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Abstract

House prices have inerƟa, which may be because housing-market parƟcipants need Ɵme to recognize long booms and reces-
sions. Within a dynamic stochasƟc general-equilibrium model with markets for housing and defaultable mortgages, I consider
the case of imperfect knowledge and learning about the persistence of exogenous shocks. I evaluate the performance of the
model against the last 40 years of key U.S. macroeconomic data. Bayesian comparison strongly favors the model with learning
over the baseline case with perfect knowledge, although addiƟonal assumpƟons about the learning process may be necessary
for an adequate account of house-price dynamics.

JEL: E32, E37, R31.

Keywords: housing market, DSGE, signal extracƟon, Bayesian esƟmaƟon.

Összefoglaló

A lakásárak ragadósságának egy lehetséges magyarázata, hogy a piac résztvevőinek időre van szüksége a hosszabb recesszi-
ós és konjunkturális időszakok felismeréséhez. Egy lakás- és jelzálogpiacot is tartalmazó dinamikus és sztochaszƟkus általános
egyensúlyi modell segítségével azt vizsgálom, hogy egy részleges információs környezetben a piaci résztvevők hogyan szereznek
tudást a gazdaságot érő sokkok tartósságáról. A modellt az USA 40 évet áƞogó makroadatain értékelem ki. A bayes-i illeszke-
désvizsgálat egyértelműen a tanulási folyamatot is tartalmazó modellt támogatja a teljes információs alapmodellel szemben,
bár a tanulási folyamatról alkotoƩ feltevések nagyban befolyásolják a modell sikerességét.
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1 IntroducƟon

Before the financial crisis of 2007–2009, the U.S. housing market had been booming for over a decade; rising house prices
fueled the lenders’ desire to create new, risky types of mortgages and offer them to the widest set of households. By the end
of 2006, household debt was worth 80 percent of annual GDP, of which mortgage balances accounted for 60 percent of GDP.¹
The end of the housing boom triggered the most severe financial crisis and the longest recession in decades. Events like these
require that economic theory provides a thorough understanding of the housing market. What is parƟcularly puzzling about
the housing market is how slow it is to adjust. As Figure 1 shows, the house price index declined steadily for five years upon the
onset of the recent crisis.² However, within the context of fricƟonless models with raƟonal expectaƟons, the general predicƟon
is that market prices should quickly reflect all the news about the state of the economy. For comparison, the S&P500 Index
shows that the corresponding downward price adjustment in the market for capital lasted only six quarters.

A potenƟal explanaƟon of this dynamic feature of the housing market is that its parƟcipants lack knowledge about the nature
of business-cycle fluctuaƟons. In case of the Great Recession, economic agents observed the deterioraƟng economy, but did
not expect the downturn to be so persistent. That is, they were iniƟally over-opƟmisƟc. Households were beƫng on a shorter
recession; they were willing to keep their houses andmortgages. As the economic downturn conƟnued, they eventually under-
stood its length. Such gradual recogniƟon of a persistent recession could potenƟally account for the slow adjustment of house
prices, as well as other variables. For example, as long as households kept updaƟng their beliefs towards a longer recession,
they saw unexpected house-price declines, which fueled mortgage foreclosures.³ Figure 1 shows that during the recent crisis,
the rate of mortgage-foreclosure starts hovered for over three years above the one-percent mark, more than double its average
value for 2002–2006.

The goal of this paper is to study learning about the persistence of exogenous shocks to economy as an explanaƟon for inerƟa
in house prices. I take three steps towards this goal. First, I build a dynamic stochasƟc general-equilibrium model with an
endogenousmarket for housing andmortgages that is driven by exogenous shock processes with two components: a transitory
component, which is a white noise; and a persistent component, which is an AR(1) process. Second, I consider the situaƟon
of imperfect knowledge when economic agents cannot observe the individual components of each shock process. The agents
would observe the process through Ɵme and rely on Kalman-type signal-extracƟon to gradually learn about its components.
And third, I evaluate the ability of the models with perfect and imperfect knowledge to explain the 40 years of key U.S. data
on housing and the aggregate economy. To that end, Bayesian methods help compare the two models. Numerical simulaƟons
reveal posterior odds that are strongly in favor of the model with imperfect knowledge and learning; however, the ability of
the laƩer to simulate inerƟa in house prices seems to have space for improvement. I show that addiƟonal assumpƟons about
the learning mechanism can make the model with imperfect knowledge a likelier data-generaƟng process that can mimic the
sluggish house-price dynamics. In parƟcular, a parameterizaƟon of the learning process that is less restricƟve than the classical
Kalman filter seems promising.

Several arguments can moƟvate the assumpƟon of imperfect knowledge as a way to account for house-price dynamics. First,
in models with raƟonal expectaƟons and complete informaƟon, market prices immediately reflect exogenous shocks. With-
out addiƟonal assumpƟons, gradual price adjustments in such models would have to come from sequences of small shocks,
which are incompaƟble with the assumpƟon that the shocks are i.i.d. Second, the assumpƟon of learning finds its support in
the literature. For example, an empirical study by Foote et al. (2012) finds that at the beginning of the 2007–2009 financial
crisis, mortgage-market parƟcipants did not know the state of economy; they had beliefs that were ex-post over-opƟmisƟc and
acted raƟonally subject to them. Finally, the assumpƟon of imperfect knowledge is parƟcularly sensible in case of the housing
market. This market encompasses millions of households that make only a few purchases and sales during their lifeƟme. As for

¹ FRB of New York, Consumer Credit Panel
² House prices briefly increased around the end of 2008 aŌer the Federal Reserve announced its large-scale MBS purchase program. See Fuster and
Willen (2010) for a discussion of the effects of the program.

³ Gerardi et al. (2008) point out that unexpected changes in house prices drive mortgage foreclosures.
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Figure 1
U.S. economy and housing market, 1975–2015.
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All the series are adjusted by inflaƟon and seasonally, and cast in logs with base 2. Foreclosure starts are yearly percentage
rates. Shades indicate NBER-dated recessions. Source: BEA, BLS, S&P Dow Jones Indices, FHFA, MBA, FRED, NBER.

capital market, its parƟcipants are professionals who closely monitor the state of the economy. It is reasonable to believe that
parƟcipants in the housing market have a less detailed knowledge about the state of economy.

The fact that house prices evolve slowly is well-known in the literature. Case and Shiller (1989) have noted that house prices
possess inerƟa, or high auto-correlaƟon in their growth. A number of more recent studies confirm for the U.S. and other
countries that house prices exhibit long duraƟon of upturns and downturns, and generally esƟmate each of them between
4.5 and 6.5 years on average: Ceron and Suarez (2006); Cunningham and Kolet (2011); Agnello and Schuknecht (2011); Bracke
(2013).

The novelty of my work is that it addresses the dynamic features of house prices within the context of a DSGE model. The
benefit of the DSGE approach is its straighƞorward applicaƟon to the data for the purposes of esƟmaƟon and forecasƟng
and a study of linkages between the housing market and the aggregate economy. The crisis of 2007–2009 and the preceding
housing boomhave brought the housingmarket tomany economists’ aƩenƟon, and hasmoƟvated the development of general-
equilibrium models with housing that allow for endogenous treatment of the house price, foreclosure rate, mortgage risk
premium, etc. Examples include Iacoviello (2005), Monacelli (2009), ChaƩerjee and Eyigungor (2011). I draw from three key
sources to construct themodel. Iacoviello and Neri (2010) study the impact of the housingmarket on aggregate economy. They
introduce a rich technology structure that accounts for long-run growth and a porƟonof short-run fluctuaƟons in the house price
and other variables. I use a similar structure but expand it to incorporate persistent and transitory components. To introduce an
endogenousmarket for mortgages with defaults that happen in equilibrium, I follow ForlaƟ and LamberƟni (2011) who develop
a dynamic new-Keynesian model to study the impact of mortgage-market financial shocks on the aggregate economy. Finally,
to implement imperfect knowledge, I follow Gilchrist and Saito (2006) who augment the financial-fricƟons model of Bernanke
et al. (1999) to study the implicaƟons of imperfect knowledge for monetary policy.

A considerably successful approach to add momentum to the housing market that has been taken in the exisƟng literature is
through fricƟons within the context of a searching model. These fricƟons would typically affect the way houses are traded,
as in Guren (2015); Head et al. (2014). I view my approach as complementary to this explanaƟon of the house-price momen-
tum. InformaƟonal fricƟons have also been studied within searching models. Piazzesi and Schneider (2009) and Glaeser and
Nathanson (2015) consider departures from raƟonal expectaƟons and generate momentum in house prices. My work shares
the idea about raƟonality under incomplete informaƟon with Anenberg (2014), who suggests that traders in the housing mar-
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INTRODUCTION

ket face a noisy signal about the fundamental value of housing stock and rely on learning to gradually uncover it. His model
features quick learning and, as a result, house-price persistence that is low compared to the data. I depart from the searching
framework and construct a general-equilibriummodel which can be used in tandemwith standard likelihood-based esƟmaƟon
methods. In addiƟon, I address the problem that learning may generate limited persistence.

Burnside et al. (2011) develop a model with heterogeneous beliefs to study the implicaƟons of incomplete knowledge about
fundamentals for housing-market dynamics. The authors argue that it is difficult to generate protracted house-price dynamics in
case of homogeneous beliefs because a change in beliefs quickly translates into prices. Theymodel an infecƟon-likemechanism
that gradually affects the beliefs of the populaƟon and creates protracted house-price dynamics. On the contrary, I aƩempt to
account for dynamics of the house price in a model with homogeneous beliefs. In my model, the idea is that learning makes
changes in homogeneous beliefs gradual and creates sluggishness.

The paper proceeds as follows: secƟon 2defines themodel anddiscusses its key assumpƟons; secƟon 3describes the esƟmaƟon
procedure and secƟon 4 summarizes the results; secƟon 5 discusses the extensions; secƟon 6 concludes.
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2 Model

Time is discreet and one period lasts one quarter. There are two perfectly compeƟƟve sectors that produce consumpƟon good
and housing stock. There areN households that supply a fixed amount of labor and enjoy the consumpƟon good and the stream
of services flowing from housing stock. A fracƟonஏ of total populaƟon are impaƟent households with a low discount factor
ఉ̌, and a fracƟon 1 ିஏ are paƟent households with a high discount factor ఉ̂: 0 ழ ఉ̌ ழ ఉ̂ ழ 1. In equilibrium, the prices will
be such that impaƟent households find it opƟmal to borrow in order to front-load their purchases, which can only be done by
means of mortgages. PaƟent households will save in equilibrium; they provide the borrowers with mortgage loans and own
all the physical assets used for producƟon.⁴ Henceforth, I refer to the impaƟent households as borrowers, and to the paƟent
ones as savers; all the variables marked with a hat represent savers, and the variables marked with an inverted hat represent
borrowers.

IdiosyncraƟc shocks make a fracƟon of borrowers default on mortgages in equilibrium. Yet, idiosyncraƟc payoffs are pooled
within every household, so that each borrower and saver is a representaƟve agent within their group. This set-up allows for an
endogenous treatment of defaults, and yet it keeps the model highly tractable. I start the descripƟon of the model with the
market for mortgages in order to clarify this issue first.

2.1 MORTGAGES
For the sake of tractability, mortgage market is simplified along two dimensions. One simplificaƟon is that there are only
one-period mortgages assumed available in the economy. In reality, mortgages may have different terms (up to 30 years),
amorƟzaƟon schedules, down-payments, etc. These loan parameters maƩer for the performance of the mortgage market
and the whole economy.⁵ An account for these parameters would require a model that tracks an endogenous distribuƟon of
households across stages ofmortgage amorƟzaƟon andmortgage types. In order to keep themodel tractable, I rather choose to
sƟck to the representaƟve-agent framework and focus on aggregate behavior of the variables such as house price andmortgage
premium.

The same reasons jusƟfy the second simplificaƟon, which is the treatment of default. Let each household be a unit mass of
household members that are ex-ante idenƟcal; each member i conducts the policy that is opƟmal for the aggregate household.
Then, if a variable Zt is a part of the household’s opƟmal policy, it is true that Zt ୀ ∫1

0 Zi,tdi, and Zi,t ୀ Zt. Suppose a member
i of a borrowing household wants to buy a house Hi,tష1 ୀ Htష1 in period t ି 1 at price Ptష1 (measured in consumpƟon good).
To finance this purchase, the member can use the house as collateral and obtain a one-period loan Btష1 with a pre-determined
interest rate r̄m,tష1. Next period, the outstanding debt is Btష1(1ା r̄m,tష1), and the value of the house isHtష1Pt(1ିఋh)ఠi,t, where
ఋh is the rate of housing-stock depreciaƟon and ఠi,t ∼ F(ఠ, చt) is the idiosyncraƟc shock to member i’s housing stock that is
i.i.d. across household members. The shock ఠi,t can represent the effect of neighborhood externaliƟes as in Hilber (2005), or
stochasƟc depreciaƟon as in Jeske and Krueger (2005). The cumulaƟve distribuƟon F(ఠ, చt) is Ɵme-dependent:

ఠi,t ∼ F(ఠ, చt), such that lnఠi,t ∼ Nቆି
చ2t
2
, చ2t ቇ .

The variance చ2t itself is an exogenous shock process, which means that idiosyncraƟc risk associated with housing varies with
Ɵme; yet, the distribuƟon F(ఠ, చt) is chosen so that Et[ఠi,t] ୀ 1 for all t.

Mortgages are non-recourse in the model: the borrower’s only cost of default is that the lender seizes the foreclosed property.
Therefore, the household member will repay only if the value of the house exceeds the outstanding debt:

Htష1Pt(1 ି ఋh)ఠi,t ஹ Btష1(1 ା r̄m,tష1).

⁴Monacelli (2009) shows that different discount factors create savers and borrowers in equilibrium.
⁵ For example, Garriga and Schlagenhauf (2010), Corbae and QuinƟn (2015) address this issue. It suffices to say that a household with recently acquired
mortgage is highly leveraged and likelier to default; especially if the mortgage comes with delayed amorƟzaƟon.
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MODEL

Equivalently, the householdmember will repay the debt if the the idiosyncraƟc shock is realized above the threshold: ఠi,t ஹ ఠ̄t,
where

ఠ̄t ୀ
Btష1(1 ା r̄m,tష1)
Htష1Pt(1 ି ఋh)

. (1)

Given realizaƟons {ఠi,t}i∈[0,1], only a fracƟon of household members will default, but the household pools the ex-post payoffs
from all its members’ mortgage arrangements and is not subject to idiosyncraƟc risk. The model with such set-up neglects
household wealth distribuƟon but remains tractable and retains the essenƟal interplay between housing-market variables and
the borrowing constraint. Henceforth, every borrower and saver represents a collecƟon of household members.

In period t ି 1, the borrowing household buys a house Htష1 and gets a loan {Btష1, r̄m,tష1}; in period t, it pools the following
payoff:

Htష1Pt(1 ି ఋh)න
ಮ

ഘ̄t

ఠdF(ఠ, చt) ି Btష1(1 ା r̄m,tష1)න
ಮ

ഘ̄t

dF(ఠ, చt).

That is, the borrower only keeps the houses and repays the loans of the members who do not default. Every defaulƟng house-
holdmember repudiates the loan and loses the house to the saver and thus brings zero payoff. The saver collects the foreclosed
property and the payments for mortgage loans that are not repudiated:

Htష1Pt(1 ି ఋh) (1 ି ఓ)න
ഘ̄t

0
ఠdF(ఠ, చt) ା Btష1(1 ା r̄m,tష1)න

ಮ

ഘ̄t

dF(ఠ, చt).

FracƟonఓ captures the cost of default paid by the lender. Foreclosed property is usually sold at a significant discount; theremay
be legal fees, debt collector’s commission, etc. Such costs are presumably proporƟonate to the size of the house. Parameter ఓ
can also represent the cost of state verificaƟon paid by the lender in order to collect the whole value of the foreclosed property.
Thus, ఓ captures financial fricƟons in the market for mortgages. For brevity of notaƟon, define

୻(ఠ̄t, చt) ୀ න
ഘ̄t

0
ఠdF(ఠ, చt) ା ఠ̄tන

ಮ

ഘ̄t

dF(ఠ, చt), (2)

G(ఠ̄t, చt) ୀ න
ഘ̄t

0
ఠdF(ఠ, చt), (3)

where ୻(ఠ̄t, చt) is the debt repaid to the lender expressed as a share of housing collateral, and G(ఠ̄t, చt) is the average id-
iosyncraƟc shock associated with repudiated mortgages. Using equaƟons (1)–(3) and the fact that ∫ಮ0 ఠdF(ఠ, చt) ୀ 1, the
borrower’s payoff becomes

Htష1Pt(1 ି ఋh)൫1 ି ୻(ఠ̄t, చt)൯, (4)

and the saver’s payoff becomes
Htష1Pt(1 ି ఋh)൫୻(ఠ̄t, చt) ି ఓG(ఠ̄t, చt)൯.

In effect, a mortgage contract involves two parƟes co-funding the purchase of a house and spliƫng its value upon the seƩle-
ment: the saver claims share ୻(⋅), the borrower retains 1 ି ୻(⋅), and ఓG(⋅) is lost due to default. To further the intuiƟon, let
rm,t be the saver’s ex-post return on mortgage:

Btష1(1 ା rm,t) ୀ Htష1Pt(1 ି ఋh)൫୻(ఠ̄t, చt) ି ఓG(ఠ̄t, చt)൯. (5)

Using (5), the borrower’s payoff (4) can be wriƩen to say that the mortgage loan {Btష1, r̄m,tష1} is designed so that the borrower
repays the interest rm,t and bears the cost of default ఓG(⋅):

Htష1Pt(1 ି ఋh)൫1 ି ఓG(ఠ̄t, చt)൯ ି Btష1(1 ା rm,t).

2.2 HOUSEHOLDS

Households have lifeƟme uƟlity∑ಮ
tస0 ఉtE0ൣU(Ct,Ht)൧, where instant uƟlity comes from consumpƟon Ct and the stream of hous-

ing services derived from housing stock Ht that belongs to the household:

U(Ct,Ht) ୀ ఔt(ln Ct ାటt lnHt).
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Shocks ఔt and టt are mean-reverƟng exogenous processes that affect household behavior. A posiƟve innovaƟon to ఔt makes
households temporarily less thriŌy, since they start valuing current uƟlity relaƟvely more. A posiƟve innovaƟon toటt produces
a temporary increase in relaƟve preference for housing.

Each period, savers maximize the expected lifeƟme uƟlity by choosing the amount of consumpƟon Ĉt, housing stock Ĥt, mort-
gage lending Ŝt extended to borrowers, land ̂lt used for housing construcƟon, and capital K̂y,t used for the producƟon of con-
sumpƟon good and K̂x,t used for housing construcƟon, subject to the budget constraint:

Ĉt ା ĤtPt ା Ŝt ା ̂ltPl,t ା
K̂y,t
Ak,t

ା K̂x,t ୀ Wt ା Ĥtష1Pt(1 ି ఋh) ା (1 ା rm,t)Ŝtష1ା

ା ൫Rl,t ା Pl,t൯ ̂ltష1 ା ቆRy,t ା
1 ି ఋy

Ak,t
ቇ K̂y,tష1 ା ൫rx,t ା 1 ି ఋx൯ K̂x,tష1. (6)

A purchase of one unit of housing stock in period t ି 1 yields (1 ି ఋh) units in period t.⁶ Land (priced at Pl,t) yields a rent Rl,t.
Mortgage lending yields an ex-post return rm,t; capital rent and depreciaƟon in the two sectors are denoted by Ry,t, rx,t, ఋy, and
ఋx. Each household sells one unit of labor to both sectors, and perfect mobility and subsƟtutability of labor implies that both
sectors pay the same wage Wt. Note that Ak,t is the marginal cost of one unit of capital Ky,t; it is a technology shock specific
to capital creaƟon.⁷ The saver’s maximizaƟon problem produces the set of standard Euler equaƟons outlined below: for every
available asset, the uƟlity cost is compared with the expected uƟlity gain from the next period’s payoff. In case of housing stock,
the addiƟonal benefit is that it directly increases current period’s uƟlity, as shown by equaƟon (7):

Uᇲ
Ĉ,tPt ୀ Uᇲ

Ĥ,t ା ఉ̂Et ቂUᇲĈ,tశ1(1 ି ఋh)Ptశ1ቃ ; (7)

Uᇲ
Ĉ,t

Ak,t
ୀ ఉ̂Et ቈUᇲĈ,tశ1 ቆRy,tశ1 ା

1 ି ఋy

Ak,tశ1
ቇ቉ ; (8)

Uᇲ
Ĉ,t ୀ ఉ̂Et ቂUᇲĈ,tశ1 ൫rx,tశ1 ା 1 ି ఋx൯ቃ ; (9)

Uᇲ
Ĉ,t ୀ ఉ̂Et ቂUᇲĈ,tశ1 ൫rm,tశ1 ା 1൯ቃ ; (10)

Uᇲ
Ĉ,tPl,t ୀ ఉ̂Et ቂUᇲĈ,tశ1 ൫Rl,tశ1 ା Pl,tశ1൯ቃ . (11)

The borrowers choose consumpƟon Čt, housing Ȟt, and a mortgage contract {B̌t, r̄m,t} to maximize the expected lifeƟme uƟlity
subject to three constraints:

Čt ା ȞtPt ି B̌t ୀ Wt ା Ȟtష1Pt(1 ି ఋh)൫1 ି ୻(ఠ̄t, చt)൯; (12)

B̌t ୀ Et ൥ఉ̂
Uᇲ
Ĉ,tశ1
Uᇲ
Ĉ,t

ȞtPtశ1(1 ି ఋh)൫୻(ఠ̄tశ1, చtశ1) ି ఓG(ఠ̄tశ1, చtశ1)൯൩ ; (13)

ఠ̄t ୀ
B̌tష1(1 ା r̄m,tష1)
Ȟtష1Pt(1 ି ఋh)

. (14)

In the budget constraint (12), the last term on the right-hand side is the payoff from the previous mortgage arrangement, as
given by expression (4). The parƟcipaƟon constraint (13) is a combinaƟon of equaƟons (10) and (5): it tells that the mortgage
arrangement must yield a saƟsfactory expected payoff to the saver. Finally, constraint (14) simply reproduces equaƟon (1) and
tells that the borrower understands the chance of default implied by the mortgage contract. The opƟmality condiƟons are the

⁶ Note that idiosyncraƟc risk does not affect the saver’s payoff: the saver keeps all the houses previously purchased by the household members, for
whom ∫ಮ0 ఠF(ఠ, చt)dఠ ୀ 1.

⁷ A more intuiƟve formulaƟon is K̂y,t ୀ Ak,tĈk,t, where Ĉk,t is the amount of consumpƟon good spent on capital. I follow Iacoviello and Neri (2010) and
note that technology Ak,t mostly refers to IT and is therefore not as applicable to construcƟon-sector capital.
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following:

Uᇲ
Č,tPt ୀ Uᇲ

Ȟ,t ା ఉ̌Et ቂUᇲČ,tశ1Ptశ1(1 ି ఋh)൫1 ି ୻(ఠ̄tశ1, చtశ1)൯ቃା

Uᇲ
Č,tEt ൥ఉ̂

Uᇲ
Ĉ,tశ1
Uᇲ
Ĉ,t

Ptశ1(1 ି ఋh)൫୻(ఠ̄tశ1, చtశ1) ି ఓG(ఠ̄tశ1, చtశ1)൯൩ ;

(15)

Et ൥ఉ̌
Uᇲ
Č,tశ1
Uᇲ
Č,t

୻ᇲഘ̄(ఠ̄tశ1, చtశ1)൩ ୀ

ୀ Et ൥ఉ̂
Uᇲ
Ĉ,tశ1
Uᇲ
Ĉ,t

൫୻ᇲഘ̄(ఠ̄tశ1, చtశ1) ି ఓGᇲഘ̄(ఠ̄tశ1, చtశ1)൯൩ .

(16)

The first-order condiƟon with respect to housing stock (15) is similar to that of the saver, except that, apart from direct impact
on uƟlity and an increase in next period’s wealth, onemoremarginal benefit of housing stock for the borrower is that it serves as
collateral and increases access to borrowing (the last term on the right-hand side). EquaƟon (16) is the first-order condiƟonwith
respect to mortgage interest rate r̄m,t: on the leŌ hand, a higher mortgage rate increases the chance of default and decreases
the borrower’s payoff from mortgage; on the right hand, the saver will claim a larger fracƟon of the housing stock,⁸ which
expands borrower’s current access to borrowing.

2.3 PRODUCTION
The producƟon of consumpƟon good Yt takes place in a perfectly compeƟƟve sector that requires labor ny,t and capital stock
Ky,tష1:

Yt ୀ (Ay,tny,t)1షഀyKഀy
y,tష1. (17)

Technology Ay,t is specific to consumpƟon-good producƟon. Standard expressions for wage and capital rent describe profit-
maximizaƟon in the sector:

Wy,t ୀ (1 ି ఈy)Yt/ny,t, (18)

Ry,t ୀ ఈyYt/Ky,tష1. (19)

Households consume the consumpƟon good, convert it into capital, and allocate an amount Xt as an intermediary input for
housing construcƟon. In addiƟon, as the following resource constraint suggests, a small part of output is lost due to mortgage
defaults:

Yt ି ఓஏȞtష1Pt(1 ି ఋh)G(ఠ̄t, చt) ୀ ஏČt ା (1 ିஏ)Ĉt ା
Ky,t
Ay,t

ି (1 ି ఋy)
Ky,tష1
Ay,tష1

ା Kx,t ି (1 ି ఋx)Kx,tష1 ା Xt. (20)

Housing construcƟon employs labor nx,t, capital stock Kx,tష1, consumpƟon good Xt, and land ltష1 to produce new housing stock:

IHt ୀ (Ax,tnx,t)1షഀxkషഀxxషഀxlKഀxk
x,tష1X

ഀxx
t lഀxl

tష1. (21)

Technology Ax,t is specific to housing construcƟon. The resulƟng output must equal net purchases of new housing stock by both
types of households:

IHt ୀ ஏȞt ା (1 ିஏ)Ĥt ି ቀஏȞtష1 ା (1 ିஏ)Ĥtష1ቁ(1 ି ఋh). (22)

To jusƟfy the inclusion of consumpƟon good into housing producƟon funcƟon, note that housing construcƟon involves house-
hold appliances and furnishing.⁹ It makes it easier to solve the model and control for the elasƟcity of housing supply. The
inclusion of land (whose stock is fixed) stabilizes the quanƟty of produced housing and therefore adds volaƟlity to house prices.
As Iacoviello andNeri (2010) point out, it is a useful feature of themodel if one of its goals is to explain the dynamics of the house
price. ConstrucƟon sector is perfectly compeƟƟve, and the following opƟmality condiƟons summarize profit-maximizaƟon:

Xt ୀ ఈxxIHtPt; (23)

Wx,t ୀ (1 ି ఈxk ି ఈxx ି ఈxl)IHtPt/nx,t; (24)

rx,t ୀ ఈxkIHtPt/Kx,tష1; (25)

Rl,t ୀ ఈxlIHtPt/ltష1. (26)

⁸ ୻(⋅) ି ఓG(⋅) is increasing in ఠ̄ around the steady state; see Bernanke et al. (1999).
⁹ Yt can represent intermediate good that is used to produce housing, capital, or consumpƟon good.
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2.4 SHOCKS

Technologies Ay,t, Ax,t, and Ak,t are growth-staƟonary stochasƟc processes:¹⁰ for i ∈ {y, x, k},

lnAi,t ି lnAi,tష1 ୀ ఊi,t ା ui,t, ui,t ∼ N(0, ఙ2
u,i), i.i.d.; (27)

ఊi,t ି ఊi ୀ ఘi(ఊi,tష1 ି ఊi) ା vi,t, vi,t ∼ N(0, ఙ2
v,i), i.i.d. (28)

The first component of technology growth is an AR(1) process ఊi,t which is staƟonary around ఊi. The shock vi,t is persistent: it
has a lasƟng impact on technological growth. The second component is a white-noise process ui,t labeled transitory shock. In
addiƟon, there are three non-technological exogenous processes with persistent and transitory components: for i ∈ {ట, ఔ, చ},

ln it ୀ ఊi,t ା ui,t, ui,t ∼ N(0, ఙ2
u,i), i.i.d.; (29)

ఊi,t ି ఊi ୀ ఘi(ఊi,tష1 ି ఊi) ା vi,t, vi,t ∼ N(0, ఙ2
v,i), i.i.d. (30)

First, టt is the share of housing stock in household uƟlity. It is a housing demand shock that affects household preferences
toward housing services. Second, ఔt is a shock to inter-temporal preferences; it makes households value current period’s instant
uƟlity differently. Finally, చt is a financial shock that affects the level of risk in the market for mortgages and affects the flow of
credit from savers to borrowers.

The equilibrium is defined dynamically by equaƟons (6)–(30) and a set of market-clearing condiƟons: (1 ି ஏ)Ŝt ୀ ஏB̌t;
Wy,t ୀ Wx,t ୀ Wt; (1 ିஏ)K̂y,t ୀ Ky,t; (1 ିஏ)K̂x,t ୀ Kx,t; (1 ିஏ) ̂lt ୀ lt ୀ L; ny,t ା nx,t ୀ N.

2.5 STATE-SPACE FORM

Cobb-Douglas specificaƟon of producƟon and uƟlity funcƟons guarantees the existence of a balanced-growth path and facili-
tates de-trending. The three separate growth-staƟonary technology processes allow for the existence of different growth rates
in observable variables. Let Ac,t denote the measure of total producƟvity in consumpƟon-good sector:

Ac,t ୀ Ay,tA
ഀy/(1షഀy)
k,t .

Note that it depends on the efficiency of capital creaƟon in this sector. ConsumpƟon and most other variables are de-trended
using Ac,t. Let Ah,t be the measure of total housing-sector producƟvity:

Ah,t ୀ Aഀxkశഀxx
c,t A1షഀxkషഀxxషഀxl

x,t .

It depends on Ac,t because housing sector employs inputs that originate from the consumpƟon-good sector. Housing variables
Ȟt, Ĥt, and IHt are de-trended using Ah,t. The house price is de-trended using producƟvity in both sectors: pt ୀ PtAh,t/Ac,t. That
is, it grows together with the supply of consumpƟon good relaƟve to housing stock. Note that all three technology processes
ulƟmately affect the long-run growth of the house price.

Upon de-trending, the model can be log-linearized and cast in the following linear state-space form:¹¹

zt ୀ ஍0 ା஍1s1,t ା஍2s2,t ା஍3t; (31)

s1,t ୀ T1s1,tష1 ା H1et; (32)

s2,t ୀ s2,tష1 ା H2et. (33)

EquaƟon (31) decomposes the vector of logged observable variables zt. The first two terms on the right-hand side capture the
appropriately de-trended and log-linearized model: ஍0 contains logged steady-state values, and s1,t summarizes log-deviaƟons
from the steady state. The last two terms capture non-staƟonary components of the model, which come from technology
processes. Note that the precision of the local approximaƟon does not suffer from the fact that the model is non-staƟonary,

¹⁰ A trend-staƟonary version of the model produces a posterior distribuƟon that is centered very close to 1 for some AR coefficients. StaƟonarity in
growth seems to be a more appropriate specificaƟon.

¹¹ (31)–(33) is a Beveridge-Nelson decomposiƟon, where஍2s2,t defines cointegraƟng relaƟonships.
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because log-linearizaƟon applies only to the staƟonary component of the system, which is the de-trended model; for example,
see Chang et al. (2007).

To illustrate how the model fits into system (31)–(33), consider house price Pt ∈ zt. It can be expressed as

ln Pt ୀ ln p ା p̃t ା lnAc,t ି lnAh,t,

where ln p ∈ ஍0 is the logged steady-state value of the de-trended price and p̃t ∈ s1,t is the log-deviaƟon from the steady state
approximated by the linear model (32). Furthermore, equaƟons (27) and (28) let express any technology i as

lnAi,t ୀ ai,t ା ఊit ି ഐi
1షഐi

ఊ̃i,t; (34)

ai,t ୀ ai,tష1 ା 1
1షഐi

vi,t ା ui,t. (35)

StaƟonary component ఊ̃i,t ୀ ఊi,t ି ఊi defined by equaƟon (28) is a part of the state vector s1,t. Non-staƟonary components
ai,t ∈ s2,t and ఊit; are captured by the last two terms of the system (31). All the other observable variables have a similar
decomposiƟon.

2.6 IMPERFECT KNOWLEDGE AND LEARNING

In case of perfect knowledge, economic agents can observe both persistent and transitory components of exogenous pro-
cesses defined by equaƟons (27)–(30). In case of imperfect knowledge, the agents only observe the total value ఊi,t ା ui,t,
i ∈ {y, k, x, ట, ఔ, చ}, but not the individual components ఊi,t and ui,t. For example, if the agents observe an unusually large
increase in technology Ai,t, they cannot immediately tell if they should expect higher growth in the future as well, since the
increase can be due to a persistent shock vi,t, a transitory shock ui,t, or both. To resolve this uncertainty, the agents can observe
the growth rate and use a linear steady-state Kalman filter to gradually learn about the sources of growth. The moƟvaƟon be-
hind the steady-state filter is that the agents have established the features of each exogenous process through a long history of
observaƟons. The agents are assumed to know the values ఙvi, ఙui, ఘi, and ఊi for all i ∈ {y, k, x, ట, ఔ, చ}. An interesƟng quesƟon
that I address in secƟon 5 is whether the values that the agents ”know” correspond to the actual values.

Let ̄ఊ̃i,t ୀ E(ఊ̃i,t| ఊ̃i,0 ା ui,0 , … , ఊ̃i,t ା ui,t) be the persistent component of process i that agents infer at Ɵme t based on all
past observaƟons. The standard Kalman-filtering equaƟon follows from equaƟons (27)–(30) and summarizes the way agents
esƟmate ̄ఊ̃i,t:

̄ఊ̃i,t ୀ ఒi(ఊ̃i,t ା ui,t) ା (1 ି ఒi)ఘi ̄ఊ̃i,tష1,
where parameter ఒi ∈ [0, 1] is the steady-state Kalman gain:

ఒi ୀ
di ି (1 ି ఘ2

i ) ା ට(1 ି ఘ2
i )2 ା d2i ା 2(1 ା ఘ2

i )di

2 ା di ି (1 ି ఘ2
i ) ା ට(1 ି ఘ2

i )2 ା d2i ା 2(1 ା ఘ2
i )di

. (36)

Kalman gain ఒi measures how quickly the agents aƩribute a given change to the persistent component; it posiƟvely depends on
di ୀ ఙ2

v,i/ఙ2
u,i and ఘi. IntuiƟvely, the persistent shock that is volaƟle is likelier to create an observed change. In addiƟon, if the

change persists, the agents will quickly aƩribute it to the persistent component rather than a sequence of transitory shocks.

Figure 2 demonstrates the process of learning. There is a shock at t ୀ 1 that increases ఊ̃i,t ା ui,t. The graph on the leŌ shows
the effect of a transitory shock ui,1. The persistent component ఊ̃i,1 does not change, but agents suspect that the shock may be
persistent immediately upon the shock. The impact of the shock on ఊ̃i,t ା ui,t disappears in all subsequent periods t வ 1, and
agents eventually learn that the shock is transitory. The graph on the right shows the case of persistent shock vi,1. IniƟally, the
inferred value of the persistent component is lower than the actual value. As agents keep observing elevated values of ఊ̃i,tାui,t
at t வ 1, they gradually learn that the shock has been persistent, since the observaƟons are far more likely to be the result
of a persistent shock rather than a series of transitory shocks. The inferred and the actual values of the persistent component
eventually converge. Importantly, a relaƟvely volaƟle transitory componentmakes agents slow to learn about persistent shocks.

In order to impose the case of imperfect knowledge on themodel, I followGilchrist and Saito (2006): I take the linear system (32)
and replace the actual values of persistent components {ఊ̃i,t}i ∈ s1,t and shocks {vi,t, ui,t}i ∈ et with their esƟmates inferred
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Figure 2
Changes in growth rate and learning.
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Response of the persistent component of an exogenous shock process due to one-percent posiƟve persistent and transitory
innovaƟon. The solid lines show the actual responses of the variable ఊ̃i,t ୀ ఘiఊ̃i,tష1 ା vi,t. The dashed lines show the values ̄ఊ̃t
inferred by the agents. The dark dashed lines are for ఙ2

v,i/ఙ2
u,i ୀ 0.05 and ఘi ୀ 0.9. The light dashed lines are for ఙ2

v,i/ఙ2
u,i ୀ 0.5

and ఘi ୀ 0.9.

through Kalman filtering. Also, for each of the exogenous processes, I add a set of linear equaƟons that relate the Kalman-
filtered esƟmates to their actual values:

v̄i,t ୀ ఒi(ఊ̃i,t ା ui,t) ି ఒiఘi ̄ఊ̃i,tష1;
ūt ୀ (1 ି ఒi)(ఊ̃i,t ା ui,t) ି (1 ି ఒi)ఘi ̄ఊ̃i,tష1;
ఊ̃i,t ୀ ఘiఊ̃i,tష1 ା vt.
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3 EsƟmaƟon

3.1 RELATING THE MODEL AND THE DATA

The aggregate resource constraint combines constraints (20) and (22); it illustrates the model’s counterpart to the observed
variables:

Yt ା IHtPt ି ఓஏȞtష1Pt(1 ି ఋh)G(ఠ̄t, చt) ୀ

ୀ Ky,t
Ay,t

ି (1 ି ఋy)
Ky,tష1
Ay,tష1

ା Kx,t ି (1 ି ఋx)Kx,tష1 ାஏČt ା (1 ିஏ)Ĉtା

ା Ptቀ൫ஏȞt ା (1 ିஏ)Ĥt൯ ି ൫ஏȞtష1 ା (1 ିஏ)Ĥtష1൯(1 ି ఋh)ቁ. (37)

The leŌ-hand side of the equaƟon representsGDP: it combines the value added in the two sectors of producƟon and accounts for
the cost ofmortgage defaults. The second line of the constraint represents capital investment and consumpƟon. The real aggre-
gate consumpƟon ACt is defined asஏČtା(1ିஏ)Ĉt; the real non-residenƟal investment IKt is defined as Ky,t ି Ky,tష1(1 ି ఋy).¹²
The last term of the equaƟon is the product of two observed variables, real house price Pt and real residenƟal investment IHt.
The data set includes the four quarterly series Z ୀ {ACt, IKt, IHt, Pt}Ttస1 and spans 1975–2014.

3.2 CALIBRATION

Likelihood-based esƟmaƟon outlined below focuses on the features of exogenous processes: autoregressive coefficients and
standard deviaƟons of shocks. All the other parameters are calibrated, since they have proven to be either hard to idenƟfy in
preliminary likelihood esƟmaƟons, or parƟcularly convenient to pin down with a set of standard steady-state targets. The cho-
sen set of calibrated parameters defines the steady state that is equivalent for the two considered models. Table 1 summarizes
the calibraƟon.

I fix the steady-state technology growth rates using the average rates of growth of consumpƟon, capital investment, and house
price. The resulƟng values are in line with the posterior esƟmated by Iacoviello and Neri (2010). ResidenƟal investment is the
most volaƟle series; its average growth rate is computed as a residual between the growth rates of consumpƟon and the house
price.¹³

The share of borrowers in populaƟon is set equal to two thirds, which corresponds to the share of homeowners with mortgages
according to BLS.¹⁴ Saver’s discount factor is set at ఉ̂ ୀ 0.997; given the average growth rate of consumpƟon around ఊc ୀ
0.44%, this sets the real quarterly interest rate equal to 0.74%. Given ఉ̂, the steady-state versions of equaƟons (13), (14),
and (16) allow to jointly determine parameters {ఉ̌, ఙഘ, ఓ} so that the steady state matches three mortgage-market targets:
mortgage premium, foreclosure rate, and loan-to-value raƟo. The chosen values ఉ̌ ୀ 0.951, ఓ ୀ 0.1186, and ఙഘ ୀ 0.1278
seem generally in line with the literature.¹⁵ Given these values, the steady-state quarterly mortgage premium equals 32 basis
points, which matches the average value reported by the Federal Reserve for 1984–2014.¹⁶ The delinquency rate on real-estate

¹² NIPA do not provide quarterly data to separate real private capital investment in construcƟon and other sectors; however, given the relaƟvely small
scale of investment in construcƟon-sector capital, it seems safe to approximate capital investment in both sectors with IKt. See Iacoviello and Neri
(2010).

¹³ High volaƟlity of residenƟal investment is also the reason why the posterior is not esƟmated for the growth rates. In the steady state, de-trended
residenƟal investment equals (ஏȟା (1ିஏ)ĥ) × (ఊh ାఋh)/(1ାఊh). Posterior esƟmaƟons would put the housing growth rate ఊh close toିఋh, so
that residenƟal investment would become infinitesimal but volaƟle in the model. To avoid this result, I fix the growth rates with calibraƟon. In short,
long-run growth rates in a growth-staƟonary model turn out to be difficult to idenƟfy with likelihood esƟmaƟon.

¹⁴ BLS, Consumer Expenditure Survey, 2006–2010
¹⁵ ForlaƟ and LamberƟni (2011) set ఙഘ ୀ 0.2 and ఓ ୀ 0.12, where the laƩer is based on the data on foreclosure discounts. As for the borrowers’
discount factor ఉ̌, its value should be sufficiently low in order for the borrowers to accept risky mortgages with costly default in equilibrium. An
overview of the exisƟng esƟmates of discount factors by Iacoviello (2005) suggests that ఉ̌ ୀ 0.951 is reasonable.
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Table 1
Calibrated parameters

Parameter Value Meaning

ஏ 0.6667 Borrowers’ share in populaƟon

ఉ̂ 0.997 Saver’s discount factor

ఉ̌ 0.951 Borrower’s discount factor

ఙഘ 0.1278 Standard error of idiosyncraƟc shock to house size

ఓ 0.1186 Cost of mortgage foreclosure

ట 0.15 Share of housing in uƟlity

ఈy 0.25 Share of capital in consumpƟon-good producƟon

ఈxk 0.1 Share of capital in housing construcƟon

ఈxh 0.1 Share of housing stock in housing construcƟon

ఈxx 0.1 Share of consumpƟon good in housing construcƟon

ఋy 0.02 DepreciaƟon rate of consumpƟon capital

ఋx 0.03 DepreciaƟon rate of housing construcƟon capital

ఋh 0.01 DepreciaƟon rate of housing stock

ఊy 0.0034 ConsumpƟon technology growth

ఊx 0.0021 Housing technology growth

ఊk 0.0030 Capital technology growth

loans averaged 2.2% in 1991–2006, and peaked as high as 11% during the following recession.¹⁷ NoƟce, however, that not every
delinquent mortgage ends with a foreclosure. The steady-state value of the foreclosure rate in the model is 2%. The LTV raƟo
for mortgage loans has averaged at 76.5% in 1984–2014;¹⁸ calibraƟon implies 75% for the model.

The remaining parameters have to be determined jointly in order for the model to match a set of targets established in the
literature. Capital share in consumpƟon sector is ఈy ୀ 0.25, which is a reasonable value for the model without a capital-
intensive government sector.¹⁹ I follow Iacoviello and Neri (2010) and Davis and Heathcote (2005) in using NIPA Input-Output
tables to set housing-sector shares of capital, land, and consumpƟon good at ఈxk ୀ ఈxl ୀ ఈxx ୀ 0.1. The share of consumpƟon
good ఈxx turns out to be difficult to idenƟfy. An informal sensiƟvity analysis has shown that the steady-state and dynamic
properƟes of the consideredmodels allow for somevariaƟon in this parameter. The chosen share of landఈxlmakes land valuable
in themodel because it enƟtles its owners to the rent from housing producƟon: its stock is priced at 50.8% of annual GDP. As for
capital shares, they are chosen jointly with depreciaƟon rates so that the steady state has realisƟc raƟos of capital investment
to GDP (21.1% in the model), residenƟal investment to GDP (6.1%), and consumpƟon- and housing-sector capital stock to GDP
(1.94 and 0.04). BEA provides data on fixed assets that allows to esƟmate the average quarterly rates of depreciaƟon for 1984–
2014:²⁰ 3% for construcƟon-sector capital, 2% for capital in other sectors, and 0.6% for residenƟal property. The corresponding

¹⁶ The average quarterly premium between the one-year adjustable-rate mortgages and the Treasury notes with the samematurity reported in Federal
Reserve Economic Data for 1984–2014 is 36 basis points. I choose a slightly lower target in order to account for what I believe is an abnormally high
premium observed in 2008–2014.

¹⁷ FRB, Charge-Off and Delinquency Rates on Loans and Leases at Commercial Banks

¹⁸ FHFA, Monthly Interest Rate Survey, Table 9

¹⁹ See DeJong and Dave (2011), for example.

²⁰ BEA, Fixed Assets Accounts, Tables 3.1, 3.4, 4.1, 4.4, 5.1, 5.4
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ESTIMATION

choices for the model are ఋx ୀ 0.03, ఋy ୀ 0.02, and ఋh ୀ 0.01. The share of housing in the uƟlity is set at ట ୀ 0.15; the
resulƟng steady-state value of housing stock relaƟve to annual GDP is 1.23.

3.3 BAYESIAN ESTIMATION

Let 𝒫 denote the model with perfect knowledge, and ℐ denote the model with imperfect knowledge about shocks. Posterior
odds in favor of the model ℐ compare the empirical performance of the two models. Assuming no prior odds, the posterior
odds are equal to the Bayes factor:

PO ୀ p(Z|ℐ)
p(Z|𝒫) .

Therefore, the central goal of the outlined empirical exercise is to compute the marginal likelihoods

p(Z|ℳ) ୀ න L(Z|ఏ,ℳ)గ(ఏ|ℳ)dఏ, ℳ ∈ {ℐ, 𝒫}, (38)

where L(Z|ఏ,ℳ) is the likelihood funcƟon evaluated for a parameter vector ఏ, and గ(ఏ|ℳ) is its prior density.²¹ Given pa-
rameters ఏ, I can cast the modelℳ in linear state-space form (31)–(33) and find the likelihood L(Z|ఏ,ℳ). I follow Iacoviello
and Neri (2010) to specify the prior గ(ఏ|ℳ) loosely. As for the integral (38), I use Markov-Chain Monte Carlo integraƟon with
random-walk Metropolis algorithm to draw a sample from the posterior distribuƟon p(ఏ|Z,ℳ) ∝ L(Z|ఏ,ℳ)గ(ఏ|ℳ),²² and
follow Chib and Jeliazkov (2001) to convert the output of the sampling procedure into an esƟmate of the marginal likelihood.
The following secƟon presents the results of the esƟmaƟon.

²¹ Note that parameters are grouped in two vectors, ఏ and ఏC. Parameters ఏC are calibrated. The Bayesian esƟmaƟon treats ఏC as fixed and equal for
the two models and integrates the expression (38) with respect to vector ఏ.

²² For each model, I obtain 2.8 million draws (upon the burn-in run), and set the thinning step of 2,000 observaƟons, which gives a sample of 1,400
draws. For a detailed coverage of the approach, see An and SchorĬeide (2007), Chib and Greenberg (1995), Guerrón-Quintana and Nason (2012),
Geweke (1999).
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4 Results

The key numerical finding is that the log of posterior odds in favor of model ℐ against model 𝒫 is esƟmated to be 60, which is
most decisively in favor of the assumpƟon of imperfect knowledge. This secƟon explains the reason behind this strong result.

4.1 POSTERIOR DISTRIBUTION
The prior distribuƟon and the results of posterior esƟmaƟons are summarized in Table 2. Compared to Iacoviello and Neri
(2010), given that the set of observables included into the data and the model specificaƟon is different, the posterior of model
𝒫 is quite similar. One notable disƟncƟon is a much less volaƟle capital-technology growth. As for model ℐ, the main result is
that learning mostly affects the dynamics of the model through technology and housing-preference shocks, as these are the
only processes that have both transitory and persistent components volaƟle in the model’s posterior.²³

Simulated posteriors indicate that the transitory component of consumpƟon technology is important for both specificaƟons.
In addiƟon, the persistent component generally shows a higher auto-regressive coefficient and variance in the posterior of
the model with learning. Because of this, it is only important for the dynamics of model ℐ. Capital technology only maƩers
under imperfect knowledge, where its persistent and transitory components are both prominent. The growth of construcƟon
technology behaves similarly in the posterior of both models: both components are volaƟle, and the transitory component
is more so. Housing-preference shock can drive housing-market variables. Its persistent component is prominent in both
models; moreover, in the model with learning, there is a large transitory component as well. Persistent shock to inter-temporal
preferences, an important factor for the consumpƟon-saving decision, is sizable in both models 𝒫 and ℐ. Other shocks do not
seem important.

4.2 IMPULSE RESPONSES
For a clear account of the effect of imperfect knowledge on the dynamic features of the model, I construct impulse responses
for the mean parameter vector of model ℐ’s posterior, but under both assumpƟons of imperfect and perfect knowledge. I
limit the discussion to shocks that are significantly affected by learning. The key conclusion is that learning seems to work well
to combine persistent and transitory shocks in order to create sluggish responses whenever the immediate responses to the
two types of shocks are opposite. In other words, learning washes out the opposite responses immediately upon shocks and
therefore protracts them. On the contrary, when both persistent and transitory components of an exogenous process move
the variables in the same direcƟon under perfect knowledge, the dynamic effect of imperfect knowledge on these variables is
ambiguous.

4.2.1 CAPITAL TECHNOLOGY
Figure 3 shows responses to negaƟve one-standard-deviaƟon shocks to capital technology. Under perfect knowledge, the im-
mediate reacƟon of the savers is that they subsƟtute away or towards capital investment.²⁴ A negaƟve transitory shock to
capital technology makes consumpƟon-sector capital costlier; savers delay capital investment and shiŌ towards consumpƟon
and housing sector. Rising house prices decrease the rate of mortgage defaults and the cost of mortgages. If the shock is per-
sistent, the cost of capital is supposed to keep growing faster in the future. In effect, savers anƟcipate a higher capital gain from
holding capital stock and buymore of it at the cost of other purchases: capital investment iniƟally rises, while consumpƟon, res-
idenƟal investment, and house prices fall. Upon the iniƟal increase in capital stock, consumpƟon-sector output rises, together

²³My judgment about the size of the shocks is based on their contribuƟon to the dynamics of the observable variables as summarized by variance
decomposiƟon below.

²⁴ Note that the growth of capital technology is much less volaƟle in the posterior of model 𝒫, so the impulse-responses under perfect knowledge are
much smaller than shown in Figure 3.
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Table 2
Prior and posterior distribuƟons for the esƟmated models

Prior, all models Posterior mean (95-percent confidence interval)

Parameter Type Mean S. D. Model 𝒫 Model ℐ Model ℱ

AR coefficients

ఘy ℬ 0.8 0.1 0.72 (0.47, 0.90) 0.86 (0.66, 0.97) 0.82 (0.74, 0.89)

ఘk ℬ 0.8 0.1 0.62 (0.37, 0.84) 0.48 (0.41, 0.56) 0.45 (0.40, 0.50)

ఘx ℬ 0.8 0.1 0.43 (0.35, 0.53) 0.86 (0.66, 0.96) 0.54 (0.45, 0.63)

ఘഗ ℬ 0.8 0.1 0.98 (0.95, 0.99) 0.97 (0.94, 0.99) 0.97 (0.95, 0.99)

ఘഌ ℬ 0.8 0.1 0.97 (0.94, 0.99) 0.96 (0.91, 0.99) 0.96 (0.92, 0.99)

ఘഒ ℬ 0.8 0.1 0.80 (0.57, 0.95) 0.79 (0.56, 0.94) 0.80 (0.56, 0.95)

Persistent component’s st. dev.

100 × ఙv,y 𝒢ష1 0.1 1.0 0.09 (0.02, 0.51) 0.16 (0.05, 0.36) 0.56 (0.45, 0.69)

100 × ఙv,k 𝒢ష1 0.1 1.0 0.06 (0.02, 0.13) 0.48 (0.33, 0.63) 0.07 (0.02, 0.19)

100 × ఙv,x 𝒢ష1 0.1 1.0 1.01 (0.65, 1.34) 0.12 (0.03, 0.29) 1.47 (1.27, 1.67)

100 × ఙv,ഗ 𝒢ష1 0.1 1.0 2.42 (1.82, 3.38) 1.83 (1.15, 2.85) 1.95 (1.40, 2.63)

100 × ఙv,ഌ 𝒢ష1 0.1 1.0 2.60 (1.93, 3.92) 1.97 (1.12, 3.41) 2.28 (1.47, 3.47)

100 × ఙv,ഒ 𝒢ష1 0.1 1.0 0.10 (0.02, 0.47) 0.10 (0.02, 0.38) 0.07 (0.02, 0.19)

Transitory component’s st. dev.

100 × ఙu,y 𝒢ష1 0.1 1.0 1.28 (0.96, 1.49) 1.09 (0.90, 1.28) 0.06 (0.02, 0.18)

100 × ఙu,k 𝒢ష1 0.1 1.0 0.07 (0.02, 0.18) 1.04 (0.71, 1.35) 1.21 (0.99, 1.45)

100 × ఙu,x 𝒢ష1 0.1 1.0 1.79 (1.48, 2.13) 2.04 (1.78, 2.34) 0.10 (0.02, 0.54)

100 × ఙu,ഗ 𝒢ష1 0.1 1.0 0.09 (0.02, 0.40) 9.16 (5.26, 13.35) 8.50 (5.66, 11.79)

100 × ఙu,ഌ 𝒢ష1 0.1 1.0 0.05 (0.02, 0.13) 0.06 (0.02, 0.18) 0.06 (0.02, 0.18)

100 × ఙu,ഒ 𝒢ష1 0.1 1.0 0.09 (0.02, 0.39) 0.11 (0.02, 0.65) 0.07 (0.02, 0.23)

Kalman gains

ఒy ℬ 0.5 0.2 0.10 (0.04, 0.19)

ఒk ℬ 0.5 0.2 0.22 (0.21, 0.23)

ఒx ℬ 0.5 0.2 0.10 (0.03, 0.21)

𝒫 denotes the model with perfect knowledge; ℐ denotes the model with imperfect knowledge; ℱ denotes the model with learning and Kalman gains
independent of the parameters of technological processes.

with household income, aggregate consumpƟon, and housing demand. In the long run, regardless of the persistence of the
shock, higher cost of consumpƟon-sector capital results in its smaller stock, as well as lower output, consumpƟon, investment,
and house prices.

Under imperfect knowledge, savers are not completely sure what to do immediately upon shock. Because persistent and
transitory shocks create opposite immediate responses, imperfect knowledge washes them out for both types of shock. Since
capital-technology shocks have the largest impact on capital and residenƟal investment, I expect that learning works through
these shocks to add inerƟa to investment and not so much to consumpƟon or house prices. In addiƟon, note that capital-
technology shocks generate negaƟve correlaƟon between capital investment and the other observable variables under perfect
knowledge. Imperfect knowledge seems to wash out this counter-cyclicality of capital investment. Huang et al. (2009) and
Edge et al. (2007) discuss similar findings with respect to learning, washing-out, and correlaƟon. Under perfect knowledge,
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Figure 3
Impulse-responses to capital-technology shocks
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Persistent shock vk,1 ୀ ିఙv,k in Panel A and transitory shock uk,1 ୀ ିఙu,k in Panel B. Solid lines (perfect knowledge, 𝒫) and
dashed lines (imperfect knowledge, ℐ) are percentage-deviaƟons from the iniƟal balanced-growth path (solid grey lines).
Absolute values in basis points are given for mortgage premium. Dots on the right axes show where the responses stabilize
aŌer 400 quarters.

capital technology shocks are esƟmated to be small, probably because they create excessive counter-cyclical volaƟlity in capital
investment.²⁵

4.2.2 CONSUMPTION TECHNOLOGY
Figure 4 shows responses to a negaƟve shock to growth in consumpƟon technology. A fall in the output of consumpƟon good
drives household income down and decreases the demand for housing. House prices fall, which creates a spike in mortgage
defaults and the cost ofmortgages. The producƟvity of capital in consumpƟon sector falls; whether savers shiŌ towards or away
from capital investment depends on the persistence of the shock, just like in the case of capital-technology shocks. Eventually,
because consumpƟon good is used to pay for housing stock and capital, lower producƟvity in consumpƟon-good sector makes
investment, house prices, and aggregate consumpƟon stabilize below the iniƟal balanced-growth path.

QualitaƟvely, imperfect knowledge has the following effect on the response to a persistent shock. IniƟally, there is a chance
that the shock is transitory and that a quick recovery is about to follow, so consumpƟon and house prices adjust by less; as
households gradually learn about the persistent shock, the adjustment catches up. Learning keeps expectaƟons deterioraƟng,

²⁵ I do not embed the model with such elements as capital-adjustment costs and variable capital uƟlizaƟon for clarity of the main argument. This adds
volaƟlity to capital investment in the model.
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Figure 4
Impulse-responses to consumpƟon-technology shocks
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Persistent shock vy,1 ୀ ିఙv,y in Panel A and transitory shock uy,1 ୀ ିఙu,y in Panel B. Solid lines (perfect knowledge, 𝒫) and
dashed lines (imperfect knowledge, ℐ) are percentage-deviaƟons from the iniƟal balanced-growth path (solid grey lines).
Absolute values in basis points are given for mortgage premium. Dots on the right axes show where the responses stabilize
aŌer 400 quarters.

the house price falling, and the rate of mortgage defaults and mortgage premium elevated over a longer period.²⁶ That is,
imperfect knowledge delays the responses of the house price, consumpƟon, and mortgage-market variables. QuanƟtaƟvely,
the effect is limited: although the iniƟal adjustment of consumpƟon and house prices is about 3 Ɵmes smaller, agents quickly
learn about the persistence of the shock, and the responses converge to the case of perfect knowledge within 4–6 quarters.²⁷
In case of a transitory shock, the effect of imperfect knowledge is essenƟally the opposite: it amplifies the iniƟal responses of
consumpƟon and the house price, since economic agents suspect a long recession and over-react.

Learning does not seem to work well with consumpƟon-technology shocks in order to add sluggishness to simulated house-
price dynamics: it onlymoderately protracts the responses to persistent shocks but amplifies the responses to transitory shocks.
Why does the effect of learning turn out to be limited? The answer comes from the fact that Kalman gains, which measure how
quickly agents recognize a persistent shock, are defined by the parameters of technology processes according to equaƟon (36).
The features of consumpƟon technology are such that agents quickly learn about the nature of the persistent shock. For a
slower learning, the transitory component would have to be more volaƟle. However, it would not necessarily make model ℐ

²⁶ This link is quite in line with the finding by Gerardi et al. (2008) that unexpected house-price adjustments are a key driver of themortgage foreclosure
rate.

²⁷ Perhaps, this parƟcular finding conforms with Burnside et al. (2011) who argue that it is hard to achieve protracƟon in house-price adjustments when
household beliefs are homogeneous.
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beƩer at mimicking the sluggish house-price dynamics: volaƟle transitory shocks, coupled with the fact that consumpƟon and
house prices over-react to them in case of imperfect knowledge, would create excessive volaƟlity in these variables.

NoƟce that this is not the case for investment variables. Under perfect knowledge, savers subsƟtute away or towards capital
investment immediately upon the shock, depending on its persistence. The immediate responses are opposite for the two types
of shock, and learning washes them out and thus protracts them. Like in the case of capital-technology shocks, both types of
investment look more likely to gain momentum due to learning than the house price or consumpƟon.

4.2.3 HOUSING SHOCKS

A close look at shocks to housing preferencesటt and growth in housing-sector technology Ax,t does not reveal any new insights.
The responses are in linewith the already provided conclusions and similar to the ones described by Iacoviello andNeri (2010).²⁸
Therefore, I only provide a brief summary of the effects of these shocks.

A negaƟve shock to housing-sector technology makes housing scarce and expensive; through both wealth and subsƟtuƟon ef-
fect, it causes an increase in consumpƟon. Low capital return in the housing sector eventually causes the residenƟal investment
to fall, but the immediate response of capital and residenƟal investment depends on the persistence of the shock, like before.
The shock maƩers the most for residenƟal investment and the house price but causes a counter-factual negaƟve correlaƟon
between them. A sizable housing-preference shock helps explain the joint dynamics of these variables. Quite naturally, a fall
in the preference for housing causes residenƟal investment, house price, and mortgage lending to fall. ConsumpƟon becomes
preferred, but its iniƟal response also depends on the wealth effect of the house-price decrease.

Just like in the case of consumpƟon and capital technologies, the model with learning does not seem to be able to employ
housing shocks to generate a lot of inerƟa in the house price. The reason is the same: both transitory and persistent shocks
move this variable in the same direcƟon, and volaƟle transitory shocks required for slow learning would cause excessive house-
price volaƟlity. This adds to the suspicion that learning has a limited contribuƟon to house-price inerƟa.

4.3 VARIANCE DECOMPOSITION

4.3.1 FORECAST VARIANCE

Figure 5 decomposes the forecast variance of growth in the observable variables for both models; it shows the relaƟve impor-
tance of shocks. ConsumpƟon technology accounts for most of variability in consumpƟon, virtually all of it in the long run (up
to 80–90% at 40-quarter horizon for both models). In addiƟon, consumpƟon technology affects capital returns and therefore
explains a lot of variability in capital investment. For both capital investment and consumpƟon, inter-temporal preferences are
also important because they affect the consumpƟon-saving decision. In case of imperfect knowledge, over 50% of variability in
capital investment is predicted due to capital technology that defines the cost of capital creaƟon. In case of perfect knowledge,
capital technology is unimportant. In both models, housing-preference shock maƩers for capital investment in the short run,
due to subsƟtutability between capital and residenƟal investment as saving vehicles. Of course, housing preferences together
with housing technology maƩer the most for residenƟal investment; they account for over 90% of its variaƟon in both models
across the reported forecast range. As for the house price, its variaƟon in both models is almost enƟrely due to housing- and
consumpƟon-sector technologies. The laƩer is important because the house price is measured in units of consumpƟon good.
In addiƟon, up to 15% of house-price variaƟon is expected to come in the short run from housing-preference shocks.

It is true for both models that technology shocks seem to be the most important drivers; and more so for longer forecast
horizons, since they create permanent deviaƟons from the balanced growth path. Under imperfect knowledge, persistent
shocks to technologies maƩer despite their small esƟmated variances. These shocks accumulate their influence over longer
forecast horizons. The conclusion is that, to a large degree, long-run evoluƟon of variables simulated by the two models can
be aƩributed to technology shocks, and in parƟcular to their persistent components. Persistent shocks alone, especially in case

²⁸ To be precise, the transitory shock to housing-sector technology and the persistent shock to housing preferences produce the responses that are the
closest to Iacoviello and Neri (2010), since the former process is staƟonary in growth and the laƩer one is staƟonary in levels in my models.
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Figure 5
Forecast variance decomposiƟon
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of learning (and especially if learning is slow), seem to maƩer over longer forecast horizons, or for low-frequency dynamics.
However, learningmechanics depend on the presence of transitory components, and it is the interacƟon between the persistent
and transitory components that is the most important for the model’s ability to mimic the dynamic behavior of the house price
and other variables.

4.3.2 HISTORICAL VARIANCE
Figure 6 decomposes the historical variance of house-price growth. It conformswith the decomposiƟon of the forecast variance:
most of variaƟon in the house price is due to consumpƟon- and housing-sector technologies. Moreover, forecast variance
decomposiƟon has indicated that persistent shocks gradually build up their influence over longer horizons, and the historical
decomposiƟon reflects this fact.

The figure shows that persistent shocks explain a good part of low-frequency dynamics; they gradually build up their impact
over Ɵme, and they contribute the most during the periods of lasƟng, persistent upturns or downturns in the house price. It
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Figure 6
Historical variance decomposiƟon, house price
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is evident in the case of imperfect knowledge, where the response of house prices to persistent technological shocks is pro-
tracted due to learning, and where the historical decomposiƟon reveals a more regular contribuƟon of persistent components
to house-price growth. This is an important point. An observable variable with inerƟa exhibits auto-correlated first differences.
The house price is clearly the case. Learningmay protract the responses to persistent shocks and, it seems, add auto-correlaƟon
to the contribuƟon of such shocks to changes in the house price. If model ℐ is the data-generaƟng process under consideraƟon,
learning may make persistent shocks an efficient tool to simulate the house price with inerƟa. However, as already noted, the
limitaƟon is that slow learning requires volaƟle transitory components. Another problem is that the persistent components
of the technologies show auto-correlated contribuƟons largely because of high auto-correlaƟon in their smoothed errors esƟ-
mated for model ℐ. Spectral-density analysis provided below seems an appropriate test to determine whether model ℐ is truly
the data-generaƟng process that is beƩer capable of simulaƟng inerƟa in the house price.

It is also interesƟng to note that the contribuƟon of consumpƟon technology is oŌen consistently in the direcƟon opposite to
the observed house-price growth, as it is the case for the early 1990s or early 2000s. In other words, the prevailing direcƟon
of house-price growth is not always in line with consumpƟon sector, the dominant sector of the economy. A booming aggre-
gate economy and a growing aggregate consumpƟon do not always correspond to growing house prices, and vice versa. This
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observaƟon may point to the existence of house-price bubbles; alternaƟvely, it may point to economic developments specific
to housing and mortgage markets, such as introducƟon and spread of mortgage-backed securiƟes.

4.4 SPECTRAL DENSITY
Figure 7
Spectral densiƟes of the observed variables
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Spectral densiƟes of the first differences normalized by uncondiƟonal variances. The horizontal axes measure cycles per
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with kernels. Line colors and adjacent shades, from darkest to lightest, indicate model 𝒫 with perfect knowledge, model ℐ
with learning, and model ℱ with learning and Kalman gains independent of the parameters of technological processes.

To construct Figure 7, I take the state-space forms esƟmated for the two models and convert them into spectral densiƟes for
first-differences of the four observable variables. These densiƟes reflect the ability of the models to simulate cycles of various
length in the variables. In addiƟon, it is well known that the likelihood funcƟon can be cast over the frequency domain, and
that a comparison of the models’ spectra against the data can reveal the sources of higher likelihood.²⁹ For such comparison,
I take the first differences of the data and construct two addiƟonal, non-parametric esƟmates of the spectra. First, I construct
spectral densiƟes from a VAR model with 6 lags esƟmated for the differenced series {୼AC, ୼IK, ୼IH, ୼P}. Second, I construct
a kernel-based esƟmate for each individual series. The two methods deliver similar results that I use as benchmarks for the
performance of the two models.

Compared to model 𝒫, the most visible impact of imperfect knowledge is on the spectrum of capital investment: there are
large significant gains for frequencies less than 1/4, or for cycles longer than one year. In other words, model ℐ looks beƩer
equipped to mimic the dynamics of capital investment, which exhibits non-trivial low-frequency cyclical component. The gains
are also significant over cycles longer than 1 year for the house price. As for the rest of the variables, there are small and largely
insignificant gains over lower frequencies.

²⁹ For example, see ChrisƟano and Vigfusson (2003)
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All of the described gains look desirable, as they bring the spectra closer to the esƟmates obtained more directly from the data.
However, it would be hard to say precisely how spectral modificaƟons brought by imperfect knowledge affect the posterior
odds. It can be that the Ɵlt of the odds in favor of model ℐ is largely due to the ability of the laƩer to beƩer mimic the dynamics
of capital investment, not the house price or other variables.

As discussed before, for learning to add inerƟa to the house price, it must be slow in case of persistent shocks to exogenous
processes that drive the house price. It is slow when the corresponding transitory components are volaƟle and Kalman gains
are small. The problem is that imperfect knowledge amplifies the immediate responses of the house price to transitory shocks.
Therefore, volaƟle transitory components create volaƟle house price and counter the dynamic effect of persistent components
with slow learning. This is generally not the case for capital investment that has opposite iniƟal responses to transitory and
persistent shocks under perfect knowledge, which are washed out under imperfect knowledge. This explains the visibly strong
impact of learning on the spectral density of capital investment and the absence of such for the house price and other variables.
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5 Discussion

5.1 IMPLICATIONS: REDISTRIBUTION OF WELFARE
Figure 8
Impulse-responses to a negaƟve persistent consumpƟon-technology shock
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Responses to a one-standard-deviaƟon negaƟve shock, vy,1 ୀ ିఙy. Solid lines (perfect knowledge, 𝒫) and dashed lines
(imperfect knowledge, ℐ) are percentage-deviaƟons from the iniƟal balanced-growth path (solid grey lines). Dots on the right
axes show where the responses stabilize aŌer 400 quarters.

Consider a negaƟve one-standard-deviaƟon persistent shock to consumpƟon technology, as shown in Panel A of Figure 4. It is
a shock to producƟvity in the largest sector that causes a long economy-wide recession. Figure 8 augments Figure 4 with levels
of consumpƟon and housing stock chosen by both types of households. Note that these choices directly define household
uƟlity in the model. Compared to the baseline model 𝒫, an addiƟonal effect of imperfect knowledge is that it redistributes
consumpƟon and housing stock between the two groups.

In case of imperfect knowledge and immediately upon the shock, households underesƟmate its persistence; they bet on a quick
recovery and high house prices in the near future. Borrowers maintain relaƟvely high levels of mortgage loans, housing stock,
and consumpƟon. Eventually, as households learn about the nature of the shock, their wealth declines due to the decreases
in house prices and expected future earnings. In addiƟon, the downward adjustment of the house price keeps the foreclosure
rate high and mortgage loans expensive. StarƟng from three quarters upon the shock, the borrowers’ choices of housing stock
and consumpƟon become lower than in the case of perfect knowledge. The mechanics of the savers’ response is different: as
households learn about the persistence of the shock and as the house price declines, savers are able to buy up more housing
stock at a lower price, as well as afford a higher consumpƟon. Once the iniƟal bet on a quick recovery turns out to be wrong,
savers win and borrowers lose.

This result moƟvates a welfare analysis of the redistribuƟon between savers and borrowers due to imperfect knowledge. I
refrain from doing so, however. First, it is not clear how to conduct such analysis. Ex post, one can trace the choices made by
the two types of households and conclude whether it is beƩer for the households to know about the persistent recession from
the start. It may be not the case ex ante. In addiƟon, the situaƟon is different for transitory shocks. And second, if economic
agents lack knowledge about the sources of changes in the economy and if perfect knowledge is a Pareto-improvement, it is
not clear how to achieve it.

What is clear is that imperfect knowledge alters thewelfare implicaƟons of house-price adjustments for the two types of house-
holds, especially through the cost of mortgages and the wealth effect. These implicaƟons maƩer for the discussion about poli-

MNB WORKING PAPERS 4 • 2015 27



MAGYAR NEMZETI BANK

cies to manage house prices, since the data are strongly in favor of imperfect knowledge. They certainly affect the choice of
Ɵming, length, and scale of the price adjustments under policymaker’s consideraƟon.

5.2 ACCOUNT FOR LENDING CONDITIONS IN THE MARKET FOR MORTGAGES
Figure 9
Mortgage premium: model against the data
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Mortgage premium predicted by the model with imperfect knowledge (ℐ) and compared against the actual data. Annualized,
percentage points. In the data, the mortgage premium is calculated as interest on one-year adjustable-rate mortgages net of
the yield on one-year Treasury notes. Shades indicate NBER-dated recessions. Source: Freddie Mac; the Federal Reserve
Board; FRED; NBER

Apart from its account for house prices, it is interesƟng to see whether the presented general-equilibrium model with en-
dogenous markets for housing and mortgages is any good at explaining the state of the laƩer. Mortgage premium is a good
indicator of financing condiƟons in the market for mortgages for which there is a long history of observaƟons. In the U.S. data
on mortgage rates, the shortest available maturity is one year. The model’s counterpart for the annual premium is

MP∗t ୀ Et ቎
3

ෑ
iస0

1 ା r̄m,tశi
1 ା rm,tశiశ1

቏ ି 1,

where the quarterlymortgage premium Et[(1ା r̄m,t)/(1ାrm,tశ1)] is defined using equaƟons (1) and (5). I use the data (available
from1984) to construct the premiumMPt in exactly the sameway using the observaƟons of the interest on one-year adjustable-
rate mortgages and the yield on one-year Treasury notes. Figure 9 presents both the observed series and its counterpart fiƩed
by model ℐ.

Model ℐ is esƟmated using only the data on GDP components and house prices. As can be seen from the figure, the model’s
account of the tensions in the market for mortgages is rather poor. The standard deviaƟon of the mortgage premium MP∗t
inferred from model ℐ is five Ɵmes smaller than that of the actual series, MPt. The correlaƟon between the two series is
0.31. Notably, the correlaƟon between the fiƩed mortgage premiumMP∗t and the house-price growth is -0.59: model ℐmainly
employs informaƟon about the house price to infer about the financing condiƟons in the mortgage market. The fact that
this strategy provides a poor esƟmate of the actual mortgage premium points to the evoluƟon of financing condiƟons that
are not reflected by the house price. InteresƟngly, the model’s predicƟons about the dynamics of the mortgage premium look
beƩer for the later part of the sample. The correlaƟon between the predicted and the actual mortgage premium,ఘ(MPt,MP∗t ),
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increases fromି0.17 for 1984–1999 to +0.66 for 2000–2015. Following the same logic, it may imply that the recent house-price
bubble has been largely due to the financing condiƟons in the mortgage market. Indeed, sub-prime mortgages and mortgage
securiƟzaƟon were at the core of the housing boom that ended with the Great Recession. A more general implicaƟon is that
the house price and the aggregate economy have shown a Ɵghter link with the financing condiƟons in the mortgage market
aŌer 2000.

The inclusion of mortgage premium into the data set for esƟmaƟons helps idenƟfy a financial shock. Preliminary posterior
esƟmaƟons have indicated that the idiosyncraƟc variance of the housing stock చt, which drives the risk of mortgage default
and which is proposed by ForlaƟ and LamberƟni (2011), becomes a prominent shock that helps explain most of variaƟon in the
mortgage premium. In fact, it becomes extremely large: the standard deviaƟon of the persistent component averages above
15 percent in the posterior of the model with imperfect knowledge. InteresƟngly, ForlaƟ and LamberƟni (2011) study the effect
of a 40-percent increase in the idiosyncraƟc variance. This shock affects the tail of a distribuƟon that guides the rate of default
in the model. Because of its indirect effect on the default rate and the mortgage premium, it must be large in order to have an
impact. For the same reason, I argue that such large esƟmated volaƟlity of the shock does not diminish the precision of the
first-order approximaƟon to the soluƟon of the model. A more serious concern is that the smoothed errors esƟmated for this
shock are highly auto-correlated when the mortgage premium is included into the data. Details aside, it remains an imminent
challenge to develop the financial component of the presented models in order to provide an adequate quanƟtaƟve account
of mortgage-market developments.

5.3 INDEPENDENT KALMAN GAINS
The idea that learning can help create low-frequency dynamics in the observable variables turns out to be flawed, because
volaƟle transitory shocks are necessary for slow learning. The flaw is due to the assumpƟon of model ℐ that the speed of
learning, as captured by Kalman gains ఒi(ఘi, ఙv,i, ఙu,i), i ∈ {y, k, x, ట, ఔ, చ}, is Ɵed by equaƟon (36) to the parameters of the
exogenous processes. In case of capital investment, this assumpƟon seems to pay off because transitory and persistent shocks
create opposite responses in this variable, and learning helps wash them out. It does not pay off, however, for the house price,
which over-reacts to transitory shocks in case of learning. It is interesƟng to see what can be done to simulatemore house-price
inerƟa in the model with imperfect knowledge.

An interesƟng experiment is to assume that Kalman gains are independent of the parameters that guide the exogenous pro-
cesses. This means that economic agents, in addiƟon to their inability to observe the individual components of the exogenous
processes, have a wrong idea about the true features of these processes.³⁰ Let us consider model ℱ with imperfect knowledge
and Kalman gains that are free parameters. To be precise, only the Kalman gains specific to technologies are assumed to be
free parameters; the rest of the processes are specified as before.³¹ I run a separate MCMC rouƟne to esƟmate the posterior
p(ఏ|Z, ℱ) of model ℱ jointly for Kalman gains and the rest of the parameters and report the results in Table 2. Compared to
models 𝒫 and ℐ, what is different about the technologies in the posterior?

One major difference is that for consumpƟon- and housing-sector technologies, the new posterior is Ɵlted towards relaƟvely
large persistent components and small transitory components, and towards slower learning. To beƩer illustrate the laƩer point,
Table 3 reproduces from Table 2 the moments of the posterior p(ఏ|Z, ℱ) for Kalman gains {ఒi}i ∈ ఏ that are free parameters,
along with the moments for Kalman gains {ఒi(ఏ)}i that are constructed as funcƟons of the parameters of technologies ac-
cording to equaƟon (36) and for the posterior of the same model ℱ. The table indicates that model ℱ predicts Kalman gains
for consumpƟon and housing technologies significantly lower than they should be according to the assumpƟons of model ℐ.
In other words, for consumpƟon and housing technologies, model ℱ features slow learning in case of persistent shocks and
transitory shocks that are much less volaƟle than would have been necessary for such slow learning under the assumpƟons
of model ℐ. Naturally, these features should contribute to sluggish house-price dynamics, because these technologies are key
drivers of the house price (as shown by variance decomposiƟon above).

As for capital technology, it becomes a process with a large transitory component and a very small persistent component. The
posterior distribuƟon of the corresponding Kalman gain indicates that households do not interpret the shocks to be transitory

³⁰ In terms of Evans and Honkapohja (1999), this is the case when agents learn based on mis-specified perceived law of moƟon.
³¹ It suffices to consider free Kalman gains only for technologies for the sake of the argument. It is also easier to interpret the fact that agents do not
know the true parameters of technologies than such processes as inter-temporal preferences or preferences for housing.
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Table 3
Posterior of Kalman gains in a model with free Kalman gains

ఒi ∈ ఏ ఒi(ఏ)

Parameter Mean 95%-conf. int. Mean 95%-conf. int.

ఒy 0.103 (0.042, 0.188) 0.983 (0.905, 0.999)

ఒk 0.217 (0.205, 0.230) 0.006 (0.001, 0.031)

ఒx 0.100 (0.026, 0.208) 0.989 (0.868, 0.999)

as quickly as they would had they known the true parameters of capital technology. This combinaƟon works to create inerƟa
in capital investment because of the above-described washing-out that happens upon both persistent and transitory capital-
technology shocks in case of learning.

Figure 7 shows that, compared to model ℐ, spectral density of the house price is significantly higher over low frequencies in
the posterior of model ℱ. The gains are significant over cycles longer than about 8 quarters. In addiƟon, slow learning about
persistent shocks to consumpƟon and housing technologies alters the low-frequency dynamics of aggregate consumpƟon and
residenƟal investment. The spectrum of aggregate consumpƟon is significantly higher over cycles longer than 2.5 years. The
spectrum of residenƟal investment is significantly higher over cycles longer than 3 years. The spectrum for capital investment
of model ℱ does not look significantly different from that of model ℐ.

Overall, the described modificaƟons bring the esƟmated spectral densiƟes closer to their non-parametric counterparts, which
can explain why the posterior odds are in favor of the model with independent Kalman gains. The logged posterior odds are 36
in favor of model ℱ against model ℐ. Like before, it is not clear how exactly these spectral modificaƟons translate into higher
marginal likelihood, although the modificaƟons brought to aggregate consumpƟon and house price seem responsible. In the
end, the fact is that the kind of learning assumed inmodelℱ is capable of adding significant inerƟa to housing-market variables,
as well as other observables, and make the model with endogenous housing market a likelier data-generaƟng process.

As learning helps add inerƟa to the house price, it does so for the other observable variables as well. Presumably, even if
the house price was not a part of the vector of observables, the outlined exercise would sƟll reveal the posterior odds in
favor of imperfect knowledge and learning. It is a well-known fact that consumpƟon and investment are not as volaƟle as
predicted by a general-equilibrium model without fricƟons, and learning performs well to slow down the simulated dynamics
of these variables. Yet, there are more tradiƟonal ways to control for the dynamics of consumpƟon and investment. For
the sake of clear argument, the models presented above are limited in what Iacoviello and Neri (2010) summarize as real
rigidiƟes: consumpƟon habits, capital uƟlizaƟon, capital-adjustment costs, etc. These elements could add to themodel’s ability
to simulate low-frequency dynamics of consumpƟon and investment in models with and without perfect knowledge. Hence,
learning would have less space to improve the dynamic features of these variables in the model, and the focus of its impact
would shiŌ towards the housing-market variables. This conjecture deserves further invesƟgaƟon, although it seems that, real
rigidiƟes or not, learning will be able to improve the dynamic properƟes of the model with respect to observable variables
other than the house price. Finally, the argument can be extended to say that the housing market can also be augmented with
non-informaƟonal fricƟons, which would also limit the scope of impact of learning on the house price. This point does not
impede the validity of learning as a mechanism to add inerƟa to the house price.
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6 Conclusion

When shocks of different persistence are possible, it may take economic agents Ɵme to recognize and react to them, which
may add momentum to market prices. This is the key moƟvaƟon to impose imperfect informaƟon and learning about the state
of the economy on a general-equilibrium model with the market for housing. Bayesian esƟmaƟon against the last 40 years of
key U.S. data on housing and the aggregate economy reveals decisive evidence in favor of the model with learning. The major
impact of learning is on the dynamics of variables that respond oppositely to shocks of different persistence: learning protracts
the responses mainly through washing out their iniƟal part. Investment variables are definitely the case; they gain a significant
low-frequency component from learning.

It seems, however, that the house price is not the case: under perfect informaƟon, it reacts similarly to shocks of different
persistence. As a result, learningmutes and protracts the house-price response to persistent shocks, but amplifies the response
to transitory shocks, which are necessary for slow learning to occur. As confirmed by spectral-density analysis, the combined
effect of these alteraƟons on simulated house-price dynamics is rather weak. An unrestricted parameterizaƟon of learning
allows to have protracted responses to persistent shocks and virtually absent transitory shocks at the sameƟme—a combinaƟon
that lets the model generate low-frequency dynamics of the house price that match the data well. EsƟmaƟons indicate that
this combinaƟon is likely for shocks that drive the house price. In case of the Great Recession, this combinaƟon implies that
households were stubbornly opƟmisƟc aŌer the onset of the crisis, which was why it took house prices so long to adjust.

Of course, there is space for improvement of the presented model’s ability to provide an adequate quanƟtaƟve account of the
markets for housing and mortgages. Yet, it is already clear that the households’ lack of knowlegde about the nature of the
unfolding cycles should affect the opƟmal policies to tame the housing market.
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