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Abstract

House prices have inertia, which may be because housing-market participants need time to recognize long booms and reces-
sions. Within a dynamic stochastic general-equilibrium model with markets for housing and defaultable mortgages, | consider
the case of imperfect knowledge and learning about the persistence of exogenous shocks. | evaluate the performance of the
model against the last 40 years of key U.S. macroeconomic data. Bayesian comparison strongly favors the model with learning
over the baseline case with perfect knowledge, although additional assumptions about the learning process may be necessary
for an adequate account of house-price dynamics.

JEL: E32, E37, R31.

Keywords: housing market, DSGE, signal extraction, Bayesian estimation.

Osszefoglalé

A lakasdarak ragaddssaganak egy lehetséges magyarazata, hogy a piac résztvevGinek id6re van szilksége a hosszabb recesszi-
0s és konjunkturalis idészakok felismeréséhez. Egy lakas- és jelzalogpiacot is tartalmazo dinamikus és sztochasztikus altalanos
egyensulyi modell segitségével azt vizsgalom, hogy egy részleges informacids kérnyezetben a piaci résztvevék hogyan szereznek
tudast a gazdasagot érd sokkok tartdssagardl. A modellt az USA 40 évet atfogd makroadatain értékelem ki. A bayes-i illeszke-
désvizsgdlat egyértelm(ien a tanuldsi folyamatot is tartalmazé modellt tdmogatja a teljes informacids alapmodellel szemben,
bar a tanulasi folyamatrdl alkotott feltevések nagyban befolydsoljak a modell sikerességét.



1 Introduction

Before the financial crisis of 2007-2009, the U.S. housing market had been booming for over a decade; rising house prices
fueled the lenders’ desire to create new, risky types of mortgages and offer them to the widest set of households. By the end
of 2006, household debt was worth 80 percent of annual GDP, of which mortgage balances accounted for 60 percent of GDP.
The end of the housing boom triggered the most severe financial crisis and the longest recession in decades. Events like these
require that economic theory provides a thorough understanding of the housing market. What is particularly puzzling about
the housing market is how slow it is to adjust. As Figure 1 shows, the house price index declined steadily for five years upon the
onset of the recent crisis.2 However, within the context of frictionless models with rational expectations, the general prediction
is that market prices should quickly reflect all the news about the state of the economy. For comparison, the S&P500 Index
shows that the corresponding downward price adjustment in the market for capital lasted only six quarters.

A potential explanation of this dynamic feature of the housing market is that its participants lack knowledge about the nature
of business-cycle fluctuations. In case of the Great Recession, economic agents observed the deteriorating economy, but did
not expect the downturn to be so persistent. That is, they were initially over-optimistic. Households were betting on a shorter
recession; they were willing to keep their houses and mortgages. As the economic downturn continued, they eventually under-
stood its length. Such gradual recognition of a persistent recession could potentially account for the slow adjustment of house
prices, as well as other variables. For example, as long as households kept updating their beliefs towards a longer recession,
they saw unexpected house-price declines, which fueled mortgage foreclosures.? Figure 1 shows that during the recent crisis,
the rate of mortgage-foreclosure starts hovered for over three years above the one-percent mark, more than double its average
value for 2002-2006.

The goal of this paper is to study learning about the persistence of exogenous shocks to economy as an explanation for inertia
in house prices. | take three steps towards this goal. First, | build a dynamic stochastic general-equilibrium model with an
endogenous market for housing and mortgages that is driven by exogenous shock processes with two components: a transitory
component, which is a white noise; and a persistent component, which is an AR(1) process. Second, | consider the situation
of imperfect knowledge when economic agents cannot observe the individual components of each shock process. The agents
would observe the process through time and rely on Kalman-type signal-extraction to gradually learn about its components.
And third, | evaluate the ability of the models with perfect and imperfect knowledge to explain the 40 years of key U.S. data
on housing and the aggregate economy. To that end, Bayesian methods help compare the two models. Numerical simulations
reveal posterior odds that are strongly in favor of the model with imperfect knowledge and learning; however, the ability of
the latter to simulate inertia in house prices seems to have space for improvement. | show that additional assumptions about
the learning mechanism can make the model with imperfect knowledge a likelier data-generating process that can mimic the
sluggish house-price dynamics. In particular, a parameterization of the learning process that is less restrictive than the classical
Kalman filter seems promising.

Several arguments can motivate the assumption of imperfect knowledge as a way to account for house-price dynamics. First,
in models with rational expectations and complete information, market prices immediately reflect exogenous shocks. With-
out additional assumptions, gradual price adjustments in such models would have to come from sequences of small shocks,
which are incompatible with the assumption that the shocks are i.i.d. Second, the assumption of learning finds its support in
the literature. For example, an empirical study by Foote et al. (2012) finds that at the beginning of the 2007-2009 financial
crisis, mortgage-market participants did not know the state of economy; they had beliefs that were ex-post over-optimistic and
acted rationally subject to them. Finally, the assumption of imperfect knowledge is particularly sensible in case of the housing
market. This market encompasses millions of households that make only a few purchases and sales during their lifetime. As for

TFRB of New York, Consumer Credit Panel

2House prices briefly increased around the end of 2008 after the Federal Reserve announced its large-scale MBS purchase program. See Fuster and
Willen (2010) for a discussion of the effects of the program.

3 Gerardi et al. (2008) point out that unexpected changes in house prices drive mortgage foreclosures.



Figure 1
U.S. economy and housing market, 1975-2015.
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All the series are adjusted by inflation and seasonally, and cast in logs with base 2. Foreclosure starts are yearly percentage
rates. Shades indicate NBER-dated recessions. Source: BEA, BLS, S&P Dow Jones Indices, FHFA, MBA, FRED, NBER.

capital market, its participants are professionals who closely monitor the state of the economy. It is reasonable to believe that
participants in the housing market have a less detailed knowledge about the state of economy.

The fact that house prices evolve slowly is well-known in the literature. Case and Shiller (1989) have noted that house prices
possess inertia, or high auto-correlation in their growth. A number of more recent studies confirm for the U.S. and other
countries that house prices exhibit long duration of upturns and downturns, and generally estimate each of them between
4.5 and 6.5 years on average: Ceron and Suarez (2006); Cunningham and Kolet (2011); Agnello and Schuknecht (2011); Bracke
(2013).

The novelty of my work is that it addresses the dynamic features of house prices within the context of a DSGE model. The
benefit of the DSGE approach is its straightforward application to the data for the purposes of estimation and forecasting
and a study of linkages between the housing market and the aggregate economy. The crisis of 2007-2009 and the preceding
housing boom have brought the housing market to many economists’ attention, and has motivated the development of general-
equilibrium models with housing that allow for endogenous treatment of the house price, foreclosure rate, mortgage risk
premium, etc. Examples include lacoviello (2005), Monacelli (2009), Chatterjee and Eyigungor (2011). | draw from three key
sources to construct the model. lacoviello and Neri (2010) study the impact of the housing market on aggregate economy. They
introduce a rich technology structure that accounts for long-run growth and a portion of short-run fluctuations in the house price
and other variables. | use a similar structure but expand it to incorporate persistent and transitory components. To introduce an
endogenous market for mortgages with defaults that happen in equilibrium, | follow Forlati and Lambertini (2011) who develop
a dynamic new-Keynesian model to study the impact of mortgage-market financial shocks on the aggregate economy. Finally,
to implement imperfect knowledge, | follow Gilchrist and Saito (2006) who augment the financial-frictions model of Bernanke
et al. (1999) to study the implications of imperfect knowledge for monetary policy.

A considerably successful approach to add momentum to the housing market that has been taken in the existing literature is
through frictions within the context of a searching model. These frictions would typically affect the way houses are traded,
as in Guren (2015); Head et al. (2014). | view my approach as complementary to this explanation of the house-price momen-
tum. Informational frictions have also been studied within searching models. Piazzesi and Schneider (2009) and Glaeser and
Nathanson (2015) consider departures from rational expectations and generate momentum in house prices. My work shares
the idea about rationality under incomplete information with Anenberg (2014), who suggests that traders in the housing mar-



ket face a noisy signal about the fundamental value of housing stock and rely on learning to gradually uncover it. His model
features quick learning and, as a result, house-price persistence that is low compared to the data. | depart from the searching
framework and construct a general-equilibrium model which can be used in tandem with standard likelihood-based estimation
methods. In addition, | address the problem that learning may generate limited persistence.

Burnside et al. (2011) develop a model with heterogeneous beliefs to study the implications of incomplete knowledge about
fundamentals for housing-market dynamics. The authors argue that it is difficult to generate protracted house-price dynamicsin
case of homogeneous beliefs because a change in beliefs quickly translates into prices. They model an infection-like mechanism
that gradually affects the beliefs of the population and creates protracted house-price dynamics. On the contrary, | attempt to
account for dynamics of the house price in a model with homogeneous beliefs. In my model, the idea is that learning makes
changes in homogeneous beliefs gradual and creates sluggishness.

The paper proceeds as follows: section 2 defines the model and discusses its key assumptions; section 3 describes the estimation
procedure and section 4 summarizes the results; section 5 discusses the extensions; section 6 concludes.



2 Model

Time is discreet and one period lasts one quarter. There are two perfectly competitive sectors that produce consumption good
and housing stock. There are N households that supply a fixed amount of labor and enjoy the consumption good and the stream
of services flowing from housing stock. A fraction W of total population are impatient households with a low discount factor
p3, and a fraction 1 — W are patient households with a high discount factor : 0 < B < B < 1. In equilibrium, the prices will
be such that impatient households find it optimal to borrow in order to front-load their purchases, which can only be done by
means of mortgages. Patient households will save in equilibrium; they provide the borrowers with mortgage loans and own
all the physical assets used for production.* Henceforth, I refer to the impatient households as borrowers, and to the patient
ones as savers; all the variables marked with a hat represent savers, and the variables marked with an inverted hat represent
borrowers.

Idiosyncratic shocks make a fraction of borrowers default on mortgages in equilibrium. Yet, idiosyncratic payoffs are pooled
within every household, so that each borrower and saver is a representative agent within their group. This set-up allows for an
endogenous treatment of defaults, and yet it keeps the model highly tractable. | start the description of the model with the
market for mortgages in order to clarify this issue first.

2.1 MORTGAGES

For the sake of tractability, mortgage market is simplified along two dimensions. One simplification is that there are only
one-period mortgages assumed available in the economy. In reality, mortgages may have different terms (up to 30 years),
amortization schedules, down-payments, etc. These loan parameters matter for the performance of the mortgage market
and the whole economy.® An account for these parameters would require a model that tracks an endogenous distribution of
households across stages of mortgage amortization and mortgage types. In order to keep the model tractable, | rather choose to
stick to the representative-agent framework and focus on aggregate behavior of the variables such as house price and mortgage
premium.

The same reasons justify the second simplification, which is the treatment of default. Let each household be a unit mass of
household members that are ex-ante identical; each member i conducts the policy that is optimal for the aggregate household.
Then, if a variable Z, is a part of the household’s optimal policy, it is true that Z, = fol Z;.di, and Z;; = Z,. Suppose a member
i of a borrowing household wants to buy a house H;,_; = H,_; in period t — 1 at price P,_; (measured in consumption good).
To finance this purchase, the member can use the house as collateral and obtain a one-period loan B,_; with a pre-determined
interest rate 7,,,_;. Next period, the outstanding debt is B,_; (1+7,,,_;), and the value of the house is H,_, P,(1—8,) w;;, where
&), is the rate of housing-stock depreciation and w;; ~ F(w, ¢;) is the idiosyncratic shock to member i’s housing stock that is
i.i.d. across household members. The shock w;; can represent the effect of neighborhood externalities as in Hilber (2005), or
stochastic depreciation as in Jeske and Krueger (2005). The cumulative distribution F(w, ¢;) is time-dependent:

2
w;; ~ F(w, ¢;), such that In w;; ~ N<—%t, st )

The variance ¢? itself is an exogenous shock process, which means that idiosyncratic risk associated with housing varies with
time; yet, the distribution F(w, ¢;) is chosen so that E;[w;,] = 1 forall t.

Mortgages are non-recourse in the model: the borrower’s only cost of default is that the lender seizes the foreclosed property.
Therefore, the household member will repay only if the value of the house exceeds the outstanding debt:

He1Pe(1 = 8w = B 1 (1 + Fppy)-

4Monacelli (2009) shows that different discount factors create savers and borrowers in equilibrium.

5 For example, Garriga and Schlagenhauf (2010), Corbae and Quintin (2015) address this issue. It suffices to say that a household with recently acquired
mortgage is highly leveraged and likelier to default; especially if the mortgage comes with delayed amortization.



Equivalently, the household member will repay the debt if the the idiosyncratic shock is realized above the threshold: w;; = @,

where _
_— B 1 (14T 1)
By = Il (1)
Ht—lpt(l - h)
Given realizations {w;}ie[0,1, Only a fraction of household members will default, but the household pools the ex-post payoffs
from all its members’ mortgage arrangements and is not subject to idiosyncratic risk. The model with such set-up neglects
household wealth distribution but remains tractable and retains the essential interplay between housing-market variables and

the borrowing constraint. Henceforth, every borrower and saver represents a collection of household members.

In period t — 1, the borrowing household buys a house H,_; and gets a loan {B;_;,,,,—1}; in period ¢, it pools the following
payoff:
(o 0
Heapi1=6) [ 0dF(@,6) = B +Tne) | dF(@,6).
@, ,

t
That is, the borrower only keeps the houses and repays the loans of the members who do not default. Every defaulting house-
hold member repudiates the loan and loses the house to the saver and thus brings zero payoff. The saver collects the foreclosed
property and the payments for mortgage loans that are not repudiated:
[ax

HeaP 1= 8) (1= 1) [ wdF(@,50) +8a(U 4 Tme) [ a(@,60.
0 5]

Fraction u captures the cost of default paid by the lender. Foreclosed property is usually sold at a significant discount; there may
be legal fees, debt collector’s commission, etc. Such costs are presumably proportionate to the size of the house. Parameter u
can also represent the cost of state verification paid by the lender in order to collect the whole value of the foreclosed property.
Thus, u captures financial frictions in the market for mortgages. For brevity of notation, define

[oe]

WdF(w,6) + o, f AF(w, 6), @)

.

[on
(@ 6) = f
0
on
G(wy, 6) = wdF(w, ¢), (3)
0
where I'(@;, ;) is the debt repaid to the lender expressed as a share of housing collateral, and G(w;, ¢;) is the average id-
iosyncratic shock associated with repudiated mortgages. Using equations (1)—(3) and the fact that fooo wdF(w, ;) = 1, the

borrower’s payoff becomes
He_1Pr(1 - Sh)(l -, Ct))' (4)
and the saver’s payoff becomes

He_1P(1— 6,,)(1"(&)“ 6:) — UG(wy, Ct))-

In effect, a mortgage contract involves two parties co-funding the purchase of a house and splitting its value upon the settle-
ment: the saver claims share I'(-), the borrower retains 1 — I'(+), and uG(-) is lost due to default. To further the intuition, let
't be the saver’s ex-post return on mortgage:

Be (L +rp,) =H 1 P(1- 5,,)(1"((1)“ St) — UG(®y, Ct))- (5)

Using (5), the borrower’s payoff (4) can be written to say that the mortgage loan {B,_;,7,;—1} is designed so that the borrower
repays the interest r,,, . and bears the cost of default uG(-):

He_1Pr(1— ‘Sh)(l - uG(@, Cr)) =B (1 +rpy).

2.2 HOUSEHOLDS

Households have lifetime utility Zzo BtEO[U(Ct, Ht)], where instant utility comes from consumption C; and the stream of hous-
ing services derived from housing stock H, that belongs to the household:

U(C,Hy) = vi(InC; + P, InH,).
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Shocks v; and 1, are mean-reverting exogenous processes that affect household behavior. A positive innovation to v, makes
households temporarily less thrifty, since they start valuing current utility relatively more. A positive innovation to i, produces
a temporary increase in relative preference for housing.

Each period, savers maximize the expected lifetime utility by choosing the amount of consumption ét, housing stock A,, mort-
gage lending St extended to borrowers, land / used for housing construction, and capltal + used for the production of con-
sumption good and KX,t used for housing construction, subject to the budget constraint:

Q+Hmﬁ$fﬂm“+jﬁ+k“=M4+mﬂﬂa—6g+(1+%g$ﬂ+
k,t
N 1- 6y ~ A
+(Re+P)ley + (R, + - Ry + (e +1=8) K. (6)
k,t

A purchase of one unit of housing stock in period t — 1 yields (1 — &,,) units in period t.® Land (priced at P;;) yields a rent R;,.
Mortgage lending yields an ex-post return r,,, ;; capital rent and depreciation in the two sectors are denoted by R, r,, 8, and
6,. Each household sells one unit of labor to both sectors, and perfect mobility and substitutability of labor implies that both
sectors pay the same wage W,. Note that A, is the marginal cost of one unit of capital K, ,; it is a technology shock specific
to capital creation.” The saver’s maximization problem produces the set of standard Euler equations outlined below: for every
available asset, the utility cost is compared with the expected utility gain from the next period’s payoff. In case of housing stock,
the additional benefit is that it directly increases current period’s utility, as shown by equation (7):

Ué,tp = ,,_, [3 Ct+1( - Sh)PHl]; (7)
U, 1-6
et 4 , v\l
e = B8 (ot )] @
U =B [ +1( 1T 1 - 6)] (9)
= B [ an (rmt+1 + 1)] (10)
= [ tes1 (Riees + P/t+1)] (11)

The borrowers choose consumption C,, housing H,, and a mortgage contract {B,, Tt} to maximize the expected lifetime utility
subject to three constraints:

ét + I:ItPt Bt W, + Ht 1P(1— Sh)(l - ['(wy, Ct))i (12)
!
" P
Bi=E|f—— U HPry (1 — 8h)(r(wt+1' Gry1) — UG(Dpyy, Ct+1)) (13)
ot
B._,(1+7,,
(Dt= t 1( m,t 1)- (14)

Flt—lpt(l - 6h)

In the budget constraint (12), the last term on the right-hand side is the payoff from the previous mortgage arrangement, as
given by expression (4). The participation constraint (13) is a combination of equations (10) and (5): it tells that the mortgage
arrangement must yield a satisfactory expected payoff to the saver. Finally, constraint (14) simply reproduces equation (1) and
tells that the borrower understands the chance of default implied by the mortgage contract. The optimality conditions are the

8 Note that idiosyncratic risk does not affect the saver’s payoff: the saver keeps all the houses previously purchased by the household members, for
whom fow wF(w, ¢)dw = 1.

7 A more intuitive formulation is ky‘t = Ak_tfk_,, where ﬁ‘k,t is the amount of consumption good spent on capital. | follow lacoviello and Neri (2010) and
note that technology A, , mostly refers to IT and is therefore not as applicable to construction-sector capital.



following:

Ufc‘tPt = U,’:,,t + BEt [Ué’H_lPHl(l - Sh)(l = (@41, Ct+1))] + (15)
Ul
, A G+l _ _
Ué,tEf [EU_,PtH(l - Sh)(r(wt+1: Ger1) — UG(Dpyq, Ct+1))] ;
Gt
!
v U Gt+l _
E; [BU_IF:D((‘)HI' Ct+1)] = (16)
Gt

U
=E [ﬁ%(rib((btﬂ' Cre1) — NG:;, (Dr41, Ct+1))] .
ot

The first-order condition with respect to housing stock (15) is similar to that of the saver, except that, apart from direct impact
on utility and anincrease in next period’s wealth, one more marginal benefit of housing stock for the borrower is that it serves as
collateral and increases access to borrowing (the last term on the right-hand side). Equation (16) is the first-order condition with
respect to mortgage interest rate r,, .: on the left hand, a higher mortgage rate increases the chance of default and decreases
the borrower’s payoff from mortgage; on the right hand, the saver will claim a larger fraction of the housing stock,® which
expands borrower’s current access to borrowing.

2.3 PRODUCTION

The production of consumption good Y, takes place in a perfectly competitive sector that requires labor n,, and capital stock
K :
y,t—1

Ve = (Aueny ) 9K (17)

Technology A, is specific to consumption-good production. Standard expressions for wage and capital rent describe profit-
maximization in the sector:

Wy = @A -a)Y/ny, (18)
R,:=a,Y/K,;_. (19)
Households consume the consumption good, convert it into capital, and allocate an amount X; as an intermediary input for
housing construction. In addition, as the following resource constraint suggests, a small part of output is lost due to mortgage

defaults:

K
Ay't_l + Kx,t - (1 - Sx)Kx,t—l + Xt- (20)
yt-1

. _ v N K,
Yy = uWH_1P:(1 = 6,)G(@, 6p) = PG+ (1 - WG + AL -(1- 6y)
vt

Housing construction employs labor n,,, capital stock K, ;_;, consumption good X;, and land /,_, to produce new housing stock:

IH, = (Ax'tnxrt)1_“xk_“xx_“X’K)‘:;k_ X (21)

Technology A, ; is specific to housing construction. The resulting output must equal net purchases of new housing stock by both
types of households:

H; = WH, + (1 - W)A, = (WH_y + (1= )AL - 6,). (22)
To justify the inclusion of consumption good into housing production function, note that housing construction involves house-
hold appliances and furnishing.® It makes it easier to solve the model and control for the elasticity of housing supply. The
inclusion of land (whose stock is fixed) stabilizes the quantity of produced housing and therefore adds volatility to house prices.
As lacoviello and Neri (2010) point out, it is a useful feature of the model if one of its goals is to explain the dynamics of the house
price. Construction sector is perfectly competitive, and the following optimality conditions summarize profit-maximization:

X; = QlH:Py; (23)
Wit = (1 = Qe = Qe — ) IHP /15 (24)
It = QgdHP /Ky 11; (25)
Ry = aylHPe/li—y. (26)

8T(-) — uG() is increasing in @ around the steady state; see Bernanke et al. (1999).
? Y, can represent intermediate good that is used to produce housing, capital, or consumption good.

11
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2.4 SHOCKS

Technologies A, , A, ;, and A, ; are growth-stationary stochastic processes:™ for i € {y, x, k},

2%
In A/,t —In Ai,t—l = Yi,f + U,"t, U,"t ~ N(O, 0‘5’[), i.i.d.; (27)

Vie = Vi = PilViecr = V) + Vie Ve ~ N(O,07)), ii.d. (28)

The first component of technology growth is an AR(1) process ¥;; which is stationary around y;. The shock v;, is persistent: it
has a lasting impact on technological growth. The second component is a white-noise process u;, labeled transitory shock. In
addition, there are three non-technological exogenous processes with persistent and transitory components: for i € {1, v, ¢},
Ini; =y + Uy u; ~ N0, %)), iid; (29)

Vie = Vi = PilVie-1 — Vi) + Ve vie ~ N(O, 0'5,;‘): i.i.d. (30)

First, Y, is the share of housing stock in household utility. It is a housing demand shock that affects household preferences
toward housing services. Second, v, is a shock to inter-temporal preferences; it makes households value current period’s instant

utility differently. Finally, ¢, is a financial shock that affects the level of risk in the market for mortgages and affects the flow of
credit from savers to borrowers.

The equilibrium is defined dynamically by equations (6)—(30) and a set of market-clearing conditions: (1 — W)gt = '~P1§t;
W, =W, =W, 1- Lp)f(y't =K, 1- kp)kx,t =K Q- =1l =1L ny:+n =N

2.5 STATE-SPACE FORM

Cobb-Douglas specification of production and utility functions guarantees the existence of a balanced-growth path and facili-
tates de-trending. The three separate growth-stationary technology processes allow for the existence of different growth rates
in observable variables. Let A.; denote the measure of total productivity in consumption-good sector:

a,/(1-a,)

At = AyAer

Note that it depends on the efficiency of capital creation in this sector. Consumption and most other variables are de-trended
using A.;. Let A, ; be the measure of total housing-sector productivity:

N N N S N e o ]
Ah,t - Ac,t Ax,t '

It depends on A, ; because housing sector employs inputs that originate from the consumption-good sector. Housing variables
A,, H,, and IH, are de-trended using Ayt The house price is de-trended using productivity in both sectors: p, = P,A, /A, ;. That
is, it grows together with the supply of consumption good relative to housing stock. Note that all three technology processes
ultimately affect the long-run growth of the house price.

Upon de-trending, the model can be log-linearized and cast in the following linear state-space form:"

Zt = q)o + ¢151,t + ¢ZSZ,I‘ + cb3t; (31)
S1t = 11511 + Hiey (32)
Syt = Sy—1 + Hoeyp (33)

Equation (31) decomposes the vector of logged observable variables z,. The first two terms on the right-hand side capture the
appropriately de-trended and log-linearized model: @ contains logged steady-state values, and s; , summarizes log-deviations
from the steady state. The last two terms capture non-stationary components of the model, which come from technology
processes. Note that the precision of the local approximation does not suffer from the fact that the model is non-stationary,

19 A trend-stationary version of the model produces a posterior distribution that is centered very close to 1 for some AR coefficients. Stationarity in
growth seems to be a more appropriate specification.

"(31)—(33) is a Beveridge-Nelson decomposition, where ®;s, , defines cointegrating relationships.



because log-linearization applies only to the stationary component of the system, which is the de-trended model; for example,
see Chang et al. (2007).

To illustrate how the model fits into system (31)—(33), consider house price P; € z,. It can be expressed as
InP,=Inp+p,+InA, —InA,,

where Inp € @, is the logged steady-state value of the de-trended price and p, € s, is the log-deviation from the steady state
approximated by the linear model (32). Furthermore, equations (27) and (28) let express any technology i as

InA;, =a;,+yit— %?i,t; (34)

_ 1
Ojt = Ojp—1 + 1=5 Vie + Uje- (35)

Stationary component y;; = ¥;; — ¥; defined by equation (28) is a part of the state vector s; ;. Non-stationary components
a;; € s, and y;t; are captured by the last two terms of the system (31). All the other observable variables have a similar
decomposition.

2.6 IMPERFECT KNOWLEDGE AND LEARNING

In case of perfect knowledge, economic agents can observe both persistent and transitory components of exogenous pro-
cesses defined by equations (27)—(30). In case of imperfect knowledge, the agents only observe the total value y;; + uj;,
i € {y,k,x,9,v,¢}, but not the individual components y;, and u;,. For example, if the agents observe an unusually large
increase in technology A;;, they cannot immediately tell if they should expect higher growth in the future as well, since the
increase can be due to a persistent shock v;, a transitory shock u;;, or both. To resolve this uncertainty, the agents can observe
the growth rate and use a linear steady-state Kalman filter to gradually learn about the sources of growth. The motivation be-
hind the steady-state filter is that the agents have established the features of each exogenous process through a long history of
observations. The agents are assumed to know the values o, 7,,;, p;, and y; for alli € {y, k,x, Y, v, ¢}. An interesting question
that | address in section 5 is whether the values that the agents “know” correspond to the actual values.

Let ];/i.t = EWit| Vio + Ui » ..., ¥ir + u;;) be the persistent component of process i that agents infer at time t based on all
past observations. The standard Kalman-filtering equation follows from equations (27)—(30) and summarizes the way agents
estimate ¥, :

];/,-,t =AFietu)+(@A- li)l)i):/,»yt_l,

where parameter 4; € [0, 1] is the steady-state Kalman gain:

di— (=D + |- p1) + 420+ p])d

A= (36)

2+d,-—(1—pf)+J(1—p%)2+d?+2(1+pf)d,-

Kalman gain A; measures how quickly the agents attribute a given change to the persistent component; it positively depends on
d; = 0};/0%; and p;. Intuitively, the persistent shock that is volatile is likelier to create an observed change. In addition, if the
change persists, the agents will quickly attribute it to the persistent component rather than a sequence of transitory shocks.

Figure 2 demonstrates the process of learning. There is a shock at t = 1 that increases ¥;, + u;;. The graph on the left shows
the effect of a transitory shock u; ;. The persistent component #;; does not change, but agents suspect that the shock may be
persistent immediately upon the shock. The impact of the shock on ¥;, + u;, disappears in all subsequent periods t > 1, and
agents eventually learn that the shock is transitory. The graph on the right shows the case of persistent shock v;;. Initially, the
inferred value of the persistent component is lower than the actual value. As agents keep observing elevated values of 7;; + u;,
att > 1, they gradually learn that the shock has been persistent, since the observations are far more likely to be the result
of a persistent shock rather than a series of transitory shocks. The inferred and the actual values of the persistent component
eventually converge. Importantly, a relatively volatile transitory component makes agents slow to learn about persistent shocks.

In order to impose the case of imperfect knowledge on the model, | follow Gilchrist and Saito (2006): | take the linear system (32)
and replace the actual values of persistent components {};.}' € s;; and shocks {v,;, u;;}' € e; with their estimates inferred
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Figure 2
Changes in growth rate and learning.

Transitory shock, u;1 =1 Persistent shock, v;1 =1

1.0
0.8
0.6 -
0.4+
0.2+
0.0 —

0 10 20 30

Response of the persistent component of an exogenous shock process due to one-percent positive persistent and transitory
innovation. The solid lines show the actual responses of the variable ¥;; = p;¥;;—1 + v;;. The dashed lines show the values ):/t
inferred by the agents. The dark dashed lines are for 62;/0%; = 0.05 and p; = 0.9. The light dashed lines are for 02;/02; = 0.5
and p; = 0.9.

through Kalman filtering. Also, for each of the exogenous processes, | add a set of linear equations that relate the Kalman-
filtered estimates to their actual values:

Vie = 4i(Fie + ujp) — /L‘Pi):/,,t_l;
Uy =Q =) +u) —(1- A/)Pﬂ:/,-,t_li

Vit = Pi¥ie—1 + Vi
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3 Estimation

3.1 RELATING THE MODEL AND THE DATA

The aggregate resource constraint combines constraints (20) and (22); it illustrates the model’s counterpart to the observed
variables:

Y; + IHP, — .u'“p’:’t—lpt(l = 6,)G(@y, 6) =

K K v A
= AL‘ -(1-46) A—”"i + Ke = (1= 80K + PG+ (1 - W)+
yit yt—

+ P ((WH + (1= W)A) — (WHeoy + (1= W)A)(A - 6)). (37)

The left-hand side of the equation represents GDP: it combines the value added in the two sectors of production and accounts for
the cost of mortgage defaults. The second line of the constraint represents capital investment and consumption. The real aggre-
gate consumption AC, is defined as WC, + (1 — W)C,; the real non-residential investment IK, is defined as Ky — Kye—a(1 = 6,)."
The last term of the equation is the product of two observed variables, real house price P, and real residential investment /H,.
The data set includes the four quarterly series Z = {AC,, IK,, IH,, P,}]=, and spans 1975-2014.

3.2 CALIBRATION

Likelihood-based estimation outlined below focuses on the features of exogenous processes: autoregressive coefficients and
standard deviations of shocks. All the other parameters are calibrated, since they have proven to be either hard to identify in
preliminary likelihood estimations, or particularly convenient to pin down with a set of standard steady-state targets. The cho-
sen set of calibrated parameters defines the steady state that is equivalent for the two considered models. Table 1 summarizes
the calibration.

| fix the steady-state technology growth rates using the average rates of growth of consumption, capital investment, and house
price. The resulting values are in line with the posterior estimated by lacoviello and Neri (2010). Residential investment is the
most volatile series; its average growth rate is computed as a residual between the growth rates of consumption and the house
price.™

The share of borrowers in population is set equal to two thirds, which corresponds to the share of homeowners with mortgages
according to BLS.™ Saver’s discount factor is set at f? = 0.997; given the average growth rate of consumption around y, =
0.44%, this sets the real quarterly interest rate equal to 0.74%. Given [?, the steady-state versions of equations (13), (14),
and (16) allow to jointly determine parameters {[3, O, U} so that the steady state matches three mortgage-market targets:
mortgage premium, foreclosure rate, and loan-to-value ratio. The chosen values [? = 0951, u = 0.1186, and 0, = 0.1278
seem generally in line with the literature.” Given these values, the steady-state quarterly mortgage premium equals 32 basis
points, which matches the average value reported by the Federal Reserve for 1984-2014." The delinquency rate on real-estate

2 NIPA do not provide quarterly data to separate real private capital investment in construction and other sectors; however, given the relatively small
scale of investment in construction-sector capital, it seems safe to approximate capital investment in both sectors with IK,. See lacoviello and Neri
(2010).

3 High volatility of residential investment is also the reason why the posterior is not estimated for the growth rates. In the steady state, de-trended
residential investment equals (Wh + (1 — W)A) x (v, + 8,,)/(1 + ¥3). Posterior estimations would put the housing growth rate ¥, close to =&, so
that residential investment would become infinitesimal but volatile in the model. To avoid this result, | fix the growth rates with calibration. In short,
long-run growth rates in a growth-stationary model turn out to be difficult to identify with likelihood estimation.

14 BLS, Consumer Expenditure Survey, 2006—-2010

"> Forlati and Lambertini (2011) set o, = 0.2 and u = 0.12, where the latter is based on the data on foreclosure discounts. As for the borrowers’
discount factor B, its value should be sufficiently low in order for the borrowers to accept risky mortgages with costly default in equilibrium. An
overview of the existing estimates of discount factors by lacoviello (2005) suggests that 5 = 0.951 is reasonable.
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Table 1
Calibrated parameters

Parameter Value Meaning

v 0.6667 Borrowers’ share in population

[? 0.997 Saver’s discount factor

3 0.951 Borrower’s discount factor

g, 0.1278 Standard error of idiosyncratic shock to house size
u 0.1186 Cost of mortgage foreclosure

Y 0.15 Share of housing in utility

a, 0.25 Share of capital in consumption-good production
Ay 0.1 Share of capital in housing construction

a,, 0.1 Share of housing stock in housing construction

a,, 0.1 Share of consumption good in housing construction
6, 0.02 Depreciation rate of consumption capital

S, 0.03 Depreciation rate of housing construction capital
S, 0.01 Depreciation rate of housing stock

Yy 0.0034 Consumption technology growth

Yy 0.0021 Housing technology growth

Y« 0.0030 Capital technology growth

loans averaged 2.2% in 1991-2006, and peaked as high as 11% during the following recession.” Notice, however, that not every
delinquent mortgage ends with a foreclosure. The steady-state value of the foreclosure rate in the model is 2%. The LTV ratio
for mortgage loans has averaged at 76.5% in 1984—2014;"® calibration implies 75% for the model.

The remaining parameters have to be determined jointly in order for the model to match a set of targets established in the
literature. Capital share in consumption sector is &, = 0.25, which is a reasonable value for the model without a capital-
intensive government sector.” | follow lacoviello and Neri (2010) and Davis and Heathcote (2005) in using NIPA Input-Output
tables to set housing-sector shares of capital, land, and consumption good at a,;, = a,; = a,, = 0.1. The share of consumption
good a,, turns out to be difficult to identify. An informal sensitivity analysis has shown that the steady-state and dynamic
properties of the considered models allow for some variation in this parameter. The chosen share of land a,; makes land valuable
in the model because it entitles its owners to the rent from housing production: its stock is priced at 50.8% of annual GDP. As for
capital shares, they are chosen jointly with depreciation rates so that the steady state has realistic ratios of capital investment
to GDP (21.1% in the model), residential investment to GDP (6.1%), and consumption- and housing-sector capital stock to GDP
(1.94 and 0.04). BEA provides data on fixed assets that allows to estimate the average quarterly rates of depreciation for 1984—
2014:2° 3% for construction-sector capital, 2% for capital in other sectors, and 0.6% for residential property. The corresponding

6 The average quarterly premium between the one-year adjustable-rate mortgages and the Treasury notes with the same maturity reported in Federal
Reserve Economic Data for 1984-2014 is 36 basis points. | choose a slightly lower target in order to account for what | believe is an abnormally high
premium observed in 2008-2014.

7 FRB, Charge-Off and Delinquency Rates on Loans and Leases at Commercial Banks
8 FHFA, Monthly Interest Rate Survey, Table 9
9 See DeJong and Dave (2011), for example.

20 BEA, Fixed Assets Accounts, Tables 3.1, 3.4, 4.1,4.4,5.1,5.4



choices for the model are §, = 0.03, §, = 0.02, and §, = 0.01. The share of housing in the utility is set at i = 0.15; the
resulting steady-state value of housing stock relative to annual GDP is 1.23.

3.3 BAYESIAN ESTIMATION

Let P denote the model with perfect knowledge, and 7 denote the model with imperfect knowledge about shocks. Posterior
odds in favor of the model 3 compare the empirical performance of the two models. Assuming no prior odds, the posterior

odds are equal to the Bayes factor:
_ p7)
pZIP)

Therefore, the central goal of the outlined empirical exercise is to compute the marginal likelihoods

p(Z|M) = f L(Z|6, M)(8|M)dO, M € {I,P}, (38)

where L(Z|0, M) is the likelihood function evaluated for a parameter vector 8, and (0|M) is its prior density.?! Given pa-
rameters 6, | can cast the model M in linear state-space form (31)—(33) and find the likelihood L(Z|8,M). | follow lacoviello
and Neri (2010) to specify the prior T (8|M) loosely. As for the integral (38), | use Markov-Chain Monte Carlo integration with
random-walk Metropolis algorithm to draw a sample from the posterior distribution p(6|Z, M) « L(Z|8, M)t (6| M),* and
follow Chib and Jeliazkov (2001) to convert the output of the sampling procedure into an estimate of the marginal likelihood.
The following section presents the results of the estimation.

2 Note that parameters are grouped in two vectors, 6 and 6. Parameters 6 are calibrated. The Bayesian estimation treats 8¢ as fixed and equal for
the two models and integrates the expression (38) with respect to vector 6.

22 For each model, | obtain 2.8 million draws (upon the burn-in run), and set the thinning step of 2,000 observations, which gives a sample of 1,400
draws. For a detailed coverage of the approach, see An and Schorfheide (2007), Chib and Greenberg (1995), Guerron-Quintana and Nason (2012),
Geweke (1999).
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4 Results

The key numerical finding is that the log of posterior odds in favor of model 7 against model P is estimated to be 60, which is
most decisively in favor of the assumption of imperfect knowledge. This section explains the reason behind this strong result.

4.1 POSTERIOR DISTRIBUTION

The prior distribution and the results of posterior estimations are summarized in Table 2. Compared to lacoviello and Neri
(2010), given that the set of observables included into the data and the model specification is different, the posterior of model
P is quite similar. One notable distinction is a much less volatile capital-technology growth. As for model 7, the main result is
that learning mostly affects the dynamics of the model through technology and housing-preference shocks, as these are the
only processes that have both transitory and persistent components volatile in the model’s posterior.?

Simulated posteriors indicate that the transitory component of consumption technology is important for both specifications.
In addition, the persistent component generally shows a higher auto-regressive coefficient and variance in the posterior of
the model with learning. Because of this, it is only important for the dynamics of model J. Capital technology only matters
under imperfect knowledge, where its persistent and transitory components are both prominent. The growth of construction
technology behaves similarly in the posterior of both models: both components are volatile, and the transitory component
is more so. Housing-preference shock can drive housing-market variables. Its persistent component is prominent in both
models; moreover, in the model with learning, there is a large transitory component as well. Persistent shock to inter-temporal
preferences, an important factor for the consumption-saving decision, is sizable in both models P and 7. Other shocks do not
seem important.

4.2 |IMPULSE RESPONSES

For a clear account of the effect of imperfect knowledge on the dynamic features of the model, | construct impulse responses
for the mean parameter vector of model J’s posterior, but under both assumptions of imperfect and perfect knowledge. |
limit the discussion to shocks that are significantly affected by learning. The key conclusion is that learning seems to work well
to combine persistent and transitory shocks in order to create sluggish responses whenever the immediate responses to the
two types of shocks are opposite. In other words, learning washes out the opposite responses immediately upon shocks and
therefore protracts them. On the contrary, when both persistent and transitory components of an exogenous process move
the variables in the same direction under perfect knowledge, the dynamic effect of imperfect knowledge on these variables is
ambiguous.

4.2.1 CAPITAL TECHNOLOGY

Figure 3 shows responses to negative one-standard-deviation shocks to capital technology. Under perfect knowledge, the im-
mediate reaction of the savers is that they substitute away or towards capital investment.2* A negative transitory shock to
capital technology makes consumption-sector capital costlier; savers delay capital investment and shift towards consumption
and housing sector. Rising house prices decrease the rate of mortgage defaults and the cost of mortgages. If the shock is per-
sistent, the cost of capital is supposed to keep growing faster in the future. In effect, savers anticipate a higher capital gain from
holding capital stock and buy more of it at the cost of other purchases: capital investment initially rises, while consumption, res-
idential investment, and house prices fall. Upon the initial increase in capital stock, consumption-sector output rises, together

23 My judgment about the size of the shocks is based on their contribution to the dynamics of the observable variables as summarized by variance
decomposition below.

24 Note that the growth of capital technology is much less volatile in the posterior of model P, so the impulse-responses under perfect knowledge are
much smaller than shown in Figure 3.



Table 2
Prior and posterior distributions for the estimated models

Prior, all models Posterior mean (95-percent confidence interval)
Parameter Type Mean S.D. Model P Model 7 Model F
AR coefficients
Py B 08 0.1 0.72 (0.47,0.90) 0.86 (0.66,0.97) 0.82 (0.74,0.89)
Pk B 08 0.1 0.62 (0.37,0.84) 0.48 (0.41,0.56) 0.45 (0.40, 0.50)
Dx B 08 0.1 0.43 (0.35,0.53) 0.86 (0.66, 0.96) 0.54 (0.45, 0.63)
Py B 08 0.1 0.98 (0.95,0.99) 0.97 (0.94,0.99) 0.97 (0.95, 0.99)
Py B 0.8 01 0.97 (0.94,099) 096 (0.91,0.99) 0.96 (0.92,0.99)
Pe B 08 01 0.80 (0.57,095) 0.79 (0.56,0.94) 0.80 (0.56,0.95)

Persistent component’s st. dev.
100 X g, Gt 01 10 0.09 (0.02,0.51) 0.16 (0.05,0.36) 0.56 (0.45,0.69)
100 X 0, Gt 01 10 0.06 (0.02,0.13) 0.48 (0.33,0.63) 0.07 (0.02,0.19)
100 X 0, Gt 01 10 1.01 (0.65,1.34) 0.12 (0.03,0.29) 1.47 (1.27,1.67)
100 X 0,y Gt 01 10 242 (1.82,3.38) 1.83 (1.15,2.85) 1.95 (1.40,2.63)
100 X g, Gt 01 10 2.60 (1.93,3.92) 1.97 (1.12,3.41) 228 (1.47,3.47)
100 X 0,,¢ Gt 01 10 0.10 (0.02,0.47) 0.10 (0.02,0.38) 0.07 (0.02,0.19)

Transitory component’s st. dev.
100 X 7y, Gt 01 10 1.28 (0.96,1.49) 1.09 (0.90,1.28) 0.06 (0.02,0.18)
100 X 07, Gt 01 10 0.07 (0.02,0.18) 1.04 (0.71,1.35) 1.21 (0.99, 1.45)
100%x0,, G* 01 10 179 (1.48213) 204 (178,234) 0.10 (0.02 0.54)
100Xo,y, G 01 10 009 (0.02,040) 9.16 (5.26,13.35) 850 (5.66,11.79)
100x0,, G 01 10 005 (0.02,013) 006 (0.02,0.18) 0.06 (0.020.18)
100 X 0y ¢ Gt 01 10 0.09 (0.02,0.39) 0.11 (0.02,0.65) 0.07 (0.02,0.23)

Kalman gains

A B 0.5 0.2 0.10 (0.04,0.19)
A B 0.5 0.2 0.22 (0.21,0.23)
Ay B 0.5 0.2 0.10 (0.03,0.21)

P denotes the model with perfect knowledge; 7 denotes the model with imperfect knowledge; F denotes the model with learning and Kalman gains
independent of the parameters of technological processes.

with household income, aggregate consumption, and housing demand. In the long run, regardless of the persistence of the
shock, higher cost of consumption-sector capital results in its smaller stock, as well as lower output, consumption, investment,
and house prices.

Under imperfect knowledge, savers are not completely sure what to do immediately upon shock. Because persistent and
transitory shocks create opposite immediate responses, imperfect knowledge washes them out for both types of shock. Since
capital-technology shocks have the largest impact on capital and residential investment, | expect that learning works through
these shocks to add inertia to investment and not so much to consumption or house prices. In addition, note that capital-
technology shocks generate negative correlation between capital investment and the other observable variables under perfect
knowledge. Imperfect knowledge seems to wash out this counter-cyclicality of capital investment. Huang et al. (2009) and
Edge et al. (2007) discuss similar findings with respect to learning, washing-out, and correlation. Under perfect knowledge,
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Figure 3
Impulse-responses to capital-technology shocks
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Consumption, AC Cap. investment, I K Resid. investment, [ H

02F : T : T 8 ‘ I : T 150 : : T
0.0 4 - 0.0 3
-1.5 =

-0.2 1 0 4 30F _
04 | = -4+ 71 451 | 1
0 10 20 0 10 20 0 10 20

House price, P Mortgage lending, S Mortgage premium
02F [ (R N |5 | e, ! 5 | ! oo
~ 0.0 «\/"__ B
e 32.0

0.0 ~_ 0.1F B
T 02 | 3L9f -

-0.2 | % 0.3 ‘ | ‘ # 318 | 5l
0 10 20 0 10 20 0 10 20

Panel B
Consumption, AC Cap. investment, I K Resid. investment, [ H
04F : T : T 0.0 ‘ ‘ : ‘ 9 : I : T
N
0.2 \ 15+ 1 _
0.0
02 - -3.0F = 0 b
-0.41 | 4 -4.5 | M -1 ‘ .
0 10 20 0 10 20 0 10 20
House price, P Mortgage lending, S Mortgage premium

T I i I L T I T 1] T I i T

0.2~ - 04 32.2 .
8(1) - - 83 “\ 320 =3
-0.1- =4 -0.2 -1 31.81 -
0.2 | 1 -04f y 9 316 N R
0 10 20 0 10 20 0 10 20

Persistent shock v, ; = —a, in Panel A and transitory shock u,; = —0, in Panel B. Solid lines (perfect knowledge, ) and

dashed lines (imperfect knowledge, J) are percentage-deviations from the initial balanced-growth path (solid grey lines).
Absolute values in basis points are given for mortgage premium. Dots on the right axes show where the responses stabilize
after 400 quarters.

capital technology shocks are estimated to be small, probably because they create excessive counter-cyclical volatility in capital
investment.?®

4.2.2 CONSUMPTION TECHNOLOGY

Figure 4 shows responses to a negative shock to growth in consumption technology. A fall in the output of consumption good
drives household income down and decreases the demand for housing. House prices fall, which creates a spike in mortgage
defaults and the cost of mortgages. The productivity of capital in consumption sector falls; whether savers shift towards or away
from capital investment depends on the persistence of the shock, just like in the case of capital-technology shocks. Eventually,
because consumption good is used to pay for housing stock and capital, lower productivity in consumption-good sector makes
investment, house prices, and aggregate consumption stabilize below the initial balanced-growth path.

Qualitatively, imperfect knowledge has the following effect on the response to a persistent shock. Initially, there is a chance
that the shock is transitory and that a quick recovery is about to follow, so consumption and house prices adjust by less; as
households gradually learn about the persistent shock, the adjustment catches up. Learning keeps expectations deteriorating,

25| do not embed the model with such elements as capital-adjustment costs and variable capital utilization for clarity of the main argument. This adds
volatility to capital investment in the model.
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Figure 4
Impulse-responses to consumption-technology shocks
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dashed lines (imperfect knowledge, J) are percentage-deviations from the initial balanced-growth path (solid grey lines).
Absolute values in basis points are given for mortgage premium. Dots on the right axes show where the responses stabilize
after 400 quarters.

the house price falling, and the rate of mortgage defaults and mortgage premium elevated over a longer period.?® That is,
imperfect knowledge delays the responses of the house price, consumption, and mortgage-market variables. Quantitatively,
the effect is limited: although the initial adjustment of consumption and house prices is about 3 times smaller, agents quickly
learn about the persistence of the shock, and the responses converge to the case of perfect knowledge within 4—6 quarters.?’
In case of a transitory shock, the effect of imperfect knowledge is essentially the opposite: it amplifies the initial responses of
consumption and the house price, since economic agents suspect a long recession and over-react.

Learning does not seem to work well with consumption-technology shocks in order to add sluggishness to simulated house-
price dynamics: it only moderately protracts the responses to persistent shocks but amplifies the responses to transitory shocks.
Why does the effect of learning turn out to be limited? The answer comes from the fact that Kalman gains, which measure how
quickly agents recognize a persistent shock, are defined by the parameters of technology processes according to equation (36).
The features of consumption technology are such that agents quickly learn about the nature of the persistent shock. For a
slower learning, the transitory component would have to be more volatile. However, it would not necessarily make model 7

26 This link is quite in line with the finding by Gerardi et al. (2008) that unexpected house-price adjustments are a key driver of the mortgage foreclosure
rate.

2 perhaps, this particular finding conforms with Burnside et al. (2011) who argue that it is hard to achieve protraction in house-price adjustments when
household beliefs are homogeneous.
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better at mimicking the sluggish house-price dynamics: volatile transitory shocks, coupled with the fact that consumption and
house prices over-react to them in case of imperfect knowledge, would create excessive volatility in these variables.

Notice that this is not the case for investment variables. Under perfect knowledge, savers substitute away or towards capital
investment immediately upon the shock, depending on its persistence. The immediate responses are opposite for the two types
of shock, and learning washes them out and thus protracts them. Like in the case of capital-technology shocks, both types of
investment look more likely to gain momentum due to learning than the house price or consumption.

4.2.3 HOUSING SHOCKS

A close look at shocks to housing preferences 1, and growth in housing-sector technology A, ; does not reveal any new insights.
The responses are in line with the already provided conclusions and similar to the ones described by lacoviello and Neri (2010).%8
Therefore, | only provide a brief summary of the effects of these shocks.

A negative shock to housing-sector technology makes housing scarce and expensive; through both wealth and substitution ef-
fect, it causes an increase in consumption. Low capital return in the housing sector eventually causes the residential investment
to fall, but the immediate response of capital and residential investment depends on the persistence of the shock, like before.
The shock matters the most for residential investment and the house price but causes a counter-factual negative correlation
between them. A sizable housing-preference shock helps explain the joint dynamics of these variables. Quite naturally, a fall
in the preference for housing causes residential investment, house price, and mortgage lending to fall. Consumption becomes
preferred, but its initial response also depends on the wealth effect of the house-price decrease.

Just like in the case of consumption and capital technologies, the model with learning does not seem to be able to employ
housing shocks to generate a lot of inertia in the house price. The reason is the same: both transitory and persistent shocks
move this variable in the same direction, and volatile transitory shocks required for slow learning would cause excessive house-
price volatility. This adds to the suspicion that learning has a limited contribution to house-price inertia.

4.3 VARIANCE DECOMPOSITION
4.3.1 FORECAST VARIANCE

Figure 5 decomposes the forecast variance of growth in the observable variables for both models; it shows the relative impor-
tance of shocks. Consumption technology accounts for most of variability in consumption, virtually all of it in the long run (up
to 80-90% at 40-quarter horizon for both models). In addition, consumption technology affects capital returns and therefore
explains a lot of variability in capital investment. For both capital investment and consumption, inter-temporal preferences are
also important because they affect the consumption-saving decision. In case of imperfect knowledge, over 50% of variability in
capital investment is predicted due to capital technology that defines the cost of capital creation. In case of perfect knowledge,
capital technology is unimportant. In both models, housing-preference shock matters for capital investment in the short run,
due to substitutability between capital and residential investment as saving vehicles. Of course, housing preferences together
with housing technology matter the most for residential investment; they account for over 90% of its variation in both models
across the reported forecast range. As for the house price, its variation in both models is almost entirely due to housing- and
consumption-sector technologies. The latter is important because the house price is measured in units of consumption good.
In addition, up to 15% of house-price variation is expected to come in the short run from housing-preference shocks.

It is true for both models that technology shocks seem to be the most important drivers; and more so for longer forecast
horizons, since they create permanent deviations from the balanced growth path. Under imperfect knowledge, persistent
shocks to technologies matter despite their small estimated variances. These shocks accumulate their influence over longer
forecast horizons. The conclusion is that, to a large degree, long-run evolution of variables simulated by the two models can
be attributed to technology shocks, and in particular to their persistent components. Persistent shocks alone, especially in case

28 To be precise, the transitory shock to housing-sector technology and the persistent shock to housing preferences produce the responses that are the
closest to lacoviello and Neri (2010), since the former process is stationary in growth and the latter one is stationary in levels in my models.



Figure 5
Forecast variance decomposition
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knowledge and model J with learning: persistent technology shocks {v,, v, v,}, transitory technology shocks {u,, u, u,},
housing-preference shocks {vw, “z.b}' and persistent shock to inter-temporal preferences v,,.

of learning (and especially if learning is slow), seem to matter over longer forecast horizons, or for low-frequency dynamics.
However, learning mechanics depend on the presence of transitory components, and it is the interaction between the persistent
and transitory components that is the most important for the model’s ability to mimic the dynamic behavior of the house price
and other variables.

4.3.2 HISTORICAL VARIANCE

Figure 6 decomposes the historical variance of house-price growth. It conforms with the decomposition of the forecast variance:
most of variation in the house price is due to consumption- and housing-sector technologies. Moreover, forecast variance
decomposition has indicated that persistent shocks gradually build up their influence over longer horizons, and the historical
decomposition reflects this fact.

The figure shows that persistent shocks explain a good part of low-frequency dynamics; they gradually build up their impact
over time, and they contribute the most during the periods of lasting, persistent upturns or downturns in the house price. It
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Figure 6
Historical variance decomposition, house price
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Decomposition of percentage house-price growth for models with perfect knowledge (P) and imperfect knowledge (7). The
dotted line shows the observed growth in the variable. Shades indicate NBER-dated recessions.

is evident in the case of imperfect knowledge, where the response of house prices to persistent technological shocks is pro-
tracted due to learning, and where the historical decomposition reveals a more regular contribution of persistent components
to house-price growth. This is an important point. An observable variable with inertia exhibits auto-correlated first differences.
The house price is clearly the case. Learning may protract the responses to persistent shocks and, it seems, add auto-correlation
to the contribution of such shocks to changes in the house price. If model 7 is the data-generating process under consideration,
learning may make persistent shocks an efficient tool to simulate the house price with inertia. However, as already noted, the
limitation is that slow learning requires volatile transitory components. Another problem is that the persistent components
of the technologies show auto-correlated contributions largely because of high auto-correlation in their smoothed errors esti-
mated for model J. Spectral-density analysis provided below seems an appropriate test to determine whether model 7 is truly
the data-generating process that is better capable of simulating inertia in the house price.

It is also interesting to note that the contribution of consumption technology is often consistently in the direction opposite to
the observed house-price growth, as it is the case for the early 1990s or early 2000s. In other words, the prevailing direction
of house-price growth is not always in line with consumption sector, the dominant sector of the economy. A booming aggre-
gate economy and a growing aggregate consumption do not always correspond to growing house prices, and vice versa. This



observation may point to the existence of house-price bubbles; alternatively, it may point to economic developments specific
to housing and mortgage markets, such as introduction and spread of mortgage-backed securities.

4.4 SPECTRAL DENSITY

Figure 7

Spectral densities of the observed variables
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Spectral densities of the first differences normalized by unconditional variances. The horizontal axes measure cycles per
quarter. Spectral density is estimated over the posteriors of the models and compared against less parametric estimates: an
estimate based on VAR, and a completely non-parametric estimate for individual series based on auto-covariances weighted
with kernels. Line colors and adjacent shades, from darkest to lightest, indicate model P with perfect knowledge, model 7
with learning, and model F with learning and Kalman gains independent of the parameters of technological processes.

To construct Figure 7, | take the state-space forms estimated for the two models and convert them into spectral densities for
first-differences of the four observable variables. These densities reflect the ability of the models to simulate cycles of various
length in the variables. In addition, it is well known that the likelihood function can be cast over the frequency domain, and
that a comparison of the models’ spectra against the data can reveal the sources of higher likelihood.?® For such comparison,

| take the first differences of the data and construct two additional, non-parametric estimates of the spectra. First, | construct

spectral densities from a VAR model with 6 lags estimated for the differenced series {AAC, AIK, AIH, AP}. Second, | construct
a kernel-based estimate for each individual series. The two methods deliver similar results that | use as benchmarks for the
performance of the two models.

Compared to model P, the most visible impact of imperfect knowledge is on the spectrum of capital investment: there are
large significant gains for frequencies less than 1/4, or for cycles longer than one year. In other words, model 7 looks better
equipped to mimic the dynamics of capital investment, which exhibits non-trivial low-frequency cyclical component. The gains

are also significant over cycles longer than 1 year for the house price. As for the rest of the variables, there are small and largely
insignificant gains over lower frequencies.

29 For example, see Christiano and Vigfusson (2003)
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All of the described gains look desirable, as they bring the spectra closer to the estimates obtained more directly from the data.
However, it would be hard to say precisely how spectral modifications brought by imperfect knowledge affect the posterior
odds. It can be that the tilt of the odds in favor of model 7 is largely due to the ability of the latter to better mimic the dynamics
of capital investment, not the house price or other variables.

As discussed before, for learning to add inertia to the house price, it must be slow in case of persistent shocks to exogenous
processes that drive the house price. It is slow when the corresponding transitory components are volatile and Kalman gains
are small. The problem is that imperfect knowledge amplifies the immediate responses of the house price to transitory shocks.
Therefore, volatile transitory components create volatile house price and counter the dynamic effect of persistent components
with slow learning. This is generally not the case for capital investment that has opposite initial responses to transitory and
persistent shocks under perfect knowledge, which are washed out under imperfect knowledge. This explains the visibly strong
impact of learning on the spectral density of capital investment and the absence of such for the house price and other variables.



5 Discussion

5.1 IMPLICATIONS: REDISTRIBUTION OF WELFARE

Figure 8
Impulse-responses to a negative persistent consumption-technology shock
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Responses to a one-standard-deviation negative shock, v, ; = —0,. Solid lines (perfect knowledge, P) and dashed lines

(imperfect knowledge, J) are percentage-deviations from the initial balanced-growth path (solid grey lines). Dots on the right
axes show where the responses stabilize after 400 quarters.

Consider a negative one-standard-deviation persistent shock to consumption technology, as shown in Panel A of Figure 4. It is
a shock to productivity in the largest sector that causes a long economy-wide recession. Figure 8 augments Figure 4 with levels
of consumption and housing stock chosen by both types of households. Note that these choices directly define household
utility in the model. Compared to the baseline model P, an additional effect of imperfect knowledge is that it redistributes
consumption and housing stock between the two groups.

In case of imperfect knowledge and immediately upon the shock, households underestimate its persistence; they bet on a quick
recovery and high house prices in the near future. Borrowers maintain relatively high levels of mortgage loans, housing stock,
and consumption. Eventually, as households learn about the nature of the shock, their wealth declines due to the decreases
in house prices and expected future earnings. In addition, the downward adjustment of the house price keeps the foreclosure
rate high and mortgage loans expensive. Starting from three quarters upon the shock, the borrowers’ choices of housing stock
and consumption become lower than in the case of perfect knowledge. The mechanics of the savers’ response is different: as
households learn about the persistence of the shock and as the house price declines, savers are able to buy up more housing
stock at a lower price, as well as afford a higher consumption. Once the initial bet on a quick recovery turns out to be wrong,
savers win and borrowers lose.

This result motivates a welfare analysis of the redistribution between savers and borrowers due to imperfect knowledge. 1
refrain from doing so, however. First, it is not clear how to conduct such analysis. Ex post, one can trace the choices made by
the two types of households and conclude whether it is better for the households to know about the persistent recession from
the start. It may be not the case ex ante. In addition, the situation is different for transitory shocks. And second, if economic
agents lack knowledge about the sources of changes in the economy and if perfect knowledge is a Pareto-improvement, it is
not clear how to achieve it.

What is clear is that imperfect knowledge alters the welfare implications of house-price adjustments for the two types of house-
holds, especially through the cost of mortgages and the wealth effect. These implications matter for the discussion about poli-
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cies to manage house prices, since the data are strongly in favor of imperfect knowledge. They certainly affect the choice of
timing, length, and scale of the price adjustments under policymaker’s consideration.

5.2 ACCOUNT FOR LENDING CONDITIONS IN THE MARKET FOR MORTGAGES

Figure 9
Mortgage premium: model against the data
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Mortgage premium predicted by the model with imperfect knowledge (7) and compared against the actual data. Annualized,
percentage points. In the data, the mortgage premium is calculated as interest on one-year adjustable-rate mortgages net of
the yield on one-year Treasury notes. Shades indicate NBER-dated recessions. Source: Freddie Mac; the Federal Reserve
Board; FRED; NBER

Apart from its account for house prices, it is interesting to see whether the presented general-equilibrium model with en-
dogenous markets for housing and mortgages is any good at explaining the state of the latter. Mortgage premium is a good
indicator of financing conditions in the market for mortgages for which there is a long history of observations. In the U.S. data
on mortgage rates, the shortest available maturity is one year. The model’s counterpart for the annual premium is

3
14 Fopps
MP; = E, 1_[—’””’ -1,
L1 Mneriva

i=

where the quarterly mortgage premium E,[(1+7,,;)/(1+rp, ++1)] is defined using equations (1) and (5). | use the data (available
from 1984) to construct the premium MP; in exactly the same way using the observations of the interest on one-year adjustable-
rate mortgages and the yield on one-year Treasury notes. Figure 9 presents both the observed series and its counterpart fitted
by model J.

Model 7 is estimated using only the data on GDP components and house prices. As can be seen from the figure, the model’s
account of the tensions in the market for mortgages is rather poor. The standard deviation of the mortgage premium MP;
inferred from model J is five times smaller than that of the actual series, MP,. The correlation between the two series is
0.31. Notably, the correlation between the fitted mortgage premium MP; and the house-price growth is -0.59: model 7 mainly
employs information about the house price to infer about the financing conditions in the mortgage market. The fact that
this strategy provides a poor estimate of the actual mortgage premium points to the evolution of financing conditions that
are not reflected by the house price. Interestingly, the model’s predictions about the dynamics of the mortgage premium look
better for the later part of the sample. The correlation between the predicted and the actual mortgage premium, p (MP,, MP}),



increases from —0.17 for 1984—-1999 to +0.66 for 2000—-2015. Following the same logic, it may imply that the recent house-price
bubble has been largely due to the financing conditions in the mortgage market. Indeed, sub-prime mortgages and mortgage
securitization were at the core of the housing boom that ended with the Great Recession. A more general implication is that
the house price and the aggregate economy have shown a tighter link with the financing conditions in the mortgage market
after 2000.

The inclusion of mortgage premium into the data set for estimations helps identify a financial shock. Preliminary posterior
estimations have indicated that the idiosyncratic variance of the housing stock ¢;, which drives the risk of mortgage default
and which is proposed by Forlati and Lambertini (2011), becomes a prominent shock that helps explain most of variation in the
mortgage premium. In fact, it becomes extremely large: the standard deviation of the persistent component averages above
15 percent in the posterior of the model with imperfect knowledge. Interestingly, Forlati and Lambertini (2011) study the effect
of a 40-percent increase in the idiosyncratic variance. This shock affects the tail of a distribution that guides the rate of default
in the model. Because of its indirect effect on the default rate and the mortgage premium, it must be large in order to have an
impact. For the same reason, | argue that such large estimated volatility of the shock does not diminish the precision of the
first-order approximation to the solution of the model. A more serious concern is that the smoothed errors estimated for this
shock are highly auto-correlated when the mortgage premium is included into the data. Details aside, it remains an imminent
challenge to develop the financial component of the presented models in order to provide an adequate quantitative account
of mortgage-market developments.

5.3 INDEPENDENT KALMAN GAINS

The idea that learning can help create low-frequency dynamics in the observable variables turns out to be flawed, because
volatile transitory shocks are necessary for slow learning. The flaw is due to the assumption of model J that the speed of
learning, as captured by Kalman gains A;(p;, 0., 0,,), i € {y,kx,,Vv,¢}, is tied by equation (36) to the parameters of the
exogenous processes. In case of capital investment, this assumption seems to pay off because transitory and persistent shocks
create opposite responses in this variable, and learning helps wash them out. It does not pay off, however, for the house price,
which over-reacts to transitory shocks in case of learning. Itis interesting to see what can be done to simulate more house-price
inertia in the model with imperfect knowledge.

An interesting experiment is to assume that Kalman gains are independent of the parameters that guide the exogenous pro-
cesses. This means that economic agents, in addition to their inability to observe the individual components of the exogenous
processes, have a wrong idea about the true features of these processes.3° Let us consider model F with imperfect knowledge
and Kalman gains that are free parameters. To be precise, only the Kalman gains specific to technologies are assumed to be
free parameters; the rest of the processes are specified as before.?' | run a separate MCMC routine to estimate the posterior
p(01Z, F) of model F jointly for Kalman gains and the rest of the parameters and report the results in Table 2. Compared to
models P and 7, what is different about the technologies in the posterior?

One major difference is that for consumption- and housing-sector technologies, the new posterior is tilted towards relatively
large persistent components and small transitory components, and towards slower learning. To better illustrate the latter point,
Table 3 reproduces from Table 2 the moments of the posterior p(8|Z, F) for Kalman gains {1,} € 8 that are free parameters,
along with the moments for Kalman gains {4;(8)} that are constructed as functions of the parameters of technologies ac-
cording to equation (36) and for the posterior of the same model F. The table indicates that model F predicts Kalman gains
for consumption and housing technologies significantly lower than they should be according to the assumptions of model 7.
In other words, for consumption and housing technologies, model F features slow learning in case of persistent shocks and
transitory shocks that are much less volatile than would have been necessary for such slow learning under the assumptions
of model J. Naturally, these features should contribute to sluggish house-price dynamics, because these technologies are key
drivers of the house price (as shown by variance decomposition above).

As for capital technology, it becomes a process with a large transitory component and a very small persistent component. The
posterior distribution of the corresponding Kalman gain indicates that households do not interpret the shocks to be transitory

30| terms of Evans and Honkapohja (1999), this is the case when agents learn based on mis-specified perceived law of motion.

31t suffices to consider free Kalman gains only for technologies for the sake of the argument. It is also easier to interpret the fact that agents do not
know the true parameters of technologies than such processes as inter-temporal preferences or preferences for housing.
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Table 3
Posterior of Kalman gains in a model with free Kalman gains

LEB 1,(0)

Parameter Mean 95%-conf. int. Mean 95%-conf. int.

2, 0.103 (0.042,0.188) 0.983  (0.905, 0.999)
A 0.217  (0.205, 0.230) 0.006 (0.001,0.031)
A, 0.100 (0.026, 0.208) 0.989  (0.868, 0.999)

as quickly as they would had they known the true parameters of capital technology. This combination works to create inertia
in capital investment because of the above-described washing-out that happens upon both persistent and transitory capital-
technology shocks in case of learning.

Figure 7 shows that, compared to model 7, spectral density of the house price is significantly higher over low frequencies in
the posterior of model . The gains are significant over cycles longer than about 8 quarters. In addition, slow learning about
persistent shocks to consumption and housing technologies alters the low-frequency dynamics of aggregate consumption and
residential investment. The spectrum of aggregate consumption is significantly higher over cycles longer than 2.5 years. The
spectrum of residential investment is significantly higher over cycles longer than 3 years. The spectrum for capital investment
of model F does not look significantly different from that of model J.

Overall, the described modifications bring the estimated spectral densities closer to their non-parametric counterparts, which
can explain why the posterior odds are in favor of the model with independent Kalman gains. The logged posterior odds are 36
in favor of model F against model J. Like before, it is not clear how exactly these spectral modifications translate into higher
marginal likelihood, although the modifications brought to aggregate consumption and house price seem responsible. In the
end, the fact is that the kind of learning assumed in model F is capable of adding significant inertia to housing-market variables,
as well as other observables, and make the model with endogenous housing market a likelier data-generating process.

As learning helps add inertia to the house price, it does so for the other observable variables as well. Presumably, even if
the house price was not a part of the vector of observables, the outlined exercise would still reveal the posterior odds in
favor of imperfect knowledge and learning. It is a well-known fact that consumption and investment are not as volatile as
predicted by a general-equilibrium model without frictions, and learning performs well to slow down the simulated dynamics
of these variables. Yet, there are more traditional ways to control for the dynamics of consumption and investment. For
the sake of clear argument, the models presented above are limited in what lacoviello and Neri (2010) summarize as real
rigidities: consumption habits, capital utilization, capital-adjustment costs, etc. These elements could add to the model’s ability
to simulate low-frequency dynamics of consumption and investment in models with and without perfect knowledge. Hence,
learning would have less space to improve the dynamic features of these variables in the model, and the focus of its impact
would shift towards the housing-market variables. This conjecture deserves further investigation, although it seems that, real
rigidities or not, learning will be able to improve the dynamic properties of the model with respect to observable variables
other than the house price. Finally, the argument can be extended to say that the housing market can also be augmented with
non-informational frictions, which would also limit the scope of impact of learning on the house price. This point does not
impede the validity of learning as a mechanism to add inertia to the house price.



6 Conclusion

When shocks of different persistence are possible, it may take economic agents time to recognize and react to them, which
may add momentum to market prices. This is the key motivation to impose imperfect information and learning about the state
of the economy on a general-equilibrium model with the market for housing. Bayesian estimation against the last 40 years of
key U.S. data on housing and the aggregate economy reveals decisive evidence in favor of the model with learning. The major
impact of learning is on the dynamics of variables that respond oppositely to shocks of different persistence: learning protracts
the responses mainly through washing out their initial part. Investment variables are definitely the case; they gain a significant
low-frequency component from learning.

It seems, however, that the house price is not the case: under perfect information, it reacts similarly to shocks of different
persistence. As a result, learning mutes and protracts the house-price response to persistent shocks, but amplifies the response
to transitory shocks, which are necessary for slow learning to occur. As confirmed by spectral-density analysis, the combined
effect of these alterations on simulated house-price dynamics is rather weak. An unrestricted parameterization of learning
allows to have protracted responses to persistent shocks and virtually absent transitory shocks at the same time—a combination
that lets the model generate low-frequency dynamics of the house price that match the data well. Estimations indicate that
this combination is likely for shocks that drive the house price. In case of the Great Recession, this combination implies that
households were stubbornly optimistic after the onset of the crisis, which was why it took house prices so long to adjust.

Of course, there is space for improvement of the presented model’s ability to provide an adequate quantitative account of the
markets for housing and mortgages. Yet, it is already clear that the households’ lack of knowlegde about the nature of the
unfolding cycles should affect the optimal policies to tame the housing market.
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