The Credit Crunch Causes, Consequences & Policy

Prof. Dr Casper G. de Vries Erasmus University Rotterdam Tinbergen Institute Duisenberg School of Finance

Contents

· Part I: Origins

Part II: Systemic Breakdown
Digression I: Bank Networks
Digression II: Hedge funds

· Part III: Recession

Part I

Origins

How it Started

- · Easy Money, Low Interest Rate policies
- · Savings Deficits USA, Surplus Asia
- · Low credit standards
- Permissive Basel Silo Approach

Ostrich Monetary Policy: Inflation Targeting

- Monetary Policy focused on consumer inflation: don't notice asset inflation
- · Asians build up official reserves
- Subsequently money went into subprime mortgages
- Opaque bundles, kept off-balance, with on balance obligation
- Condoned by rating agents and accountants
- · Concentration of CDS with few insurers

Part II

Systemic Breakdown

Three Crucial Crisis Features

- I/ Asymmetric Information
- II/ Interconnectedness of Banks and other Vehicles
- III/ Lack of Capital (leverage)

I/ The Asymmetric Information Problem

 The Old Lady meets the Old Maid, or Schwartze Peter, ...

W Probability to win: 3/4

Probability to loose: 1/4

Willingness to play if not dealt the old maid if: 3/4W-1/4L>0

Thus play if: W/L>1/3

The Old Lady meets the Old Maid

Willingness to play if not dealt the old maid if: 3/4W-1/4L>0

Subprime woes lead to risk reassessment such that L increased and: W/L<1/3

pR+(1-p)aR=B p = survival probability R = unsecured interbank rate (euribor) a = 'recovery' rate B = gross secured rate (eurepo) Solve for p: p = {B/R-a}/{1-a} S'pose R = 1.04 a = ½ B = 1.01 Market expected failure rate of 1 out of 16 banks!

Prevent Instability

- · Deposit Guaranties
- · Credit Guaranties
- · Lower Interest Rates
- Loan conditions at ECB (quality of paper)
- Capital Injections (Fiscal or Monetary)
 Special case of EMU (only Fiscal)
- Accounting standards: interpretation

II/ Bank Network System

Banks are highly interconnected: *directly*

- · Syndicated Loans
- · Conduits
- Interbank Money Market indirectly
- · Macro interest rate risk
- · Macro GDP risk

Fat versus Normal: 2 Features

- **Univariate**: More than normal outliers along the axes
- Multivariate: Extremes occur jointly along the diagonal, systemic risk is of higher order than if normal (market speak: market stress increases correlation)

Multivariate

- · Consider Bank versus Market Neutral Hedge Fund
- Bank is Long in both X and Y
- · Bank portfolio return X+Y
- Hedge fund is long in X, short in Y
- Hedge fund portfolio return X-Y

- Note Plus Shape + is due to the Outliers
- Under normal, just get a Circular cloud

Normal

$$\Pr\{Y > s\} \approx \frac{1}{s} \frac{1}{2\pi} e^{-s^2/2}$$

Sum / Fractal Nature (square root rule) $\Pr\{Y_1 + Y_2 > s\} = \Pr\{\sqrt{2}Y > s\} = \Pr\{Y > \frac{s}{\sqrt{2}}\} \approx \frac{\sqrt{2}}{s} \frac{1}{2\pi} e^{-s^2/4}$

with n

$$\Pr\{\sum_{i=1}^{n} Y_i > s\} \approx \frac{\sqrt{n}}{s} \frac{1}{2\pi} e^{-s^2/2n}$$

Rate Declines with Sum

$$d\log\Pr\{\sum_{i=1}^{n}Y_{i}>s\}/d\log n \approx \frac{d[\frac{1}{2}\log n - \log s - \log 2\pi - \frac{s^{2}}{2n}]}{d\log n} = \frac{1}{2} + \frac{s^{2}}{2n}$$

Portfolio X+Y composed of indepedent normal returns X and Y Portfolio failure probability is of lower order than marginal failure probabilities marginal failure probability $\Pr\{X > s\} \approx \frac{1}{s} \frac{1}{2\pi} \exp(-\frac{1}{2}s^2)$ Of Larger Order Than portfolio failure probability Pr{X + Y > 2s} $\approx \frac{1}{\sqrt{2}s} \frac{1}{2\pi} \exp(-s^2)$ X+Y

Feller Theorem Consider two independent Pareto distributed random variables X and Y $P\{X \le s\} = 1 - s^{-\alpha}$ $P\{Y \le s\} = 1 - s^{-\alpha}$ Their joint probability is $P\{X \le s, Y \le s\} = (1 - s^{-\alpha})(1 - s^{-\alpha}) = 1 - 2s^{-\alpha} + s^{-2\alpha} \approx 1 - 2s^{-\alpha}$ ■ $Pr{X > s} ≈ s^{-α}$

Fat Tail

Pareto

$$\Pr\{X > s\} = s^{-\alpha}$$

Sum / Fractal Nature

$$\Pr\{X_1 + X_2 > s\} \approx 2s^{-\alpha}$$

$$\Pr\{\sum_{i=1}^{n} X_i > s\} \approx ns^{-\alpha}$$

Rate Independent of Summation

$$d\log\Pr\{\sum_{i=1}^{n} X_i > s\} / d\log n \approx \frac{d[\log n - \alpha \log s]}{d\log n} = 1$$

Effects of Diversification

- Reduces the Order of Magnitude
- As the Rate is affected
- Normal Diversification Fat Tail Diversification leaves the order of magnitude unaffected
 - · Fat Tail Diversification only Reduces the Scale

Conclude

- With linear dependence, as between portfolios and balance sheets, the probability of a joint failure is:
- Of smaller order than the individual failure probabilities in case of the normal; Systemic risk is relatively unimportant
- · Of the same order in case of fat tails; Systemic risk is important

Systemic Risk Measure

- Like marginal risk measure VaR
- Desire a scale for measuring the potential Systemic Risk

Ledford-Tawn measure

Need finer measure in case of normality since

$$\frac{\Pr\{X>s\}+\Pr\{Y>s\}}{1-\Pr\{X\leq s,Y\leq s\}}=1+\frac{\Pr\{Min(X,Y)>s\}}{\Pr\{Max(X,Y)>s\}}\rightarrow 1$$

Use instead

$$\frac{1}{2} \lim_{s \to \infty} \frac{\log \Pr\{X > s\} + \log \Pr\{Y > s\}}{\log \Pr\{X > s, Y > s\}}$$

Systemic Risk Measure

- · Where does systemic failure set in?
- · Multiple equilibria, liquidity risk
- · Take limits
- · Evaluate in limit and extrapolate back
- Construct Multivariate VaR, in terms of Failure Probability, rather than loss quantile
- · Conditional Failure Measure

Answers Differ Radically

Question: If bank exposures are linear in the risk factors, and banks have some of these factors in common, then what is the expected number of extra failures given that there is a failure?

- Normal
- · Fat Tails
- Zero
- · Positive

Note: to see something under normality, we need a finer risk measure like the Trace of the covariance matrix / the Tawn measure

Bank Networks

Digression I

Bank Network System

- · Syndicated Loans
- · Conduits
- · Interbank Money Market
- · 4 Banks with 4 Projects
- · Each Project Divisible into 4 Parts

Conclude

- Pattern of Systemic Risk under fat tails differs from normal based covariance intuition
- Too much Diversification hurts Systemic Risk (slicing and dicing convexifies the exposures)

Banks & Hedge Funds

A digression into false positives

DJES Banks

CAPM Explanation

Banks $B_1 = bR + \varepsilon_1$ $B_2 = bR + \varepsilon_2$

 $B_1 + B_2 = 2bR + \varepsilon_1 + \varepsilon_2$ $Pr\{B_1 + B_2 > s\} = (2 + 2^{\alpha}b^{\alpha})s^{-\alpha}$

Hedge Funds

 $B_1 - B_2 = \varepsilon_1 - \varepsilon_2$ $\Pr\{B_1 - B_2 > s\} = 2s^{-\alpha}$

Corr(B1+B2,B1-B2)=0 $Pr\{B_1 + B_2 > s, B_1 - B_2 > s\} = s^{-\alpha}$

Banks & Hedge Funds

- Banks are MORE Risky than Hedge Funds
- Low Systemic Risk effects of hedge funds for the Banking Sector
- If anything, hedge funds are grasshoppers wearing the bolder hat that provides the protection

Regulation

- · Resist call for undirected regulation
- · Target systemic features
- · Remuneration structured at stability
- Stimulate information provision (creation of organized exchanges for derivatives like cds, cdo, etc.)

Basel Motivation

- Systemic Risk of banks is important due to the externality to the entire economy
- Motive for Basle Accords & why banks are stronger regulated than insurers (Solvency)
- Surprise is micro orientation of Basle II, rather than macro systemic approach

Four Conclusions

- Asymmetric Information, market trade or OTC
- Linear dependence and normal risk cannot produce systemic risk
- Linear dependence and fat tails imply that systemic risk is always there
- Need for systemic risk scale like Richter scale, in order to impute correct capital requirements and signal potential stress

III/ Recapitalization of Banks

- Infusion of capital? (Japan 90's, Brown/Sarkozy)
- Creation of good bank and bad bank?
 (Lloyds debacle, Sweden 91, Paulson initial plan)

Return of Trust

- · Healthy banks
- · Deposit insurance
- · Government guarantees for credit
- · Public information

Part III

Recession

Recession

- Banks scramble for capital (2nd round)
- · Hedge funds de-leverage big time
- · Refinancing collapses, lower investments
- Deflation (but not 1930 or 1880)
- Negative growth, Unemployment
- Strong currency movements
- Biggest danger is overreaction by authorities (pensions, trade and protection, industry bail outs)
- Unity of union? (Solvency II in shambles)

Analogies

- EU economy better prepared than 1920's
- 1987, -20% on a single day, due to information asymmetry
- 1998, Asian (currency) crisis, collapse LTCM
- 1982-87 S&L crisis
- Iceland & IMF, old recipes to kill the patient

Endogenous Risk

- · London Millennium Bridge
- · Pro-cyclical Policies
- Pro-cyclical Expectations
- · Multiple Equilibria
- How to coordinate on positive expectations?
- Inflation in the making?

Anti Recessive Drugs?

- Monetary Policy: Lower interest rates
- But Liquidity trap at r%=0
- Fiscal Policies & Coordination
- ECB currently unable to inflate away national debt, should we worry?

Thank You, Until the next Crisis!

This will be in about 25 years!

Appendix Multivariate Estimation

Count Measure

Interpretation

1 in 3 times one bank 'fails', the other bank fails as well

Estimated failure measure Banks and Insurers (bivariate normal) Mean Bank Insurer Bank 0.0082 0.0063 Insurer 0.0063 0.0133

Estimated failure measure Banks and Insurers across EU Mean Median Bank Insurer Bank Insurer Bank 0.1038 0.0744 0.095 0.069 0.0744 0.1170 0.069 0.107 Insurer

Normal Details

$$P\{Min(X,Y) > s\} < P\{X + Y > 2s\}$$

$$= P\{R + Q > 2s\} = P\{\sqrt{1/2}R > s\} \approx \frac{\sqrt{1/2}}{s} \frac{1}{\sqrt{2\pi}} \exp(-s^2)$$

$$\begin{split} &P\{Max[X,Y]>s\}>P\{X>S\}\\ &=P\{aR+(1-a)Q>s\}=P\{\sqrt{a^2+(1-a)^2}R>s\}\approx\frac{\sqrt{a^2+(1-a)^2}}{s}\frac{1}{\sqrt{2\pi}}\exp(-\frac{1}{2}\frac{s^2}{a^2+(1-a)^2}) + \frac{1}{2}\exp(-\frac{1}{2}\frac{s^2}{a^2+(1-a)^2}) + \frac{1}{2}\exp(-\frac{1}\frac{s^2}{a^2+(1-a)^2}) + \frac{1}{2}\exp(-\frac{1}{2}\frac{s^2}{a^2+(1-a)^2}) +$$

$$\therefore \frac{P\{Min[X,Y] > s\}}{P\{X > s\}} \le \sqrt{\frac{a^2 + (1-a)^2}{2}} \exp\left(-\frac{1}{2} \left[\frac{1}{1/2} - \frac{1}{a^2 + (1-a)^2}\right]\right) \to 0$$

Fat Tail Details

$$P\{Max[X,Y] > s\} \approx 2\left(\frac{s}{a}\right)^{-\alpha}$$

$$P\{Min[X,Y] > s\} \approx 2\left(\frac{s}{1-a}\right)^{-\alpha}$$

$$1 + \frac{P\{Min > s\}}{P\{Max > s\}} = 1 + \left(\frac{1 - a}{a}\right)^{\alpha} > 1$$

Conduit Runs

Bank Return X;
 Market Risk M;
 Interest Rate Risk R;
 Idiosyncratic Risk E;

Systemic Risk

- Idiosyncratic Risk E;
 Bank 1: $X_1 = \beta_1 M + \gamma_1 R + E_1$
- Bank 2: $X_2 = \beta_2 M + \gamma_2 R + E_2$
- If: $P\{M > s\} \approx P\{R > s\} \approx P\{E > s\} \approx s^{-\alpha}$
- (expected number of joint failures): $E\{k \mid k \geq 1\} = 1 + \frac{\left(\beta_1 \wedge \beta_2\right) + \left(\gamma_1 \wedge \gamma_2\right)}{\left(\beta_1 \vee \beta_2\right) + \left(\gamma_1 \vee \gamma_2\right) + 2}$