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Abstract

The stock price is assumed to follow a jump-diffusion process which may exhibit time-varying
volatilities. An econometric technique is then developed for this model and applied to high-
frequency time series of stock prices that are subject to microstructure noises. Our method
is based on first devising a localized particle filter and then employing fixed-lag smoothing in
the Monte Carlo EM algorithm to perform the maximum likelihood estimation and inference.
Using the intra-day IBM stock prices in 2004, we find that high-frequency data are crucial to
disentangling frequent small jumps from infrequent large jumps. During the trading sessions,
jumps are found to be frequent but small in magnitude, which is in sharp contrast to infrequent
but large jumps when the market is closed. We also find that at the 5- or 10-minute sampling
frequency, the conclusion will critically depend on whether heavy-tailed microstructure noises
have been accounted for. Ignoring microstructure noises can, for example, lead to 50% or more
overestimation of the jump intensity.
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1 Introduction

Arguably, few financial researchers or market practitioners will question the premise that stock
prices face jumps. The exact nature of jumps is, however, subject to much debate. Do stock
prices jump frequently? What are the jump magnitudes? Major market news are often released,
by design, after the trading session to allow for an orderly digestion of information. Shouldn’t this
practice imply that jumps are likely infrequent but large in magnitude when the market is closed
vis-a-vis open? Are the observed jumps a result of microstructure noises or due to fundamental
changes in the “efficient” stock value?

Intuitively, high-frequency data will be critical to answering the aforementioned questions. With
the availability of intra-day stock prices, one can begin to address this issue in a more intelligent
way. In a similar spirit, recent advancements on “realized volatility” based on high-frequency
data are, for example, made possible by the availability of intra-day data. However, using high-
frequency data can have its hazards.1 The observed prices are contaminated by microstructure
noises naturally arising from trading based on information and/or liquidity. The observed prices
are also subject to tick-size discretization. While these may not have much effect when one deals
with daily or lower-frequency data, microstructure noises are likely to have increased importance
when one moves to high-frequency data.

This paper devises an econometric technique attempting to shed light on the nature of stock
price jumps. Specifically, we assume the stock price follows a jump-diffusion process with the
volatility being time-varying. Time-varying volatility is captured via using the so-called realized
volatility computed from high-frequency data. Microstructure noises of two types are incorporated
into our model. First, the information/liquidity induced microstructure noises are proxied by a
heavy-tailed distributed measurement error. Second, the tick-size induced distortion is explicitly
accounted for in our model. The resulting specification is a highly complex nonlinear state-space
model with non-Gaussian random variables. Our solution technique relies on particle filtering
(a sequential Monte Carlo technique), a recent advancement for solving non-linear, non-Gaussian
filtering problems.

In a parametric context, there are a number of papers estimating models with jumps using daily
stock prices (sometimes supplemented with derivative prices); for example, Eraker, et al (2003),
Bates (2000), and Pan (2002). These papers tend to find less frequent but larger jumps vis-a-vis
the results obtained in this paper. This is not at all surprising because frequent small jumps in
the stock value may give rise to an appearance of infrequent large jumps if one only uses lower-
frequency data such as daily. Building on the realized volatility literature, Tauchen and Zhou
(2005) use daily measures of quadratic and bipolar variations to test whether there were jumps on
a given day. They then use the days with jumps to estimate the jump intensity and magnitude.
A crucial identifying assumption is that on a given day there is at most one jump and the price

1Ait-Sahalia, et al (2005a) and Bandi and Russell (2006), for example, show that microstructure noises can induce
a bias in the realized volatility estimate using high-frequency data.
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movement on that day is due to the jump. Thus, Tauchen and Zhou’s (2005) approach is really
about pinning down infrequent large jumps. Our parametric approach is thus complementary to
their nonparametric approach and allows for identifying frequent small jumps. This paper can also
be viewed as a generalization to the parametric approach of Ait-Sahalia, et al (2005b) to take full
advantage of the information contained in the high-frequency data.

This paper offers two econometric innovations. First, we design a new particle filter to deal
with jumps in high-frequency data. A tailor-made particle filter is needed because jumps in high-
frequency setting inevitably lead to extremely peaked densities making Monte Carlo approximations
poor. Our device is to localize the particle filter using four subsets of particles with each corre-
sponding to one of the four possible combinations of jump/no jump in the stock price and the
measurement error for each forward time step. Doing so ensures that an occurrence of jump in
a tiny time step, albeit unlikely from a probabilistic point of view, will always be considered. If
an actual stock price points to a high likelihood of a jump at that moment, the updated filtering
weights assigned to the corresponding subset of particles will become non-negligible, simply because
a small ex-ante probability of the jump occurrence is offset by a high likelihood (peaked density)
conditional on the actual stock price.

The second innovation hinges upon the recognition of the fact that resampling, a critical step for
any particle filter, cannot be performed smoothly for our model even with the smoothed empirical
filtering distribution, an innovative technique proposed by Pitt (2002).2 In other words, the sample
likelihood function obtained via the particle filter cannot be made smooth enough in relation to
the model parameters, making it impossible to use gradient-based optimization and/or to conduct
maximum likelihood inference. Our solution is to use the Monte Carlo EM algorithm to indirectly
optimize the sample likelihood function where our localized particle filter plays a key role of per-
forming efficiently the simulated E-step. In essence, we take advantage of the fact that the Monte
Carlo average of the complete-data log-likelihood is a smooth function of the model parameters (the
ones to be updated) even though it is not smooth with respect to the model parameters being used
to compute the Monte Carlo average. Thus, the irregularity induced by the use of a non-smooth
particle filter has been circumvented.

We use the intra-day stock price for IBM in our empirical implementation. Several interesting
findings are obtained. In particular, as one increases the sampling frequency from once every
hour to once every 10 minutes, the estimated mean number of jumps in prices per trading session
rises from 5.4 to 13.6. The jump size also depends on the sampling frequency. The standard
deviation of the jump size drops from 0.3% to 0.17%. This finding suggests that frequent small
jumps may be disguised as large infrequent jumps if the sampling frequency is low, a result that is
intuitively plausible. Our second finding is that at the 5-minute or 10-minute sampling frequency,
the jump intensity can be overestimated by more than 50% if one ignores microstructure noises.

2In a recent paper by Duan and Fulop (2006), Pitt’s (2002) smoothing technique was successfully employed to
deal with the structural credit risk model. We believe two factors contribute to its successful application there. First,
the model has no jumps. Second, using daily data makes the empirical filtering distribution more regular.
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At the hourly or 30-minute sampling frequency, however, ignoring microstructure noises does not
seem to change the estimate for the jump intensity if one ignores microstructure noises. This is
in line with the intuition that as the sampling frequency increases, microstructure noises become
increasingly consequential. Third, our finding suggests that it is important to allow for heavy-tailed
microstructure noises, perhaps to account for occasional large information-motivated deviations
from the “efficient” price. Finally, we find a large difference in the nature of jumps when the
market was open vis-a-vis closed. Jumps in the closed period seem to be infrequent but larger in
magnitude, likely reflective of a common practice of announcing significant corporate news after
the market is closed.

2 Estimation technique for a model of high-frequency stock prices

2.1 The model

The true logarithmic stock value process is assumed to follow a jump-diffusion process:

dXt = (µx − ρXt)dt + σx,tdWt + JtdNt (1)

where Wt is a Wiener process, Nt is a Poisson process with intensity λx,t, and Jt is a normally
distributed jump size with mean µJx and variance σ2

Jx,t which is independent of Wt and Nt. The
Poisson intensity and jump size variance are allowed to depend on whether the market is open;
that is,

λx,t = λx,op1{t∈Top} + λx,cl(1− 1{t∈Top})

σJx,t = σJx,op1{t∈Top} + σJx,cl(1− 1{t∈Top})

where Top denotes the time set when the market is open. Note that we have allowed the process to
be potentially mean-reverting, i.e., ρ 6= 0. For our implementation later, we set ρ = 0 to reflect the
typical random walk assumption for stock prices. We state the problem in a more general setup so
that the method can be applied to other financial time series such as interest rates that are expected
to exhibit a mean-reverting behavior. The local volatility σx,t is allowed to be time-varying. Its
exact specification will be described later.

The observed logarithmic stock prices are assumed to be contaminated by microstructure noises
of two types - trading effects due to illiquidity and asymmetric information being the first and tick
size the second. We assume that the first type of microstructure noise is composed of a normally
distributed term plus a Bernoulli event with a normally distributed magnitude. Specifically, the
contaminated logarithmic stock price before subjecting to the tick size adjustment is

Yt = Xt + εt + qtξt (2)
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where εt and ξt are independent normal random variables with zero means and variances σy and
σJy , and qt is a Bernoulli random variable independent of εt and ξt. λy is the probability for qt = 1
and 1− λy is for qt = 0.

For lower-frequency data, it is both customary and reasonable to ignore the effect of tick size.
For high-frequency data, however, tick size needs to be explicitly incorporated so as not to bias a
study’s conclusion. The presence of tick size complicates the matter significantly. We assume that
the contaminated stock price is rounded to the nearest tick with the tick size being c, which means
that the observed logarithmic stock price is

St = c

[
exp(Yt)

c
+ 0.5

]
(3)

where [·] is the Gauss function which takes the value inside down to the nearest integer. The NYSE
along with other US stock exchanges was ordered to switch to the decimal system on April 9, 2001.
Before that shares were traded in the NYSE in the multiples of one-sixteenth of a dollar. This
means that for the stock price data before April 9, 2001, c = 0.0625 and afterwards c = 0.01.

We denote the data set of observed stock prices by Dn ≡ {s0, s1, s2, · · · , sn} which was sampled
at time {t0, t1, t2, · · · , tn}. Note that the sample need not be equally-spaced in time. To simplify
notations, we denote the time between two sampling points by ∆ti = ti− ti−1. The estimation task
can then be formulated as the following non-linear, non-Gaussian state-space problem:

Si = c

[
exp(Yi)

c
+ 0.5

]
(4)

Yi = Xi + εi + qiξi (5)

Xi = (1− ρ∆ti)Xi−1 + µx∆ti + σx,ti∆Wi + Ji∆Ni (6)

Note that equation (6) is based on an Euler approximation to equation (1) and ∆Ni is a Poisson
random variable with λx,ti∆ti as its parameter. The local volatility process σx,ti is assumed to be
measurable with respect to the information set generated by the observed stock prices up to ti−1,
i.e., Di−1. Under this assumption, the local volatility is in effect observable, and therefore need not
be filtered which greatly simplifies the estimation task. In our implementation later, we make local
volatility dependent on the realized volatility computed from high-frequency data.

The non-linear, non-Gaussian filtering system is complex in two aspects. First, jumps in both
the “efficient” stock value and the measurement error make the system non-Gaussian. Second, the
tick size adjustment is a non-linear operation. Either fact renders the standard Kalman filtering
technique or the extended Kalman filters unsuitable for the task in hand. It turns out that the
standard particle filtering technique is also ill-suited for the problem because microstructure noises
are typically small in magnitude, which means that the measurement equation is associated with
a peaked density function (peaking at two points). The problem is further complicated by the fact
that high-frequency data by definition make the transition equation to be governed by an extremely
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peaked density function (also peaking at two points). Interestingly, the peaked density problem
can be resolved by suitably designing a local sampling-resampling scheme. Our proposed filtering
algorithm is described next.

2.2 A localized particle filter

Our algorithm is based on the following decomposition of the joint filtering desity/distribution:

f (Yi, Xi, Xi−1, qi,∆Ni| Di)

= f (Xi|Yi, Xi−1, qi,∆Ni)f (Yi| si, Xi−1, qi,∆Ni)f (Xi−1, qi, ∆Ni| Di)

∝ f (Xi|Yi, Xi−1, qi,∆Ni)f (Yi| si, Xi−1, qi,∆Ni)×
f (si|Xi−1, qi, ∆Ni)p(qi, ∆Ni)f (Xi−1| Di−1) (7)

The last expression in (7) suggests a way to sample from the filtering distribution, given a sample
of particles representing f (Xi−1| Di−1). First, augment the old particles with jumps, i.e., extending
the state-space to include jumps in the system. Then, perform resampling to obtain the particle
(Xi−1, qi, ∆Ni) based on the weights f (si|Xi−1, qi, ∆Ni)p(qi, ∆Ni). This step amounts to “peaking
into the future” because resampling has yielded a sample that uses the knowledge of si. This
approach is analogous to the idea of auxiliary particle filtering in Pitt and Shephard (1999). Finally,
sample (Xi, Yi) according to f (Xi|Yi, Xi−1, qi, ∆Ni)f (Yi| si, Xi−1, qi, ∆Ni).

The necessary quantities for executing this algorithm are described below. For the joint jump
probability, we have

p(qi, ∆Ni) = p(qi)p(∆Ni) (8)

where

p(qi = 0) = 1− λy and p(qi = 1) = λy (9)

p(∆Ni = k) =
(λx,ti∆ti)k

k!
e−λx,ti∆ti for k = 0, 1, 2, · · · (10)

We now turn to the expression for the conditional likelihood of the observed value, f (si|Xi−1, qi, ∆Ni).
Equations (5) and (6) imply that the conditional distribution f (Yi|Xi−1, qi,∆Ni) is normal with
mean and variance:

E [Yi|Xi−1, qi, ∆Ni] = (1− ρ∆ti)Xi−1 + µx∆ti + µJx∆Ni (11)

V ar [Yi|Xi−1, qi, ∆Ni] = σ2
x,ti∆ti + σ2

Jx,ti∆Ni + σ2
y + 1{qi=1}σ2

Jy
(12)

Corresponding to si, it must be that Yi ∈
[
ln(si − c

2), ln(si + c
2)

)
. Thus, we can compute:

f (si|Xi−1, qi,∆Ni)

= Φ

(
ln(si + c

2)−E [Yi|Xi−1, qi, ∆Ni]√
V ar [Yi|Xi−1, qi, ∆Ni]

)
− Φ

(
ln(si − c

2)− E [Yi|Xi−1, qi, ∆Ni]√
V ar [Yi|Xi−1, qi, ∆Ni]

)
(13)
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where Φ(·) stands for the standard normal distribution function.
For f (Yi| si, Xi−1, qi, ∆Ni), one only needs to recognize that it is identical to f (Yi|Xi−1, qi, ∆Ni)

truncated to the interval
[
ln(si − c

2), ln(si + c
2)

)
.

Finally, f (Xi|Yi, Xi−1, qi,∆Ni) is a normal density function because by equations (5) and (6),
we have

f(Yi|Xi, qi) =
1√

2πvy(qi)
exp

{
−(Yi −Xi)

2

2v2
y(qi)

}

=
1√

2πvy(qi)
exp

{
−(Xi − Yi)

2

2v2
y(qi)

}
(14)

f(Xi|Xi−1, ∆Ni) =
1√

2πvx(∆Ni)
exp

{
−(Xi − ux(Xi−1, ∆Ni))

2

2v2
x(∆Ni)

}
(15)

where

v2
y(qi) = σ2

y + 1{qi=1}σ2
Jy

(16)

ux(Xi−1,∆Ni) = (1− ρ∆ti)Xi−1 + µx∆ti + µJx∆Ni (17)

v2
x(∆Ni) = σ2

x,ti∆ti + σ2
Jx,ti∆Ni (18)

Thus,

f(Xi|Yi, Xi−1, qi, ∆Ni)

∝ 1
2πvy(qi)vx(∆Ni)

exp

{
−(Xi − Yi)

2

2v2
y(qi)

− (Xi − ux(Xi−1, ∆Ni))
2

2v2
x(∆Ni)

}

=
1

2πvy(qi)vx(∆Ni)
exp




−

(
Xi − v2

x(∆Ni)Yi+v2
y(qi)ux(Xi−1,∆Ni)

v2
y(qi)+v2

x(∆Ni)

)2

2 v2
y(qi)v2

x(∆Ni)

v2
y(qi)+v2

x(∆Ni)





(19)

This in turn implies that Xi has a conditional normal distribution with

E [Xi|Yi, Xi−1, qi, ∆Ni] =
v2
x(∆Ni)Yi + v2

y(qi)ux(Xi−1,∆Ni)
v2
y(qi) + v2

x(∆Ni)
(20)

V ar [Xi|Yi, Xi−1, qi, ∆Ni] =
v2
y(qi)v2

x(∆Ni)
v2
y(qi) + v2

x(∆Ni)
(21)

Our localized particle filter with M particles consists of the following steps:

• Step 1: Initializing the particle filter by sampling M times of ε0, q0 and ξ0 according to
equation (5), and then compute x

(m)
0 = ln s0− ε

(m)
0 − q

(m)
0 ξ

(m)
0 for m = 1, 2, · · · ,M . (The tick

size effect has been ignored in initializing the filter.)
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• Step 2: For any ti (i = 1, 2, · · · , n) and corresponding to each x
(m)
i−1, generate a set of four

particles for (q(m)
i ,∆N

(m)
i ). They are

q
(m)
i = 0 ∆N

(m)
i = 0,

q
(m)
i = 0 ∆N

(m)
i ∼ p(∆Ni | ∆Ni > 0),

q
(m)
i = 1 ∆N

(m)
i = 0,

q
(m)
i = 1 ∆N

(m)
i ∼ p(∆Ni | ∆Ni > 0).

Note that ∆N
(m)
i in two cases are zero, but in the other two cases, it can be any value

from the set {1, 2, · · · , }, which is sampled according to the conditional probability p(∆Ni |
∆Ni > 0). To arrive at an empirical representation of f (Xi−1, qi, ∆Ni| Di), we attach to
(x(m)

i−1, q
(m)
i , ∆N

(m)
i ), each of the 4×M particles, an importance weight:

w
(m;j,k)
i = f

(
si|x(m)

i−1, q
(m)
i = j,∆N

(m)
i = k

)
p(qi = j)

[
1{k≥1}p(∆Ni > 0) + 1{k=0}p(∆Ni = 0)

]
.

The elements of the above expression are available in equations (9), (10) and (13). Let
w̄

(j,k)
i = 1

M

∑M
m=1 w

(m;j,k)
i for j = 0, 1 and k = 0 or k ≥ 1. The likelihood value for the i-th

observed stock price is the sum of four values corresponding to four subsets of particles:

Li = w̄
(0,0)
i + w̄

(0,k≥1)
i + w̄

(1,0)
i + w̄

(1,k≥1)
i

and the filtered jump/no jump probabilities are

Prob {qi = j,∆Ni = 0| s0, s1, · · · , si} =
w̄

(j,0)
i

Li
for j = 0, 1

Prob {qi = j,∆Ni ≥ 1| s0, s1, · · · , si} =
w̄

(j,k≥1)
i

Li
for j = 0, 1.

• Step 3: Resample from the 4 × M the particle set according to the probability π
(m;j,k)
i =

w
(m;j,k)
i
MLi

to yield M equal-weight particles denoted by (x(m)
i−1|i, q

(m)
i ,∆N

(m)
i ). This equal-weight

M -particle set is again an empirical representation of f (Xi−1, qi,∆Ni| Di).

• Step 4: Corresponding to each particle (x(m)
i−1|i, q

(m)
i , ∆N

(m)
i ), sample from the truncated nor-

mal density f(Yi| si, x
(m)
i−1|i, q

(m)
i , ∆N

(m)
i ) to generate the particle (y(m)

i , x
(m)
i−1|i, q

(m)
i , ∆N

(m)
i ),

which empirically represents f(Yi, Xi−1, qi, ∆Ni| Di).

• Step 5: Equations (20) and (21) make sampling from f(Xi| y(m)
i , x

(m)
i−1|i, q

(m)
i , ∆N

(m)
i ) a

straightforward task. This yields M particles: (x(m)
i , y

(m)
i , x

(m)
i−1|i, q

(m)
i , ∆N

(m)
i ), which rep-

resent f (Xi, Yi, Xi−1, qi, ∆Ni| Di). One can then proceed to marginalize Xi (i.e., keeping
only x

(m)
i ) to have M particles (equal-weight) to represent the filtering distribution of Xi.
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Remarks: It may appear more natural to directly sample M particles in Step 2 as opposed to 4M
particles. This sample can be easily obtained by first sampling qi and ∆Ni and then proceeding
to sample Xi. (The importance weight will of course need to be adjusted accordingly.) However,
such a sampling scheme would yield a poor particle filter mainly because the event of ∆Ni ≥ 1 can
have an extremely small probability for high-frequency data. In other words, the simulated sample
is likely to miss out the particles associated with jumps in the “efficient” stock value. When the
data have been subjected to jumps, the simulated particle set will fail to include those points of
extremely high likelihood.

Note that the particle filter provides a sample on the entire past of the system up to ti. Any
quantity of interest based on the past particles can be computed and carried forward alongside
with Xi. This is true because at any time ti, Xi is sufficient for moving the algorithm forward.
Denote by Ii the quantity whose distribution is of interest; for example, one may be interested in
Ii = (X0 + X1 + · · ·+ Xi)/(i + 1). Then, in all of the preceding derivations one can use the vector
(Ii, Xi) in place of Xi. Conditional on Xi, the system’s forward evolution has nothing to do with
Ii, and thus the algorithm remains unchanged. However, the output of the filter at any time ti will
be a set of particles representing the joint filtering distribution of (Ii, Xi), i.e., f (Ii, Xi, | Di).

2.3 Monte Carlo EM algorithm

We now address the issue of computing the maximum likelihood (ML) estimates for the model
parameters. The particle filtering algorithm described in the preceding section can generate the
log-likelihood function for any fixed parameter values. However, it is ill-suited for finding the ML
estimates because the log-likelihood function is inherently irregular with respect to the parameters
even with the use of common random numbers. This irregularity arises from the resampling step
required for any particle filter. It turns out that smooth resampling proposed by Pitt (2002) is
still not smooth enough for the problem in hand, because the jump model in conjunction with
high-frequency data inevitably makes the density function associated with the jump components
extremely peaked. We thus adopt an indirect approach to the ML estimation via the EM algorithm
of Dempster, et al (1977).

The EM algorithm is in essence an alternative way of obtaining the ML estimate for the in-
complete data model, where incomplete data refers to the situation that the model contains some
random variable(s) without corresponding observations. In our case, the presence of microstruc-
ture noises makes the observed data generically incomplete; that is, one can think of the complete
data as including both the true and observed stock prices.3 The EM algorithm involves two steps
- expectation and maximization – and hence its name. One first writes down the complete-data
log-likelihood function. Since it is not observable, one needs to compute its expected value by con-

3In fact for the numerical efficiency reason, it will be better to also include the jumps in the complete data
representation.
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ditioning on the observed data in conjunction with some assumed parameter values. This completes
the expectation step. In the maximization step, one finds the new parameter values that maximize
the expected complete-data log-likelihood function. The updated parameter values are then used
to repeat the E- and M-step until convergence. Interestingly, the EM algorithm will converge to
the ML estimate under some regularity conditions.

For our ML estimation, the E-step due to its complexity will have to be computed using the
particle filter, which means that we are using the Monte Carlo EM (MCEM) algorithm.4 Casting
optimization as an EM algorithm problem effectively circumvents the irregularity induced by the
particle filter, because the E-step ensures that the expected complete-data log-likelihood function is
smooth with respect to the model parameters that define the complete-data log-likelihood function.
Even though the function is still inherently irregular in relation to the assumed parameter values
used in computing the expectation, it becomes immaterial as far as optimization is concerned. In
effect, one has decoupled optimization from filtering in each iteration.

In general, the complete-data representation of the model is not unique. The choice of repre-
sentation can be crucial to the convergence speed of the EM algorithm. We define the complete
data as {(Yi, Ui, qi, ∆Ni); i = 0, ..., n} where

Ui = (1− qi)
εi

σy
+ qi

εi + ξi√
σ2

y + σ2
Jy

(22)

Working with Yi instead of the discretized observations si and including the jumps, qi and ∆Ni,
make the complete-data model essentially linear and gaussian, which speeds up the M-step. Also
note that we include the combined measurement error, Ui, instead of the “efficient” stock price,
Xi. The combined error is a standard normal random variable, conditional on qi, because qi = 0
or 1. This representation will lead to a better performing EM-algorithm particularly when the
magnitude of microstructure noises is small.5

The complete-data model’s log-likelihood function allows the jump intensities – λx,op, λx,cl and
λy – to be separated from other parameters. This feature can be utilized to simplify the estimation
problem. Denote all other parameters by χ and use the variables without the subscript i to
represent the entire time series of those variables; for example, Y stands for {Y0, ..., Yn}. As shown
in Appendix A, the complete-data log-likelihood function can be decomposed into three parts:

L (Y, U, q,∆N |χ, λy, λx,op, λx,cl) = L1 (Y |U, q,∆N, χ) + L2(∆N |λx,op, λx,cl) + L3(q|λy) (23)

4For a general introduction to the MCEM algorithm, see for instance Wei and Tanner (1990).
5The intuition is that the measurement-error based representation is less informative on the measurement-error

parameters. It is well-known in the EM literature that the more informative the complete data is on the model
parameters, the slower the EM-algorithm.
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where

L1 (Y |U, q, ∆N, χ) =
n∑

i=1

(
− lnσi(χ)− [Yi − µi(χ)]2

2σ2
i (χ)

)

L2(∆N |λx,op, λx,cl) =
∑

ti∈Top

[∆Ni ln(λx,op∆ti)− λx,op∆ti] +
∑

ti 6∈Top

[∆Ni ln(λx,cl∆ti)− λx,cl∆ti]

L3(q|λy) =
n∑

i=1

[qi lnλy + (1− qi) ln(1− λy)]

µi(χ) = qi

√
σ2

y + σ2
Jy

Ui + (1− qi)σyUi + µx∆ti + µJx∆Ni

+(1− ρ∆ti)
[
Yi−1 − qi−1

√
σ2

y + σ2
Jy

Ui−1 − (1− qi−1)σyUi−1

]

σ2
i (χ) = σ2

x,ti∆ti + ∆Niσ
2
Jx,ti .

For the E-step of the EM algorithm, we need to evaluate the conditional expectation of the
complete-data log-likelihood in (23). To do this we need to evaluate expectations of the following
form:

E
[
f(Yi, Yi−1, qi, qi−1, ∆Ni, Ui, Ui−1;χ, λx,op, λx,cl, λy)|Dn, χ′, λ′x,op, λ

′
x,cl, λ

′
y

]

The localized particle filter described in section 2.2 can be used to compute this quantity. We
run the filter using the parameters (χ′, λ′x,op, λ

′
x,cl, λ

′
y) to generate the particle set that represents

the smoothed distribution for (Yi, Yi−1, qi, qi−1, ∆Ni, Ui, Ui−1). The m-th particle is denoted by(
y

(m)
i|n , y

(m)
i−1|n, q

(m)
i|n , q

(m)
i−1|n, ∆N

(m)
i|n , U

(m)
i|n , U

(m)
i−1|n

)
. Thus, the expectation can be approximated by the

sample average as follows:

E
[
f(Yi, Yi−1, qi, qi−1,∆Ni, Ui, Ui−1; χ, λx,op, λx,cl, λy)|Dn, χ′, λ′x,op, λ

′
x,cl, λ

′
y

]

≈ 1
M

M∑

m=1

f
(
y

(m)
i|n , y

(m)
i−1|n, q

(m)
i|n , q

(m)
i−1|n,∆N

(m)
i|n , U

(m)
i|n , U

(m)
i−1|n; χ, λx,op, λx,cl, λy

)
. (24)

When the sample size n is large, undesirable Monte-Carlo noise will be introduced by the use of
the smoothed distribution. Intuitively, the particle filter always adapts to the newest observation,
and thus its representation of the distant past is bound to be poor. Cappe and Moulines (2005)
suggest to use the information only up to i + L when computing any quantity that involves the
unobserved state variable at time i. The rationale is the forgetting property expected of the
dynamic system; that is, for large enough L, the distribution for the unobserved state variable
at time i conditional on the information up to i + L will be almost identical to that conditional
on the entire sample.6 Cappe and Moulines (2005) thus propose to use fixed-lag smoothing by
using information only up to i + L. They present examples in which the bias induced by fixed-lag

6The practical filter in the MCMC algorithm of Polson, et al (2006) in effect uses the same rationale.
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smoothing is minimal but the reduction in the Monte-Carlo error is dramatic. Adopting fixed-lag
smoothing leads to our approximation as follow:

E
[
f(Yi, Yi−1, qi, qi−1, ∆Ni, Ui, Ui−1; χ, λx,op, λx,cl, λy)|Dn, χ′, λ′x,op, λ

′
x,cl, λ

′
y

]

≈ E
[
f(Yi, Yi−1, qi, qi−1, ∆Ni, Ui, Ui−1; χ, λx,op, λx,cl, λy)|D(i+L)∧n, χ′, λ′x,op, λ

′
x,cl, λ

′
y

]

≈ 1
M

M∑

m=1

f
(
y

(m)
i|(i+L)∧n, y

(m)
i−1|(i+L)∧n, q

(m)
i|(i+L)∧n, q

(m)
i−1|(i+L)∧n,∆N

(m)
i|(i+L)∧n,

U
(m)
i|(i+L)∧n, U

(m)
i−1|(i+L)∧n; χ, λx,op, λx,cl, λy

)
(25)

Applying to L1 (Y |U, q, ∆N, χ) yields

E
[L1(Y |U, q, ∆N,χ)|Dn, χ′, λ′x,op, λ

′
x,cl, λ

′
y

]

=
n∑

i=1

E

(
− lnσi(χ)− [Yi − µi(χ)]2

2σi(χ)2

∣∣∣∣Dn, χ′, λ′x,op, λ
′
x,cl, λ

′
y

)

≈
n∑

i=1

E

(
− lnσi(χ)− [Yi − µi(χ)]2

2σi(χ)2

∣∣∣∣D(i+L)∧n, χ′, λ′x,op, λ
′
x,cl, λ

′
y

)

≡ Ê
[L1 (Y |U, q, ∆N, χ)|Dn, χ′, λ′x,op, λ

′
x,cl, λ

′
y

]
(26)

The expectation operator Ê(·) denotes the expected value computed with the particle filter and us-
ing fixed-lag smoothing. Similarly one can approximate the conditional expectations of L2(∆N |λx,op, λx,cl)
and L3(q|λy).

The MCEM algorithm can be summarized as follows: (1) Set some initial parameter values,(
χ(0), λ

(0)
x,op, λ

(0)
x,cl, λ

(0)
y

)
; (2) Repeat the following E- and M-steps until convergence.

• E-step: Run the localized particle filter at the parameter values
(
χ(k−1), λ

(k−1)
x,op , λ

(k−1)
x,cl , λ

(k−1)
y

)
.

Compute (1) Ê
[
L1 (Y |U, q, ∆N, χ)|Dn, χ(k−1), λ

(k−1)
x,op , λ

(k−1)
x,cl , λ

(k−1)
y

]
,

(2) Ê
[
L2 (∆N |λx,op, λx,cl)| Dn, χ(k−1), λ

(k−1)
x,op , λ

(k−1)
x,cl , λ

(k−1)
y

]
, and

(3) Ê
[
L3 (q|λy)| Dn, χ(k−1), λ

(k−1)
x,op , λ

(k−1)
x,cl , λ

(k−1)
y

]
.

• M-step: Maximize the conditional expected value of the complete-data log-likelihood func-
tion obtained in the E-step. The decomposition in (23) suggests that the M-step can be
performed separately.

χ(k) = arg max
χ

Ê
[
L1 (Y |U, q,∆N, χ)|Dn, χ(k−1), λ(k−1)

x,op , λ
(k−1)
x,cl , λ(k−1)

y

]

(λ(k)
x,op, λ

(k)
x,cl) = arg max

(λx,op,λx,cl)
Ê

[
L2 (∆N |λx,op, λx,cl)| Dn, χ(k−1), λ(k−1)

x,op , λ
(k−1)
x,cl , λ(k−1)

y

]

λ(k)
y = arg max

λy

Ê
[
L3 (q|λy)| Dn, χ(k−1), λ(k−1)

x,op , λ
(k−1)
x,cl , λ(k−1)

y

]
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In the above, λ
(k)
x,op, λ

(k)
x,cl and λ

(k)
y have the closed-form solutions expressed in terms of some

conditional sufficient statistics. However, χ(k) needs to be solved numerically because the
conditional expectation of L1 (Y |U, q, ∆N,χ) cannot be similarly simplified.

Since one item in the M-step (i.e., χ(k)) calls for repeated runs through the same particle filter,
the above MCEM algorithm will be quite inefficient. A remedial device becomes available by
considering the so-called generalized EM algorithm, meaning that one need not actually maximize
the conditional expected value of the complete-data log-likelihood. As long as a parameter update
improves the conditional expected value of the complete-data log-likelihood, the iterative system
will still give rise to the desirable result.

We group the parameters in χ into three subsets – χµ consisting of the parameters affecting
the conditional mean of Yi, χσx consisting of the parameters determining the conditional variance
process (σx,t), and χσJx

consisting of the jump volatility parameters (i.e., σJx,op and σJx,cl). First,
we optimize L1 over χµ at some given values for χσx and χσJx

. Optimizing over χσx or χσJx
by fixing

the other parameter values turns out to still require running through the particle filter repeatedly.
the reason is that χσx and χσJx

are not separable in L1. We need to extend the complete-data
space to achieve a separation and thus yield a more efficient scheme.

Decompose the innovation of Xi into the diffusion and jump components, denoted by ZC
i and

ZJ
i , respectively. They are obviously independent of each other and with normal distributions:

ZC
i ∼ N(0, σ2

x,ti∆ti) and ZJ
i ∼ N(0, ∆Niσ

2
Jx,ti

). In Appendix B, we show that when we ex-
tend the complete data to include both ZC

i and ZJ
i , the complete-data log-likelihood function,

with respect to χσx and χσJx
, can be decomposed nicely. It becomes a sum of two functions

– LC(Y,U, q,∆N,ZC , ZJ ; χσx) and LJ(Y, U, q,∆N, ZC , ZJ ;χσJx
). Moreover, with the extended

complete data space, both χσx and χσJx
can be taken out of their respective conditional expecta-

tions, and therefore one only needs to run through the particle filter once. Optimization over χσx

and χσJx
can thus be carried out efficiently.

Our more efficient MCEM algorithm can be summarized as follows: (1) Set some initial pa-
rameter values,

(
χ

(0)
µ , χ

(0)
σx , χ

(0)
σJx

, λ
(0)
x,op, λ

(0)
x,cl, λ

(0)
y

)
; (2) Repeat the following E- and M-steps until

convergence.7

• E1-step: Run the particle filter using the parameter values
(
χ

(k−1)
µ , χ

(k−1)
σx , χ

(k−1)
σJx

, λ
(k−1)
x,op ,

λ
(k−1)
x,cl , λ

(k−1)
y

)
. Store all the conditional sufficient statistics needed for the M1-step.

• M1-step: Maximize the expected value of the complete-data log-likelihood function over
the subset of parameters, (χµ, λx,op, λx,cl, λy). This maximization yields closed-form solutions

7Our algorithm is in effect a simulated version of the space alternating generalized EM algorithm of Fessler and
Hero (1994).
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expressed in terms of the conditional sufficient statistics computed in the E1-step.

χ(k)
µ = arg max

χµ

Ê
[
L1

(
Y |U, q, ∆N, χµ, χ(k−1)

σx
, χ(k−1)

σJx

)∣∣∣Dn, χ(k−1)
µ , χ(k−1)

σx
, χ(k−1)

σJx
, λ(k−1)

x,op , λ
(k−1)
x,cl , λ(k−1)

y

]
,

(λ(k)
x,op, λ

(k)
x,cl) = arg max

(λx,op,λx,cl)

Ê
[
L2 (∆N |λx,op, λx,cl)| Dn, χ(k−1)

µ , χ(k−1)
σx

, χ(k−1)
σJx

, λ(k−1)
x,op , λ

(k−1)
x,cl , λ(k−1)

y

]
,

λ(k)
y = arg max

λy

Ê
[
L3 (q|λy)| Dn, χ(k−1)

µ , χ(k−1)
σx

, χ(k−1)
σJx

, λ(k−1)
x,op , λ

(k−1)
x,cl , λ(k−1)

y

]
.

• E2-step: Run the particle filter using the parameter values, (χ(k)
µ , χ

(k−1)
σx , χ

(k−1)
σJx

, λ
(k)
x,op, λ

(k)
x,cl, λ

(k)
y ).

Store all the conditional sufficient statistics needed for the M2-step.

• M2-step: Optimize the expected value of the complete-data log-likelihood function de-
fined specifically for χσx and χσJx

where the complete data space has been extended to
(ZC , ZJ , Y, U, q, dN).

χ(k)
σx

= arg max
χσx

Ê
[
LC(Y,U, q,∆N,ZC , ZJ ; χσx) | Dn, χ(k)

µ , χ(k−1)
σx

, χ(k−1)
σJx

, λ(k)
x,op, λ

(k)
x,cl, λ

(k)
y

]
,

χ(k)
σJx

= arg max
χσJx

Ê
[
LJ(Y, U, q, ∆N, ZC , ZJ ; χσJx

) | Dn, χ(k)
µ , χ(k−1)

σx
, χ(k−1)

σJx
, λ(k)

x,op, λ
(k)
x,cl, λ

(k)
y

]
.

In the M2-step, χ
(k)
σJx

has a closed-form solution. If the conditional variance process (σx,t) were
non-stochastic, χ

(k)
σx could also be closed-form. But in our empirical analysis presented later, we

have adopted a GARCH-type conditional variance process, which means that getting χ
(k)
σx requires

iterations. Such iterations, however, do not need repeated runs through the particle filter. In short,
this optimization is equivalent to estimating a GARCH-type time-series model with n observations.
Better still, one only need to, by the generalized EM algorithm, take a couple of iterations for this
part of the M2-step.

In order to conduct statistical inference, we need to get an estimate for the asymptotic covariance
matrix. The usual approach to computing the outer product of the observed-data individual scores
is not applicable here because of the imcomplete-data structure. However, we describe in Appendix
C that there is an asymptotically equivalent covariance estimator that only uses the smoothed
complete-data individual scores, which in turn can easily be approximated with our particle filter
using fixed-lag smoothing.

3 Frequent small jumps vs. infrequent large jumps

Frequent small jumps in the stock price may give rise to an appearance of infrequent large jumps
if one uses lower-frequency data to conduct the analysis. The reason is fairly clear. Both frequent
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small and infrequent large jumps can force the daily stock return to be skewed and heavy-tailed.
For example, a stock that is subject to an average of 25 relative large jumps a year will, loosely
speaking, have 10% daily returns coming from the heavy-tailed distribution. In contrast, a stock
that is subject to many small jumps within a day will after aggregation also have some of its
daily returns to exhibit heavy tails. The only way to detect the true nature of jumps with a
reasonable level of confidence is to utilize high-frequency data. In a way, frequent small jumps can
reveal themselves to be distinctively different from infrequent large jumps.8 Being able to extract
the “efficient” stock value from the observed stock price contaminated by microstructure noises is
critical. Otherwise, one can easily mistake microstructure noises as frequent small jumps.

3.1 Specification of the volatility model

In order to implement the estimation method on real data, we need to be specific about the volatility
dynamic. The empirical success of the GARCH model in handling daily return volatility motivates
our model choice. We assume a GARCH-like volatility dynamic for the daily variance, but the
variance innovation comes from the unanticipated change in the previous day’s realized variance
rather than from the daily return innovation. Specifically, we deal with d = 1, ..., D days in the
sample and denote the observations on day d with the set Id. Each day is assumed to last from
the close of the previous day’s trading session until close of the current day’s trading session. For
each day, the annualized realized variance RVd is defined as

RVd =
1∑

1{ti∈Id
T Top}

∑

ti∈Id
T Top

∆ln s2
i

∆ti
. (27)

The daily variance is assumed to evolve according to

hd = α0 + α1hd−1 + β1(RVd−1 − Ed−2(RVd−1)). (28)

where
Ed−1(RVd) ≈ hd + λx,opσ

2
Jx,op +

2
∆t

(σ2
y + λyσ

2
Jy

),

a result from ignoring the price discretization error and all terms at or above the order of (∆t)2.
Furthermore, we assume that the local variance on day d remains at hd throughout the entire

trading session. However, we account for the well-known fact that information arrives at a different
rate when markets are closed vis-a-vis open. The closed session variance differs from the open
session by a constant ratio, ϕ; that is, for ti ∈ Id and d = 1, ..., D,

σ2
x,ti = hd1ti∈Top + ϕhd1ti 6∈Top (29)

8When the true data generating process is of frequent small jumps, using lower-frequency data to estimate the
jump intensity and magnitude will lead to large estimator uncertainty and thus may give rise to an appearance of a
low jump intensity coupled with a large jump magnitude. We are definitely not claiming that infrequent large jumps
and frequent small jumps will always leave the same signature when one uses, say, daily data.
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To summarize, the parameter vector defining σx,t is χσx = (α0, α1, β1, h1, ϕ), where the initial value
of the daily variance process, h1, has been treated as an unknown parameter.

3.2 Empirical Results

We use intra-day data from the NYSE TAQ database to extract a price series at the sampling
frequency of 5 minutes. Specifically, for each point on a 5-minute time grid between 9.30 and 16.00,
we store the transaction prices closest to the time grid.

We use 100 particles (i.e., M = 100) for our particle filter when microstructure noises are
allowed. For the fixed-lag smoothing algorithm, we set L = 5. For the asymptotic variance
calculations we use 5000 particles (i.e., M = 5000).

Tables 1-4 report the results for the IBM data in 2004 with several sampling frequencies –
5 minutes, 10 minutes, 30 minutes and 1 hour. For each sampling frequency, we estimate the
model with and without jumps in the “efficient” stock price. We also investigate the consequences
of different assumptions on microstructure noises. In all cases, we have set the mean-reversion
parameter to zero (i.e., ρ = 0).

There are several points to be noted in these tables. First, the intuition mentioned earlier seems
to bear out in these results; that is, sampling at a lower frequency leads to estimates that indicate
a lower jump intensity but a larger jump magnitude. Let us turn attention to M6, which is a
model allowing for asset jumps and heavy-tailed microstructure noises. As we move the sampling
frequency from hourly to every 10 minutes, the jump intensity estimate for the trading session (i.e,
λx,op) goes up from around 5600 to 14100, indicating that the average number of jumps during one
trading session (9:30am to 4:00pm Eastern Standard Time) increases from roughly 5.4 to 13.6. At
the same time, we find the estimate for the jump size volatility for the trading session (i.e., σJx,op)
decreases from 0.003 to 0.0017. In conclusion, if one wants to detect small frequent jumps, it is
important to sample at a higher frequency.

Our results also underline another point raised earlier; that is, the importance of allowing for
microstructure noises when high-frequency data are used to estimate jumps. Tables 2 and 3 show
that at the hourly and 30-minute sampling frequencies, microstructure noises have minor effects
on the estimates. However, Table 1 indicates that microstructure noises are indeed important at
the 10-minute sampling frequency. When one ignores microstructure noises (i.e., M4), the estimate
for the jump intensity is λx,op = 22900. When they are allowed but are forced to be normally
distributed (i.e., M5), the jump intensity estimate goes down to λx,op = 20900. An even larger
decrease can be seen when microstructure noises are allowed to be heavy-tailed (i.e., M6). In
that case, λx,op = 14100. Thus, ignoring microstructure noises in estimation will give rise to an
appearance of more jumps, leading to an overestimation of the jump intensity by roughly 50%.

Our results are by and large in line with the literature in other aspects. First, there are marked
differences between the trading and closed sessions. The diffusion part of the asset movement seems
to be less active during the closed session with the ratio of activities, ϕ, estimated to be around 40%
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to 50%. Jumps in the closed session seem to be much less frequent but larger in magnitude. One
possible explanation is that important corporate news are announced when the market is closed.
Thus, the estimates simply reflect the industry practice in handling news release. Second, we find
strong evidence for volatility clustering, with the parameter controlling the volatility persistence,
α1, to be around 0.8-0.9.

The filtering technique allows one to go beyond parameter estimation. We can ask how the
observed stock price differ from the “efficient” price. At the ML parameter estimates, one can run
through the particle filter to come up the series of either filtered or smoothed “efficient” stock price.9

We pick two days (January 2, 2004 and May 25, 2004) to show the magnitude of microstructure
noises. We use the full model (i.e., M6) on the IBM prices sampled every 5 minutes. Figures 1
and 2 show that the observed stock price stays within 5 cents of the filtered price, suggesting that
the microstructure effect is no more than 5 cents in these two days. The smoothed price, however,
tells a different story. The results indicate that the difference between the observed and smoothed
prices was much larger and in fact was sometimes larger than 10 cents in these two days. Large
differences also appear to cluster towards the end of a trading session.

9The filtered price means conditioning on the observed prices only up to the time point of interest, whereas the
smoothed price refers to conditioning on the entire sample of the observed prices.
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Appendix A: The complete-data log-likelihood function

First note the following facts about the complete-data representation:

C1: qi are i.i.d. Bernoulli draws with the parameter P (qi = 1) = λy. Thus, the likelihood of qi

only depends on λy.

C2: ∆Ni are independent Poisson draws with parameters λx,ti∆ti. Thus, the likelihood of ∆Ni

only depends on λx,ti .

C3: Conditional on qi, the distribution of Ui does not depend on the model parameters because
it is a standard normal random variable.

C4: Using the definition of Ui, equation (5) can be rewritten as

Yi = Xi + qi

√
σ2

y + σ2
Jy

Ui + (1− qi)σyUi (30)

Express Xi in terms of other variables using (30) and then substitute it into (6). Conditioning
on (Ui, qi,∆Ni), we obtain the following transition equation for Yi:

Yi = qi

√
σ2

y + σ2
Jy

Ui + (1− qi)σyUi

+(1− ρ∆ti)
[
Yi−1 − qi−1

√
σ2

y + σ2
Jy

Ui−1 − (1− qi−1)σyUi−1

]

+µx∆ti + σx∆Wi + Ji∆Ni

= qi

√
σ2

y + σ2
Jy

Ui + (1− qi)σyUi

+(1− ρ∆ti)
[
Yi−1 − qi−1

√
σ2

y + σ2
Jy

Ui−1 − (1− qi−1)σyUi−1

]

+µx∆ti + µJx∆Ni +
√

σ2
x∆ti + ∆Niσ2

Jx,ti
× υi (31)

where υi is a standard normal random variable independent of (Ui, qi, ∆Ni). Equation (31)
shows that conditional on (Ui, qi,∆Ni), Yi follows an autoregressive process with a time-
varying mean and variance. Moreover, the innovation of the autoregressive system is normally
distributed. Needless to say, the likelihood of Yi, conditional on (Ui, qi,∆Ni), does not depend
on λy, λx,op or λx,cl.

C1-C4 allow us to decompose the complete-data log-likelihood function into three parts with
each governed by different disjoint subsets of parameters.

f (Y,U, q,∆N |χ, λy, λx,op, λx,cl)

= f (Y |U, q, ∆N,χ, λy, λx,op, λx,cl)f (U | q, ∆N, χ, λy, λx,op, λx,cl)

×f(∆N |χ, λy, λx,op, λx,cl)f(q|χ, λy, λx,op, λx,cl)

= f (Y |U, q, ∆N,χ)f(∆N |λx,op, λx,cl)f(q|λy)f(U |q)
∝ f (Y |U, q, ∆N,χ)f(∆N |λx,op, λx,cl)f(q|λy). (32)
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The above derivation utilizes the fact that conditional on qi, Ui is always a standard normal random
variable, and thus the likelihood function does not depend on any model parameter and amounts
to an irrelevant constant. The above result in turn implies

L (Y,U, q∆N |χ, λy, λx,op, λx,cl) = L1 (Y |U, q, ∆N, χ) + L2(∆N |λx,op, λx,cl) + L3(q|λy)

where

L1 (Y |U, q, ∆N, χ) =
n∑

i=1

(
− lnσi(χ)− [Yi − µi(χ)]2

2σ2
i (χ)

)

L2(∆N |λx,op, λx,cl) =
∑

ti∈Top

[∆Ni ln(λx,op∆ti)− λx,op∆ti] +
∑

ti 6∈Top

[∆Ni ln(λx,cl∆ti)− λx,cl∆ti]

L3(q|λy) =
n∑

i=1

[qi lnλy + (1− qi) ln(1− λy)]

µi(χ) = qi

√
σ2

y + σ2
Jy

Ui + (1− qi)σyUi + µx∆ti + µJx∆Ni

+(1− ρ∆ti)
[
Yi−1 − qi−1

√
σ2

y + σ2
Jy

Ui−1 − (1− qi−1)σyUi−1

]

σ2
i (χ) = σ2

x,ti∆ti + ∆Niσ
2
Jx,ti .

Appendix B: Separating diffusion innovations from jumps

Extend the complete-data space to (ZC , ZJ , Y, U, q,∆N). The two new elements, ZC
i and ZJ

i ,
decompose the innovation in the “efficient” stock price, Xi, into the diffusion and jump components.
Define ZC = (ZC

i ; i = 1, ..., n) and ZJ = (ZJ
i ; i = 1, ..., n). Clearly, ZC

i and ZJ
i are independent

over time and with each other. They are also normally distributed as follows:

ZC
i ∼ N(σ2

x,ti∆ti) and ZJ
i ∼ N(∆Niσ

2
Jx,ti)

Denoting by Fi−1 the information generated by the complete data up to i − 1. The extended
complete-data likelihood function (focusing on the parameters of interest, χσx and χσJx

) can be
simplified to

f(Y, U, q,∆N,ZC , ZJ | χσx , χσJx
) ∝

n∏

i=1

f(ZC
i , ZJ

i | Fi−1, χσx , χσJx
)

=
n∏

i=1

f(ZC
i | Fi−1, χσx)f(ZJ

i | Fi−1, χσJx
).

The first relationship utilizes the fact that the terms unrelated to the two parameters of interest
can be dropped. The second equality of course follows from the conditional independence of ZC

i
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and ZJ
i . Since the extended complete-data log-likelihood function is separable in terms of χσx and

χσJx
, it can be written as a sum of LC(Y, U, q,∆N, ZC , ZJ ; χσx) and LJ(Y,U, q,∆N,ZC , ZJ ; χσJx

),
after dropping the irrelevant constant. Hence

LC(Y, U, q, ∆N, ZC , ZJ ; χσx) =
n∑

i=1

(
− ln σx,ti(χσx)− (ZC

i )2

2σ2
x,ti

(χσx)∆ti

)

Although σx,ti is allowed to be stochastic, our maintained assumption requires it to be mea-
surable with respect to Di−1. Taking the conditional expectation with respect to the smoothed
distribution for the complete data (suppressing some conditioning parameters for notational sim-
plicity) gives rise to

E
[
LC(Y, U, q, ∆N, ZC , ZJ ; χσx)

∣∣Dn, χ(k−1)
σx

, χ(k−1)
σJx

]

=
n∑

i=1


− lnσx,ti(χσx)−

E
[
(ZC

i )2
∣∣Dn, χ

(k−1)
σx , χ

(k−1)
σJx

]

2σ2
x,ti

(χσx)∆ti




Moreover,

E
[
(ZC

i )2
∣∣Dn, χ(k−1)

σx
, χ(k−1)

σJx

]

= E
{

E
[
(ZC

i )2 | Y, U, q,∆N, χ(k−1)
σx

, χ(k−1)
σJx

]∣∣∣Dn, χ(k−1)
σx

, χ(k−1)
σJx

}

≈ 1
M

M∑

m=1

E
[
(ZC

i )2
∣∣Y

(m)
i , µ

(m)
i ,∆N

(m)
i , χ(k−1)

σx
, χ(k−1)

σJx

]

The above expression turns out to have a closed-form solution. First note that
(

Yi − µi

ZC
i

)
=

(
ZC

i + ZJ
i

ZC
i

)∣∣∣∣ ∆Ni ∼ N

([
0
0

]
,

[
σ2

x,ti∆ti + ∆Niσ
2
Jx,ti

σ2
x,ti∆ti

σ2
x,ti∆ti σ2

x,ti∆ti

])

which implies

ZC
i

∣∣ (Yi, µi, ∆Ni) ∼ N(µ(k−1), η(k−1))

µ(k−1) =
(σ(k−1)

x,ti
)2∆ti

(σ(k−1)
x,ti

)2∆ti + ∆Ni(σ
(k−1)
Jx,ti

)2
(Yi − µi)

(η(k−1))2 = (σ(k−1)
x,ti

)2∆ti


1− (σ(k−1)

x,ti
)2∆ti

(σ(k−1)
x,ti

)2∆ti + ∆Ni(σ
(k−1)
Jx,ti

)2


 .

Thus,
E

[
(ZC

i )2
∣∣ Y

(m)
i , µ

(m)
i , ∆N

(m)
i , χ(k−1)

σx
, χ(k−1)

σJx

]
= [µ(k−1)]2(i,m) + [η(k−1)]2(i,m)
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where dependence on time and particle is reflected in the subscript (i,m). To summarize, we have
the following approximation to one of the two components for the expected value of the extended
complete-data log-likelihood:

E
(

LC(Y, U, q,∆N, ZC , ZJ ; χσx)
∣∣Dn, χ(k−1)

σx
, χ(k−1)

σJx

)

≈
n∑

i=1


− lnσx,ti(χσx)−

1
M

∑M
m=1

(
[µ(k−1)]2(i,m) + [η(k−1)]2(i,m)

)

2σ2
x,ti

(χσx)∆ti




In a similar fashion, one can compute the other component of the expected value of the extended
complete-data log-likelihood; that is, E

[
LJ(Y,U, q,∆N,ZC , ZJ ; χσJx

)
∣∣Dn, χ

(k−1)
σx , χ

(k−1)
σJx

]
.

Appendix C: Computing asymptotic standard errors

The usual way to compute the asymptotic standard error for the maximum likelihood estimate
is to use the negative Hessian matrix or the inner product of the individual scores. But in our case,
either one is not directly computable because the individual log-likelihood function, ln f(si; i =
1, · · · , n | θ) is highly irregular with respect to θ due to using the particle filter. An alternative has
been proposed by Duan and Fulop (2006b), which relies on using the smoothed individual scores
to compute the asymptotic error.

Denote by αi the complete-data vector at i. In our case, αi = (Yi, qi, ∆Ni, Ui) as defined in
section 2.3. The complete-data log-likelihood function, ln g(αi; i = 1, · · · , n | θ), can be expressed
as

ln g(αi; i = 1, · · · , n | θ) =
n∑

i=1

ln gi(αi | αi−1, θ)

where ln gi(αi | αi−1, θ) is the complete-data individual log-likelihood function. Dempster, et al
(1977) and Louis (1982) show that the observed-data score can be decomposed into the sum of
smoothed individual scores:

Sn(θ) = E

(
∂ ln g(αi; i = 1, · · · , n | θ)

∂θ

∣∣∣∣Dn, θ

)
=

n∑

i=1

ai(θ),

where ai(θ) = E
(

∂ ln gi(αi|αi−1,θ)
∂θ

∣∣∣Dn, θ
)
. Note that the smoothed individual scores, ai(θ)’s, can be

computed in a straightforward fashion within our particle filter using fixed-lag smoothing. Duan
and Fulop (2006b) devise an estimator with the insight that the variance of the observed-data score
equals the negative Hessian matrix when both are evaluated at the true parameter value, θ0. Then,
they seek for an alternative way to approximate V ar(Sn(θ0)). Their solution is to recognize that
the smoothed individual scores are not martingale differences but the variance can be approximated
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with the Newey-West (1987) estimator. Assume that beyond some lags, say l, dependence among
a′is becomes negligible. An alternative estimator for the asymptotic error becomes readily available:

V ar(Sn(θ0)) ≈ Ω0 +
l∑

j=1

w(l)(Ωj + Ω′j)

where

Ωj =
n−j∑

i=1

ai(θ̂)ai+j(θ̂)′ and

w(j) = 1− j

l
.
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Table 1: 2004 IBM stock prices, 5-minute sampling frequency

M1 M2 M3 M4 M5 M6
Asset Diffusion Parameters

µX -0.119 -0.104 -0.0341 -0.276 -0.265 -0.246
(-0.5714) (-0.5059) (-0.1707) (-2.399) (-2.427) (-2.237)

α0 0.00912 0.00967 0.0149 0.0114 0.00935 0.0108
(10.57) (11.92) (11.67) (9.573) (9.601) (9.186)

α1 0.92 0.903 0.841 0.771 0.746 0.749
(117.1) (105.1) (59.24) (33.66) (30.51) (28.74)

β1 0.277 0.272 0.211 0.179 0.182 0.16
(26.23) (25.88) (18.23) (14.13) (14.38) (13.04)

h1 0.0972 0.0817 0.0743 0.0667 0.0543 0.0593
(13.08) (10.27) (7.371) (5.92) (4.651) (5.299)

ϕ 0.377 0.401 0.431 0.396 0.466 0.408
(55.86) (56.41) (59) (20.18) (19.36) (18.75)

Asset Jump Parameters
λX,op 0 0 0 3.7e+004 3.64e+004 2.37e+004

(15.52) (15.63) (11.5)

λX,cl 0 0 0 11.3 9.95 12.7
(1.745) (1.618) (1.802)

σJX,op 0 0 0 0.00127 0.00127 0.00132
(40.73) (41.22) (30.87)

σJX,cl 0 0 0 0.0237 0.0247 0.0224
(2.973) (2.604) (3.297)

µJX 0 0 0 4.51e-005 3.88e-005 5.73e-005
(2.276) (2.053) (2.33)

Measurement Error Parameters
σY 0 0.000262 1.22e-005 0 0.000254 0.000108

(24.16) (0.1108) (24.32) (3.941)

λY 0 0 0.0594 0 0 0.1
(16.39) (10.4)

σJY 0 0 0.00179 0 0 0.0011
(41.95) (26.61)

The values inside parentheses are t-statistics.
M1 is the model without value jumps and without measurement errors.
M2 is the model without value jumps and with normally distributed measurement errors.
M3 is the model without value jumps and with heavy-tailed measurement errors.
M4-M6 correspond to M1-M3 except for allowing value jumps.
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Table 2: 2004 IBM stock prices, 10-minute sampling frequency

M1 M2 M3 M4 M5 M6
Asset Diffusion Parameters

µX -0.118 -0.112 0.124 -0.265 -0.267 -0.236
(-0.5679) (-0.5411) (0.6727) (-2.353) (-2.48) (-2.142)

α0 0.0132 0.0132 0.0147 0.0067 0.00578 0.00667
(8.533) (9) (7.783) (6.538) (6.555) (6.372)

α1 0.874 0.862 0.835 0.845 0.837 0.831
(56.98) (53.72) (36.71) (36.9) (36.06) (33.06)

β1 0.249 0.245 0.175 0.162 0.162 0.147
(16.93) (16.59) (11.07) (11.47) (11.55) (10.68)

h1 0.0976 0.0874 0.0756 0.0623 0.0581 0.0538
(7.992) (6.877) (5.863) (4.392) (3.957) (3.949)

ϕ 0.396 0.413 0.435 0.424 0.472 0.428
(56.82) (51.24) (50.22) (19.37) (17.75) (17.4)

Asset Jump Parameters
λX,op 0 0 0 2.37e+004 2.02e+004 1.34e+004

(10.88) (10.83) (8.552)

λX,cl 0 0 0 12.2 10.7 14.4
(1.876) (1.786) (1.863)

σJX,op 0 0 0 0.00157 0.00165 0.00177
(28.42) (28.13) (22.35)

σJX,cl 0 0 0 0.0229 0.0236 0.0214
(3.301) (2.971) (3.683)

µJX 0 0 0 5.6e-005 6.47e-005 8.52e-005
(1.879) (1.992) (1.964)

Measurement Error Parameters
σY 0 0.000298 9.3e-005 0 0.000322 0.000116

(10.14) (1.043) (15.23) (1.684)

λY 0 0 0.0556 0 0 0.127
(10.37) (6.714)

σJY 0 0 0.00252 0 0 0.00126
(28.63) (16.46)

The values inside parentheses are t-statistics.
M1 is the model without value jumps and without measurement errors.
M2 is the model without value jumps and with normally distributed measurement errors.
M3 is the model without value jumps and with heavy-tailed measurement errors.
M4-M6 correspond to M1-M3 except for allowing value jumps.
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Table 3: 2004 IBM stock prices, 30-minute sampling frequency

M1 M2 M3 M4 M5 M6
Asset Diffusion Parameters

µX -0.102 -0.102 -0.104 -0.27 -0.271 -0.25
(-0.4751) (-0.5594) (-2.389) (-2.411) (-2.37)

α0 0.0128 0.0128 0.0128 0.00534 0.00474 0.00477
(4.49) (4.197) (3.278) (3.172) (3.058)

α1 0.866 0.866 0.856 0.836 0.837 0.838
(28.93) (23.76) (17.13) (17.8) (17.02)

β1 0.137 0.137 0.113 0.102 0.0994 0.0943
(6.986) (5.704) (5.438) (5.419) (5.19)

h1 0.111 0.111 0.104 0.0563 0.0561 0.0529
(4.193) (3.63) (2.355) (2.31) (2.27)

ϕ 0.418 0.418 0.417 0.478 0.509 0.479
(48.66) (34.09) (13.92) (11.77) (11.18)

Asset Jump Parameters
λX,op 0 0 0 1.11e+004 1.12e+004 1.21e+004

(5.975) (6.09) (5.515)

λX,cl 0 0 0 15.4 13.9 14.6
(2.054) (2) (2.139)

σJX,op 0 0 0 0.00234 0.00234 0.00219
(15.59) (15.82) (13.79)

σJX,cl 0 0 0 0.0205 0.0214 0.0211
(4.127) (3.772) (3.98)

µJX 0 0 0 0.000118 0.000116 8.53e-005
(1.903) (1.904) (1.536)

Measurement Error Parameters
σY 0 1e-010 5.73e-005 0 0.000284 0.000176

(0.1058) (2.332) (0.8962)

λY 0 0 0.0243 0 0 0.0121
(4.339) (1.528)

σJY 0 0 0.0053 0 0 0.00396
(13.07) (4.287)

The values inside parentheses are t-statistics.
M1 is the model without value jumps and without measurement errors.
M2 is the model without value jumps and with normally distributed measurement errors.
M3 is the model without value jumps and with heavy-tailed measurement errors.
M4-M6 correspond to M1-M3 except for allowing value jumps.
For M5, the estimate of σY is constrained by the preset lower bound at 10−10.
Since the standard t-statistics are no longer valid, they are not reported for this model.
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Table 4: 2004 IBM stock prices, 1-hour sampling frequency

M1 M2 M3 M4 M5 M6
Asset Diffusion Parameters

µX -0.118 -0.11 -0.125 -0.29 -0.283 -0.271
(-0.5469) (-0.5276) (-0.7788) (-2.588) (-2.374)

α0 0.00808 0.00748 0.00874 0.00325 0.00329 0.00361
(2.514) (2.601) (2.343) (2.616) (2.572)

α1 0.914 0.912 0.899 0.871 0.871 0.857
(26.98) (27.11) (20.89) (19.14) (16.3)

β1 0.0452 0.0453 0.0592 0.074 0.0741 0.0766
(2.51) (2.473) (2.423) (3.714) (3.632)

h1 0.217 0.209 0.164 0.0649 0.0653 0.0643
(4.029) (3.83) (3.584) (1.688) (1.405)

ϕ 0.415 0.425 0.378 0.578 0.58 0.568
(32.76) (26.17) (29.44) (9.394) (7.752)

Asset Jump Parameters
λX,op 0 0 0 7.56e+003 7.62e+003 6.19e+003

(4.559) (3.863)

λX,cl 0 0 0 10.2 10.6 10.7
(1.86) (1.834)

σJX,op 0 0 0 0.00307 0.00306 0.0032
(10.9) (9.133)

σJX,cl 0 0 0 0.0242 0.0238 0.0237
(2.907) (2.942)

µJX 0 0 0 0.000196 0.000186 0.000205
(1.804) (1.571)

Measurement Error Parameters
σY 0 0.000735 3.59e-005 0 1e-010 0.000222

(3.429) (0.02487) (0.4505)

λY 0 0 0.0378 0 0 0.0741
(2.92) (1.206)

σJY 0 0 0.00571 0 0 0.0027
(9.584) (2.769)

The values inside parentheses are t-statistics.
M1 is the model without value jumps and without measurement errors.
M2 is the model without value jumps and with normally distributed measurement errors.
M3 is the model without value jumps and with heavy-tailed measurement errors.
M4-M6 correspond to M1-M3 except for allowing value jumps.
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Figure 1: Filtered, smoothed and observed stock prices for IBM on January 2, 2004
(5-minute frequency)

A: Filtered vs. Observed
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B: Smoothed vs. Observed
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For plot A, the left axis is for the filtered means of the “efficient” stock prices (∗) and the observed stock
prices (o). Their differences are plotted against the right axis. The smoothed means vs. the observed stock
prices are plotted in plot B in the same manner. The values are obtained by estimating the full model
allowing for jumps in the stock price with heavy-tailed microstructure noises (i.e., M6).
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Figure 2: Filtered, smoothed and observed stock prices for IBM on May 25, 2004
(5-minute frequency)

A: Filtered vs. Observed
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B: Smoothed vs. Observed
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For plot A, the left axis is for the filtered means of the “efficient” stock prices (∗) and the observed stock
prices (o). Their differences are plotted against the right axis. The smoothed means vs. the observed stock
prices are plotted in plot B in the same manner. The values are obtained by estimating the full model
allowing for jumps in the stock price with heavy-tailed microstructure noises (i.e., M6).
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