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Abstract

This paper analyzes the e¤ects of monetary shocks in a DSGE model that allows for a general form
of smoothly state-dependent pricing by �rms. As in Dotsey, King, and Wolman (1999) and Caballero and
Engel (2007), our setup is based on one fundamental property: �rms are more likely to adjust their prices
when doing so is more valuable. The exogenous timing (Calvo 1983) and �xed menu cost (Golosov and
Lucas 2007) models are nested as limiting cases of our setup.

Our model is calibrated to match the steady-state distribution of price adjustments in microdata; realism
calls for �rm-speci�c shocks. Computing a dynamic general equilibrium requires us to calculate how the
distribution of prices and productivities evolves over time. We solve the model using the method of Reiter
(2008), which is well-suited to this type of problem because it combines a fully nonlinear treatment of
�rm-level state variables with a linearization of the aggregate dynamics.

We compute impulse responses to iid and autocorrelated money growth shocks, and decompose the
in�ation impact into �intensive margin�, �extensive margin� and �selection� components. Under our most
successful calibration, increased money growth causes a persistent rise in in�ation and output. The real
e¤ects are substantially larger if money growth is autocorrelated. In contrast, if we instead impose a �xed
menu cost speci�cation, money growth shocks cause a sharp spike in in�ation (via the selection component)
so that the real e¤ects are small and short-lived, especially if money growth is iid.

An increase in aggregate productivity raises consumption but causes labor to fall. Also, impulse responses
di¤er depending on the distribution at the time the shock occurs. In particular, increased money growth has
di¤erent e¤ects starting from the steady state distribution than it does if all �rms have recently received an
economy-wide productivity shock.

Keywords: Price stickiness, state-dependent pricing, stochastic menu costs, generalized (S,s), hetero-
geneous agents, distributional dynamics

JEL Codes: E31, E52, D81

1 Introduction1

Sticky prices are an important ingredient in modern dynamic general equilibrium models, including those used
by central banks for policy analysis. But how exactly to model price stickiness remains just as controversial
as ever. The Calvo (1983) model�s �xed probability of adjustment is popular for its analytical tractability, but
lacks the theoretical appeal of a microfounded framework immune to the Lucas critique. In an in�uential article,
Golosov and Lucas (2007) studied a model of price stickiness microfounded on the basis of �xed �menu costs�.
They calibrated their model to match certain moments of the distribution of price changes in US microdata,
and found only small and transitory real e¤ects of monetary shocks. The implication is that the larger real
e¤ects found under the Calvo setup are exaggerated and therefore misleading for policy purposes.
In this paper, we calibrate and simulate a general model of smoothly state-dependent pricing by �rms that

nests a variety of in�uential pricing models. As in Dotsey, King, and Wolman (1999) and Caballero and Engel

1The authors wish to thank Michael Reiter, Virgiliu Midrigan, Rudi Bachmann, Omar Licandro, and seminar participants at
the Vienna Institute for Advanced Studies, the European University Institute, ESSIM 2008, CEF 2008, REDg Madrid 2008, and
ASSET 2008 for helpful comments. We especially thank Virgiliu Midrigan, Etienne Gagnon, and Oleksiy Kryvstov for providing
their data. The views expressed in this paper are those of the authors and do not necessarily coincide with those of the Bank of
Spain or the Eurosystem.
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(2007), our setup rests on one fundamental property: �rms are more likely to adjust their prices when doing so
is more valuable. The Calvo and �xed menu cost models are nested as two opposite limiting special cases of our
framework. We calibrate our model to match the distribution of price adjustments found in recent US microdata
(Klenow and Kryvstov 2008; Midrigan 2008; Nakamura and Steinsson 2007), and in doing so we estimate a
parameter that controls the degree of state dependence of pricing behavior. Unlike Golosov and Lucas (2007),
our calibration is consistent with the fact that small price changes are common in the data, alongside frequent
large price adjustments (Midrigan 2008).2

Our impulse response analysis shows that increased money growth causes a persistent rise in both in�ation
and output, with real e¤ects only slightly weaker than those in the Calvo model. We show how to decompose
the impulse response of in�ation into three parts: the intensive margin (driven by changes in the average desired
price adjustment), the extensive margin (driven by changes in the fraction of �rms adjusting), and the selection
e¤ect (driven by changes in which �rms adjust). Under our baseline parameterization, about two-thirds of the
in�ation response to a money supply shock comes from the intensive margin, and most of the rest from the
selection e¤ect. Golosov and Lucas�(2007) �nding that uncorrelated money growth shocks have only a small
and transitory e¤ect on output derives from the strong selection e¤ect their model generates. But we �nd that
their speci�cation exaggerates the selection e¤ect because it implies a degree of state dependence inconsistent
with microdata. In particular, extreme state dependence is the same property that generates a sharply bimodal
distribution of price adjustments, which is why our estimate prefers milder state dependence.
Whereas Golosov and Lucas restrict attention to iid money growth shocks, we also study the autocorrelated

case. In all versions of the model, including the �xed menu cost speci�cation, making money shocks autocorre-
lated substantially increases their real e¤ects. However, the shape and persistence of the response is primarily
determined by the degree of state dependence, not by the degree of autocorrelation of the driving process. Thus
we �nd large di¤erences in behavior between our calibrated model and a �xed menu cost speci�cation, but little
di¤erence between the impact of autocorrelated and uncorrelated money shocks, except for a rescaling.
As many authors have emphasized, matching microdata on price adjustments makes it essential to allow for

�rm-speci�c shocks, and the presence of these shocks potentially changes the stickiness of prices. Idiosyncratic
shocks have other quantitatively important implications too: in particular, we �nd they imply that changes
in price dispersion have a �rst-order impact on productivity. But obviously, including �rm-speci�c shocks
complicates the analysis, because it implies a heterogeneous agent problem in which the entire distribution of
prices and productivities across �rms becomes a state variable. Methodologically, our main contribution is to
show how to characterize the general equilibrium dynamics using the algorithm of Reiter (2008). This method
is well suited for problems in which idiosyncratic shocks matter more to the individual decision maker than
aggregate shocks do, because it is fully nonlinear in idiosyncratic factors even though it imposes linearity in
aggregate factors. Moreover, it is easy to implement because each step in the calculation is a familiar numerical
procedure. First, it involves calculating the steady state equilibrium, which means solving a backwards induction
problem on a grid repeatedly until a �xed point for the aggregate price level is found. Second, the aggregate
dynamics are solved linearly, which can be done with standard methods (e.g. Klein 2000; Sims 2001) in spite
of the fact that this involves a very large system of equations representing values and densities at all points on
the grid.

1.1 Related literature

Few prior studies on state-dependent pricing have attempted to calculate a dynamic general equilibrium with
�rm-speci�c shocks. Instead, much research on how state-dependent pricing aggregates has looked at partial
equilibrium models, as in Caballero and Engel (1993, 2007) and Klenow and Kryvstov (2008). Some papers
have demonstrated surprising aggregation properties implied by special idiosyncratic shock processes, including
Caplin and Spulber (1987), Caplin and Leahy (1997), Gertler and Leahy (2005), and Damjanovic and Nolan
(2005). An important step forward to a more standard general equilibrium framework for state-dependent
pricing was taken by Dotsey, King, and Wolman (1999). But their solution method relied on reducing the
dimensionality of the aggregate state by ignoring idiosyncratic shocks, so that all �rms that adjust at a given
point in time choose the same price. While heterogeneity may average out in many macroeconomic contexts,
it is not so easily ignored in the debate over price stickiness, because �rm-level shocks could be crucial for

2 In the data, small and large adjustments coexist even within narrowly de�ned product categories.
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�rms�incentives to adjust prices. This makes it hard to draw unambiguous conclusions about the importance
of state-dependent pricing from the Dotsey et al. (1999) setup.
Golosov and Lucas (2007) were the �rst to confront these issues head on, studying a menu cost model in

general equilibrium with idiosyncratic productivity shocks, and they obtained a striking near-neutrality result.
There is some debate between Golosov and Lucas (2007) and Midrigan (2008) on one hand, and Caballero and
Engel (2007) on the other, as to whether this result is caused by selection e¤ects; we provide a quantitative
de�nition of the selection component which does, in fact, prove to be the main factor explaining monetary
near-neutrality in Golosov and Lucas�setup. We also extend Golosov and Lucas�work by comparing iid and
autocorrelated money growth shocks. Moreover, our solution method avoids making the assumption of constant
consumption that their solution required. While this assumption was roughly valid for the case they considered,
we show that it is violated under more general forms of state-dependent pricing and under autocorrelated money
growth shocks.
Several recent papers, like our own, have remarked that Golosov and Lucas�model generates a counterfactual

distribution of price adjustments in which small changes never occur. They have proposed some more complex
pricing models to �x this problem, including sectoral heterogeneity in menu costs (Klenow and Kryvstov, 2008),3

multiple products on the same �menu�combined with leptokurtic technology shocks (Midrigan, 2008), a mix
of �exible- and sticky-price �rms together with a mix of two distributions of productivity shocks (Dotsey, King,
and Wolman, 2008). While the latter two models are quite successful at matching the distribution of price
changes, we propose a much simpler approach: we just allow the probability of price adjustment to increase
smoothly with the value of adjustment (in contrast with the discontinuous jump in probability that occurs in
a �xed menu cost model). Implementing this approach requires us to impose some smooth family of functions
to represent the adjustment probability, and estimate its parameters. There are just three free parameters in
the family of functions we choose, but our success in reproducing the distribution of price changes is similar to
that of the aforementioned papers.4

Like us, Dotsey, King, and Wolman (2008) and Midrigan (2008) calculate general equilibrium dynamics.
Dotsey et al. (2008) build on their earlier (1999) model with identical �rms by adding �rst two possible
idiosyncratic states, then as many as �ve. They �nd that the non-monotonic impulse responses (�echo e¤ects�)
observed in their original model disappear as additional microstates are included. Their computational approach
is complicated by the need to keep track of how many �rms changed prices at each prior point in time and
in each possible idiosyncratic state. Midrigan (2008) instead computes general equilibrium dynamics by the
method of Krusell and Smith (1998). This method has several disadvantages. First, it requires a guess about
which moments of the distribution will best summarize shifts in the value function, which may not be obvious.5

Second, one must verify the guess numerically by solving Krusell and Smith�s �xed-point problem (mutual
consistency between the value function and the law of motion). Third, the inaction region in �xed menu
cost models implies that money supply shocks could have substantially di¤erent e¤ects starting from di¤erent
distributions that share the same mean, which calls into question the approximate aggregation property that
underpins the Krusell and Smith method.
Reiter�s (2008) method provides a more straightforward way of tackling the distributional dynamics of a

state-dependent pricing model. In contrast to Dotsey et al. (2008), it more fully exploits the recursive structure
of the model, simply keeping track of the distribution of prices and productivities, with no need to know who
adjusted when. In contrast to Krusell and Smith (1998), there is no need to search for an adequate summary
statistic for the distribution. In contrast to Den Haan (1997), there is no need to impose a speci�c functional
form on the distribution. We hope to convince the reader that by combining a standard backward-induction
problem with a standard linearization of the dynamics, Reiter�s method allows us to characterize distributional
dynamics in a way that is transparent to write down and straightforward to program, yet provides a thorough
recursive description of general equilibrium. At the same time, we show that none of the complications Dotsey
et al. and Midrigan tack on to the �xed menu cost framework are crucial for their most important �nding.
Simply smoothing out individual decisions su¢ ces to reproduce the distribution of price changes, and leads to
a calibration with substantial monetary non-neutrality. As in Dotsey et al. (2008) and Midrigan (2008), the

3Damjanovic and Nolan (2005) also study sectoral heterogeneity in menu costs, but they focus on explaining di¤erences in
frequency and timing of adjustment across sectors, whereas Klenow and Kryvstov (2008), like us, attempt to reproduce the
distribution of price adjustments.

4Our model also behaves well in the face of large changes in the steady state in�ation rate: see our companion paper, Costain
and Nakov (2008).

5Midrigan�s summary statistic is the cross-sectional mean of the product of the lagged price with current productivity.
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e¤ects of money growth shocks in our model resemble those of the Calvo framework much more than those
found under �xed menu costs.

2 Partial equilibrium: the �rm�s problem

We begin by explaining how we model price stickiness. For this purpose, it su¢ ces to study the partial equi-
librium problem of a monopolistically competitive �rm. Later we will show how our �rm�s problem �ts into an
otherwise-standard dynamic stochastic general equilibrium.
Klenow and Kryvstov (2008) and Golosov and Lucas (2007) have argued convincingly that �rms often su¤er

large idiosyncratic shocks. Thus, if they are fully rational, fully informed, and capable of frictionless adjustment,
�rms will adjust their prices every time a new shock is realized. We instead assume prices are �sticky�, in a
well-de�ned sense: the probability of adjusting is less than one, but is greater when the bene�t from adjusting
is greater. The adjustment bene�t is calculated from the �rm�s Bellman equation: there is a value associated
with optimally choosing a new price today (while bearing in mind that prices will not always be adjusted in the
future); likewise there is a value associated with leaving the current price unchanged today (likewise bearing in
mind that prices will not always be adjusted in the future). The di¤erence between these two is the adjustment
bene�t (or the loss from failing to adjust). The function � (L) that gives the adjustment probability in terms of
the loss L from failing to adjust is taken as a primitive of the model. We will choose a speci�cation for � that
makes it easy to nest di¤erent models by appropriately setting a few parameters.
There are at least two ways of interpreting this framework. It could be seen as a model of stochastic

menu costs, as in Dotsey, King, and Wolman (1999) or Caballero and Engel (1999). If rational, fully-informed
�rms draw an iid adjustment cost x every period, with cumulative distribution function � (x), then they will
adjust their behavior whenever the adjustment cost x is less than or equal to the loss L from failing to adjust.
Therefore, their probability of adjustment is � (L) when the loss from nonadjustment is L.
But perhaps this is an unnecessarily literal interpretation of the model. Alternatively, as in Akerlof and

Yellen (1985), �stickiness� can be seen as a minimal deviation from rational expectations behavior, in which
�rms sometimes fail to react to changed conditions if the cost of such errors is small. Perhaps failure to adjust
occurs because information itself is �sticky�(as in Reis, 2006); or perhaps because managers face information
processing constraints (as in Woodford 2008); rather than taking a stand on this, we just regard our assumption
as an axiom to be imposed on near-rational, near-full-information behavior. Our framework stays close to full
rationality both because we can choose a � function that is close to one for most L, and more importantly
because large mistakes are less likely than trivial ones, allowing us to deviate smoothly from the standard
rational case to nest and compare other nearby forms of behavior.

2.1 The monopolistic competitor�s decision

Suppose then, following Golosov and Lucas (2007), that each �rm i produces output Yit under a constant returns
technology, with labor Nit as the only input, and faces an idiosyncratic productivity process Ait:

Yit = AitNit

Firms are monopolistic competitors, facing the demand curve Yit = #tP
��
it , where #t represents aggregate

demand, and we assume they ful�ll all demand at the price they set. They hire in competitive labor markets
at wage rate Wt, so per-period pro�ts are

�it = PitYit �WtNit =

�
Pit �

Wt

Ait

�
#tP

��
it

We call the aggregate state of the economy 
t. There is no need to specify the structure of 
t yet, except to
say that it is a Markov process which determines the aggregate endogenous variables: #t = # (
t),Wt =W (
t).
Idiosyncratic productivity Ait is driven by an unchanging Markov process, iid across �rms and unrelated to

t. Thus Ait is correlated with Ait�1 but is uncorrelated with all other shock processes in the model. There
is nothing essential about our assumption that variations in demand are related to aggregate conditions, with
idiosyncratic shocks to productivity only; we focus on this case only for consistency with related papers (e.g.
Golosov and Lucas, 2007, and Reis, 2006) and to keep notation simple. It could be interesting in the future to
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distinguish between shocks to demand and productivity both at the �rm and at the aggregate level for greater
quantitative realism, but for our current purpose of investigating the relevance of state dependence for price
stickiness this seems unimportant.
To implement our assumption that adjustment is more likely when it is more valuable, we must de�ne the

values of adjustment and nonadjustment. If a �rm fails to adjust (so that Pit = Pit�1), then its current pro�ts
and its future prospects will both depend on its productivity Ait and on its price Pit. Therefore these both
enter as state variables in the value function of a nonadjusting �rm, V (Pit; Ait;
t), which also depends on the
aggregate state of the economy. When a �rm adjusts, we assume it chooses the best price conditional on its
current productivity shock and on the aggregate state. Therefore, the value function of an adjusting �rm, after
netting out any costs that may be required to make the adjustment, is just V �(Ait;
t) � maxP 0 V (P 0; Ait;
t).
The value of adjusting to the optimal price, written in the same units as the value function, is then

D(Pit; Ait;
t) � max
P 0

V (P 0; Ait;
t)� V (Pit; Ait;
t) (1)

Of course, we don�t want the adjustment probability to di¤er when values are denominated in euros instead
of pesetas. In order to take the function � that maps the value of adjusting into the probability of adjusting
as a primitive of the model, we must be sure to write it in the appropriate units. Under either interpretation
of the model, the most natural units are those of labor time. Under the stochastic menu cost interpretation,
the labor e¤ort of changing price tags or rewriting the menu is likely to be a large component of the cost.
Under the bounded rationality interpretation, even though we don�t explicitly model the computation process,
we suppose the adjustment probability is related to the labor e¤ort associated with obtaining new information
and/or recomputing the optimal price.6 Therefore, the function � should depend on the loss from failing to
adjust, converted into units of labor time by dividing by the wage rate. That is, the probability of adjustment
is � (L (Pit; Ait;
t)), where L (Pit; Ait;
t) =

D(Pit;Ait;
t)
W (
t)

and � is a given weakly increasing function which we
take as a primitive of the model.
For clarity, we will distinguish between the �rm�s beginning-of-period price, ePit � Pit�1, and the price at

which it produces and sells at time t, Pit, which may or may not di¤er from ePit. Adjustments occurs with
state-dependent probability �:

Pit =

8<: P �(Ait;
t) � argmaxP 0 V (P 0; Ait;
t) with probability �
�
D( ePit;Ait;
t)

W (
t)

�
ePit � Pi;t�1 with probability 1� �

�
D( ePit;Ait;
t)

W (
t)

�
The function � must satisfy �0 � 0. In particular, we will consider the class

� (L) � �

�+ (1� �)
�
�
L

�� (2)

with � and � positive, and � 2 [0; 1]. This function equals � when L = �, and is concave for � � 1 and
S-shaped for � > 1. It has fatter tails than the normal cdf, which may help it match the fat tails of the observed
adjustment distribution emphasized by Midrigan (2008).
Note that the parameter � can be interpreted as controlling the degree of state dependence. The value of

adjustment, L, is the summary statistic relevant for determining whether or not a �rm should adjust. In the
limit � = 0, our model nests that of Calvo (1983), with � (L) = �, so that literally speaking the adjustment
probability is independent of the relevant state. At the opposite extreme, our setup nests a �xed menu cost
model. Taking the limit as � !1, � (L) becomes the indicator function 1 fL � �g, which has value 1 whenever
L � � and is zero otherwise. This has very strong state dependence, in the sense that the adjustment probability
jumps from 0 to 1 when the state L passes threshold �. Under all intermediate values of �, the probability
increases smoothly as a function of the state L. In this sense, choosing � to match microdata means determining
what degree of state dependence is most consistent with observed �rm behavior.
We are now ready to write the Bellman equation that de�nes the value of producing at any given price. It

di¤ers somewhat depending on whether we impose the stochastic menu cost interpretation of our model or the

6Studies of the managerial costs of price adjustment, like Zbaracki et al. (2005), naturally start by calculating all costs in units
of labor time, even if these are then converted to dollar values.
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bounded rationality interpretation; we begin with the latter because it is slightly simpler. Given the �rm�s price

P and its productivity shock A, current pro�ts are
�
P � W (
)

A

�
#(
)P��. The �rm anticipates adjusting or

not adjusting in the next period depending on the bene�ts of adjusting at that time. Therefore, using primes
to denote next period�s values, the Bellman equation is:

V (P;A;
) =

�
P � W (
)

A

�
#(
)P�� +

+ E
n
Q (
;
0)

h�
1� �

�
D(P;A0;
0)
W (
0)

��
V (P;A0;
0) + �

�
D(P;A0;
0)
W (
0)

�
max
P 0

V (P 0; A0;
0)
i���A;
o

where Q (
;
0) is the �rm�s stochastic discount factor and the expectation refers to the distribution of A0 and

0 conditional on A and 
. Note that on the left-hand side of the Bellman equation, and in the term that
represents current pro�ts, P refers to a given �rm i�s price Pit at the time of production. In the expectation on
the right, P represents the price ePi;t+1 at the beginning of period t+ 1, which may (probability �) or may not
(probability 1� �) be adjusted prior to time t+ 1 production.
Making the rearrangement (1� �)V + �maxV = V + �(maxV � V ) allows us to simplify the Bellman

equation substantially on the right-hand side. We notice that the terms inside the expectation represent the
value of continuing without adjustment, plus the �ow of gains due to adjustment. The Bellman equation
becomes:
Bellman equation in partial equilibrium, with aggregate shocks:

V (P;A;
) =

�
P � W (
)

A

�
#(
)P�� + E fQ (
;
0) [V (P;A0;
0) +G(P;A0;
0)]jA;
g (3)

where

G(P;A0;
0) � �
�
D(P;A0;
0)

W (
0)

�
D(P;A0;
0) (4)

represents the expected gains due to adjustment.
This model represents a computational challenge, because the wage, the aggregate demand factor, the

stochastic discount factor, and therefore also the value function all depend on the aggregate state 
. In
general equilibrium, at any time t, there will be many �rms i facing di¤erent idiosyncratic shocks Ait and stuck
at di¤erent prices Pit. The state of the economy will therefore include the entire distribution of prices and
productivities. The reason for the popularity of the Calvo model is that even though �rms have many di¤erent
prices, up to a �rst-order approximation only the average price matters for equilibrium. Unfortunately, this
property does not hold in general, and in the current context, we need to treat all equilibrium quantities explicitly
as functions of the distribution of prices and productivity across the economy. To calculate equilibrium, we
therefore need an algorithm that takes account of the distributional dynamics.
We attack this problem by implementing Reiter�s (2008) solution method for dynamic general equilibrium

models with heterogeneous agents and aggregate shocks. The �rst step in Reiter�s algorithm is to calculate the
steady state general equilibrium that obtains in the absence of aggregate shocks. Idiosyncratic shocks are still
active, but are assumed to have converged to their ergodic distribution, so an aggregate steady state means
that 
, W , and # are all constant.7 We indicate the steady state by dropping 
 as an argument of the value
function and other equilibrium objects, so the Bellman equation can be written as:
Bellman equation in partial equilibrium steady state :

V (P;A) =

�
P � W

A

�
#P�� +R�1E fV (P;A0) +G (P;A0) jAg (5)

Here R�1 is the steady state of the stochastic discount factor Q, and

G(P;A0) � �
�
D(P;A0)

W

�
D(P;A0); D(P;A0) � max

P 0
V (P 0; A0)� V (P;A0) (6)

This steady state Bellman equation is a standard dynamic programming problem, except for the timing of the
max operator. A natural solution method is backwards induction on a two-dimensional grid � � �P � �A,

7More precisely, we allow these variables to have a nominal trend, and search for a steady state in real terms. Detrending is
discussed in Sec. 3.5.
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where �P is a �nite grid of possible values of Pi, and �A is a grid of possible values of Ai. However, before we
de�ne notation that con�nes the dynamics to a grid, it is useful to describe the general equilibrium and detrend
the model with respect to money growth, leaving all quantities in real terms.

2.2 Alternative sticky price frameworks

As we have stressed, our model can nest a number of alternative pricing frameworks, either by changing the
parameters or the functional form of the adjustment probability �, or by rede�ning the gains function G. All
the following cases are then nested in a Bellman equation of form (3).

1. Calvo pricing: Suppose prices adjust each period with probability ��, where �� is an exogenous constant.
Then the Bellman equation is the same as (3), if we set �(D=W ) � ��. This is the special case of (2) in
which � = 0.

2. Fixed menu costs: Suppose it costs � units of labor to adjust prices in any given period, where �
is an exogenous constant called the �menu cost�. Then the Bellman equation is given by (3), with
G = �(D=W )D replaced by G = 1 fD � �Wg (D � �W ), where 1 fD � �Wg is an indicator function
taking value one when D � �W and zero otherwise. In this case the function � has form (2), with � = �
and � =1.

3. Stochastic menu costs: Suppose it costs � units of labor to adjust prices in any given period, where � is
an i.i.d. random variable with c.d.f. �(�). Then the Bellman equation is given by (3), with G = �(D=W )D
replaced by G = �(D=W )[D �WE(�jD > �W )].

4. Information-constrained pricing: Woodford (2008) proposes a model in which managers decide on
when to review a price based on imprecise awareness of current market conditions. His model implies the
following adjustment probability function:

� (D=W ) � �

�+ (1� �) exp (�(D=W � �))
(7)

where � is a �xed cost of purchasing information, and ��1 represents the marginal cost of information.

3 General equilibrium

We next embed this partial equilibrium decision framework in an otherwise standard New Keynesian general
equilibrium, following the setup of Golosov and Lucas (2007). In addition to the �rms, there is a representative
household and a monetary authority that chooses the money supply.

3.1 Households

The household�s period utility function is

u(Ct)� x(Nt) + v (Mt=Pt)

where u and v are increasing, concave functions, and x is an increasing, convex function. Utility is discounted
by factor � per period. Consumption Ct is a Spence-Dixit-Stiglitz aggregate of di¤erentiated products:

Ct =

�Z 1

0

C
��1
�

it di

� �
��1

(8)

Nt is labor supply, and Mt=Pt is real money balances. The household�s period budget constraint isZ 1

0

PitCitdi+Mt +R
�1
t Bt =WtNt +Mt�1 + Tt +Bt�1 +�t (9)
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where
R 1
0
PitCitdi is total nominal spending on the di¤erentiated goods. Bt is nominal bond holdings, with

interest rate Rt � 1; Tt represents lump sum transfers received from the monetary authority, and �t represents
dividend payments received from the �rms.
Households choose fCit; Nt; Bt;Mtg1t=0 to maximize expected discounted utility, subject to the budget con-

straint (9). Optimal allocation of consumption across di¤erentiated goods implies

Cit = (Pt=Pit)
�Ct (10)

where Pt is the following price index:

Pt �
�Z 1

0

Pit
1��di

� 1
1��

(11)

This means we can rewrite nominal spending as PtCt =
R 1
0
PitCitdi.8 Optimal labor supply and money holdings

imply the �rst-order conditions

x0(Nt) = u0(Ct)Wt=Pt (12)

v0
�
Mt

Pt

�
= u0(Ct)(1�R�1t ) (13)

and the Euler equation is

R�1t = �Et

�
Ptu

0(Ct+1)

Pt+1u0(Ct)

�
(14)

3.2 Monetary policy

We assume the growth rate of the money supply follows an exogenous stochastic process:

Mt = �tMt�1 (15)

where �t = � exp(zt), and zt is AR(1):
zt = �zzt�1 + �

z
t (16)

Here 0 � �z < 1 and �zt � i:i:d:N(0; �2z) is a money growth shock. Thus the money supply trends upward by
approximately factor � � 1 per period on average.
Seigniorage revenues are paid to the household as a lump sum transfer, and the government budget is

balanced each period. Therefore the government�s budget constraint is

Mt =Mt�1 + Tt

3.3 Aggregate consistency

Bond market clearing is simply Bt = 0. Market clearing for good i implies the following demand and supply
relations for �rm i:

Yit = AitNit = Cit = P
�
t CtP

��
it (17)

Also, total labor supply must equal total labor demand:

Nt =

Z 1

0

Cit
Ait

di = P �t Ct

Z 1

0

P��it A
�1
it di � �tCt (18)

Labor market clearing condition (18) also de�nes a weighted measure of price dispersion, �t � P �t
R 1
0
P��it A

�1
it di,

which generalizes the dispersion measure in Yun (2005) to allow for heterogeneous productivity. As in Yun�s
paper, an increase in �t decreases the consumption goods produced per unit of labor, e¤ectively acting like a
negative shock to aggregate productivity.9

8One of the preceding equations is super�uous: (10) plus (8) implies (11), and likewise (10) plus (11) implies (8).
9Dorich (2007) also introduces a heterogeneity-adjusted dispersion measure that acts like an aggregate productivity shock.
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At this point, we have spelled out all equilibrium conditions, so we are ready to consider how to de�ne the
aggregate state variable 
t. To do so, it helps to distinguish idiosyncratic states (prices and productivities)
before price adjustment from those after adjustment. Thus we again use the notation ePit to refer to �rm i�s price
at the beginning of period t, prior to adjustment, and Pit to indicate the price at which it actually produces.
Likewise, we indicate the distribution of beginning-of-period prices and productivities as e�t( ePit; Ait), writing
the distribution of prices and productivities at the time of production as �t(Pit; Ait).
The aggregate state of the economy at time t depends, among other things, on the money supply Mt. Since

the growth rate of money is AR(1) over time, the latest deviation in growth rates, zt, is a state variable too. For
any given �rm i, the individual state variables that are relevant for time t decisions are the beginning-of-period
price and productivity ( ePit; Ait). Thus one possible de�nition of the time t aggregate state is 
t � (Mt; zt; e�t):
Mt and zt are a su¢ cient statistic for the Markov process driving the money supply, and e�t is the beginning-of-t
distribution of idiosyncratic states.
However, this is not the only possible de�nition of the aggregate state. Nominal prices are unadjusted

between the time of production in t� 1 and the beginning of t, so the distributions �t�1 and e�t di¤er only due
to the exogenous Markov process that drives idiosyncratic productivity. In other words, �t�1 is known if and
only if e�t is known. Therefore an alternative representation of the time t aggregate state is


t � (Mt; zt;�t�1) (19)

This is the representation of the aggregate state that we will actually use, because it turns out to be algebraically
convenient. As we will see in Section 5.1, representation (19) allows us to de�ne the full dynamic equilibrium
equation system in a form that substitutes out many variables and equations.

3.4 The �rm�s problem in general equilibrium

The setup of sections 3.1-3.3 holds regardless of how �rms set prices. That is, regardless of the price-setting
mechanism, Ct, Nt, Pt, Wt, Rt, Cit, Pit, and Mt must obey equations (8) - (18). In particular, to make the
�rm�s problem (3) consistent with the goods market clearing conditions (17), the aggregate demand shift factor
must be

#(
) = C(
)P (
)� (20)

Also, we assume that the representative household owns the �rms, so the stochastic discount factor in the �rm�s
problem must be consistent with the household�s Euler equation (14). Therefore the appropriate stochastic
discount factor is

Q(
;
0) = �
P (
)u0(C(
0))

P (
0)u0(C(
))
(21)

To write the �rm�s problem in general equilibrium, we simply plug (20) and (21) into the �rm�s problem (3).
Showing time subscripts for transparency, the value of producing with price Pit and productivity Ait is
Bellman equation in general equilibrium :

V (Pit; Ait;
t) =

�
Pit �

W (
t)

Ait

�
C(
t)P (
t)

�P��it + (22)

+ �Et

�
P (
t)u

0(C(
t+1))

P (
t+1)u0(C(
t))
[V (Pit; Ai;t+1;
t+1) +G(Pit; Ai;t+1;
t+1)]

����Ait;
t�
where G(Pit; Ai;t+1;
t+1) has the form described in (4) or one of the forms associated with the alternative
sticky price frameworks mentioned in Section 2.2.

3.5 Detrending

So far we have written the value function and all prices in nominal terms, but it is natural to assume that
we can rewrite the model in real terms. Thus, suppose we de�ate all prices by the nominal money stock,
de�ning pt � Pt=Mt, pit � Pit=Mt, and wt �Wt=Mt. Given the nominal distribution �t(Pi; Ai) and the money
stock Mt, let us denote by 	t(pi; Ai) the distribution over real production prices pit � Pit=Mt. Likewise, lete	t(epi; Ai) be the distribution of real beginning-of-period prices epit � ePit=Mt, in analogy to the beginning-of-
period distribution of nominal prices e�t( ePi; Ai). If the model can be rewritten in real terms, then the level
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of the money supply, Mt, must be irrelevant for determining real quantities. Therefore, to describe the real
equilibrium, it su¢ ces to condition on the real state variable �t � (zt;	t�1), instead of the full nominal state

t � (Mt; zt;�t�1).10 The �real� value function v should likewise be the nominal value function, divided by
the current money stock, and should be written as a function of real variables. That is,

V (Pit; Ait;
t) =Mtv

�
Pit
Mt
; Ait;�t

�
=Mtv (pit; Ait;�t)

De�ating in this way, the Bellman equation can be rewritten as follows (see the appendix for details).
Detrended Bellman equation, general equilibrium :

v(pit; Ait;�t) =

�
pit �

w(�t)

Ait

��
pit
p(�t)

���
C(�t) +

�Et

�
p(�t)u

0(C(�t+1))

p(�t+1)u0(C(�t))

�
v

�
pit
�t+1

; Ai;t+1;�t+1

�
+ g

�
pit
�t+1

; Ai;t+1;�t+1

������Ait;�t�
where

g

�
pit
�t+1

; Ai;t+1;�t+1

�
� �

�
d(pit=�t+1;Ai;t+1;�t+1)

w(�t+1)

�
d

�
pit
�t+1

; Ai;t+1;�t+1

�
d

�
pit
�t+1

; Ai;t+1;�t+1

�
� max

p0
v(p0; Ai;t+1;�t+1)� v

�
pit
�t+1

; Ai;t+1;�t+1

�
Let p�(Ai;t+1;�t+1) denote the optimal choice in the maximization problem above. Taking into account the
fact that the �rm starts period t+ 1 with the eroded price epi;t+1 � pit=�t+1, the real price process is

pi;t+1 =

8>><>>:
p�(Ai;t+1;�t+1) with probability �

�
d(pit=�t+1;Ai;t+1;�t+1)

w(�t+1)

�
pit
�t+1

with probability 1� �
�
d(pit=�t+1;Ai;t+1;�t+1)

w(�t+1)

�
:

In other words, when the �rm�s nominal price remains unadjusted at time t + 1, its real price is de�ated by
factor �t+1.

4 Computing general equilibrium: steady state

4.1 Discrete numerical model

For computational purposes, we next approximate the economy by assuming that individual states, in real terms,
always lie on a �nite grid.11 This allows us to solve the �rm�s problem numerically by backwards induction.
This procedure is entirely standard, but we will spell out the details, both to see how it nests into the general
equilibrium and in order to clarify our calculations later when we study the e¤ects of aggregate shocks.
Thus, consider the two-dimensional grid � � �p��a, where �p � fp1; p2; :::p#pg is a logarithmically-spaced

grid of possible values of pi, and �a � fa1; a2; :::a#
ag is a logarithmically-spaced grid of possible values of Ai.

It is now natural to treat the distributions as matrices e	 and 	 of size #p �#a, in which the row j, column
k elements, called e	jk and 	jk, represent the fraction of �rms in state (pj ; ak) at the beginning of the period
and at the time of production, respectively. From here on, we frequently use bold face to identify matrices, and
superscripts to identify notation related to grids.

10The de�ation factor for real prices between periods t� 1 and t is known if zt is known. Therefore if zt is known, knowing the
real distribution at the time of production in period t � 1, 	t�1, is equivalent to knowing the real distribution at the beginning
of t, e	t. So the real aggregate state at time t can be de�ned as (zt; e	t) or (zt;	t�1), but the latter turns out to be algebraically
convenient, as we will see in Section 5.1.
11Reiter (2008) calls his computational method "projection and perturbation". In this subsection we are implementing the

"projection" step, by projecting our in�nite-dimensional economy onto an approximately equivalent �nite-dimensional economy.
The "perturbation" step is the linearization of the aggregate dynamics, as discussed in subsection 5.1.
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Likewise, we can write the value function as a #p �#a matrix V of values vjk � v(pj ; ak) associated with
the prices and productivities

�
pj ; ak

�
2 �. We can construct splines to evaluate the value function at points

p =2 �p o¤ the price grid, when necessary. In particular, we de�ne the policy function

p�(A) � argmax
p
v(p;A) (23)

without requiring that it be chosen from the grid �p, because our solution method requires policies to vary
smoothly with aggregate conditions.12 We will write the policies at the productivity grid points ak 2 �a as
a row vector p� �

�
p�1:::p�#

a	 � �
p�(a1):::p�(a#

a

)
	
. We also de�ne several other #p � #a matrices: the

adjustment values D, the probabilities �, and the expected gains G, with (j; k) elements given by13

djk � max
p
v(p; ak)� vjk (24)

�jk � �
�
djk=w

�
(25)

gjk � �jkdjk (26)

We can now write the discrete Bellman equation and the discrete distributional dynamics in a precise way.
The dynamics involve three transitions. First, suppose a �rm has beginning-of-t price epit = pj 2 �p and
productivity Ait = ak 2 �a. This �rm will adjust its production price to pit = p�k with probability �

jk, or will
leave it unchanged (pit = epit = pj) with probability 1� �jk. If adjustment occurs, we maintain our grid-based
approximation by rounding p�k up or down stochastically to the nearest grid points. To be precise, suppose
p�k lies between grid points l � 1 and l, that is, pl�1 < p�k � pl. Then we round p�k up to pl with probability
(p�k � pl�1)=(pl � pl�1), and down to pl�1 with probability (pl � p�k)=(pl � pl�1). This transition can be
summarized in matrix notation. Let EIJ be an I � J matrix of ones. Assume �p is chosen wide enough so that
p1 < p�k < p#

p

for all k 2 f1; 2; :::#ag. Then for each k, de�ne l(k) so that pl(k) = minfp 2 �p : p � p�kg.
This allows us to de�ne a #p �#a matrix P that rounds the policy function stochastically up or down to the
nearest grid points:

P �

8><>:
pl(k)�p�k

pl(k)�pl(k)�1 in column k; row l(k)� 1
p�k�pl(k)�1
pl(k)�pl(k)�1 in column k; row l(k)

0 elsewhere

(27)

Then we can calculate distribution 	t from e	t as follows:

	t = (E#p#a��) : � e	t +P : � (E#p#p � (� : � e	t)) (28)

where (as in MATLAB) the operator :� represents element-by-element multiplication, and � represents ordinary
matrix multiplication.
The second step in the distributional dynamics is to adjust real prices to take account of steady state money

growth. Ignoring grids, the time t price pit is de�ated to epi;t+1 � pit=� at the beginning of t+1. To keep prices
on the grid, we de�ne a #p �#p Markov matrix R in which the row m, column l element is

Rml � prob(epi;t+1 = pmjpit = pl)
When epi;t+1 falls between two grid points, matrix R must round up or down stochastically. When epi;t+1 moves
down past the least element of the grid, matrix R must round up to keep prices on the grid.14 Therefore we
construct R according to

Rml = prob(epi;t+1 = pmjpit = pl) =
8>>><>>>:
1 if ��1pl � p1 = pm
��1pl�pm�1

pm�pm�1 if p1 < pm = minfp 2 �p : p � ��1plg
pm+1���1pl
pm+1�pm if p1 � pm = maxfp 2 �p : p < ��1plg
0 otherwise

(29)

12Ensuring di¤erentiability of all equilibrium objects is discussed in Appendix B.
13The max in (24), like the argmax in (23), ignores the grid �p so that djk varies smoothly in response to any shift in the value

function.
14 In other words, we assume that any nominal price that would have a real value less than p1 after detrending by the money

stock is automatically adjusted upwards so that its real value is p1. This assumption is made for numerical purposes only, and has
a negligible impact on the equilibrium as long as we choose a su¢ ciently wide grid �p. If we were to compute examples with trend
de�ation, we would need to make an analogous adjustment to prevent real prices from exceding the maximum grid point p#

p
.
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The third and �nal step in the distributional dynamics is to take into account the Markov matrix S that
governs the idiosyncratic productivity shocks Ai. The rowm, column k element of S is the exogenous probability

Smk = prob(Ai;t+1 = a
mjAit = ak)

Combining the second and third steps, we can calculate the beginning-of-period distribution e	t+1 at t+1 as a
function of the time t distribution of production prices 	t:e	t+1 = R �	t � S0 (30)

The simplicity of this equation comes partly from the fact that the exogenous shocks to Ai;t+1 are independent
of the in�ation adjustment that links epi;t+1 with pit. Also, exogenous shocks are represented from left to right
in the matrix 	t, so that their transitions can be treated by right multiplication, while policies are represented
vertically, so that transitions related to policies can be treated by left multiplication.
The same transition matrices show up when we write the Bellman equation in matrix form. Let U be the

#p �#a matrix of current payo¤s, with elements

ujk =
�
pj � w

ak

�
C

�
pj
p

���
(31)

for
�
pj ; ak

�
2 �. Then the Bellman equation is

Steady state general equilibrium Bellman equation, matrix version :

V = U+ �R0 � (V +G) � S (32)

Since the Bellman equation iterates backwards in time, it involves probability transitions represented by R0 and
S, whereas the distributional dynamics iterate forward in time and therefore contain R and S0.
Finally, in addition to these matrix equations, there are four scalar equations relating to �rst-order conditions

and aggregate consistency conditions:

u0(C) =
px0(N)

w
(33)

1� v
0(1=p)

u0(C)
= �=� (34)

N =

#pX
j=1

#aX
k=1

	jk
�
pj

p

���
C

ak
(35)

p1�� =

#pX
j=1

#aX
k=1

	jk
�
pj
�1��

(36)

Equations (23)-(36) fully describe the steady state general equilibrium. The unknowns are the matrices V, D,
�, G, P, R, U, 	, and e	; the vector p�; and the scalars w, p, N , and C.
While this seems like a huge system of equations, it is easy to solve because it reduces to a small scalar

�xed-point problem. We solve it under linear labor disutility, x(N) = �N . In this case, guessing p permits us to
calculate w and C analytically from equations (33) and (34). We can then construct matrix U from (31), so we
are ready to solve the Bellman equation (32) to �nd V and P. We then �nd the steady state price distributions
	 and e	 from (28) and (30). Knowing distribution 	, we can calculate the price level p from (36). Thus,
�nding a �xed point in p allows us to construct the entire steady state equilibrium.15

15 If labor disutility is nonlinear, the problem is only slightly harder: it reduces to a two-dimensional �xed-point problem in p
and N .
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4.2 Results: steady state

This steady state model can be calibrated by comparing its predictions to cross-sectional data on price changes,
like those reported in Klenow and Kryvstov (2005), Midrigan (2008), and Nakamura and Steinsson (2007). In
a companion paper, Costain and Nakov (2008), we report detailed results from a variety of speci�cations, and
compare the model�s behavior under low and high steady-state in�ation rates. Here we simply brie�y discuss
our preferred estimate from that paper, which minimizes an equally-weighted sum of two terms: the absolute
di¤erence between the mean adjustment frequency in the model and that in the data, plus the distance between
the histogram of price changes in the model and that in the data. We will simulate our model at monthly
frequency, for consistency with the results reported in the empirical literature. Also, since these papers all
attempt to remove price changes attributable to temporary �sales�, our simulation results should be interpreted
as a model of �regular�price changes unrelated to sales.
We take our utility parameterization from Golosov and Lucas (2007). Hence, we set the discount factor to

� = 1:04�1 per year; consumption utility is CRRA, u(C) = 1
1�
C

1�
 , with 
 = 2. Labor disutility is linear,
x(N) = �N , with � = 6. The utility of real money holdings is logarithmic, v(m) = � log(m), with � = 1. The
elasticity of substitution in the consumption aggregator is � = 7. The steady state growth rate of money is set
to zero, consistent with the zero average price change found in the AC Nielsen dataset used to estimate the
model.
Given these utility parameters, we estimate the idiosyncratic productivity shock process and the adjustment

process to match data on the distribution of regular price changes. We assume productivity is AR(1) in logs:16

logAit = � logAit�1 + "
a
it

where "ait is a mean-zero, normal, iid shock. There are two free parameters of the productivity process: � and
�2", the variance of "

a
it, while the adjustment process has three free parameters, �; �; and �, in the function class

we have imposed,

� (L) � �

�+ (1� �)
�
�
L

�� :
Table 1 reports our preferred estimate from Costain and Nakov (2008), (labelled SDSP, for �state-dependent

sticky prices�), together with evidence from four empirical studies. It also reports a Calvo (1983) version of
the model, a �xed menu cost version (as in Golosov and Lucas 2007, labelled �MC�), and a version based
on Woodford�s (2008) adjustment function (7). Each of them is estimated to best �t the size distribution of
price adjustments in the AC Nielsen data, and to match Nakamura and Steinsson�s (2007) measure of the
median frequency of price adjustments (which is lower, but presumably more robust, than measures based on
means). All versions of the model match the target adjustment frequency of 10% per month almost exactly.
Our preferred estimate also does a good job of hitting the moments of the distribution of price adjustments.
The mean absolute price change is 10% in the model, and 10.5% in the data; the median is slightly lower in
both cases because the distribution has fat tails. In the model, the standard deviation of the distribution of
price changes is 11.8%, and the kurtosis is 2.7; in the data they are 13.2% and 3.5. Half of all price adjustments
in the data are increases, and we obtain very nearly the same �gure in the model.
Figure 1 graphs a variety of objects that characterize the stationary equilibrium under the SDSP spec-

i�cation.17 In the �rst plot we see the value function, as a function of prices and marginal cost (one over
productivity); the lowest value occurs when the highest marginal cost is paired with the lowest price. The
fourth and sixth plots show the distributions e	 at the beginning of the period and 	 at the time of production.
The production distribution 	 looks rather like a sail-backed dinosaur: the �sail�represents the mass of �rms
that have adjusted to the optimal price conditional on current productivity. At the beginning of the next period,
this mass gets spread out by the productivity shock process, resulting in the smooth distribution e	 seen in
the fourth graph. Graphing the policy function in the eighth plot shows that the �rm sets prices closer to the
mean than would be the case under �exible prices, in anticipation of mean reversion of the technology process.

16Our numerical method requires us to treat A as a discrete variable, so we use Tauchen�s method (Mertens, 2006) to approximate
this AR(1) process on the discrete grid �a. We use a grid of 201 points representing �ve standard deviations of A: The price grid
�p also contains 201 logarithmically-spaced points, which results in price steps of 0.74%.
17As far as we can tell, steady state equilibrium is unique (both under our baseline speci�cation, and for the Calvo and �xed

menu cost cases). Large changes in the initial guess for p and/or the terminal value from which backward induction begins do not
change the �xed point to which our steady-state solution algorithm converges.
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The last graph shows the distribution of nominal price adjustments, which is mildly bimodal around zero, and
resembles quite closely the AC Nielsen data of supermarket price changes reported in Midrigan (2008) and
reproduced here in shaded bars. The �t is especially good in the middle range, though the tails are somewhat
fatter in the data than in the model, as the di¤erence in kurtosis indicates.
The seventh panel of Figure 1 shows the probability of price adjustment, as a function of the value of

adjustment. The probability of adjustment initially rises very quickly, but it then quickly levels o¤, remaining
below 20% when the loss from failing to adjust is 1% of the value of the �rm (which is the largest value seen
in the graph). On one hand, this � function points to a low degree of state dependence: the probability of
adjustment in any given month is still well below 0.5 even if several percentage points of the value of the �rm are
at stake. On the other hand, few �rms actually come to su¤er large losses, since the range shown in the seventh
panel of Fig. 1 includes almost all the variation actually observed in the simulation; adjustment normally occurs
before leaving this range. Thus the median loss is just 0.07% of median �rm value, and the mean loss (which
is larger since the loss distribution is highly skewed) is 0.27% of median �rm value.
Finally, it is helpful to consider the computational implications of the relatively large but infrequent price

adjustments seen in the data. On the 201 by 201 grid with a median absolute price change of around 9%, a
typical price movement by �rms in our baseline SDSP simulation is a jump of about 12 steps in the price grid
�p. Clearly then, at any point in time most �rms lie several steps away from their optimal prices; the table
shows that the typical deviation from the optimal price ranges from 4.4% (in terms of the median) to 7.7% (on
average), depending on the model. This suggests that constraining price adjustment to a �nite grid is relatively
unimportant both for price dynamics and for welfare analysis. We con�rm this fact in Table 1 by recomputing
the model (under the SDSP calibration) on a much coarser grid, with only 25 possible productivities (spanning
�2:5 standard deviations instead of �5 standard deviations) and only 31 possible prices. Thus, in the coarser
grid, each price step represents a 2.5% price change, instead of the 0.7% in the previous calculation.
This dramatic coarsening of the grid has only minor consequences for the performance of the model. The

statistic that changes most is the fraction of small price changes, which decreases from 25.2% to 24.8%. The
other statistics are barely altered, including the welfare losses caused by price stickiness. Thus, computing the
dynamics on a �nite grid seems unimportant for the results, even when the grid is quite coarse. This is very
helpful for our purposes, because it suggests that the more numerically challenging problem of characterizing
the distributional dynamics can also be studied on a coarse grid.

5 Computing general equilibrium: dynamics

To characterize our model�s general equilibrium dynamics in the presence of both idiosyncratic and aggregate
shocks, we implement the algorithm of Reiter (2008). Reiter�s method recognizes that the large system of
nonlinear equations we solved to calculate the general equilibrium steady state can also be interpreted as a system
of nonlinear �rst-order autonomous di¤erence equations describing the dynamics of a grid-based approximation
to general equilibrium away from steady state. In the absence of strong strategic complementarities or an
inappropriate Taylor rule that might give rise to indeterminacy, such an equation system can be solved by
perfectly standard linear simulation techniques. We will solve for the saddle-path stable solution of our linearized
model using the QZ decomposition, following Klein (2000).
The crucial thing to notice about Reiter�s method is that it combines linearity and nonlinearity in a way

appropriate for the model at hand. In our model, idiosyncratic shocks are likely to be larger and more eco-
nomically important for individual �rms�decisions than aggregate shocks. This is true in many macroeconomic
contexts (e.g. precautionary saving) and in particular Klenow and Kryvstov (2008), Golosov and Lucas (2007),
and Midrigan (2008) argue that �rms�pricing decisions appear to be driven primarily by idiosyncratic shocks.
Therefore, to deal with large idiosyncratic shocks, we treat functions of idiosyncratic states in a fully nonlinear
way, by calculating them on a grid. As we emphasized above, this grid-based solution can be regarded as a large
system of nonlinear equations, with equations speci�c to each of the grid points. By linearizing each of these
equations with respect to the aggregate dynamics, we recognize that aggregate changes are unlikely to a¤ect
individual value functions in a strongly nonlinear way. That is, we are implicitly assuming that both money
supply shocks � and changes in the distributions 	 and e	 have su¢ ciently smooth e¤ects on individual values
that a linear treatment of these e¤ects is su¢ cient. On the other hand, we need not start from any assumption
of approximate aggregation like that required for the method of Krusell and Smith (1998).
Thus, we will write the general equilibrium dynamics as a system of di¤erence equations. For parsimonious
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notation in this context, we indicate dependence on the aggregate state by time subscripts, instead of by writing
endogenous variables as functions of �t. We will see that the di¤erence equation system is a straightforward
generalization of the steady state equations from the previous section. First, the time t money growth process
is �t = � exp(zt), where

zt = �zzt�1 + �
z
t (37)

where �zt is an iid normal shock with mean zero and standard deviation �z.
Second, the �rms�Bellman equation can be written as a #p � #a matrix system of equations for each

(pj ; ak) 2 �. Let Ut be the matrix of current pro�ts, so that the (j; k) element of Ut is

ujkt �
�
pj � wt

ak

�
Ct

�
pj

pt

���
�
�
pj � w(�t)

ak

�
C(�t)

�
pj

p(�t)

���
(38)

Write the value function as a matrix Vt, with (j; k) element equal to v
jk
t � vt(p

j ; ak) � v(pj ; ak;�t) for
(pj ; ak) 2 �. We can write the Bellman equation as
Dynamic general equilibrium Bellman equation, matrix version :

Vt = Ut + �Et

�
ptu

0(Ct+1)

pt+1u0(Ct)
R0
t+1 � (Vt+1 +Gt+1) � S

�
(39)

All quantities in the Bellman equation are analogous to corresponding quantities in the steady state equilibrium.
The matrix Gt+1 is de�ned by

Gt+1 � �t+1 : �Dt+1 (40)

where the (l;m) element of Dt+1 is

dlmt+1 � dt+1(pl; am) � max
p0
vt+1(p

0; am)� vt+1(pl; am) (41)

and �t+1 is the matrix with (l;m) element �
lm
t+1 � �

�
dlmt+1=wt+1

�
.

The expectation Et in the Bellman equation refers only to the e¤ects of the time t + 1 money shock �t+1,
because the shocks and dynamics of the idiosyncratic state (pj ; ak) 2 � are completely described by the matrices
R0
t+1 and S. Note that S has no time subscript, and is exactly the same matrix described in the previous section.

The Markov matrix Rt+1 di¤ers from the steady state matrix R only because in the fully dynamic equilibrium
we must detrend by the realized money shock �t+1 instead of trend money growth �. The row n, column l
element of Rt+1, which we will call Rnlt+1, is

Rnlt+1 = prob(epi;t+1 = pnjpit = pl; �t+1) =
8>>>>><>>>>>:

1 if pl=�t+1 � p1 = pn
pl=�t+1�pn�1
pn�pn�1 if p1 < pn = minfp 2 �p : p � pl=�t+1g

pn+1�pl=�t+1
pn+1�pn if p1 � pn = maxfp 2 �p : p < pl=�t+1g

1 if pl=�t+1 > p
#p

= pn

0 otherwise

As for the distributional dynamics, the two steps are analogous to the steady state case:

	t = (E#p#a ��t) : � e	t +Pt : � (E#p#p � (�t : � e	t)) (42)e	t+1 = Rt+1 �	t � S0 (43)

Matrix Pt is constructed from the policy function

p�kt � p�t (ak) � argmax
p
v(p; ak;�t) (44)

in the same way as in the steady state.18 If pl(k) is the �rst price grid point greater than or equal to p�kt , then

Pt takes value
�
p�kt �pl(k)�1
pl(k)�pl(k)�1

�
in row l(k), column k; and value

�
pl(k)�p�kt

pl(k)�pl(k)�1

�
in row l(k)� 1, column k; and is

zero elsewhere.
18As in the steady state calculation, the max in (41) and (44) is not restricted to the grid �p, allowing djkt and p�kt to vary

smoothly with changes in aggregate conditions �t, which is necessary for our linearized solution. In the limiting case � = 1, we
must also take care to ensure that �jkt varies smoothly. Both issues are discussed in Appendix B.
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Finally, the remaining equations that must be satis�ed by the dynamic general equilibrium are

x0(Nt) =
wt
pt
u0(Ct) (45)

1� v
0(1=pt)

u0(Ct)
= �Et

�
ptu

0(Ct+1)

�t+1pt+1u
0(Ct)

�
(46)

Nt =

#pX
j=1

#aX
k=1

	jkt

�
pj

pt

���
Ct
ak

(47)

p1��t =

#pX
j=1

#aX
k=1

	jkt
�
pj
�1��

(48)

5.1 Linearization

We are now ready to calculate the general equilibrium dynamics by linearization. To do so, we eliminate as
many variables from the equation system as we can. For additional simplicity, we assume linear labor disutility,
x(N) = �N . Thus the �rst-order condition for labor reduces to �pt = wtu0(Ct), so we don�t actually need to
solve for Nt in order to calculate the rest of the equilibrium.19

Under the linear labor disutility assumption, we can summarize the whole general equilibrium system in
terms of the exogenous shock process zt, the endogenous �jump� variables Vt, Ct, and pt, and the lagged
distribution of idiosyncratic states 	t�1, which is the endogenous component of the time t aggregate state. The
full system of equations reduces to

Vt = Ut + �Et

�
ptu

0(Ct+1)

pt+1u0(Ct)
R0
t+1 � (Vt+1 +Gt+1) � S

�
(49)

1� v
0(1=pt)

u0(Ct)
= �Et

�
�t+1

ptu
0(Ct+1)

pt+1u0(Ct)

�
(50)

p1��t =

#pX
j=1

#aX
k=1

	jkt
�
pj
�1��

(51)

	t = (E#p#a ��t) : � e	t +Pt : � (E#p#p � (�t : � e	t)) (52)

zt+1 = �zzt + �
z
t+1 (53)

Counting element by element the matrix equations (49) and (52) each contain #p#a scalar equations, and
therefore the whole system contains 2#p#a + 3 nonlinear di¤erence equations. If we now collapse all the
endogenous variables into a single vector

�!
X t �

�
vec (Vt)

0
; Ct; pt; vec (	t�1)

0�0
then the whole set of expectational di¤erence equations (49)-(53) governing the dynamic equilibrium becomes
a �rst-order system of the following form:

EtF
��!
X t+1;

�!
X t; zt+1; zt

�
= 0 (54)

where Et is an expectation conditional on zt and all previous shocks.
Together, the endogenous vector

�!
X t and the shock process zt amount to a list of 2#p#a + 3 variables. To

see that these are in fact the only variables we need, because all others can be substituted out. Given zt and
zt+1we can construct �t, and �t+1, and thus Rt and Rt+1. Given Rt, we can construct e	t = Rt � 	t�1 � S0
from 	t�1. Under linear labor disutility, we can calculate wt = �pt=u0(Ct), which gives us all the information

19The assumption x(N) = �N is not essential; the more general case with nonlinear labor disutility simply requires us to simulate
a larger equation system that includes Nt.
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needed to construct Ut. Finally, given Vt and Vt+1 we can construct Pt, Dt, and Dt+1, and thus �t and Gt+1.
Therefore the variables in

�!
X t and zt are indeed su¢ cient to evaluate the system (49)-(53).

Finally, if we linearize system F numerically with respect to all its arguments to construct the Jacobian
matrices A � D�!

X t+1
F , B � D�!

X t
F , C � Dzt+1F , and D � DztF , then we obtain the following �rst-order linear

expectational di¤erence equation system:

EtA�
�!
X t+1 + B�

�!
X t + EtCzt+1 +Dzt = 0 (55)

where � represents a deviation from steady state. This system has the form considered by Klein (2000), so we
solve our model using his QZ decomposition method.20

6 Results: dynamics

6.1 E¤ects of money growth shocks

We now study the impulse response functions implied by money supply shocks in several versions of our model.21

Figures 3 and 5 show the response to a 1% increase in money supply growth in our SDSP calibration, and
compare it with the response in the Calvo and �xed menu cost cases. All three versions are simulated under
the same parameters, and the same aggregate and idiosyncratic shock processes, assuming zero trend in�ation.
Only the parameterization of the adjustment probability function � di¤ers across speci�cations. Each impulse
response is calculated starting from the steady state distribution of prices and productivities associated with the
corresponding speci�cation. Figure 3 shows impulse responses under the assumption that money supply growth
is iid, while Figure 5 assumes money growth has monthly autocorrelation of 0.8 (0.51 at quarterly frequency).22

As in any New Keynesian model, the impulse responses show that an increase in money growth stimulates
consumption. Since not all prices adjust instantaneously, increased money growth raises households�real money
balances, thus increasing consumption demand. However, as Golosov and Lucas (2007) emphasized, the average
price level adjusts rapidly in the �xed menu cost speci�cation, so there is a large, short-lived spike in the in�ation
rate. Therefore changes in real variables are small and not very persistent, approaching the monetary neutrality
associated with full price �exibility. On the other hand, the response of our SDSP model (lines with round
dots) mostly lies between the responses seen in the Calvo (lines with squares) and �xed menu cost (lines with
crosses) speci�cations, and it is typically much closer to the Calvo case. In particular, since � is much less than
one for almost all �rms in our SDSP model, prices rise much more gradually in our preferred model than they
would under �xed menu costs, leading to a large and persistent increase in output resembling the response in
the Calvo speci�cation.
Impulse responses are also plotted for a number of other macroeconomic variables. It can be shown analyti-

cally that nominal interest rates depend on expected future money growth only (insert (13) into (46) to rewrite
the Euler equation in terms of Rt, Rt+1, and �t+1 only). Deviations of the nominal interest rate from steady

state are proportional to those of money growth, with factor of proportionality (R�1)�z
�R(R��z)

.23 Thus when money
growth is uncorrelated (�z = 0), nominal interest rates are constant, as we see in the third panel of Fig. 3.
As for real interest rates, the fact that consumption rises above its long term level in response to an increase
in money growth means that real interest rates must fall. Also, the real wage must rise, because labor must
increase in order to produce the additional consumption goods.
We also plot the response of price dispersion, de�ned as

�t =
X
j;k

	jkt
ak

�
pj

pt

���
20Alternatively, the equation system can be rewritten in the form of Sims (2001). We chose to implement the Klein method

because it is especially simple and transparent to program.
21Our results can be reproduced by running our MATLAB programs, which are available for download at

http://www.econ.upf.edu/~nakov/dyn_programs.zip.
22For numerical tractability we compute equilibrium on the coarse grid of 25 productivities and 31 price levels analyzed in Table

1 and Figure 2, which yields a distribution of price changes similar to that on a much �ner grid.
23Therefore, as is common in sticky-price models driven by money supply shocks, the �anticipated in�ation e¤ect� is stronger

than the �liquidity e¤ect�, so increased money growth (if autocorrelated) causes the nominal interest rate to rise. The issue of the
�liquidity e¤ect�in sticky price models is discussed in Gali (2003).
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In our setup, part of the reason �rms set di¤erent prices is that they face di¤erent productivities. But additional
price dispersion, caused by failure to adjust when necessary, implies ine¢ cient variation in demand across goods
that acts like a negative aggregate productivity shock: Nt = �tCt. In a representative agent model near
a zero-in�ation steady state, the dispersion wedge �t is negligible because it is roughly proportional to the
cross-sectional variance of prices, a quantity which is of second order in the in�ation rate.24 But the cross-
sectional variance of prices is not second order in the in�ation rate when idiosyncratic shocks are present. Thus
variations in �t are often quantitatively important, especially since � = 7 strongly magni�es variations in the
ratio pj=pt. In the third row of Fig. 3 we see that increased money growth throws �rms�prices further out
of line with fundamentals, increasing dispersion, especially in the SDSP and Calvo speci�cations where prices
are less �exible. Therefore increasing consumption requires a proportionally larger increase in labor in these
speci�cations.
Next, comparing Figures 3 and 5, we note that while the shape of the in�ation and output responses

di¤ers substantially across models, it is qualitatively similar under iid money growth and autocorrelated money
growth. Unsurprisingly, in�ation spikes immediately under �xed menu costs and iid money growth. More
interestingly, it does the same under �xed menu costs and autocorrelated money growth, because the average
price increase rises by much more than 1% (in�ation immediately jumps by 2% when money growth jumps by
1%, because �rms anticipate that money growth will remain positive for some time). On the other hand, there
is a smaller but more persistent rise in in�ation in our SDSP speci�cation and in the Calvo speci�cation. Note
that the persistence of in�ation does not di¤er noticeably depending on the autocorrelation of money growth,
but instead appears to be determined primarily by the degree of price stickiness. Thus the big di¤erence between
the in�ation and output responses in Figures 3 and 5 is one of size, not of shape: the overall response is larger
when money growth is more autocorrelated.
Table 2 reports additional calculations regarding the extent of monetary nonneutrality in various parame-

terizations of our model. As in Section VI of Golosov and Lucas (2007), we address this issue by asking the
following question: if money supply shocks were the only source of in�ation variation, how much output varia-
tion would they cause? That is, for each speci�cation, we pick the variance of the money supply shock to match
100% of observed US in�ation volatility, and then calculate the implied variability of output. Interestingly, in
the SDSP case, money shocks would explain almost all US output �uctuation (96%, if money growth is assumed
iid ; or 91%, if autocorrelated). Under the Calvo speci�cation, implied output �uctuations would be about 40%
larger. With menu costs, the �gure is much lower: money supply shocks would only explain 26% or 29% of
output �uctuations.25 In addition, we calculate a �Phillips curve� coe¢ cient by regressing output growth on
money growth; the coe¢ cient is at least twice as large in the SDSP speci�cation as it is in the �xed menu cost
speci�cation (and is much larger if money growth is autocorrelated). None of these calculations should be taken
as conclusive, since both in�ation and output are a¤ected by many other shocks besides money shocks; but
they do all demonstrate that a model calibrated to match microdata on price adjustments yields much greater
monetary nonneutrality than a model with �xed menu costs does.

6.2 In�ation decompositions

To further understand how the real e¤ects of money shocks di¤er across models, we next decompose changes in
the in�ation rate into three main �e¤ects�mentioned in many recent papers. A variety of decompositions have
been proposed, which di¤er both in details and in substance, but all start from the observation that in�ation
is an average of log nominal price changes. In our framework, all nominal price changes occur at the beginning
of the period, starting from the beginning-of-period distribution e	t. The nominal in�ation rate at time t is

�t =

#pX
j=1

#aX
k=1

xjkt �
jk
t
e	jkt (56)

where xjkt � log
�
p�t (a

k)
pj

�
is the desired log price adjustment of a �rm with price pj and productivity ak at the

beginning of period t after shocks have been revealed.
24See for example Galí (2008), p. 46 and Appendix 3.3.
25Even this �gure is larger than Golosov and Lucas found, because of calibration di¤erences, especially the fact that we use

Nakamura and Steinsson�s (2007) measure of median price adjustment frequency. But the important point is that a calibration
chosen to match the distribution of price adjustments greatly increases monetary nonneutrality, compared with a calibration that
assumes �xed menu costs.
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Klenow and Kryvstov (2008) point out that (56) can be rewritten as the product of the average log price
adjustment xt times the frequency of price adjustment �t:

�t = xt�t; xt �
P

j;k x
jk
t �

jk
t
e	jktP

j;k �
jk
t
e	jkt ; �t �

X
j;k

�jkt e	jkt (57)

This leads to the following in�ation decomposition:

��t = ��xt + x��t + h:o:t: (58)

where, as in Section 4, variables without time subscripts represent steady states, and � represents a deviation
from steady state.26 Klenow and Kryvstov�s �intensive margin�, IKKt � ��xt, is the part of in�ation attribut-
able to changes in the average price adjustment. Their �extensive margin�, EKKt � x��t, is the part of in�ation
attributable to changes in the frequency of price adjustment.
A weakness of Klenow and Kryvstov�s decomposition is that an increase in the average log price adjustment

xt may be caused by a rise in all �rms�desired price adjustments, or by a reallocation of adjustment opportunities
from �rms desiring small or negative price changes to others desiring large positive price changes. That is, IKKt

mixes the e¤ect of changes in desired adjustments (the only relevant issue in time-dependent pricing models like
that of Calvo) with the �selection e¤ect�emphasized by Golosov and Lucas in their paper on state-dependent
pricing. Therefore, we prefer a decomposition that breaks in�ation into three terms: an intensive margin that
captures changes in the average desired log price change, an extensive margin that captures changes in how
many �rms adjust, and a selection e¤ect that captures changes in who adjusts.
All three e¤ects can be de�ned clearly if we start by rewriting (56) as

�t = x
�
t�t +

X
j;k

xjkt

�
�jkt � �t

� e	jkt ; x�t �
X
j;k

xjkt e	jkt (59)

Note that in (59), x�t is the average desired log price change, whereas in (57), xt is the average log price
change among those who adjust. Thus (59) says that in�ation equals the mean preferred adjustment times

the adjustment frequency plus a selection term
P

j;k x
jk
t

�
�jkt � �t

� e	jkt =
P

j;k �
jk
t

�
xjkt � x�t

� e	jkt that can

be nonzero whenever some sizes of price adjustments xjkt are more or less likely than the mean probability
of adjustment �t, or (equivalently) when �rms with di¤erent probabilities of adjustment �

jk
t tend to prefer

adjustments that di¤er from the mean preferred adjustment x�t .
Equation (59) leads us to the following in�ation decomposition:

��t = ��x
�
t + x

���t +�
X
j;k

xjkt

�
�jkt � �t

� e	jkt + h:o:t: (60)

Our intensive margin e¤ect, It � ��x�t , is the e¤ect of changing all �rms�desired adjustment by the same
amount (or more generally, changing the mean preferred adjustment in a way that is uncorrelated with the
adjustment probability). Obviously I is the only nonzero term in the Calvo model, where �jkt = � for all j, k,
and t. Our extensive margin e¤ect, Et � x���t, is the e¤ect of changing the fraction of �rms that adjust, if we
select the new adjusters (or new nonadjusters) randomly. Our selection e¤ect, St � �

P
j;k x

jk
t

�
�jkt � �t

� e	jkt ,
is the e¤ect of redistributing adjustment opportunities across �rms with di¤erent desired adjustments xjkt ,
while �xing the overall fraction that adjust. The selection term is zero in the Calvo model, and also in a state-
dependent model if we happen to start from a distribution with no heterogeneity (e	jkt = 1 for some particular
j and k).27

Caballero and Engel (2007) propose an alternative decomposition, which is also based on di¤erencing (56):

��t =
X
j;k

�xjkt �
jk e	jk +X

j;k

xjk��jkt e	jk +X
j;k

xjk�jk�e	jkt + h:o:t: (61)

26Actually, Klenow and Kryvstov (2008) propose a time series variance decomposition, whereas (57) is a decomposition of each
period�s in�ation realization. But the logic of (57) is the same as that in their paper.
27To see this, note that �t = �

jk
t for the (j; k) pair such that e	jkt = 1, and that e	jkt = 0 for all other j and k.
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They further simplify this to
��t = ���t +

X
j;k

xjk��jkt e	jk (62)

under the assumption that all desired price adjustments change by�xjkt = ��t when money growth increases by
��t, and by taking an ergodic average so that the last term drops out.

28 Note that their �rst term, ICE � ��t�,
is the same as our intensive margin I, as long as their assumption that all desired price adjustments change by
��t is correct. But therefore, their �extensive margin� term ECE �

P
j;k x

jk��jkt e	jk, combines the issue of
how many �rms adjust (our extensive margin Et) with the issue of who adjusts (our selection e¤ect St), which
we think it is clearer to consider separately.
The second rows of Figures 3 and 5 illustrate our decomposition of the in�ation impulse response. (The

in�ation decomposition at the time of the shock, t = 1, is also presented in Table 3.) The panels representing
in�ation and its three components It, Et, and St are shown to the same scale for better comparison. The graphs
unambiguously illustrate that the short, sharp rise in in�ation observed in the �xed menu cost speci�cation
results from the selection e¤ect. This is true both under iid money shocks, where in�ation spikes to 0.451% on
impact, of which 0.353% is the selection component, and under autocorrelated shocks, where in�ation spikes to
1.94%, with 1.48% due to selection. In contrast, in�ation in the Calvo model is caused by the intensive margin
only; in SDSP there is a nontrivial selection e¤ect but it still only accounts for around one-third of the impulse
response of in�ation.
We also see that the extensive margin, Et � x���t, plays a negligible role in the in�ation impulse response.

This makes sense, because we are considering a steady state with zero in�ation, so steady state price adjustments
are responses to idiosyncratic shocks only, and the average desired adjustment x� must be close to zero. Therefore
Et is tiny even though the adjustment frequency �t does vary, rising from 10% to 12.5% on impact in the MC
model, and from 10% to 10.3% on impact in SDSP.29 The extensive margin only becomes important when there
is high trend in�ation: then the average desired adjustment x� is large and positive, because �rms that have
not adjusted recently need to make substantial price increases. Variations in �t then account for a large part of
the in�ationary impact of money growth, as we see in Table 3 and Figure 6, which analyze money supply shocks
in an equilibrium with 63% in�ation per annum (the highest rate observed in the Mexican data of Gagnon,
2007).30 Money supply shocks imply a bigger spike in in�ation when trend in�ation is high, bringing the model
even closer to monetary neutrality in this case than it was in Figure 3, and much of this di¤erence is due to the
extensive margin.
Turning to the intensive margin, on impact the e¤ect is the same in all three models. This re�ects the fact

that an uncorrelated 1% increase in money growth raises the mean desired price change by approximately 1
percentage point in all three models, implying an initial intensive margin e¤ect I1 � ��x�1 of 0.1 percentage
points (since we calibrated all models to � = 0:1). The importance of the intensive margin fades quickly in the
MC model, since those desiring the largest price changes do in fact adjust immediately, but remains important
in the speci�cations with lower state dependence. Likewise, the initial intensive margin e¤ect is larger, but
the same across models, under autocorrelated money growth: the mean desired price change rises roughly �ve
percentage points in all three speci�cations, so that I1 � ��x�1 � 0:5%. That is, �rms want to �frontload�
prices in response to autocorrelated money shocks by roughly the same amount in all three speci�cations; the
di¤erence is that in the MC case many of these changes take place immediately, whereas they are only gradually
realized under the other speci�cations.
We can also understand the three e¤ects by examining Figure 4, which illustrates the distribution of price

adjustments, before and after an increase in money growth. As we have emphasized, the distribution of ad-
justments in the MC model is strongly bimodal. The main e¤ect of an increase in money growth is to make
large price decreases less likely, and large price increases more likely, causing a large increase in in�ation overall.

28Our equation (60) is intended to decompose each period�s in�ation realization, and therefore it must take into account shifts in
the current distribution e	jkt . Caballero and Engel instead propose a decomposition (see their equation 17) of the average impact
of a money supply shock. Therefore they evaluate their decomposition at the ergodic distribution (the time average over all cross-
sectional distributions, which is called fA(x) in their paper). Since this is a �xed starting point of their calculation, they do not
need to include a �fA(x) term.
29The fact that our steady state has exactly zero in�ation is not crucial here; Et is quantitatively trivial compared to the other

in�ation components at any typical OECD in�ation rate.
30All parameters are the same as in our earlier simulations, except the steady state money growth rate. We suppress the Calvo

speci�cation in this case, because no Calvo equilibrium exists if we �x parameters (including the adjustment rate � = 0:1) and raise
the in�ation rate to 63%.
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This redistribution in adjustment probabilities is, by our de�nition, a selection e¤ect. In contrast, in the Calvo
case, the whole distribution of adjustments shifts right with no change in shape, which by our de�nition is an
intensive margin change. In the SDSP case, the change mostly resembles a rightward shift of the distribution,
but we can also see some redistribution of adjustment probability from the left mode of the distribution to the
right mode, so both the intensive margin and the selection e¤ect are active in this case. As for the extensive
margin, little di¤erence in the overall adjustment frequency �t is visible in the graphs, even in the MC case.
In summary, the sharp state dependence of the �xed menu cost model is the key to understanding both

its implications for the distribution of price adjustments and its implications for monetary neutrality. We say
that the state dependence is strong under �xed menu costs because it implies that � is a step function: at the
threshold, a tiny increase in the value of adjustment su¢ ces to increase the adjustment probability from 0 to 1.
This behavior implies that the distribution of price changes consists of two spikes: there are no small changes,
and �rms cannot drift outside the adjustment thresholds before change takes place. Hence, in steady state,
those �rms whose behavior might be a¤ected by a money shock are all near the two adjustment thresholds.
Therefore, the main e¤ect of an increase in money growth is to decrease � from 1 to 0 for some �rms desiring
a price decrease, while increasing � from 0 to 1 for some �rms desiring a price increase. This selection e¤ect
implies a strong change in in�ation, and monetary near-neutrality, as Golosov and Lucas argued. But it depends
on an extreme degree of state dependence which our estimates reject. This may help explain why money shocks
do, in aggregate time series, appear to have important real e¤ects.

6.3 The role of the distribution

Besides calculating the impact of money growth shocks, we can also calculate transitional dynamics, which shed
light on a number of issues. Figure 7 illustrates transitional dynamics of the SDSP calibration of the model,
starting from a variety of di¤erent initial conditions. Figure 8 shows how the impulse response to a money supply
shock changes when starting from di¤erent initial conditions. Both �gures also illustrate nonlinear aspects of
the dynamics that our hybrid linear/nonlinear solution method can capture.
Figure 7.1 shows the impact of a large monetary shock, but the calculations are carried out in a di¤erent

way from those behind Figure 3. Instead of starting at the steady state distribution and feeding in a money
shock, we simply shift the distribution of real prices two grid points to the left. That is, we start from an initial
distribution 	0 such that 	

jk
0 = 	j+2;k: the lagged distribution from period 0 is the steady state distribution,

shifted left by two points in the price grid. Each step in the price grid is a di¤erence of 2.5%, so this amounts
to a 5% real price decrease, which is also equivalent to an uncorrelated increase in money supply growth by
5%. By calculating the e¤ects of the shock in this way, we take nonlinear changes in the impulse response into
account, since our computational method allows full nonlinearity between one grid point and the next.31 Some
of the impulse responses are proportional to those shown before; for example, the response of in�ation in Figure
7.1 (a 0.77% rise on impact) is roughly �ve times larger than that shown for the SDSP calibration in the second
panel of Figure 3 (a 0.15% rise). But the fraction of �rms adjusting (not shown) increases in a more-than-linear
way, increasing eight times as much in this example compared with the example of Figure 3, which makes sense
since the value of adjustment increases nonlinearly in the distance from the optimal price. Since this especially
a¤ects the prices that are furthest out of line, price dispersion falls substantially, whereas it increased in Figure
3. This permits labor to decrease even as consumption rises.
In Figure 7.2, we see how our model can also shed light on the e¤ects of technology shocks. The exercise

is similar to that in Fig. 7.1, but instead of shifting the distribution in the price direction, we shift the
distribution by two grid points in the productivity direction: 	jk0 = 	j;k+2. Thus the transition dynamics in
Fig. 7.2 represent the e¤ect of a persistent, but not permanent, 6.1% increase in productivity.32 The e¤ects
con�rm that the implications of productivity shocks known from macroeconomic models based on Calvo pricing
(e.g. Galí 1999) also occur under state-dependent pricing. Higher productivity drives in�ation down, and
permits households to increase consumption while decreasing labor. Note that since prices take time to adjust,

31When calculating impulse responses by feeding a change in z0 into (55), doubling the size of the shock exactly doubles the size
of all responses, since is (55) linear. But since each grid point is governed by a di¤erent equation, there is no linear relationship
between the dynamic coe¢ cients at one grid point and another. Therefore, the impulse response derived by shifting the distribution
across grid points incorporates non-linear e¤ects.
32This productivity shock is somewhat nonstandard, since it is the result of an unexpected correlated increase in all �rms�

productivity, instead of an aggregate shock per se. Nonetheless we see that its e¤ects are very similar to those of an aggregate
technology shock.
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consumption takes time to reach its peak level; since consumption is initially growing and thereafter decreasing,
the real interest rate �rst rises above its steady state level and then falls back below it. An additional e¤ect in
our state-dependent model is that those prices pushed furthest out of line by the productivity shock are most
likely to adjust (downwards). Therefore part of the decrease in in�ation is a selection e¤ect, and price dispersion
falls as the most extreme prices adjust more than usual, permitting labor to fall further than it otherwise would.
Figure 7.3 shows one more example of transitional dynamics, in which we assume that all �rms start at their

optimal sticky prices. That is, the initial (lagged) price distribution is 	jk0 = 	l(k);k, where l(k) is the grid point
associated with the steady state optimal price: pl(k) = p�(ak). This might be seen as the e¤ect of �introducing
the euro�: it is as if all �rms have just been forced to change prices, taking into account that their prices will
be sticky in the future. Conditional on this one-time change, the fraction of �rms adjusting is thereafter below
steady state (not shown), since they start out at their preferred price. We also see that the price dispersion
measure starts out substantially below its steady state value. This acts as a positive productivity shock: �rms
are on average closer to their e¢ cient prices, permitting more consumption with less labor input.
Finally, Figure 8 shows an example of how di¤erent initial conditions alter the e¤ects of a monetary shock,

which is another non-linear phenomenon picked up by our solution method. For the SDSP calibration, it
shows the e¤ect of an uncorrelated 1% increase in money supply at time 1, either starting from the steady
state distribution (as seen previously in Fig. 3), or occurring simultaneously with an increase in aggregate
productivity (that is, starting from 	jk0 = 	j;k+2, as in Fig. 7.2). In both cases, we aim to show only the e¤ect
of the money supply shock itself, so to graph the blue circled curve in Fig. 8 we �rst compute a path starting
from a technology shock plus a money shock; then we compute a path starting from a technology shock only
(that is, the path shown in Fig. 7.2), and then we take the di¤erence between the two. Most of the impulse
responses are essentially unchanged; in particular, the response of real consumption to the money shock is not
altered by the starting distribution. However, note that the money supply shock, by o¤setting the incentive
to decrease prices that results from the technology shock, decreases price dispersion in this case, requiring less
increase in labor to �nance the same amount of consumption. Since labor is the most elastic choice variable
here, it absorbs all the di¤erence.

7 Conclusions

In this paper, we have computed the impact of money growth shocks in a quantitative macroeconomic model
of state-dependent pricing. We have calibrated the model for consistency with microeconomic data on �rms�
pricing behavior. In particular, we have estimated how �rms�probability of price adjustment depends on the
value of adjustment, adopting a �exible speci�cation that nests the Calvo speci�cation as one extreme, and the
�xed menu cost speci�cation as the other extreme. Given our estimate of this adjustment function, we have
then characterized the dynamics of the distribution of prices and productivities in general equilibrium.
In our calibrated model, we �nd that shocks to money growth have large, persistent e¤ects on real variables,

only slightly weaker than the e¤ects found in the Calvo model. Prices rise gradually in response to increased
money growth, leading to a persistent stimulative e¤ect on consumption and labor. Real interest rates fall; real
wages and real money holdings rise; the nominal interest rate is constant if money growth is iid, and rises if
money growth is autocorrelated. We also �nd that the main factor determining how monetary shocks propagate
to the rest of the economy is the degree of state dependence. That is, the autocorrelation of money shocks has
little e¤ect on the shape of the impulse responses of most variables and little e¤ect on their persistence. Instead,
increasing the autocorrelation of money growth shocks simply makes their real e¤ects larger.
We show how the impulse response of in�ation can be decomposed into an intensive margin e¤ect relating

to the average desired price adjustment, an extensive margin e¤ect relating to the number of �rms adjusting,
and a selection e¤ect relating to changes in the relative frequencies of small and large or negative and positive
adjustments. In our calibrated model, starting from a low baseline in�ation rate, about two-thirds of the e¤ect
of a money growth shock comes through the intensive margin, and most of the rest through the selection e¤ect.
The extensive margin only matters when starting from a high baseline in�ation rate.
As Golosov and Lucas (2007) argued, in a model of �xed menu costs the real e¤ects of money supply shocks

are greatly decreased, because prices jump strongly on impact. They rightly attributed this to a selection e¤ect.
However, such strong selection e¤ects only arise if a small change in the value of adjustment can cause a large
jump in the probability of adjustment. Our estimate of the function governing the probability of adjustment
rejects such extreme state dependence, favoring a speci�cation that behaves more like the Calvo model. As
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state dependence increases towards the �xed menu cost speci�cation, the distribution of price adjustments
becomes more and more strongly bimodal. Weaker state dependence yields a more bell-shaped distribution of
adjustments, which is more consistent with microdata. The weaker state dependence also implies that money
growth shocks have nontrivial real e¤ects, as VAR evidence suggests.

8 Appendix A: Detrending

Suppose the model can be rewritten in real terms by de�ating all prices by the nominal money stock, de�ning
pt � Pt=Mt, pit � Pit=Mt, and wt �Wt=Mt. Given the nominal distribution �t(Pi; Ai) and the money stockMt,
we denote by 	t(pi; Ai) the distribution over real production prices pit � Pit=Mt. Likewise, let e	t(pi; Ai) be the
distribution of real beginning-of-period prices epit � ePit=Mt, in analogy to the beginning-of-period distribution
of nominal prices e�t( ePi; Ai). If it is true that the model can be rewritten in real terms, then it is not necessary
to condition equilibrium behavior on Mt; conditioning on �t � (zt;	t�1) su¢ ces.33
Therefore, if there exists a real equilibrium, the real aggregate functions can be written in terms of �t only,

and must satisfy Ct = C(�t) = C(
t), Nt = N(�t) = N(
t), pt = p(�t) = P (
t)=Mt and wt = w(�t) =
W (
t)=Mt. De�ating from one period to the next will depend on the growth rate of money supply from one
period to the next (but not on the level of the money supply). Thus the stochastic discount factor will be

q(�t;�t+1) = �
Mtp(�t)u

0(C(�t+1))

Mt+1p(�t+1)u0(C(�t))
= �

p(�t)u
0(C(�t+1))

�ezt+1p(�t+1)u0(C(�t))

The �real� value function v should likewise be the nominal value function, divided by the current money
stock, and should be written as a function of real prices. Therefore we have

V (Pit; Ait;
t) =Mtv

�
Pit
Mt
; Ait;�t

�
=Mtv (pit; Ait;�t)

If a �rm�s nominal price at time t is Pit, then the value of maintaining this price �xed at time t + 1 can be
written in nominal or real terms as

V (Pit; Ai;t+1;
t+1) = Mt+1v

�
Pit
Mt+1

; Ai;t+1;�t+1

�
= Mt+1v

�
Mtpit
Mt+1

; Ai;t+1;�t+1

�
=Mt+1v

�
pit
�t+1

; Ai;t+1;�t+1

�
Likewise, if for any time t nominal price Pit we have the de�nitions

D(Pit; Ai;t+1;
t+1) � max
P 0

V (P 0; Ai;t+1;
t+1)� V (Pit; Ai;t+1;
t+1)

G (Pit; Ai;t+1;
t+1) � �
�
D (Pit; Ai;t+1;
t+1)

W (
t+1)

�
D (Pit; Ai;t+1;
t+1)

then we can de�ne

D(Pit; Ai;t+1;
t+1) �Mt+1d

�
Pit
Mt+1

; Ai;t+1;�t+1

�
=Mt+1d

�
pit
�t+1

; Ai;t+1;�t+1

�

G(Pit; Ai;t+1;
t+1) �Mt+1g

�
Pit
Mt+1

; Ai;t+1;�t+1

�
=Mt+1g

�
pit
�t+1

; Ai;t+1;�t+1

�
Using this de�ated notation, we can rewrite the Bellman equation as

33 If money growth is uncorrelated, then zt has no e¤ect on the distribution of �t+1, so the aggregate state can be summarized

by e�t only. But when money growth is correlated we must keep track of �t � (e�t; zt) instead.
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Mtv(pit; Ait;�t) =Mt

�
pit �

w(�t)

Ait

��
pit
p(�t)

���
C(�t)+

�Et

�
Mtp(�t)u

0(C(�t+1))
Mt+1p(�t+1)u0(C(�t))

Mt+1

�
v

�
pit
�t+1

; Ai;t+1;�t+1

�
+ g

�
pit
�t+1

; Ai;t+1;�t+1

������Ait;�t�
Note that Mt cancels from both sides of the equation, and Mt+1 cancels inside the expectation. Therefore we
obtain

v(pit; Ait;�t) =

�
pit �

w(�t)

Ait

��
pit
p(�t)

���
C(�t)+

�Et

�
p(�t)u

0(C(�t+1))

p(�t+1)u0(C(�t))

�
v

�
pit
�t+1

; Ai;t+1;�t+1

�
+ g

�
pit
�t+1

; Ai;t+1;�t+1

������Ait;�t�
where

g

�
pit
�t+1

; Ai;t+1;�t+1

�
� �

 
d
�
pit=�t+1; Ai;t+1;�t+1

�
w(�t+1)

!
d

�
pit
�t+1

; Ai;t+1;�t+1

�

d

�
pit
�t+1

; Ai;t+1;�t+1

�
� max

p0
v(p0; Ai;t+1;�t+1)� v

�
pit
�t+1

; Ai;t+1;�t+1

�
Let p�(Ai;t+1;�t+1) denote the optimal choice in the maximization problem above. Taking into account the
fact that the �rm starts period t+ 1 with the eroded price epi;t+1 � pit=�t+1, the price process is

pi;t+1 =

8>><>>:
p(Ai;t+1;�t+1) with prob = �

�
d(pit=�t+1;Ai;t+1;�t+1)

w(�t+1)

�
pit=�t+1 with prob = 1� �

�
d(pit=�t+1;Ai;t+1;�t+1)

w(�t+1)

�
:

In other words, when the �rm�s nominal price is not adjusted at time t + 1, its real price is de�ated by factor
�t+1 = �e

zt+1 .

9 Appendix B. Di¤erentiability of the discretized equation system

Computing aggregate dynamics by linearization requires that we de�ne the system F so that it varies smoothly
with respect to all its arguments. As long as � <1, this only requires us to be careful about how we specify the
maximization problem that appears in (23), (24), (41), and (44). If we were to calculate vjkt by choosing a price
p on the grid �p, then p�kt could vary discontinuously, by jumping from one grid point to another in response to
some small change in aggregate conditions �t. Therefore we instead assume p may be chosen at points o¤ the
grid �p. This requires us to use splines to interpolate the value function vt(p; ak) for points p =2 �p. Then, to
map prices back onto the grid, we stochastically round p�kt up or down to the nearest grid points as described
in (27). For � <1, this su¢ ces to ensure di¤erentiability of all equations in system F .
For the �xed menu cost case � = 1, one additional issue arises. In this case, the adjustment probability

is a step function, �(L) = 1 fL � �g, so it jumps discontinuously from 0 to 1 depending on the value of
adjustment L. Therefore, if we interpret �jkt as the probability of adjustment in state (pj ; ak;�t), it will only
take values 0 or 1 and may jump discontinuously in response to changes in aggregate conditions �t. Instead, in
this case, we interpret �jkt as the probability of adjustment in state (ak;�t) when the price lies in the interval

Ij �
�
pj�1+pj

2 ; p
j+pj+1

2

�
. To do so, we linearly interpolate the gain from adjustment d

�
p; ak;�t

�
at points

p =2 �p using the values djkt at the grid points pj 2 �p. Using this interpolation, we de�ne �jkt as the fraction
of interval Ij on which d

�
p; ak;�t

�
� �. In other words, �jkt represents the fraction of interval Ij on which

adjustment occurs. Thus �jkt may take values 0 or 1, but may also lie strictly between 0 and 1, and will vary
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continuously as �t changes. This also ensures di¤erentiability almost everywhere: that is, �
jk
t will fail to be

di¤erentiable only if d
�
p; ak;�t

�
= � exactly at p = pj�1+pj

2 or p = pj+pj+1

2 , but generically this does not occur.
There is also a second, simpler way of ensuring di¤erentiability for the �xed menu cost case: evaluate it by

considering a large, �nite � instead of the limiting case � = 1. We have veri�ed that this alternative gives
quantitatively similar results.
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Figure 2. Steady-state distribution of nonzero price changes on di¤erent grids

Table 2. Variance decomposition and Phillips curves of alternative models

Uncorrelated money shock, �z = 0 Data SDSP Calvo Menu cost

Std of money shock (x100) 0.81 1.05 0.52

Std of quarterly in�ation (x100) 0.25 0.25 0.25 0.25
Share explained by � shock alone 100% 100% 100%

Std of quarterly output growth (x100) 0.51 0.49 0.72 0.13
Share explained by � shock alone 96% 142% 26%

Slope coe¤. of the Phillips curve 0.46 0.51 0.23
Standard error 0.02 0.03 0.00
R2 0.33 0.20 0.71

Correlated money shock, �z = 0:8

Std of money shock (x100) 0.16 0.21 0.11

Std of quarterly in�ation (x100) 0.25 0.25 0.25 0.25
Share explained by � shock alone 100% 100% 100%

Std of quarterly output growth (x100) 0.51 0.47 0.67 0.15
Share explained by � shock alone 91% 131% 29%

Slope coe¤. of the Phillips curve 2.20 2.88 0.82
Standard error 0.00 0.03 0.01
R2 0.99 0.88 0.89
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Table 3: Decomposing the initial impact of money shocks

@�1=@�1 I1 E1 S1

Zero in�ation
Uncorrelated shocks
Calvo 0.101 0.101 0 0
SDSP 0.157 0.100 -0.000 0.057
Menu cost 0.451 0.104 -0.006 0.353

Correlated shocks
Calvo 0.548 0.548 0 0
SDSP 0.788 0.516 -0.000 0.272
Menu cost 1.940 0.480 -0.018 1.480

63% annual in�ation
Uncorrelated shocks
SDSP 0.363 0.243 0.116 0.003
Menu cost 0.763 0.187 0.218 0.358

Correlated shocks
SDSP 1.770 1.220 0.617 -0.068
Menu cost 3.050 0.862 0.823 1.370
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