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Abstract

Supervised machine learning methods, in which no error labels are present, are increasingly popular methods for 
identifying potential data errors. Such algorithms rely on the tenet of a ‘ground truth’ in the data, which in other words 
assumes correctness in the majority of the cases. Points deviating from such relationships, outliers, are flagged as 
potential data errors.

This paper implements an outlier-based error-spotting algorithm using gradient boosting, and presents a blueprint for 
the modelling pipeline. More specifically, it underpins three main modelling hypotheses with empirical evidence, which 
are related to (1) missing value imputation, (2) the loss-function choice and (3) the location of the error. By doing so, 
it uses a cross sectional view on the loan-to-value and its related columns of the Credit Registry (Hitelregiszter) of the 
Central Bank of Hungary (MNB), and introduces a set of synthetic error types to test its hypotheses.

The paper shows that gradient boosting is not materially impacted by the choice of the imputation method, hence, 
replacement with a constant, the computationally most efficient, is recommended. Second, the Huber-loss function, which 
is piecewise quadratic up until the Huber-slope parameter and linear above it, is better suited to cope with outlier values; 
it is therefore better in capturing data errors. Finally, errors in the target variable are captured best, while errors in the 
predictors are hardly found at all. These empirical results may generalize to other cases, depending on data specificities, 
and the modelling pipeline described underscores significant modelling decisions.

Keywords: data quality, machine learning, gradient boosting, central banking, loss functions, missing values

JEL codes: C5, C81, E58

Összefoglaló

Növekvő népszerűségnek örvendenek az olyan felügyelt gépi tanulási módszerek az adathibák azonosításában, 
amelyekben nem szerepelnek hibacímkék. Az ilyen algoritmusok arra támaszkodnak, hogy az adatok egyfajta alapigazságot 
tükröznek, azaz azt feltételezik, hogy a megfigyelések többsége helyes. Az így felállított függvényeknek nem megfelelő 
pontokat – kiugró értékeket – potenciális adathibaként jelölünk meg.

Ebben a cikkben egy anomália-detekcióra épülő hibafeltáró algoritmust mutatunk be extreme gradient boosting 
módszer (xgboost) felhasználásával, és megvizsgáljuk a kapcsolódó modellezési folyamatot. Ennek során három 
fő modellezési hipotézist fogalmazunk meg, amelyet empirikus úton igazolunk; ezek (1) a hiányzó érték kezelésére,  
(2) a veszteségfüggvény kiválasztására és (3) a hiba helyéhez meghatározására vonatkoznak. A hipotézisek igazolásához 
MNB Hitelregiszter adatbázisának egy keresztmetszeti nézetét választottuk, amelyben a hitelbírálatkori hitelfedezeti 
arányt (LTV) és kapcsolódó oszlopait elemeztük, valamint szintetikusan előállított hibák megtalálási arányát vizsgáltuk.

A tanulmány azt mutatja, hogy a gradient boosting eljárás hatékonyságát nem befolyásolja érdemben a hiányzó adatok 
pótlásának módszere, ezért a számításilag leghatékonyabb, konstanssal való helyettesítés javasoljuk. Másodszor,  
a Huber-veszteségfüggvény, amely négyzetes a Huber-slope paraméterig, és lineáris felette, jobban kezeli az extrém 
kiugró értékeket a tanulás során, így az adathibákat is hatékonyabban találja meg. Végül, a módszer a célváltozóban 
található adathibákat tárja fel legnagyobb arányban, amiket a prediktorokban szinte egyáltalán nem azonosít. Az empirikus 
eredményeink az adatok sajátosságaitól függően általánosíthatóak, és a cikkben leírt lépések segítséget nyújthatnak 
modellezési döntések megalapozott meghozatalában.
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1 Introduction

Central bank data collection processes have been gradually transforming from the collection of aggregate values to the 
compilation of granular, contract or security-level information. At the same time, the explosion of data volumes has been 
offering more avenues for data quality investigations to uncover possible data errors.

Granular central bank data has unique characteristics. First, it is usually delivered by a manageable number of data 
providers, which prepare their contribution by reading legal text and extracting data from their data warehouses 
accordingly. This may introduce data specificities or even errors on provider level. Second, such granular data sets may 
have several hundred columns, of which some are used only for a subset of its observations. To illustrate: collateral value 
is only relevant for loans with collateral, hence, for other loan types, missing values are rampant. Third, relationships 
between data columns rely on economic processes, hence, the term ‘outlier’ or ‘error’ may win additional interpretations, 
should an observation not correspond to an expected economic or financial relationship.

Once rule-based data errors are taken care of (format and constraint violations, pattern violations (values that violate 
syntactic and semantic constraints), duplicates, see Rahm and Do (2000), Kim et al., (2003), outlier detection algorithms 
may be applied. While the use of unsupervised outlier detection methods is more widespread, supervised learning 
algorithms “empower learning methods with application-specific knowledge so as to obtain application-relevant 
anomalies” (Aggarwal, 2017: 219). A specific subset of supervised methods used for data error identification is where 
there is no ex ante label for data errors. Particularly the ’attribute-wise learning for scoring outliers’ (ALSO) (Paulheim 
and Meusel, 2015) has gained the attention of central bankers (Benatti, 2018), where a target variable of the granular 
data set is explained with the help of other variables, predictions are calculated, and the residuals of each observation 
serve as the starting point for outlier detection. And although Benatti (2018) used extreme gradient boosting (xgboost) 
model to do so, which is a well-suited algorithm to deal with non-linearity between variables, many of his modelling 
decisions, and their implications for error detection, were scantly discussed. 

This paper is an empirical study of a gradient boosting error detection mechanism: it proposes a modelling pipeline to 
uncover data-related anomalies and potential data errors in a central bank collected granular data set. By doing so, it 
looks for errors in the data, and calculates how two target metrics change when certain modelling decisions are made. 
The following target metrics are computed on the test data set: (1) the share of discovered errors out of all errors, and 
(2) the relationship between the share of intentional errors within outliers, compared to the share of intentional errors 
in the whole test data set. The modelling decisions considered are the imputation of missing values, the choice of the 
xgboost loss function and the location of the error (whereby an error in the target variable seems to be more easily 
discovered). The data used for illustration purposes is the Loan-to-value (LTV) relevant mortgage portfolio within the 
Credit Registry (Hitelregiszter) of the Central Bank of Hungary. We believe that our pipeline can serve as a blueprint for 
modelling decisions with other datasets too.

First, the findings underscore the fact that with xgboost, the using a constant value plus a flag, may be a decision as good 
as a prediction-based imputation to deal with missing values. Second, an xgboost with a more robust, Huber loss function 
seems capture more data errors than using the squared error loss function. Finally, we show that the algorithm finds 
non-trivial errors in the target variable far better than errors in the explanatory values, hence, it may help in directing 
human attention towards the location of the actual error. While our empirical results may or may not be specific to the 
dataset used, the paper discusses potential implications of the decisions during the modeling pipeline, and it thereby 
offers points to consider in future studies.

The paper is structured as follows. The next two sections contain the recommendations the literature holds on the 
xgboost-based outlier detection pipeline, including the description of our hypotheses. The fourth section discusses the 
data and methodology in detail, while the fifth presents the outcome of the error simulations. The final section concludes.
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2 Supervised learning for data error spotting

The concept of data quality and of data error may refer to a set of issues, including rule-violations (e.g. a NOT NULL 
constraint), semantic pattern errors (such as a value between 0 and 100), duplicates (which are best captured with record-
linkage algorithms), or to outliers (Abedjan et al., 2016). In contrast to that, outlier-based errors represent a subset of 
that, and have to fulfill two requirements. First, they are quantitative or qualitative deviations from an expected true 
value, and second, they should be confirmed to be errors. Outlier-based machine learning algorithms are capable of 
doing the former, whereas error-confirmation requires additional human intervention.

Hawkins (1980) defined outliers as observations which deviate from others “as to arouse suspicions that it was generated 
by a different mechanism”. In that sense, outlier detection assumes the existence of a “ground truth”, meaning 
a relationship between variables which are expected to represent the baseline mechanism. For data quality purposes 
the ‘ground truth’ hypothesis assumes that the majority of the data on which the model is trained is right. Since it is hardly 
possible to limit the error to the test data only, the error is also expected to be present in the train data. In addition, this 
means that any algorithm only flags outliers if they break the underlying learned function, even if some real errors (e.g. 
incorrect data records) are part of it.

Using supervised learning for outlier detection may not be the first choice. Data errors are most often untagged, resulting 
in the fact that the target variable cannot be a label stating if an observation contains an error or not. We often do not 
know a priori how errors look like, they may well be heterogeneous and stem from a variety of sources (Heidari et al., 
2019). Because of these, unsupervised algorithms (Aggarwal, 2017) are popular. Among these, distance-based methods 
identify ‘densely’ located records as normal observations, and rare instances as errors. Such an approach, however, faces 
problems with the increase in the number of dimensions, and may struggle with extreme values.

To overcome these problems, Paulheim and Meusel (2015) propose a novel way to use supervised learning for identifying 
outliers. They start with the assumption that there is a true relationship in the data between the variables, and erroneous 
observations do not reflect this relationship. They propose a method called ’attribute-wise learning for scoring outliers’ 
(ALSO), in which a target variable is explained with the help of explanatory features. Subsequently, the residual, the 
difference between the prediction and the actual value, is calculated. The authors loop through all columns as target 
variable, and use the residual values for each instance to calculate a final outlier score1 for each observation. The approach 
of Paulheim and Meusel (2015) can be viewed as a transformation of the data points into a new residual feature space. 
Within it, outliers can be considered as observations that are far away from the origin. These are not distance-based 
outliers, but points which do not fit in the relationships between the features, which makes its use particularly appropriate 
for error spotting.

Benatti (2018) follows the method of Paulheim and Meusel (2015), in that he also creates a model for each column using 
the remaining columns and calculates residuals for each instance. At the same time, he does not aggregate the obtained 
residuals into one single outlier score. Instead, he carries out a clustering of the residual values to identify groups of 
observations. According to his logic, observations far away from such clusters may be flagged as potential data errors. 

The work of Benatti (2018) is relevant for further reasons. First, in his paper he looks for potential data errors in a granular 
central bank dataset. One may assume that central banks as data collectors face similar error types. Second, his model 
was specified with a gradient boosting algorithm (xgboost), which provides sufficient flexibility to account for categorical 

1  If  is the predicted and the actual value for an observation using the variable k as the target variable, its final, unweighted outlier score as pro-
posed by Paulheim and Meusel (2015) is calculated as follows: . One may weigh the difference between  and  to reflect the strength of each 
relationship using their relative squared error values. With the weights assigned, the weighted residuals in the k-th model are: , and the weights 
are calculated by , where . 
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and data provider-level specificities. It is capable of learning highly non-linear relationships and variable interactions, 
works well with high dimensional data. In addition, it can deal with missing data within the modelling phase (Chen and 
Guestrin, 2016). In short, xgboost is an excellent tool to learn the complexity of true relationships within the data, hence, 
it is discussed in detail in the next section.

2.1 THE SPARSITY-AWARE LOGIC OF XGBOOST

In a nutshell, the xgboost algorithm entails a sequential development of several decision trees2. The first tree attempts 
to predict the target variable with a simple aggregation3, the second tree predicts the prediction error of the first. Then 
the predictions of these two trees are added and a new prediction error is calculated. The following tree is grown on the 
error of the previous set of trees, and its prediction is added to the last one. This process is repeated several times. The 
number of repetitions, meaning the number of trees can be determined by cross-validation or Bayesian Optimization, 
discussed later in this paper.

This section presents a formal overview of the xgboost, based on Chen and Guestrin (2016). The authors provide a more 
detailed overview of the algorithm their paper. While the reason for incorporating the exact algorithm in this paper is 
to specify the xgboost implementation used, as required by the editor, the paper does not contribute to the formulae 
themselves.

A tree ensemble model uses K additive functions to predict the output.
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Figure 1. Comparing the loss values of a quadra:c and of several Huber-loss func:ons with different slope values 
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An important insight here is that in an  loss regression case the nominator is the sum of the residuals, squared, and the 
denominator is the number of residuals. It can be viewed as the algorithm’s attempt to cluster the residuals by their 
direction and magnitude. It is impossible to enumerate all the possible tree structures q. Therefore, a greedy algorithm 

2  In short, these are not the usual decision trees (sometimes called xgboost trees), and their purpose can be viewed as clustering the residuals by 
their directions. Residuals are the differences between the predictions and the actual values, and the direction is determined by whether the 
prediction is greater (overestimation) or smaller (underestimation) than the actual value. The algorithm clusters the observations along the 
values of the features according to the values of the residuals.

3  The aggregation can be specified to be the mean (L2 case of the loss function), or the median (L1 case).
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that starts from the single leaf containing every node (or possibly a subset controlled by a hyperparameter subsample) 
iteratively adds branches to the tree. The loss reduction after a split is calculated by the following equation:
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3 Machine learning pipeline and its 
preprocessing decisions 

We have identified three points we found to be crucial during the preprocessing phase. Specifically, we discuss (1) 
missing value treatment options (besides letting xgboost deal with missing values, there are imputation options), the (2) 
use of various loss functions in xgboost (in a continuous setting, squared loss and the Huber-loss function), and (3) the 
identification of the erroneous variable, which helps in looking for data errors, once the modelling is finished and the 
results are handed back to the data provider. In addition, the remainder of the paper describes further crucial modelling 
aspects, including rare categorical value transformations, encoding, and the handling of quasi constant variables.

The first step in the process leading up to the modelling concerns the way to deal with missing values among predictors. 
One possibility is to make use of the sparsity-aware method of xgboost, which puts missing instances in the direction 
with the greatest loss reduction. Using this may reduce the model bias on the train dataset, but this may result in high 
prediction errors during the prediction phase, since the underlying ‘ground truth’ is not learnt by the model.

Another option is to revert to the broad literature on missing value treatment options, and to use explicit missing value 
replacement before the modelling phase. This may be the case if the user wishes to use imputed values for further 
analysis. For instance, Emmanuel et al. (2021) describe several types of estimator functions. These can be as simple 
as a replacement with a constant, or, a learner-function based prediction using cases where all values are filled. Most 
scholars agree that that there is no single one best way to deal with missingness, particularly when it is an issue both 
during model training and during deployment (Khosravi et al. 2020). At the same time, Twala et al. (2008) do not find 
convincing difference in the performance of a classification tree when comparing a simple ‘missing’ flag with an imputation 
approach. We also argue that a sufficiently flexible tree-based embedded outlier detection algorithm will not require 
a sophisticated missing value imputation function, where noise and potential errors can occur in the data. We argue 
that replacement with a constant value and the addition of an imputed value flag variable (1/0) is not inferior to an 
imputation algorithm. In addition, we recommend to be cautious with the xgboost sparsity-aware model fitting, since 
it may not learn the underlying ‘true’ relationships within the data (hypothesis 1).

The second step, referred to as ‘dealing with high-leverage point outliers’ is an expectation stemming from the data error 
identification approach. Since our estimator function wishes to capture the true relationship between the variables, it 
should not be materially impacted by the data errors we are about to identify. While this may seem to be a chicken or 
egg problem, a robust estimator function may just serve our purpose. Begashaw and Yohannes (2020) provide a neat 
overview of such approaches in a linear regression setting; Sadouk et al. (2020) propose a similar method for deep 
learning applications. In our case, with gradient boosting, we propose changing the default objective function, which is 
minimized during the model fitting. More specifically, we argue for replacing the squared loss function with the Huber 
loss function. This latter makes sure that the ‘distance’, which the model minimizes, denoted as r (for residual), turns 
from quadratic (as in the case of squared loss) to linear above a certain threshold. This threshold is often referred to as 
the Huber-slope, denoted as , and its value is determined during the hyperparameter-optimization process, as discussed 
later. The simple4 Huber-loss function is reflected by Equation 6 and illustrated by Figure 1. 
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4  The xgboost implementation uses the pseudo Huber-loss function, which is a smooth approximation of the Huber loss function, meaning 
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The Huber-function ensures that small deviations are squared, permitting fine-tuning for such data points. Large 
deviations between estimates and actuals count in a linear manner only. As a result, the parameter tuning will not chase 
‘detected’ outliers during optimization and can learn the underlying (“true”) function better. We argue that an xgboost 
developed with the Huber-loss function is better suited to uncover data errors than the squared loss objective function  
(Hypothesis 2).

Finally, an xgboost learner function is developed, estimations are calculated, and residuals are computed. All outliers, 
meaning that observations with residuals above a certain threshold, are investigated for being a potential data error. In 
contrast to a full ALSO-algorithm, we stop after developing an xgboost for one target column only. The reason for that 
is to support interpretability: we argue that potential errors, concerning one column only, are better identified when 
they are in the target variable as opposed to the explanatory variables (Hypothesis 3). This hypothesis relies on the 
assumption that there is a certain degree of (linear or non-linear) relationship between explanatory variables.  If a data 
error distorts an explanatory variable ‘A’, the other explanatory column ‘B’, which is not independent from ‘A’, may take 
over its role in explaining Y. As a result, A loses its importance in the final xgboost function, while B’s feature importance 
increases. Because of that, the algorithm may not yield outliers on these errors within ‘A’. Furthermore, B may contribute 
to the approximation of the underlying “true” function in a less precise way than ‘A’ could. In sum, if an outlier is detected, 
it may be a good practice to look for the data error within the target variable and not in the explanatory variables.  
(A process which may start by looking at record level feature contributions.)

Figure 1
Comparing the loss values of a quadratic and of several Huber-loss functions with different slope values
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4 Data and Methodology

4.1 THE DATA

The Credit Register (Hitelregiszter or Hitreg) of the Central Bank of Hungary (MNB) is a monthly updated collection of all 
loan contracts issued by Hungarian banks, containing 22 reporting tables, 482 attributes and 31 identifiers. These together 
usually yield between 30-60 million new lines each month. The Hitreg dataset goes through of around two thousand 
logical quality rules. Aggregate time series are checked with the help of ARIMA- and further filters, whereas static changes 
are probed on record / cell level. Finally, a cross-sectional algorithm, the subject of this paper, is applied on the data.

This paper uses a subset of Hitreg, which is relevant for the loan-to-value (LTV) reporting of the MNB. This limits the 
analysis to mortgages and home equity loans of the residential sector, and issued after 1st October 2021, when the last 
change to the legal circumstances of the LTV-requirement was introduced. The final analytical table is a combination 
of information from several Hitreg reporting tables, comprising data on the debtor(s), on the collateral(s) and on the 
loan contract itself. Altogether we work with 73 thousand lines of one single reporting date of 30th September 2022, 
using 274 columns. Metrics and the distribution of the target variable, and of a subset of the explanatory variables, are 
presented in the Appendix.

The target variable was chosen to be the LTV-value, calculated for the time of credit issuance, which is subject to strict 
legal limitations, hence its accuracy is of utmost interest. Despite that LTV at issuance is only relevant before granting 
the loan, it is reported at each reporting date. As a logical consequence, we kept the columns which were relevant at the 
time of issuance (to illustrate: current outstanding loan amount was removed, since it has nothing to do with the LTV at 
issuance, despite probable correlations).

In theory, calculating LTV is a straightforward matter, obtained as the loan amount divided by the allocated collateral 
value. However, in practice, it is rather complex, given the fact that many decisions, including the choice of the collateral 
evaluation method and the allocation process of a collateral value to the specific loan contract, are at the data providers’ 
discretion. Having analyzed the data set thoroughly, we are now confident that the columns available within the data 
are insufficient to calculate LTV directly. The relationship between LTV and the other columns is complex, which makes 
xgboost an appropriate choice for the analysis.

In short, the following statements justify the choice of LTV as the response variable in the model. LTV has highly non-
linear relationship with the explanatory variables, and it does not contain missing values, as it is an enforced condition 
of a successful data submission to the central bank. As a result, it may serve as a prime candidate for hypothesis testing.

4.2 MODELLING PIPELINE

The modelling pipeline starts with the arbitrary removal of variables exhibiting high multicollinearity (over 0.90). Although 
xgboost predictions are not affected by multicollinearity, feature importance may well be distorted. Since we expect 
certain degree of interpretability (for results’ analysis, not discussed in this paper), we kept one out of the pairwise 
collinear variables only. We also eliminated quasi constant values, where the frequency ratio of the most frequent value 
and the second most frequent value is extremely high (hence the variance of the feature close to zero), since they may 
lead to overfitting or misleading conclusions.

In a similar manner, we recoded categorical and discrete variables with rare values to reduce the chance of overfitting 
caused by high variance and noise in the estimation. Any category below a threshold of 2.5 percent was recoded into an 
‘other’ category, and the upper, rare values of discrete numerical values were summarized (e.g. the number of residential 
real estate collaterals above the value of three was recoded into three). Categorical variables with missing values were 
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given the value of ‘missing’. In most cases these were ‘missing non at random’ (MNAR) variables, and in such cases, 
simple flagging is preferred to imputation. 

The next step was to create new meaningful features that could help the algorithm to learn. An illustrative example 
is date conversion: instead of using the contract start date in a raw format, we calculated the number of days elapsed 
between the start date and the reporting date. 

The following stage of the pipeline was encoding (dealing with discrete non-numeric variables). During our experiments, 
we found that label encoding5 improves model performance most even for variables that enumerations cannot be sorted 
(also known as nominal variables). Our intuition is that it can be explained by avoiding the “curse of dimensionality”, 
which means that as the number of predictors increases, the difference between the maximum and minimum distances6 
approaches to zero. Boosting algorithms tend to suffer from the curse of dimensionality as they tend to overfit, hence 
label encoding can be recommended.

The next step contained the treatment of missing values for continuous variables (Figure 2), the focus of the first 
hypothesis (Table 1). To start with, we have not used columns where the share of missing values exceeded 20 percent 
at all. Among the rest, the feature with the most missing values had a missing value share of 13 percent, followed by 
several columns with 12 percent. Based on that, and confirmed by Figure 2, there seems to be some degree of systematic 
rule for missingness, since certain feature values are missing for the same observations. This may be quite typical: some 
variables are not interpreted for one or another kind of loan contract. Hence, the decision between the imputation 
methods is just an artificial -technical question to feed the xgboost. 

Three approaches to deal with missing values were assessed using the remaining columns. In the first approach, missing 
values were recoded into an arbitrary but relatively outlier value (e.g. collateral market value of zero HUF). We assume 
that a tree-based ensemble method such as the xgboost would learn that this is a special value not necessarily linked 
to an economic meaning.

Table 1
Missing value treatment options for Hypothesis 1

Missing value 
treatment Description Assumption

Replacement 
with a constant

The constant value used, zero, 
is an infrequent or nonexistent 
value in the original data set

Zero may be found where the data provider does not have values, but a non-
null value is enforced. We assume that the xgboost is capable of learning that 
it is not an economic relationship but a special value.
Additionally, if the ratio of missing values exceeds 5 percent, a new indicator 
column is added to indicate which rows are manually filled (1) and which are 
not7 (0).

Imputation with 
MissRanger

All complete predictors are 
used (except for the target 
variable to prevent data 
leakage)

This approach assumes existing relationships between predictors, which is 
certainly present in the data set.

Using the 
xgboost sparsity-
aware algorithm

The dataset with missing 
values is fed directly to the 
xgboost optimization.

This approach puts instances with missing values in the default class (i.e. the 
class with the greatest loss reduction) when growing a new branch on a tree. 
This approach delivers a good model on the train data, but may not capture 
the ‘ground truth’.

5  Label encoding converts a categorical variable to a numerical value. While at first it may sound surprising, this kind of treatment works well with 
the tree-based xgboost-method, since it can learn any difference between 1 and 2, and this is not necessarily the same difference as between 2 
and 3. In addition, label encoding does not increase dimensionality, as opposed to the one-hot-encoding technique.

6  Maximum and minimum distances are distances calculated between the furthest and nearest observations respectively. 
7  The presence or absence of the additional flag column is not material: it changes little on model performance or variable interpretation.
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In the second approach, we imputed missing values using the MissRanger package of R (Stekhoven et al. 2012). This is 
a sophisticated and parallelized, random forest-based algorithm, which uses both categorical and continuous data, and 
optimizes the imputation process without the need of a test data set. We chose to use all complete predictors (i.e. with 
zero missing values) to impute the missing values for incomplete predictors. The target variable was not used for the 
imputation to prevent data leakage. The third method was not to replace missing values at all: we left blank cells blank 
and let the xgboost deal with them, as discussed in an earlier section.

4.3 BAYESIAN OPTIMIZATION FOR HYPERPARAMETER-TUNING

The last step was the development of the xgboost function itself, which requires several decisions to be made during 
process. One of them is the choice of the loss function, subject to our second hypothesis and discussed above. The 
Huber slope parameter, which causes the loss function to be quadratic only up to a certain value, and linear above it, is 
determined with the help of a Bayesian optimization procedure (Snoek et al., 2012), along with all other hyperparameters. 
This is an automatic and efficient method that fits a Gaussian process to the results, where the goal is to find the set 
of hyperparameters that obtains the best result on the test data based on the selected evaluation metric (RMSE or the 
mean pseudo-Huber error).

In short, the Bayesian Optimization does the following. The objective function is the evaluation metric based on 
the hyperparameter setups, which function is unknown. The algorithm samples hyperparameter sets, observe the 
evaluation metric and updates the prior form of the function. There is a predefined similarity measure (Kernel) between 
the observations, whereby similar hyperparameters correspond to similar evaluation metrics. The next samples are 
determined by the acquisition function, which is based on the previously queried observations, the Kernel function and 
other hyperparameters, that is related to the exploitation-exploration trade-off, which corresponds to the expected value 
of the evaluation metric and the variance, based on the previously explored areas and the updated posterior function.

Figure 2
Missing values among the continuous variables. Please refer to the Appendix for an overview of the share 
missing values and further descriptive statistics
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The formal representation of the Bayesian Optimization framework is cited from Shahriari et al. (2016) and Garrido-
Merchán et al. (2023). To retrieve the optimum hyperparameters  of the unknown objective function, we solve the 
following mathematical problem:
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where  are the noisy observations of the optimized function  with , the train and test observations are arranged in matrices  
and ,  and  are the unobserved true function outputs for all the inputs,  is N-by-N matrix containing the similarities between 
the observations calculated by the Radial Basis Function , where the hyperparameters of the Kernel denoted by , and . 
Since the observations and the true function values at the test points are jointly distributed as a multivariate Normal, 
the predictive posterior distribution  are given by:
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The predictive distributions are the estimates of unknown functions areas, and the next samples are determined by the 
acquisition function, which deals with the exploration-exploitation trade-off, in the sense of the search space and the 
promising areas (Shahriari et al, 2016). In our analysis we used the upper confidence bound as an acquisition function, 
which is the following:
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The approach vastly reduced computation time compared to a brute force-based grid search. The optimization was 
parallelized to improve calculation times further. The permitted bounds for the hyperparameter-optimization, which 
were defined after a set of initial experiments, are reflected by Table 2.

Table 2
Permitted hyperparameter ranges

Hyperparameter Descipriton Bounds

Eta (learning rate) Step size used in update 0.01 - 0.1

Max depth Maximum depth of a tree. 4 - 8

Gamma Minimum loss reduction required to make a further partition on 
a leaf node of the tree. 0-8

Alpha L1 regularization term on weights. 10-20

Lambda L2 regularization term on weights. 1-12

Huber-slope* Defines the range for the loss function piecewise. 10-30

* with Huber loss function only. 
The maximum number of trees was set to 280.
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Figure 1. Comparing the loss values of a quadra:c and of several Huber-loss func:ons with different slope values 

 
 
The formal representa:on of the Bayesian Op:miza:on framework is cited from Shahriari et al. (2016) and Garrido-
Merchán et al. (2023). To retrieve the op:mum hyperparameters 𝒙𝒙∗ of the unknown objec:ve func:on, we solve the 
following mathema:cal problem: 
 

𝒙𝒙∗ = 𝒂𝒂𝒂𝒂𝒈𝒈	𝐦𝐦𝐦𝐦𝐦𝐦
𝒙𝒙∈𝓧𝓧

𝒇𝒇(𝒙𝒙).      (7) 

 
The Bayesian Op:miza:on framework in our case can be defined by the following tuple: 
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where 𝑓𝑓(𝑥𝑥) is the op:mized func:on, 𝒢𝒢𝒢𝒢 is a Gaussian Process, 𝛼𝛼(⋅) is an acquisi:on func:on, and 𝑝𝑝(𝑓𝑓(𝑥𝑥)|𝐷𝐷) is a 
predic:ve distribu:on (Garrido-Merchán et al, 2023). The task is to provide a predic:ve distribu:on for test observa-
:ons {𝑥𝑥-∗}-$1F  with a given dataset 𝒟𝒟G = {(𝑥𝑥- , 𝑦𝑦-)}-$1H . A GP is fully defined by the following: 
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where 𝑦𝑦- = 𝑓𝑓(𝑥𝑥-) + 𝜀𝜀- are the noisy observa:ons of the op:mized func:on 𝑓𝑓(𝑥𝑥) with 𝜀𝜀- ∼ 𝒩𝒩(0, 𝜎𝜎K2), the train  
and test observa:ons are arranged in matrices 𝑿𝑿 and 𝑿𝑿∗, 𝒇𝒇 and 𝒇𝒇∗ are the unobserved true func:on outputs for all  
the inputs, 𝚱𝚱𝑿𝑿,𝑿𝑿 is N-by-N matrix containing the similari:es between the observa:ons calculated by the Radial Basis 

Func:on 𝜅𝜅(𝒙𝒙𝒊𝒊, 𝒙𝒙𝒊𝒊L|𝝉𝝉) = 𝜎𝜎2exp	 �− 1
2
ÄM*M

-

ℓ
Å
2
Ç, where the hyperparameters of the Kernel denoted by 𝝉𝝉, and  

𝚱𝚱s𝑿𝑿,𝑿𝑿 = 𝚱𝚱𝑿𝑿,𝑿𝑿 + 𝜎𝜎K2𝚰𝚰. Since the observa:ons and the true func:on values at the test points are jointly distributed  
as a mul:variate Normal, the predic:ve posterior distribu:on 𝑝𝑝(𝑓𝑓(𝑥𝑥∗)|𝒟𝒟) are given by: 
 

𝝁𝝁𝒏𝒏(𝒙𝒙∗) = 	𝚱𝚱𝑿𝑿∗,𝑿𝑿𝚱𝚱s𝑿𝑿,𝑿𝑿*𝟏𝟏 𝒚𝒚,      (10) 

𝝈𝝈𝒏𝒏𝟐𝟐(𝒙𝒙∗) = 	𝚱𝚱𝑿𝑿∗,𝑿𝑿∗ − 𝚱𝚱𝑿𝑿∗,𝑿𝑿𝚱𝚱s𝑿𝑿,𝑿𝑿*𝟏𝟏 𝚱𝚱𝑿𝑿,𝑿𝑿∗    
 (11) 

𝜶𝜶𝑼𝑼𝑼𝑼𝑼𝑼(𝒙𝒙∗; 𝓓𝓓𝒏𝒏) ∶= 𝝁𝝁𝒏𝒏(𝒙𝒙∗) + 𝜷𝜷𝒏𝒏𝝈𝝈𝒏𝒏(𝒙𝒙∗).    (12) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Good methods for coping with missing data in decision trees. Pabern Recogni:on Lebers, 29(7) pp. 950–956. 
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4.4 SYNTHETIC ERRORS AND MODEL EVALUATION

Finally, we introduced three types of synthetic errors to the data, as summarized by Table 3. Synthetic errors are often 
used to test data quality-algorithms (Abedjan et al. 2016). Therefore we added the following synthetic errors to 5 percent 
of randomly selected cases (both in the train and in the test datasets):

–  LTV values were divided by 100 (since an LTV of 50 percent is expected to be submitted as ‘50’, it is often submitted 
as 0,5)

–  LTV values were set to 80 (as if a constant dummy value was submitted, which also happens in reality). This error type 
was applied to observations with a true LTV of 60 or less, in order to have a sufficiently sizeable error.

–  LTV values were multiplied by a sample drawn from uniformly distributed ranges of U(0.3, 0.5) and U(1.2, 1.4)8 random 
variables. This in essence means a multiplication by a value in any of those bounds. The two ranges are not symmetrical 
in order to limit the number of errors above 100 (percent) of LTV. 

In a separate experiment set, similar errors were introduced to one of the predictors. We opted for introducing errors to 
the second most important predictor in terms of gain, cover, and frequency in the feature importance matrix, as described 
later, which is the allocated collateral value. The reason for this is the fact that its value is less strictly determined than for 
instance of the loan amount (the other most frequently occurring important feature, which is explicitly written in a loan 
contract). Therefore, variations, errors and outliers are more probable in the case of the allocated collateral value. The 
errors introduced to the predictor were:

•  Allocated collateral values were multiplied by a sample of the uniformly distributed ranges U(0.3, 0.5) or U(1.2, 1.4) 
random variables. This in essence means a multiplication by a value in any of the mentioned bounds.

•  Allocated collateral values were set to 10 mln HUF (approx. 25 thousand EUR). This error type was applied to observations 
with a true allocated collateral value of 40 mln HUF or more, in order to have a sufficiently sizeable error. The assumption 
behind this move can be the use of a dummy value, or an internal allocation cap within the reporting institution.

Table 3
Overview of data errors used for error spotting algorithm evaluation

Error location Error description Error rationale

Response variable values divided by 100
An LTV of 50 percent is expected to be 
submitted as ‘50’, it is often submitted as 
0,5

Response variable values set to 80 as if a constant dummy value was 
submitted

Response variable

Values were multiplied by a random 
value. This random value was drawn for 
each observation from a uniform 
distribution of between U(0.4, 0.6) and 
U(1.2, 1.4).

A random error 

Predictor (allocated collateral value) Values set to 10 mln HUF The use of a dummy value or an internal 
cap on allocation

Predictor (allocated collateral value)

Values were multiplied by a random 
value. This random value was drawn for 
each observation from a uniform 
distribution of between U(0.4, 0.6) and 
U(1.2, 1.4).

A random error

8  We used the usual abbreviation of the uniform distribution (denoted by U).
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The different outlier detection approaches were evaluated with the help of two metrics (Table 4). First, we look at the 
share of discovered errors out of all errors. An error is considered as discovered when its absolute residual was above 
a pre-defined threshold of 20 (given the fact that the target variable, LTV is expected to be between 0 and 80 (a legal 
limitation), the use of an absolute threshold does not materially distort the results). Ceteris paribus, the more errors we 
identify, the better the model is. At the same time, we need an additional metric: the relationship between the share of 
intentional errors within outliers, compared to the share of intentional errors in the whole test data set (referred to as 
‘lift’). With a good model, error density should be considerably higher in the outlier set than in the data.

We also tested two outlier definitions. First was based on a pre-defined (unstandardized9) residual value, above which 
all observations were treated as outliers. The second definition relied on the top pre-defined share of observations, in 
our case, 5 percent, which were classified as outliers, when ranked according to the absolute value of its residuals. One 
argument for this second definition could be the limited time available to follow up outlier-issues with the data providers.

Table 4
Error detection evaluation metrics

Metric Metric description Outlier definition

Share of known errors discovered Synthetic errors in the outlier set as 
a proportion of all synthetic errors

Definition 1: Outlier set defined as the 
observations with an absolute residual of 
a pre-defined value or higher
Definition 2: A pre-defined share of 
observations with the greatest residual 
values

Lift 
Frequency of synthetic errors in the 
outlier set, divided by the frequency of 
synthetic errors in the entire data

9  We decided on using the unstandardized value for better interpretability, given the fact that LTV is expected to move between 0 and 100. In more 
heterogeneous cases or if the ALSO-algorithm is to be carried out in its full extent, one may standardize the residuals.
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5 Results

5.1 THE BASELINE MODEL

We prepared a baseline xgboost model, imputed missing values using a constant, and a squared loss function (and with 
no synthetic errors). Although the model’s residual plot still reflects a systematic pattern (Figure 3) - it overestimates 
low observations and underestimates high ones - it performs well. The RMSE is 5.6 percent (recall that LTV is used), 
and the share of outliers is 1.4 percent only, using the widely accepted cutoff value on standardized residuals of 3. 
These metrics show that the algorithm learns the underlying structure. Moreover, a sample of our flagged outliers were 
identified as data errors by domain experts. The algorithm also found intuitive errors, such as when the data provider 
sent LTV as a fraction between 0 and 1 instead of a percentage value. These observations are reflected by Figure 3 as 
the overestimations near zero.

The two most important features in the model are loan amount and allocated collateral value at loan origination (Table 5).  
Given the fact that LTV at loan origination is related to the division of these two values, it is promising to see these 
features on the top of the list. The reason why we say LTV is only related to these two features lies in the fact that banks 
are permitted to apply certain rules in using these values during LTV-calculation. They may use only a percentage of the 
total allocated value, cap it or modify it in any other manner. Similarly, it may not the entire loan amount which appears 
in the nominator.

Figure 3
Residual plot of the baseline model  with marginal distributions (graph contains a random sample of data points 
only)
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Table 5
The top 10 most important features (feature importance) in the baseline model

Feature Gain Cover Frequency

Loan amount (in HUF) 0,32 0,13 0,07

Allocated collateral value (at 
loan origination) 0,25 0,07 0,09

Full collateral market value at 
loan origination 0,12 0,06 0,06

Collateral value 0,05 0,03 0,04

Monthly repayment amount 0,04 0,07 0,06

Effective interest rate 0,03 0,02 0,03

Financed real estate type* 0,02 0,03 0,02

Days past since collateral value 
determination**

0,02 0,02 0,03

Rate driver* 0,02 0,00 0,01

Expected loss 0,01 0,04 0,04

* the categorical variable converted to a numerical value using label encoding. While at first it may sound surprising, this kind of treatment works 
well with the tree-based xgboost-method, and does not increase dimensionality, as opposed to the one-hot-encoding technique.
** The maximum amount, in case of multiple collaterals

Figure 4 and Figure 5 depict the individual feature contributions for a randomly selected 10 thousand observations for 
the two most importance features (by the gain metric). The individual feature contribution is a weight the given value 
of the predictor has on the target variable. Since xgboost develops a complex set of trees (as described in section 4.2), 
and predictor interactions are reflected by it, the same predictor value may have varying impacts on the prediction. Each 
point on the plot gives the impact the actual feature set of the observation has on the target variable.

These plots reflect an encouraging characteristic of the data: both the ‘Loan amount’ (which is related to the nominator) 
and the ‘Allocated collateral value’ (which is related to the denominator) are related to a division. As an example, small 
‘Loan amount’ values typically correspond to negative contributions; and as we increase the value, the contribution 
increases as well. Note, however, the strange curve of the ‘Allocated collaretal value’ around zero. This reflects the 
impact of the missing value treatment. The cases where this value was missing were given decisively heterogeneous 
and broad individual contribution values by the model. Our intuition is that in these cases the algorithm learned the 
underlying function along other variables. Beyond zero, the individual contribution plot for this predictor is reminiscent 
of a hyperbole.
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Figure 4
Individual feature contribution of the feature ’Loan amount’ for a randomly selected 10 thousand observations 
(we added a LOESS-function line for illustration)
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Figure 5
Individual feature contribution of the feature ’Allocated collateral value’ for a randomly selected 10 thousand 
observations, (we added a LOESS-function line for illustration)
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5.2 TESTING HYPOTHESES 1 AND 2

To test our hypotheses, we calculated the evaluation metrics with a static outlier threshold of 20. This means, all 
observations with an absolute residual of 20 or higher were classified as outliers. As Table 6 shows, the 80-dummy and 
the div_100 error types are discovered with a great accuracy at a lift value of around 10-12, with the exception the ‘none’ 
(no explicit missing value replacement) and Huber-loss combinations. In this latter case, the share of captured outliers 
was similar, but the models’ RMSE and MAE values and the total share of outliers were higher, and therefore lift values 
were lower. This poor performance of the ‘none’ – ‘Huber-loss’ combinations were consistent across all three error-types.

Table 6
Error detection metrics when using an absolute outlier threshold of 20; with a synthetic error in the target 
variable

Error type Missing value 
replacement Loss function Outliers as % 

of total

Share of 
discovered 

errors
Lift RMSE MAE

80 estimator Huber 6,8% 88,9% 13,00 12,10 6,82 

80 none Huber 13,3% 88,0% 6,60 17,90 9,73 

80 constant Huber 6,8% 87,2% 12,80 11,60 6,54 

80 constant squared loss 6,9% 85,3% 12,40 11,30 7,00

80 none squared loss 6,5% 83,1% 12,80 10,90 6,69

80 estimator squared loss 5,6% 80,1% 14,30 10,20 6,14 

div100 none Huber 8,1% 82,3% 10,20 13,30 6,97 

div100 estimator Huber 6,4% 81,3% 12,60 12,40 6,32 

div100 constant Huber 6,6% 81,1% 12,40 12,30 6,34

div100 estimator squared loss 5,9% 79,1% 13,50 11,50 6,26

div100 constant squared loss 6,2% 78,4% 12,60 11,50 6,37 

div100 none squared loss 6,2% 78,1% 12,60 11,30 6,22 

rv none squared loss 5,3% 64,2% 12,20 9,30 5,40 

rv none Huber 11,2% 64,2% 5,76 22,10 9,59 

rv constant Huber 5,4% 59,0% 10,90 9,24 5,36

rv estimator Huber 5,1% 58,8% 11,60 9,11 5,29

rv constant squared loss 4,4% 52,0% 12,00 8,25 4,86 

rv estimator squared loss 3,6% 48,4% 13,30 7,62 4,49

In general, there is not necessarily a tradeoff between discovered error shares and the lift values. In fact, Table 5 does 
not even say that the models with imputed missing value treatment would outperform models where missing values 
were imputed with a constant. It also shows that the Huber objective function performs better than the squared loss 
functions do in terms of the first metric, the share of discovered intentional errors. In addition, the share of outliers as 
of all observations is not necessarily larger with the Huber loss function, if a missing value imputation was used.

Figure 5 illustrates model performance over the various error types in the response variable when gradually decreasing 
the absolute outlier threshold value from 25 to 5. The x-axis shows the share of non-errors in the outlier set, in other 
words, the false positive rate, while the y-axis represents the share of known, outlier errors as a percentage of all synthetic 
errors. The difference Figure 6 and a ROC-curve is that in our case, we do not have a direct probability value, only a cutoff 
outlier value. Figure 6 reinforces model stability and the messages of our research described above.
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Table 7 contains model metrics when a relative outlier threshold of 5 percent of all observations is used, as opposed to 
the absolute outlier threshold discussed above. In a similar vein, Table 7  confirms that the estimation of missing values 
as imputation in our case delivers better outlier recognition performance than using a constant value. As a reminder, 
during feature engineering we dropped the columns where the share of missing values exceeded 20 percent, hence the 
amount of potential added noise by imputation is reduced.

We can now report on our initial Hypotheses. The Huber function often outperforms the squared loss function in both 
metrics - but only if outliers are determined using a threshold as opposed to a firm percentage of all observations, and 
only if an explicit missing value imputation is selected. In short, the Huber-loss most often delivers better results, and 
an imputation is most often better than no imputations. This means that we can find indications which would confirm 
Hypotheses 1 and 2, but we would rather put our message in a humbler way. Every dataset should be tested for these 
potential candidates.

Figure 6
The False-positive-rate and true-positive rate development of each model when moving the absolute outlier 
threshold from 25 to 5, with synthetic errors in the target (response) variable
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Table 7
Error detection metrics when using a relative outlier threshold of 5 percent of all observations; with a synthetic 
error in the target variable

Error type Missing value 
replacement Loss function Outliers as % 

of total

Share of 
discovered 

errors
Lift RMSE MAE

80 estimator Huber 5,0% 76,5% 15,30 12,10 6,82 

80 constant Huber 5,0% 75,7% 15,10 11,60 6,54 

80 estimator squared loss 5,0% 75,0% 15,00 10,20 6,14

80 none squared loss 5,0% 73,1% 14,60 10,90 6,69

80 constant squared loss 5,0% 72,3% 14,50 11,30 7,00 

80 none Huber 5,0% 54,7% 10,90 17,90 9,73 

div100 estimator squared loss 5,0% 74,5% 14,90 11,50 6,26 

div100 estimator Huber 5,0% 73,9% 14,80 12,40 6,32 

div100 constant Huber 5,0% 73,5% 14,70 12,30 6,34

div100 constant squared loss 5,0% 72,3% 14,50 11,50 6,37

div100 none squared loss 5,0% 71,8% 14,40 11,30 6,22 

div100 none Huber 5,0% 70,7% 14,10 13,30 6,97 

rv none squared loss 5,0% 62,6% 12,50 9,30 5,40 

rv estimator squared loss 5,0% 58,9% 11,80 7,62 4,49 

rv estimator Huber 5,0% 58,4% 11,70 9,11 5,29 

rv constant squared loss 5,0% 56,8% 11,40 8,25 4,86

rv constant Huber 5,0% 56,5% 11,30 9,24 5,36

rv none Huber 5,0% 31,6% 6,33 22,10 9,59 

5.3 TESTING HYPOTHESIS 3

To investigate Hypothesis 3, we run the same experiments as before but with slightly different error types. First, we 
used a random value multiplication; and second, we put allocated collateral value to 10 mln HUF in case of randomly 
selected observations with a true allocated collateral value of 40 mln HUF or more. The outcome of the simulations is 
summarized by Table 8.

Table 8
Error detection metrics when using an absolute outlier threshold of 20; with a synthetic error in the second 
most important predictor variable

Error type Missing value 
replacement Loss function Outliers as % 

of total

Share of 
discovered 

errors
Lift RMSE MAE

10 none Huber 3,5% 3,0%  0,87  7,91  4,73 

10 estimator Huber 3,0% 2,1%  0,70  7,47  4,36 

10 none rmse 1,5% 1,6%  1,05  5,83  3,43 

10 constant Huber 2,3% 1,3%  0,57  6,98  4,21 

10 constant rmse 1,3% 1,1%  0,83  5,55  3,25 

10 estimator rmse 1,1% 0,9%  0,83  5,27  3,18 

rv none rmse 2,0% 10,7%  5,41  6,30  3,69 

rv estimator Huber 4,5% 7,9%  1,75  9,18  6,11 

rv none Huber 2,5% 5,8%  2,31  7,10  4,29 

rv constant Huber 3,0% 4,3%  1,43  7,72  4,75 

rv constant rmse 1,5% 2,1%  1,41  5,84  3,46 

rv estimator rmse 1,3% 1,9%  1,51  5,54  3,37 
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Table 8 shows dismal error recognition metrics with disappointingly low values. Error detection is in fact not better 
than randomly selecting observations from the data. The metrics send a similar message when using a relative outlier 
threshold (not shown).

To understand the reason for that, we compare the feature importance matrix for the baseline model and for the 
corresponding model with the synthetic errors in the second most important predictor, the ‘Allocated collateral value’. 
Admittedly, xgboost is a vastly complex algorithm with up to 280 trees permitted in each model. The feature importance 
matrix, which is a summary of the results, can only signal changes and will not deliver a mathematical proof. Nevertheless, 
it indicates change directions and provides a rather convincing argument.

Table 9 shows that the importance of this predictor decreases slightly from all three aspects (gain, cover and frequency). 
At the same time, the third predictor, the full collateral market value at origination, exhibits higher importance values. 
In addition, we can see various movements in variable importance values. These changes are admittedly tiny, but point 
out the reason why the algorithm is less capable to identify errors in the predictors. Our intuition is that xgboost can 
approximate the underlying function despite the added noise to ‘Allocated collateral value’, because it finds a structure 
using other variables. 

Table 9
Feature importance of the baseline model and the model with random variable synthetic errors in the predictor 
variable allocated collateral value (using the same missing value imputations (constant) and the RMSE loss 
function)

Baseline model Peer model with synthetic errors in the predictor

Feature Gain Cover Frequency Feature Gain Cover Frequency

Loan amount (in HUF) 0,32 0,13 0,07 Loan amount (in HUF) 0,32 0,15 0,07

Allocated collateral value (at 
loan origination) 0,25 0,07 0,09 Allocated collateral value (at 

loan origination) 0,23 0,08 0,09

Full collateral market value at loan 
origination 0,12 0,06 0,06 Full collateral market value at loan 

origination 0,13 0,07 0,07

Collateral value 0,05 0,03 0,04 Collateral value 0,05 0,03 0,04

Monthly repayment amount 0,04 0,07 0,06 Monthly repayment amount 0,03 0,06 0,05

Effective interest rate 0,03 0,02 0,03 Effective interest rate 0,03 0,03 0,03

Financed real estate type* 0,02 0,03 0,02 Financed real estate type* 0,02 0,04 0,02

Days past since collateral value 
determination** 0,02 0,02 0,03 Expected loss 0,02 0,03 0,04

Rate driver* 0,02 0,00 0,01 Days past since collateral value 
determination** 0,02 0,03 0,04

Expected loss 0,01 0,04 0,04 Original maturity (in days) 0,01 0,04 0,04

* the categorical variable converted to a numerical value using label encoding. While at first it may sound surprising, this kind of treatment works 
well with the tree-based xgboost-method, and does not increase dimensionality, as opposed to the one-hot-encoding technique.
** The maximum amount, in case of multiple collaterals
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6 Conclusion

In this paper, we analyzed a few technical aspects of using a supervised, gradient boosting-based machine learning 
method, described by Paulheim and Meusel (2015) and Benatti (2018), to identify potential data errors in a central 
banking dataset. In a nutshell, it relies on the assumption that the majority of the data points is correct, and that there 
are ‘ground truth’ relationships between the features in it, which can be non-linear. Data points deviating from such 
a relationship, outliers, are flagged as a potential data errors, which are to be followed upon by analysts and the data 
providers. While the results we found may be typical only to the data used, the paper provides a detailed overview of 
the aspects one may consider during a similar modelling pipeline. 

We used the Credit Registry (Hitelregiszter) dataset collected by the Central Bank of Hungary (MNB), which is a collection 
of datasets provided by supervised entities (banks) to the central bank. More specifically, we looked at the loan-to-value 
(LTV) part of the data for one business date, carrying out a cross-sectional analysis. In order to test three hypotheses 
relevant during the model development pipeline, we introduced three types of synthetic errors to the data.

The hypotheses tested relate to technical steps during model development. First, we tested the treatment of missing 
values in the data (when the data is missing both during model training and prediction). As our empirical investigation 
demonstrated, the computation-intensive imputation method most often proposed by the literature is not necessarily 
superior to using a constant value as a placeholder for ‘missing’ label for continuous variables. This is explained by the 
flexible nature of the xgboost algorithm. Moreover, one should be careful when using the sparsity-aware splitting method 
native to the xgboost algorithm, because it may worsen model performance, particularly when used in combination with 
the Huber loss function.

Second, we compared two loss functions for the xgboost. Our empirical investigation showed that the Huber loss function 
is better suited to capture errors using this algorithm, compared to the traditional, squared loss function. We argue that 
using squared loss-function can prove to be more sensitive to outliers, and when using it, xgboost is more likely to ‘learn’ 
data errors as true relationships than it would be the case with the Huber-function.

Finally, we showed that the supervised learning method to capture data errors most likely captures errors in the 
target variable, as opposed to errors in the predictors. The reason for that lies in the flexibility of the xgboost and high 
dimensionality of our dataset. During model training with errors in the predictors, the ‘role’ erroneous predictor variables 
is taken over by others, strongly diminishing error identification performance.

Potential future research questions could be directed towards expanding the cross-sectional nature of our investigation 
by looking at pattern development over time. This way consistency over time can be better ensured. Another potential 
research idea relates to providing better – and automated - answers why an outlier seems to be an error. While individual 
feature contributions seem to be interpretable options, they are still a far cry from being able to formulate an actionable 
question to the data provider.
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8 Appendix

Table 10
Selected summary statistics of the target and the most important explanatory variables by feature importance 
gain

n = 72 996 Number of 
missing 
values

Mean Standard 
deviation

Median Median 
absolute 
deviation 
from the 
median

Skewness Kurtosis

LTV - 47 22 48 28 -0.13 -1.16

Loan amount - 14 076 346 13 538 794 10 000 000 7 413 000 8 294

Allocated collateral value (at loan 
origination) 9 732 26 976 614 25 248 320 20 300 000 15 122 520 6 150

Expected loss 2 803 11 527 849 30 627 914 7 835 219 8 584 562 29 1 145

Debt-to-income percentage 549 30 18 30 13 100 18 497

Monthly repayment amount 544 175 902 139 058 143 876 83 582 9 324

Effective interest rate 5 929 4 3 4 5 0.46 -0.43

Full collateral market value at loan 
origination 8 933 34 025 618 60 486 728 27 000 000 18 532 500 121 19 042

Collateral value 8 933 25 340 908 48 613 488 20 000 000 15 715 560 120 18 711

Original maturity in days - 5 967 2 681 7 297 2 731 -0.18 -1.05

Days past since collateral value 
determination** 8 930 204 644 28 22 5 36

Elapsed days since loan origination 0 204,15 150,86 192 127,5 7,82 170,33

APR 64 5,49 2,61 5,49 2,95 2,18 81,03

Birth year of the main debtor 0 1982,11 10,45 1983 10,38 -1,33 6,08

Loan cost percentage 64 6,47 2,85 6,1 2,33 2,26 56,92

Mortgage rate 3842 5,63 2,46 5,2 2,14 1,07 1,1
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Figure 7
Density functions for the target variable (LTV) and for the most important explanatory features (by feature 
importance gain)
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