation profitability shock, 

0822.0~ =a  leads to 7.27% = 0.8520*0.0822 + 0.3928*0.0822*0.0822 investment). 

Figure A/3: we have convex cost of investment )1,2.0,0( === pF γ . We see that 
investment is instantaneous (any shock leads to investment activity), but as the 
marginal cost increased, it is of smaller magnitude (the function became flatter). 
Estimated reduced regression parameters: 4657.0ˆ1 =ψ , 0672.0ˆ 2 =ψ , 2557.0ˆ3 −=ψ , 
so a 1 standard deviation profitability shock leads to an investment rate of 3.87% 
(0.4657*0.0822 + 0.0672*0.0822*0.0822), which is much smaller than in the 
frictionless case. 

Figure A/4: investment function with fixed costs )1,0,001.0( === pF γ . This is 
basically the same as in the frictionless case, but firms do not undertake small 
investments, when the net gain is smaller than fixed costs. So fixed costs create an 
inaction region, and also lead to discontinuity (as no small investment activity is 
observed). The estimated parameters of the reduced form regression (9) are: 

4475.2ˆ1 =ψ , 4423.0ˆ 2 =ψ , 4165.2ˆ 3 −=ψ , which is very similar to the frictionless 
case. This result is intuitive, as the graph of the investment function has not changed 
dramatically. A 1 standard deviation profitability shock leads to an investment rate of 
20.42% (2.4475*0.0822 + 0.4423*0.0822*0.0822), which is also similar to the 
frictionless case. 
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investment rate as a function of log(shock), K is at steady state
no investment costs (F=0, gamma=0, p=1)
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Figure A/1. The investment function in the costless case 

 

 

investment rate as a function of log(shock), K is at steady state
irreversibility costs (p=0.95, F=0, gamma=0) vs nocost case
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Figure A/2. The investment function if there is (partial) irreversibility 
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investment rate as a function of log(shock), K is at steady state
convex costs (gamma=0.2, F=0, p=1) vs nocost case

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ln(shock)

in
vr

at
e

nocost
convex

 
Figure A/3. The investment function if there is a convex cost of investment 

 

 

investment rate as a function of log(shock), K is at steady state
fixed costs (F=0.001, gamma=0, p=1) vs nocost case
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Figure A/4. The investment function if there is a fixed cost of investment 
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Appendix B 

 

Methodology to estimate the curvature of the profit function 

 

We want to estimate θ  in the profit function: 

 ititiit KA εθ +=Π , (A1) 

where itΠ  and itK  are the profit and capital of firm i at year t, respectively, iA  is a 
firm-specific scaling parameter of the profit function, and itε  is a well-behaving error 
term. To estimate parameter θ , we have to solve 

 ( ) min
,

2
→−Π∑∑ iA

i t
itiit KA

θ
θ . (A2) 

First-order condition with respect to θ : 

 ( )( ) 02 1 =−−Π −∑∑ θθ θ iti
i t

itiit KAKA , (A3) 

that is, 

 ∑ ∑∑ ∑ −− =Π
i t

iti
i t

ititi KAKA 1221 θθ . (A3’) 

First-order condition with respect to iA : 

 ( )( ) 02
1

=−−Π∑
=

iT

t
ititiit KKA θθ , (A4) 

or 

 ∑∑ =Π
t

iti
t

itit KAK θθ 2 , (A4’) 

therefore 

 
∑

∑Π
=

t
it

t
itit

i K

K
A

θ

θ

2
. (A5) 

If we substitute (A5) back to (A3’), then we obtain an equation for θ̂ . 
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Appendix C 
 

Variable definitions ♦ 

 

NPLANT: capital stock. “The net value of the plant adjusted for inflation. This 
quantity is obtained by multiplying the book plant value by the ratio of the 
GNP deflator for fixed nonresidential investment in the current year to GNP 
deflator AA years ago. AA is the average age of the plant and equipment for 
this firm which is deduced in the following manner: an average age series is 
obtained as the ratio of accumulated depreciation (gross plant minus net 
plant) to depreciation this year. This assumes straight- line depreciation…” 

UFCAP: capital purchases. “Compustat data item #128, capital expenditures (from 
statement of changes).” 

SFPPE: capital sales. “Compustat data item #107, sale of plant, property and 
equipment (from statement of changes).” 

INVEST: alternative investment measure, not used because we want to exclude 
acquisitions. “Compustat data item #30, capital expenditures (gross 
investment). The amount spent for the construction and/or acquisition of 
property, plant and equipment, including that of purchased companies 
(acquisition).” 

ADJDEP: depreciation (to calculate new investment rate). “This year’s depreciation 
adjusted for the effects of inflation. This variable is DEPREC deflated by the 
ratio of the GNP deflator for fixed nonresidential investment AA (see 
NPLANT for a definition of AA, average age) years ago to the current GNP 
deflator.” 

OPINC: profit variable, before depreciation, which is consistent with expression (12). 
“Compustat data item #13, operating income before depreciation.” 

SALES: sales revenue, a weighting variable for NLLS-estimation of parameter θ  in 
Appendix B. “Compustat data item #12, net sales. This is the amount of 
actual billings to customers for regular sales completed during the period, 
reduced by cash discounts, trade discounts, and returned sales for which 
credit is given to customers. Interest and equity income from unconsolidated 
subsidiaries, non-operating income, and income from discontinued 
operations are excluded.” 

EMPLY: number of employees. (Wage bill is unavailable.) “Compustat data item 
#29, number of employees. This is the number of company workers as 
reported to shareholders. It may be an average throughout the year or an end-
of-year number; the latter is reported if both are given. It includes part-time 
employees and the employees of consolidated subsidiaries.” 

                                                                 
♦  Variable definitions are quoted from Hall (1990), pp. 13-22. 


