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ABSTRACT

In this paper I estimate empirical growth models simultaneously considering endogenous

regressors and model uncertainty. In order to apply Bayesian methods such as Bayesian

Model Averaging (BMA) to dynamic panel data models with predetermined or endogenous

variables and fixed effects, I propose a likelihood function for such models. The resulting

maximum likelihood estimator can be interpreted as the LIML counterpart of GMM esti-

mators. Via Monte Carlo simulations, I conclude that the finite sample performance of the

proposed estimator is better than that of the commonly used standard GMM. In contrast

to previous consensus in the empirical growth literature, once endogeneity and model un-

certainty are accounted for, empirical results indicate that the estimated convergence rate

is not significantly different from zero. Moreover, there seems to be only one variable, the

investment ratio, that robustly causes long-run economic growth.
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1 Introduction

Due to model uncertainty, Bayesian Model Averaging -henceforth BMA- methods applied

to growth regressions have recently been incorporated into the toolkit of empirical growth re-

searchers. However, the recent literature on BMA and growth is always based on the questionable

assumption of strict exogeneity of all growth determinants.1 This is the first paper that presents

estimates of causal effects simultaneously considering the issues of endogeneity and model uncer-

tainty in the growth context. In order to apply the BMA methodology, or the Bayesian apparatus

in general, we need suitable likelihoods. For this purpose, this paper introduces a likelihood func-

tion for a dynamic panel data model with general endogenous variables and fixed effects. The key

and new ingredient of this likelihood is the specification of an unrestricted feedback process for

the regressors since they are not treated as exogenous. Moreover, the resulting likelihood-based

estimator is shown to outperform standard generalized method of moments -henceforth GMM-

alternatives in finite samples.

As pointed out by Durlauf et al. (2005), the stylized facts of economic growth have led to

two major issues in the development of formal econometric analysis of growth. The first one

revolves around the question of convergence: are contemporary differences in growth rates across

countries transient over sufficiently long time horizons? The second issue concerns the identifi-

cation of growth determinants: which factors seem to explain observed differences in aggregate

economies? These two questions have been addressed by a huge literature on empirical growth

regressions. However, this industry is plagued by econometric inconsistencies that arise not only

when estimating an empirical growth model (i.e endogeneity of growth determinants) but also

when selecting that model (i.e. model uncertainty). In this paper I argue that once these issues

are accounted for, the empirical results are in contrast to previous consensus in the literature: on

the one hand, the estimated convergence rate is not significantly different from zero; on the other

hand, there is only one variable, the investment ratio, that robustly causes economic growth.

The issue of model uncertainty emerges because theory does not provide enough guidance to

select the proper empirical model. Model averaging techniques construct parameter estimates that

formally address the dependence of model-specific estimates on a given model. Even though there

are many papers that apply BMA techniques to the growth context (e.g. Fernandez et al. (2001)

and Sala-i-Martin et al. (2004)), they are all founded on the problematic exogeneity assumption of

the growth determinants. Intuitively, these papers estimate millions of models in order to address

model uncertainty, but the estimation of all these models is based on the exogeneity assumption

which is very probably violated in the growth context. Having said that, it is true that there

seems to be consensus on BMA as the most promising solution to model uncertainty.

1From a time series perspective, a similar situation is also present in the BMA forecasting literature where the

predictors are assumed to be strictly exogenous (see Stock and Watson (2006), page 545)
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The endogeneity issue is still unsolved in the growth framework. Problems with estimating an

empirical growth model are well known. The right-hand side variables are typically endogenous

and measured with error. Omitted variable bias also arises because of the presence of unobserv-

able time-invariant country-specific characteristics correlated with one or more regressors. The

most prominent way to address these problems is the use of panel data econometric techniques

that allow for country-specific fixed effects in the empirical model.2 In particular, first-differenced

GMM estimators applied to dynamic panel data models has been the most promising econometric

method in empirical growth research. This estimation procedure addresses the question of corre-

lated individual effects and the issue of endogeneity and it was first proposed in the econometrics

literature by Holtz-Eakin et al. (1988) and Arellano and Bond (1991), while in the growth context

it was first considered by Caselli et al. (1996).

Despite its important advantages over simple cross-section regressions and other estimation

methods for dynamic panel data models, it is now well known that in the growth context this

method suffers from large finite sample biases. Given the variables considered in empirical growth

models, the time series are persistent and the number of observations in the cross-section dimen-

sion is typically small. Under these conditions, the first-differenced GMM estimator is poorly

behaved because lagged levels of the variables are only weak instruments for subsequent first-

differences. This weak instruments problem may be present in other situations with highly per-

sistent data in a small-T panel setting.

By assuming mean stationarity of the variables, we can exploit additional moment conditions

and employ the so-called system-GMM estimator as proposed in Arellano and Bover (1995) in

order to alleviate the described weak instruments problem. However, in the analysis of country

panel data, Barro and Sala-i-Martin (2003) described some examples -like data sets that start at

the end of a war or other major historical event- in which one would not expect initial conditions to

be distributed according to the steady state distribution of the process in any dimension. There-

fore, if we are willing to avoid stationarity assumptions, as we are in general, and specially in the

growth context, there is no better alternative proposed for this situation. To overcome this issue,

this paper presents a feasible likelihood-based estimator in a panel data context which is asymp-

totically3 equivalent to one-step first-differenced GMM augmented with moments implied by the

serial correlation properties of errors.4 This maximum likelihood estimator alleviates the weak

instruments problem in finite samples without resorting to auxiliary stationarity assumptions.

I also argue that the estimator can be applied to a broad range of situations in addition to

growth regressions. One prominent example is the estimation of production functions in which we

2Typical growth panels are based on a sample of N countries observed over ten or five-year periods. Despite

some exercises are carried out with five-year periods, current data availability allows me to focus on ten-year

periods in order to avoid business cycle effects, following Barro and Sala-i-Martin (2003).
3I refer here to fixed-T and N →∞ asymptotics.
4The additional moments are quadratic restrictions of the type discussed in Ahn and Schmidt (1995).
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typically face two problems: (i) the regressors (employment and stock of capital) are potentially

correlated with firm-specific fixed effects and productivity shocks, and, (ii) both employment

and capital are highly persistent processes. Not surprisingly, first-differenced GMM has poor

finite sample properties in this context. Some authors have proposed to incorporate stationarity

assumptions to the model and employ the denominated system-GMM estimator in order to alle-

viate the weak instruments problem (see for example Blundell and Bond (2000)). Again, as in the

growth context, the likelihood-based estimator proposed in this paper is able to solve the weak

instruments problem present in the estimation of production functions without making any addi-

tional assumption. By the same token, there are many other situations in which the econometric

issues just described are also present.

In the single equation case, it is well documented in the literature that the effect of weak in-

struments on the distribution of two-stage least squares (2SLS) and limited information maximum

likelihood (LIML) differs substantially in finite samples despite the fact that both estimators have

the same asymptotic distribution. Although the distribution of LIML is centered at the parameter

value, 2SLS is biased toward ordinary least squares (OLS). On the other hand, since LIML has no

finite moments regardless of the sample size, its distribution has thicker tails than that of 2SLS.

In terms of numerical comparisons of median bias, interquartile ranges, and rates of approach to

normality, Anderson et al. (1982) concluded that LIML was to be strongly preferred to 2SLS,

particularly if the number of instruments is large.

In the panel setting considered in this paper, the number of instruments increases with the

time series dimension (T ), and, therefore, the model generates many overidentifying restrictions

even for moderate values of T , although the quality of these instruments is often poor. In order

to construct the likelihood function, there are T structural equations, but how to complete the

model with the reduced form equations is not straightforward5. Two different possibilities are

presented in this paper. After concentrating the resultant likelihood function, the maximum

likelihood estimator (i.e. the LIML counterpart of GMM estimators of panel data models with

general endogenous or predetermined variables and fixed effects) is easy to apply by means of

numerical optimization methods.

The finite sample behavior of the sub-system LIML estimator developed in this paper is

investigated via Monte Carlo simulations in an experimental design closely calibrated to panel

cross-country growth regressions. The Monte Carlo results show that sub-system LIML has

negligible biases in contrast to the Arellano-Bond GMM estimator, which has large biases in most

of the cases I consider. Therefore, the main conclusion is that the likelihood-based estimator I

propose in this paper is strongly preferred to standard GMM estimators in terms of finite sample

performance.

5In the pure autorregresive case Alvarez and Arellano (2003) among others have derived the likelihood func-

tion. To the best of my knowledge, thus far there is no paper deriving the likelihood for the case with general

predetermined variables
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Regarding the empirical growth literature, closely related to the econometric issues men-

tioned above, there is the convergence debate. After two decades of research the question is still

unanswered: Is there conditional convergence across countries? Some authors consider that the

available empirical evidence supports the conditional convergence hypothesis predicted by the

neoclassical growth model. However, from a skeptical point of view, the lack of reliable estimates

of the convergence parameter in growth regressions is enough to hamper consensus on the answer

of this relevant question. Furthermore, despite some progress has been done, there is no clear

evidence on the most prominent variables in fostering economic growth. The reason is that all

previous studies attempting to solve this issue are based on partial correlations and not causal

effects (e.g. Sala-i-Martin et al. (2004) and Fernandez et al. (2001)).

Given the above, after considering all potential sources of biases and inconsistencies (i.e. after

combining the BMA methodology with the proposed likelihood-based estimator), I obtain two

results that are in contrast to previous consensus in the literature. On the one hand, I find

that conditional convergence is not present across the countries in my sample. In particular, the

estimated speed of convergence is 0.73%, but it is not significantly different from zero. This result

would lead us to conclude that the hypothesis of no conditional convergence can not be rejected

given the available data. On the other hand, I conclude that there is only one variable that seems

to robustly cause economic growth, the investment ratio. However, I obtain further evidence that

allows me to conclude that some variables such as population or life expectancy, in spite of having

a statistically insignificant effect on growth, should be included as controls in growth regressions.

This is so because the models that include these variables are the best models in fitting the data.

The remainder of the paper is organized as follows. Section 2 describes the construction of

the likelihood function in the context of a dynamic panel data model with feedback. Monte Carlo

evidence on the finite sample behavior of the estimator is provided in Section 3. In Section 4 I

estimate some different specifications of empirical growth models with the proposed estimator.

Results from combining the estimator and model averaging techniques are presented in Section

5. Finally, Section 6 concludes and auxiliary results are gathered in the Appendix.

2 Dynamic Panel Data with Feedback:

Likelihood-Based Estimation

Consider the following panel data model:

yit = αyit−1 + x′itβ + w′iδ + ηi + ζt + vit (1)

E
(
vit | yt−1

i , xti, wi, ηi
)

= 0 (t = 1, ..., T )(i = 1, ..., N) (2)
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where xit and wi are vectors of variables of orders k and m respectively, and xti denotes a vector

of observations of x accumulated up to t: xti = (x′i1, . . . , x
′
it)
′

The predetermined nature of the lagged dependent variable is considered in assumption (2).

The model also relaxes the strict exogeneity assumption for the x variables that are also consid-

ered as predetermined (this is why we can refer to the model as having general predetermined

variables). In particular, the assumption in (2) allows for feedback from lagged values of y to the

current value for x. Moreover, it implies lack of autocorrelation in vit since lagged vs are linear

combinations of the variables in the conditioning set. A notational remark is that the model is

written in such a way that the initial observation for y is yi0 and for the xs the initial observation

is xi1. Both are observed and, in any case this is just a matter of notation.

I also include m strictly exogenous regressors that may or may not have temporal variation.

In the remaining of the exposition I assume that all the w variables have no variation within time.

While allowing for time varying strictly exogenous w variables is straightforward in this context,

in the spirit of Hausman and Taylor (1981) I prefer to stress the possibility of identifying the

effect of time-invariant variables in addition to the unobservable time-invariant fixed effect. This

is possible by assuming lack of correlation between the w variables and the unobservable fixed

effects ηi.

Note that in addition to the individual specific fixed effects ηi, I also include the term ζt

in (1), that is, time dummies are present in the model in order to capture unobserved common

factors across units in the panel and, therefore, I allow for these particular forms of cross-sectional

dependence. In practice, this is done by simply working with cross-sectional de-meaned data. In

the remaining of the exposition, I assume that all the variables are in deviations from their

cross-sectional mean.

Models like the one presented in equations (1)-(2) are typically estimated by first-differenced

generalized method of moments. However, the conclusion from a sizeable Monte Carlo literature

on the finite sample properties of this GMM estimators is that they can be severely biased when

weak instruments (persistent series) are present (e.g. Arellano and Bond (1991), Blundell and

Bond (1998) and Alonso-Borrego and Arellano (1999) amongst others). In order to alleviate

this problem, some alternatives have been proposed in the literature (see for example Hansen

et al. (1996) and Alonso-Borrego and Arellano (1999)). On the other hand, given the available

evidence in the single equation case, likelihood-based estimators are also good candidates in the

face of the weak instruments problem in this setting. Moreover, the availability of a proper

likelihood function would allow us to combine the apparatus of likelihood-based inference and the

Bayesian framework with dynamic panel data models with general predetermined variables and

fixed effects.

Previous likelihood-based approaches in dynamic panel data models only consider the case

of strictly exogenous regressors (see for example Bhargava and Sargan (1983)). Therefore, the
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focus was on the distribution of yTi conditional on the regressors and, sometimes on the initial

observation yi0. Moreover, it is possible to either condition on the fixed effect ηi or work with

the distribution marginal on the effects (see Arellano (2003) for more details). In any case, the

distribution of the regressors is not specified since they are considered as strictly exogenous. If this

assumption is not true, as it is the case in many applications such as growth regressions or macro

forecasting applications, the likelihood will be fundamentally misspecified. Here instead I present

the likelihood function for dynamic panel data models with general predetermined variables and

fixed effects.

2.1 Completing the General Predetermined Variables

Model with an Unrestricted Feedback Process

In contrast to a model with only strictly exogenous explanatory variables, the specification of

the model with predetermined variables is incomplete in the sense that in itself it does not lead

to a likelihood once we add an error distributional assumption. To complete the model in a way

that is not restrictive, I specify the feedback process as a linear projection of the non-exogenous

variables on all available lags, having period-specific coefficients. The complete model is therefore

as follows:

yi0 = w′iδy + cyηi + vi0 (3a)

xi1 = ∆1wi + γ10yi0 + c1ηi + ui1 (3b)

yi1 = αyi0 + x′i1β + w′iδ + ηi + vi1 (3c)

and for t = 2, ..., T :

xit = ∆twi + γt0yi0 + ...+ γt,t−1yi,t−1 + Λt1xi1 + ...+ Λt,t−1xi,t−1 + ctηi + uit (3d)

yit = αyi,t−1 + x′itβ + w′iδ + ηi + vit (3e)

Remark: Note that by writing the system as in (3a)-(3e) we are implicitly

assuming that Cov(ηi, wi) = 0, since otherwise I should have added the equa-

tion ηi = w′iδη + ei in order to complete the system. Therefore, assuming that

δη = 0 is enough to guarantee identification of δ in (1).

This is a system of T (k + 1) + 1 equations where δy and ct are vectors of parameters of order m

and k respectively, cy is a scalar, and γth is the k × 1 vector:

γth = (γ1
th, . . . , γ

k
th)
′ (t = 1, . . . , T ) (h = 0, . . . , T − 1)
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Moreover, ∆t and Λth are matrices of parameters of orders k×m and k× k, respectively, and

uit is a k × 1 vector of prediction errors.

On the other hand, I also define the T (k + 1) + 2 column vector of errors:

Ξi = (ηi, vi0, u
′
i1, vi1, . . . , u

′
iT , viT )′

and the T (k + 1) + 1× 1 vector of data for individual i:

Ri = (yi0, xi1, yi1, . . . , xiT , yiT )′

Finally, in order to rewrite the system in matrix form, I define the T (k + 1) + 1 × T (k + 1) + 1

lower triangular matrix of coefficients B as:

B =



1 0 0 0 0 . . . 0 0 0

−γ10 Ik 0 0 0 . . . 0 0 0

−α −β′ 1 0 0 . . . 0 0 0

−γ20 −Λ21 −γ21 Ik 0 . . . 0 0 0

0 0 −α −β′ 1 . . . 0 0 0
...

...
...

...
...

. . . 0 0 0

−γT0 −ΛT1 −γT1 −ΛT2 −γT2 . . . −γT,T−1 Ik 0

0 0 0 0 0 . . . −α −β′ 1


And the matrices D and C of orders T (k+1)+1×T (k+1)+2 and T (k+1)+1×m respectively:

D =



cy 1 0 0 0 0 . . . 0

c1 0 Ik 0 0 0 . . . 0

1 0 0 1 0 0 . . . 0

c2 0 0 0 Ik 0 . . . 0

1 0 0 0 0 1 . . . 0
...

...
...

...
...

...
. . .

...

cT 0 0 0 0 0 Ik 0

1 0 0 0 0 0 0 1


C =



δ′y

∆1

δ′

...

∆T

δ′



Given the above, I am now able to write the system in matrix form as follows:

BRi = Cwi +DΞi
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where:

V ar (Ξi) = Ω =



ση 0 0 0 0 0 0

0 σv0 0 0 0 0 0

0 0 Σu1 0 0 0 0

0 0 0 σv1 0 0 0
. . .

0 0 0 0 0 ΣuT
0

0 0 0 0 0 0 σvT


T (k+1)+2×T (k+1)+2

and Σut is a k × k matrix.

This parametrization of the complete model is labeled as Full Covariance Structure (FCS)

representation. Moreover, under normal errors the log-likelihood of the model can be written as:

L = −N
2

ln det
(
B−1DΩD′B′−1

)
(4)

− 1

2
tr

{(
B−1DΩD′B′−1

)−1 [
R−W (B−1C)′

]′ [
R−W (B−1C)′

]}
where R and Xt are the following matrices:

R =
(
Y0 X1 Y1 . . . XT YT

)
N×T (k+1)+1

Xt =
(
X1
t , . . . , X

k
t

)
NXk

and W is the N ×m matrix W = (w1, w2, . . . , wN)′.

It is important to remark here that the maximizer of L is a consistent and asymptotically nor-

mal estimator regardless of non-normality. More specifically, the resultant first order conditions

correspond to a GMM problem with a convenient choice of weighting matrix (see Arellano (2003)

pp.71-73).

Note also that the coefficients matrix B includes γth and Λth that are the vector and matrix

that gather all the feedback process from lagged ys to current xs and the dynamic relationships

between the x variables respectively. The parameters corresponding to the dynamic relationships

between the xs are not of central interest for our model, but in principle, they also need to be

estimated. In practice this might be a concern since the number of them is enormous.

On the other hand, the variance-covariance matrix of the errors Ω is block-diagonal. An

interesting feature of this model is that there is a one-to-one mapping between the parameters in

B and the elements of Ω. More specifically, any coefficient in γth or Λth restricted to be zero in

B will automatically be translated into an additional non-zero element in Ω in order to satisfy

the same number of restrictions imposed by the model. Further developing this feature, I present

in the Appendix A.1 another parametrization (labeled as Simultaneous Equation Model (SEM)

representation) that captures the feedback process and the dynamic relationships between the xs

in the variance-covariance matrix of the system. This SEM parametrization turns out to be useful
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in practice because it allows me to concentrate out all the parameters of the dynamic relationships

between the xs. This concentration, described in Appendix A.2, drastically reduces the number

of paramaters to be estimated.

3 Monte Carlo Simulation

In this section, I provide some Monte Carlo evidence on the finite sample behavior of the

likelihood-based estimator proposed in the previous section. The purpose is to study its finite-

sample properties in relation to the commonly used first-differenced GMM and Within-Group

estimators.

3.1 Model and Estimators

Let us consider a dynamic panel data model with feedback and fixed effects as follows:

yit = αyit−1 + β1x
1
it−1 + β2x

2
it−1 + ηi + vit (5)

E
(
vit | yit−1, ..., yi0, x

1
it−1, ..., x

1
i0, x

2
it−1, ..., x

2
i0, ηi

)
= 0 (6)

Suppose we have a random sample of individual time series of size T : (w′i1, ..., w
′
iT )′ where

wit = (yit, x
1
it, x

2
it)
′ and (i = 1, ..., N). On the other hand, I assume that initial observations

wi0 = (yi0, x
1
i0, x

2
i0)′ are observed. I further assume that the initial observations and the fixed

effect are jointly normally distributed6 with unrestricted mean vector and covariance matrix. In

other words: (i) feedback is allowed from lagged y to current x’s. (ii) Stationarity assumptions

of any type are avoided. (iii) Individual fixed effects correlated with the regressors are included.

The Monte Carlo design tries to mimic as close as possible the Solow model environment. For

this purpose, parameter values are fixed according to the results obtained in the estimation of a

VAR process for the variables GDP (y), investment ratio (x1) and population growth (x2) over

the period 1960-2000. Using these parameter estimates I simulate random samples according to a

structural VAR data generating process. Specifically, the employed parameter values correspond

to the estimates obtained when estimating the VAR process using ten-year periods data, the

baseline specification in this paper. On the other hand, since five-year periods are also commonly

considered in empirical panel growth regressions, for the purpose of robustness, I also conduct a

set of Monte Carlo simulations using parameter values calibrated to five-year periods data. These

additional results and more details on the Monte Carlo design can be found in Appendix A.3.

6Note that the consistency of the estimators I consider in the Monte Carlo exercise is unaffected by the

normality assumption (see Arellano (2003) pp.71-73).
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Three alternative estimators are applied to the simulated samples. I first consider the Within-

Group (WG) estimator of (α, β1, β2)′. This is given by the slope coefficients in an OLS regression

of y on lagged w and a full set of individual dummy variables, or equivalently by the OLS estimate

in deviations from time means or orthogonal deviations. Assumptions required for consistency

of the WG estimator (i.e. strict exogeneity of the regressors) are not satisfied in our setting.

However WG is considered in order to make comparisons with first-differenced GMM (diff-GMM)

since similarities between both are typically considered as indication of the presence of weak

instruments in the diff-GMM estimates (see Bond et al. (2001)).

Secondly, I consider the diff-GMM estimator commonly employed in panel growth regres-

sions since Caselli et al. (1996). The assumption in equation (6) implies a set of linear moment

conditions of the form:

E[wt−2
i (∆yit − α∆yit−1 − β1∆x1

it−1 − β2∆x2
it−1)] = 0 (7)

In our case, this moment conditions are exploited using the optimal one-step GMM estimator

under ”classical” errors and it is labeled as diff-GMM. This estimator is consistent under the same

assumptions as the likelihood-based estimator proposed in this paper. Given the persistence of

the series considered in the growth context, the diff-GMM estimator is expected to suffer from

weak instruments in finite samples.

The maximum likelihood estimator proposed in the previous section is expected to alleviate

the weak instruments problem in finite samples. Therefore it is also considered in our experiment

in order to study its finite sample performance in relation to diff-GMM. This estimator is labeled

as sub-sys LIML since it can be interpreted as a sub-system LIML estimator.

Under homoskedasticity, sub-system LIML is asymptotically equivalent to a GMM estimator

that in addition to (7) uses the following moments implied by lack of serial correlation:

E[∆vi,t−1uit] = 0 (t = 3, ..., T )

where uit = ηi + vit. Thus, in the comparison between sub-system LIML and diff-GMM there

are two sources for different performance. First, the extra moments and second the finite sample

differences.

3.2 Results

Table 1 reports sample medians, percentage median bias, interquartile ranges, and median ab-

solute errors (MAE’s) for WG, diff-GMM and sub-sys LIML estimators for the model in equations

(5)-(6) (means and standard deviations are not reported because the sub-system LIML estimators

can be expected to have infinite moments).

In the baseline specification in Panel A, N is fixed to 100 since it is the number of cross-section

observations we find in a typical growth regression. On the other hand, given the main focus of
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Table 1: Monte Carlo Results

α = 0.95 β1 = 0.20 β2 = −0.10

WG
diff sub-sys

WG
diff sub-sys

WG
diff sub-sys

GMM LIML GMM LIML GMM LIML

Panel A: T = 4, N = 100

median .426 .440 .900 .084 −.118 .154 −.097 −.155 −.107

% bias 55.2% 53.7% 5.2% 57.8% 159.0% 23.2% 2.6% 55.0% 6.6%

iqr .079 .319 .157 .100 .265 .205 .096 .172 .161

MAE .524 .510 .070 .116 .320 .113 .047 .091 .081

Panel B: T = 4, N = 500

median .432 .691 .929 .083 .022 .173 −.096 −.133 −.102

% bias 54.5% 27.2% 2.2% 58.4% 88.8% 13.4% 4.4% 32.9% 2.3%

iqr .033 .238 .104 .046 .172 .108 .046 .071 .070

MAE .518 .260 .038 .117 .181 .056 .023 .042 .035

Panel C: T = 4, N = 1000

median .432 .789 .932 .084 .089 .179 −.096 −.120 −.103

% bias 54.6% 16.9% 1.9% 57.9% 55.5% 10.6% 4.0% 20.4% 3.4%

iqr .025 .176 .092 .035 .135 .080 .034 .052 .049

MAE .518 .164 .032 .116 .116 .042 .017 .028 .024

Panel D: T = 8, N = 100

median .685 .730 .935 .154 .074 .184 −.112 −.151 −.102

% bias 27.8% 23.1% 1.5% 23.2% 63.0% 7.8% 11.5% 51.0% 2.3%

iqr .044 .111 .073 .062 .114 .124 .069 .086 .090

MAE .265 .220 .035 .049 .126 .061 .035 .058 .045

Panel E: T = 8, N = 500

median .687 .867 .947 .150 .143 .194 −.114 −.124 −.102

% bias 27.7% 8.7% .4% 25.2% 28.6% 3.0% 14.5% 23.9% 2.3%

iqr .021 .057 .046 .031 .057 .054 .028 .040 .039

MAE .263 .083 .021 .050 .057 .027 .018 .028 .019

Panel F: T = 8, N = 1000

median .687 .903 .949 .152 .169 .197 −.116 −.115 −.102

% bias 27.7% 4.9% .1% 23.8% 15.7% 1.4% 16.0% 14.6% 2.3%

iqr .014 .043 .036 .021 .044 .041 .020 .028 .026

MAE .263 .047 .017 .048 .033 .021 .016 .018 .013

Notes: 1,000 replications. % bias gives the percentage median bias for all the estimates; iqr is the

75th-25th interquartile range; MAE denotes the median absolute error. Parameter values calibrated to

ten-year periods data.

this paper is on ten-year periods over the years 1960-2000, T = 4 is the number of available time

series observations. In this baseline experiment, which replicates as close as possible the situation

in empirical panel growth regressions, sub-sys LIML clearly outperforms diff-GMM. In terms
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of median bias, diff-GMM is badly biased in all the three coefficients while sub-system LIML

has always much smaller biases that are almost negligible in the cases of α and β2. Note here

that the percentage of median bias is not informative when comparing estimates across different

coefficients since it depends on the magnitude of the true coefficient. However it is illustrative

for comparisons between different estimates of the same coefficient. For example, the percentage

of bias in α for sub-system LIML is only 5.2% while for WG and diff-GMM this percentage is

huge, 55.2% and 53.7% respectively. An additional remark, is that diff-GMM estimates are more

similar to WG estimates than to the true values in the case of the autorregresive parameter, and

this is an indication of weak instruments in the diff-GMM estimator. On the other hand, looking

at the interquartile range (iqr), WG has always less dispersion than diff-GMM and sub-sys LIML

as expected. However, the dispersion of sub-sytem LIML is very similar to that of diff-GMM and

even smaller for the α parameter. This means that the higher probability of outliers in LIML

estimators is not a big concern in this particular application. Finally, attending to MAE’s, sub-

sys LIML always performs clearly better than diff-GMM. MAE summarizes information on the

performance of the estimator in terms of both bias and dispersion. Summing up, the conclusion

from Panel A in Table 1 is that sub-system LIML clearly ourtperforms diff-GMM in the typical

situation that an empirical growth researcher faces when using ten-year periods over the post-war

sample 1960-2000.

In Panels B and C of Table 1, the results with N = 500 and N = 1000 are presented for

illustrating the performance of the estimators in larger samples. In principle this is not a realistic

situation in the cross-country growth context since there are not so many countries in the world.

However, one could use regional data and have a sample size of a magnitude similar to 500 in

the cross-section dimension. In any case, the purpose of this experiment is to investigate the

relative performance of diff-GMM and sub-sys LIML in larger samples (larger in the cross-section

dimension) since both estimators are consistent as N →∞ and T remains fixed. The performance

of WG is not affected by increasing N since the WG bias comes from the small sample size in

the time series dimension. Therefore, in terms of median bias, the WG results are practically the

same in Panels A, B, and C. However, as expected, diff-GMM performance substantially improves

as N increases in terms of median bias and dispersion. This improvement is not so substantial for

sub-sys LIML since its performance is already reasonably satisfactory with N = 100 as shown in

Panel A. However, looking at MAE’s as a summary measure, sub-system LIML is still considerably

better than diff-GMM in all cases. In any event, while sub-sys LIML biases become insignificant

for moderate values of N , the diff-GMM biases are not negligible even with N = 1000. This

would lead us to the conclusion that, with four time series observations, in order to consider the

consistency results valid in this application, diff-GMM requires sample sizes larger than 1000 in

the cross-section dimension, which seems clearly implausible in the growth context.

Three additional experiments based on T = 8 are presented in the three bottom panels of
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Table 1. I also consider these experiments because five-year periods are commonly considered

in the panel growth literature, and, if we consider the post-war period 1960-2000, we would end

up with eight time series observations. Panels D, E, and F present the results with N = 100,

N = 500, and N = 1000 respectively. These results confirm the patterns previously described (i.e.

sub-sys LIML clearly outperforms diff-GMM for all sample sizes in the cross-section dimension)

but now, with T = 8, the biases and interquartile ranges for both diff-GMM and sub-sys LIML

are always smaller for a given value of N . This means that the performance of both estimators

clearly improves as the number of time series observations increases. As expected, this is also

true in the case of WG.

Finally, all the experiments previously described are conducted again but using different pa-

rameter values for the purpose of robustness. Both the employed parameter values and the results

are available in Appendix A.3. These additional results confirm the patterns that emerge from

Table 1. Given the above, the main conlusion from our Monte Carlo study is that, in the growth

context, the likelihood-based estimator (sub-sys LIML) presented in this paper clearly outper-

forms the commonly used diff-GMM estimators in finite samples. This is true even when the

number of available cross-section observations is around 1000.

4 Empirical Growth Regressions

The neoclassical framework is the basis for most empirical growth research. Departing from

a generic one-sector growth model, in either its Solow-Swan or Ramsey-Cass-Koopmans variant,

it is usual to assume that aggregate output obeys a Cobb-Douglas production function and then

obtain a canonical cross-country growth regression of the form:

γi = β ln yi0 + ψXi + εi (8)

where γi = t−1(ln yit − ln yi0) represents the growth rate of output per worker between 0 and

t. On the other hand, Xi is a vector of variables that represents not only the growth deter-

minants suggested by the the Solow-Swan growth model but also additional determinants that

allow for predictable heterogeneity in the steady state. These regressions are sometimes called

Barro regressions, given Barro’s extensive use of such regressions to study alternative growth de-

terminants starting with Barro (1991). These kind of regressions have been widely used trying to

address two major themes in the formal empirical analysis of growth: the identification of growth

determinants and the question of convergence.

As previously stated, most of the growth econometrics literature is based on equation (8). An

important objective of the present paper is to solve the problems that are still present in these

empirical growth regressions from an econometric perspective. In particular, I address the issues

of endogeneity, omitted variables, model uncertainty, measurement error, and, to some extent,
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parameter heterogeneity. By doing so, I will then be able to shed some light on the two issues

mentioned above.

There is an important variant of the baseline empirical growth regression in (8) that can be

called the canonical panel growth regression:

ln yi,t = (1 + β) ln yi,t−1 + ψXi,t−1 + ηi + ζt + vi,t (i = 1, ..., N)(t = 1, ..., T ) (9)

where ηi is a country-specific fixed effect that allows considering unobservable heterogeneity across

countries (since this term is country specific, we can interpret it as allowing for some kind of pa-

rameter heterogeneity across countries), and ζt is a period-specific shock common to all countries.

The use of panel data in empirical growth regressions has many advantages with respect to cross-

sectional regressions. First of all, the prospects for reliable generalizations in cross-country growth

regressions are often constrained by the limited number of countries available, therefore, the use

of within-country variation to multiply the number of observations is a natural response to this

constraint. On the other hand, the use of panel data methods allows solving the inconsistency

of empirical estimates which typically arises with omitted country specific effects which, if not

uncorrelated with other regressors, lead to a misspecification of the underlying dynamic structure,

or with endogenous variables which may be incorrectly treated as exogenous.

There are several issues to be treated in the panel growth regressions literature. Firstly,

dependence of the lagged dependent variable and the regressors in Xi,t−1 with the country-specific

fixed effect is allowed in virtually all previous panel studies. In this manner, the country-specific

fixed effects are treated as parameters to be estimated and we condition on them, so, their

distribution plays no role. This is the so-called fixed effects approach in contrast to the random

effects approach that invokes a distribution for η and considers the effects independent of all the

regressors in the model. Secondly, Knight et al. (1992) and Islam (1995) among others, have also

consider the predetermined nature of the lagged dependent variable with respect to the transitory

component of the error term vi,t. This point refers to the fact that, by construction, all leads

of yi,t−1 are correlated with vi,t and, therefore, the within-groups estimator will produce biased

estimates in the typical small-T growth panel. In particular, both studies employ the Π-matrix

method of Chamberlain (1983). An important drawback of this method is that all the variables

in the X vector are considered as strictly exogenous, i.e. all leads and lags of the variables are

assumed to be uncorrelated with vi,t. This consideration rules out the possibility of feedback

from lagged income (i.e. ln y) to current growth determinants such as the rate of investment

or the rate of population growth (i.e. the x variables), which seems to be reasonable in the

growth context. Finally, Caselli et al. (1996) and Benhabib and Spiegel (2000) among others,

take into consideration the predetermined nature7 of the x variables allowing for the mentioned

feedback process. In particular, in order to estimate the model, they use generalized method of

7This predetermined nature is sometimes denominated weakly exogeneity in the growth literature.

15



moments (GMM) following techniques advanced by Holtz-Eakin et al. (1988) and Arellano and

Bond (1991). The assumption that the explanatory variables are predetermined implies a set of

moment restrictions that can be used in the context of GMM to generate consistent and efficient

estimates of the parameters of interest. More concretely, the employed moment restrictions can

be interpreted as an instrumental variables model where lagged levels of the variables are used as

instruments for their first-differences. As Blundell and Bond (1998) pointed out, with persistent

series such as GDP, lagged levels may be only weak instruments for the equation in first-differences.

Thus, in spite of being consistent as N goes to infinity, this estimator is poorly behaved in finite

samples. For this reason, these GMM estimates are not very reliable and have not received

too much credit in the empirical growth literature. In order to solve this weak instruments

problem, Bond et al. (2001) proposed, in the context of growth regressions, the use of the so-

called system-GMM estimator introduced by Arellano and Bover (1995). However, this estimator

requires the additional assumption of mean stationarity of the variables. Additional stationarity

assumptions for solving this weak instruments problem are considered an ad hoc solution and not

very appealing. In the growth regressions framework, this assumption is specially not desiderable

since it may be interpreted as assuming that all the countries are in their steady state just after

the Second World War.

To the best of my knowledge there is no better alternative to estimate empirical panel growth

regressions. The sub-system LIML estimator presented in the previous section is a good candidate

for solving the problems described above. First of all, it considers the presence of country-specific

fixed effects that may be correlated with both lagged income and growth determinants. Secondly,

it also takes into consideration the predetermined nature not only of the lagged dependent vari-

able but also of the growth determinants (i.e. feedback from lagged income to current growth

determinants is allowed). Thirdly, as it is well-known, LIML estimators alleviate the problem of

finite sample biases caused by weak instruments. Moreover, measurement error considerations

can be easily accommodated through additional restrictions on the variance-covariance matrix.

On the other hand, it is important to remark that model uncertainty will be considered in the

next section.

Given the above, the model to be estimated is given by the following equation and assumption:

yi,t = αyi,t−1 + ψxi,t−1 + ηi + ζt + vi,t (10a)

E
(
vi,t | yt−1

i , xt−1
i , ηi

)
= 0 (i = 1, ..., N)(t = 1, ..., T ) (10b)

where α = 1 + β, yi,t is the GDP per capita for country i in period t, xi,t−1 is a k × 1 vector of

growth determinants, ηi is a country-specific fixed effect, ζt represents a set of time dummies and

vi,t is the random disturbance term.

Given current data availability, it is now possible to use 10-year periods in panel growth

regressions. This is so because typical sources of ”growth data” such as Penn World Tables, cover
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a broad range of countries over the period 1960 to 2000. By using 10-year periods I aim to avoid

the effect of business-cycle fluctuations and, therefore, focus on the long-term growth process.

However, I will also present some estimations using 5-year periods data with similar results.

4.1 Revisiting the Solow-Swan Model

The baseline empirical growth regression is given by the basic neoclassical growth model,

developed by Solow (1956) and Swan (1956). In the empirical counterpart of this model, the

vector xi,t−1 in (10a) includes proxies for the population growth rate (n), the rate of technological

progress (g), the rate of depreciation of physical capital (d), and the saving rate (s). In particular,

in my regressions, output is measured by GDP per capita at constant 2000 international prices

from Penn World Tables 6.2 (PWT62). The saving rate (s) is proxied by the ratio of real domestic

investment to GDP from PWT62. Finally, following Mankiw et al. (1992) and Caselli et al. (1996)

among others, I choose 0.05 as a reasonable assessment of the value of g+d. Appendix A.4 contains

more details about the employed data.

I have applied different estimation methods to the Solow-Swan model in two different panel

settings, five-year periods and ten-year periods data. The results are presented in Table 2. The

bulk of the empirical growth regressions literature in based on cross-country OLS regressions as

presented in columns (1) and (5). The within-groups (WG) estimator is a slight variant where

given the availability of a panel dataset, country dummies can be included in order to allow for

the presence of unobserved heterogeneity (i.e. country-specific fixed effects). The results when

employing both OLS and WG estimators are in line with previous literature. The problem is that,

as previously stated, these estimates are based on the wrong assumptions and thus they are only

biased estimates of the real effects. On the other hand, the similarity between WG and diff-GMM

estimates is interpreted as an indication of the presence of a weak instruments problem. This

has been previously documented in Bond et al. (2001). As a result, in spite of being based on

reasonable assumptions, the diff-GMM estimates are not reliable because they suffer from finite

sample biases.

The sub-system LIML estimation procedure presented in this paper is applied to the basic

Solow-Swan model and the results are shown in columns (4) and (8) of Table 2. Inspection of

these columns makes it clear the importance of the finite sample biases in previous differenced

GMM estimates of this model. In contrast to previous panel estimates of the rate of convergence

using the Solow-Swan framework, I obtain here that the speed of convergence is either low or

zero across the countries in the sample. This is true when considering both five-year and ten-year

periods. In particular, the point estimate for the convergence rate8 is roughly zero in both cases.

8The convergence rate λ is obtained as follows: λ = lnα
−τ where τ is either 5 or 10. On the other hand, its

standard error is calculated by the delta method.
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Table 2: Solow-Swan Model Estimation Results

Five-year data Ten-year data

OLS WG
diff sub-sys

OLS WG
diff sub-sys

GMM LIML GMM LIML

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable is ln(yi,t)

ln(yi,t−1) 0.963 0.843 0.830 1.012 0.927 0.718 0.717 1.025

(0.007) (0.025) (0.050) (0.034) (0.014) (0.050) (0.112) (0.076)

ln(si,t−1) 0.088 0.091 0.035 0.095 0.167 0.166 0.009 0.222

(0.010) (0.018) (0.034) (0.022) (0.019) (0.036) (0.085) (0.049)

ln(ni,t−1+g+d) −0.204 −0.137 0.128 0.020 −0.441 −0.327 0.557 −0.102

(0.041) (0.071) (0.108) (0.082) (0.085) (0.163) (0.325) (0.342)

Implied λ 0.007 0.034 0.037 −0.002 0.008 0.033 0.033 −0.003

(0.001) (0.006) (0.012) (0.007) (0.002) (0.007) (0.016) (0.009)

Observations 584 584 511 584 292 292 219 292

Countries 73 73 73 73 73 73 73 73

Notes: In all columns a set of time dummies is included in the regressions. Columns (1) and (5) refer to the OLS

estimation without country-specific fixed effects and all regressors considered as exogenous. In columns (2) and (6) the

within-group estimator is employed and therefore fixed effects are included. However all regressors are assumed to be

strictly exogenous. Finally, columns (3)-(4) and (7)-(8) present different estimates of the Solow-Swan version of the

model in (10a)-(10b), where both fixed effects and weakly exogeneity are considered. In particular, columns (3) and

(7) refer to the differenced GMM estimation and columns (4) and (8) present the estimation results when using the

sub-system LIML estimator presented in Section 2. Standard errors are in parenthesis.

However, the 95% confidence intervals are consistent with convergence rates that vary from −1.5%

to 1.1% in the case of five-year periods data and from −2.0% to 1.0% in the case of ten-year data.

This result suggests that previous panel studies such as Caselli et al. (1996), where the estimated

rate of convergence was surprisingly high, were driven by finite sample biases. This conclusion

will be reinforced in the remaining of the paper when Barro regressions and model uncertainty

will be also taken into account.

By the same token, some differences also arise with respect to other parameter estimates.

More concretely, the estimate for ln(ni,t−1 + g + d) is similar in both diff-GMM and sub-system

LIML in the sense that they are not significantly different from zero. However, the point estimate

is negative in the case of sub-system LIML and positive when using diff-GMM. On the other

hand, the estimate of the savings rate coefficient is positive, larger and significant in the case of

sub-system LIML but insignificant when using diff-GMM. Moreover, its effect is always larger in

the case of ten-year periods data.
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4.2 Barro Regressions

Since Barro (1991), most of empirical growth regressions are based on a wide variety of spec-

ifications given by different variables included in the vector xi,t−1 in (10a). In this subsection I

will apply the sub-system LIML estimator together with OLS, WG and diff-GMM to two dis-

tinct panel cross-country growth regressions a la Barro. In particular, I focus on the baseline

specification of Barro and Lee (1994) as well as an alternative specification explained below.

The basic empirical framework of Barro regressions with panel data is given by equation

(10a). Two kind of variables are included in theses regressions, first, initial levels of state variables

measured at the beginning of the period (I will now focus on ten-year periods); and second, control

or environmental variables, some of which are chosen by governments or private agents. For the

baseline specification, as in Barro and Lee (1994), among the state variables I include the initial

level of per capita GDP, the average number of years of secondary education, and the logarithm of

life expectancy. The first is used to proxy the initial stock of physical capital, while the others are

proxies for the initial level of human capital in the forms of educational attainment and health.

Among the control variables, I include the domestic investment ratio (I/GDP) and the ratio of

government consumption to GDP (G/GDP) as in Barro and Lee (1994). Given data availability

in my sample period, the other two control variables are slightly different from those employed

in the original specification but they capture similar effects. I consider the price of investment

as a measure market prices distortions that exists in the economy and a polity composite index

as a proxy of political freedom and stability. GDP, investment share, government consumption,

and investment price are taken from PWT62. Secondary education is from Barro and Lee (2000),

life expectancy from World Development Indicators 2005 and the polity index from the Polity IV

project9. In the next section I will explain more about these and other state and control variables.

Table 3 shows the results. Columns (1)-(4) refer to the baseline specificacion previously

described. In line with Solow-Swan estimation results, the main conclusion from these columns is

that the rate of convergence is either very low or zero according to the sub-system LIML estimates.

The 95% sub-system LIML confidence interval goes from −1.1% to 1.6%. On the other hand,

the conclusions with respect to other explanatory variables may change a lot depending on the

estimation method. For instance, investment price has a negative and significative effect on

growth according to the sub-system LIML estimates but not according to diff-GMM that suffer

from finite sample bias.

In columns (5)-(8) I present the results from an alternative specification. Imagine a researcher

who is testing the effect of democracy on growth. For this purpose, she estimates a growth

regression using as state variables the initial level of per capita GDP, the average years of secondary

education and the country’s population (in millions of people), and as a control variable she decides

9A more detailed description of the data sources and variables is in Appendix A.4
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Table 3: Barro Regressions Estimation Results

Baseline Specification Alternative Specification

Ten-year data Ten-year data

OLS WG
diff sub-sys

OLS WG
diff sub-sys

GMM LIML GMM LIML

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable is ln(yt)

ln(yt−1) 0.845 0.683 0.842 0.977 0.971 0.624 0.438 0.899

(0.021) (0.052) (0.075) (0.068) (0.019) (0.051) (0.107) (0.084)

Education 0.040 0.039 0.055 0.030 0.016 0.036 0.076 0.030

(0.015) (0.036) (0.081) (0.056) (0.017) (0.032) (0.046) (0.054)

ln (life expect) 0.829 0.478 0.709 0.862

(0.108) (0.224) (0.488) (0.190)

I/GDP 0.588 0.781 0.857 1.114 0.891 0.797 0.351 1.268

(0.133) (0.213) (0.279) (0.244) (0.132) (0.193) (0.284) (0.293)

G/GDP −0.246 −0.465 −0.314 −0.546

(0.115) (0.284) (0.534) (0.318)

Inv. Price −0.0004 −0.0007 −0.0008 −0.0010

(0.0002) (0.0003) (0.0006) (0.0004)

Polity −0.042 −0.201 −0.260 −0.256 0.054 −0.167 −0.338 −0.169

(0.041) (0.061) (0.083) (0.084) (0.042) (0.058) (0.082) (0.096)

Population 0.0003 0.017 0.020 0.0012

(0.0001) (0.0003) (0.0003) (0.0004)

Implied λ 0.017 0.038 0.017 0.002 0.003 0.047 0.082 0.011

(0.003) (0.008) (0.009) (0.007) (0.002) (0.008) (0.024) (0.009)

Observations 292 292 219 292 292 292 219 292

Countries 73 73 73 73 73 73 73 73

Notes: The baseline specification is the same as in Barro and Lee (1994) and the alternative specification is explained

in the main text. In all columns a set of time dummies is included in the regressions. Columns (1) and (5) refer to the

OLS estimation without country-specific fixed effects and all regressors considered as exogenous. In columns (2) and

(6) the within-group estimator is employed and therefore fixed effects are included. However all regressors are assumed

to be strictly exogenous. Finally, columns (3)-(4) and (7)-(8) present different estimates of two versions of the model

in (10a)-(10b) where both fixed effects and weakly exogeneity are considered. In particular, columns (3) and (7) refer

to the differenced GMM estimation and columns (4) and (8) present the estimation results when using the sub-system

LIML estimator presented in Section 2. Standard errors are in parenthesis.

to only include the domestic investment ratio (I/GDP). There is no clear theoretical justification

behind this specification, but neither there is behind the specification in many papers such as

Barro and Lee (1994). Given this specification, the sub-system LIML 95% confidence interval

for the convergence rate estimate goes from −0.8% to 2.9%. On the other hand, there are now

some results that are different depending not only on the estimation method but also on the

specification. For example, in the baseline specification, the effect of the polity index is estimated
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to be negative and significant while in the alternative specification it is 34% smaller in magnitude

and not significant according to the sub-system LIML estimates.

Given the above, it is easy to imagine thousands of Barro regressions in which the conver-

gence parameter estimate will be different across specifications and in which the effects of the

explanatory variables will also be different. This would lead us to misleading conclusions even if

we consider unbiased and consistent estimates for a given model because we do not know whether

this is the correct empirical model or not. This fact illustrates the need to take into consideration

model uncertainty in empirical growth regressions. In the next section, I combine the sub-system

LIML estimates for a given specification with model averaging techniques in order to address

model uncertainty.

5 Model Uncertainty

I now turn to the issue of model uncertainty which arises because of the lack of clear theo-

retical guidance on the choice of growth regressors results in a wide set of possible specifications.

Therefore, researcher’s uncertainty about the value of the parameter of interest in a growth regres-

sion exists at distinct two levels. The first one is the uncertainty associated with the parameter

conditional on a given empirical growth model. This level of uncertainty is of course assessed in

virtually every empirical study. What is not fully assessed is the uncertainty associated with the

specification of the empirical growth model. It is typical for a given paper that the specification

of the growth regression is taken as essentially known; while some variations of a baseline model

are often reported, via different choices of control variables, standard empirical practice does not

systematically account for the sensivity of claims about the parameter of interest to model choice.

Many researchers consider that the most promising approach to account for model uncertainty

is to employ model averaging techniques to construct parameter estimates that formally address

the dependence of model-specific estimates on a given model. In the growth context, Sala-i-Martin

et al. (2004) employ the so-called Bayesian Averaging of Classical Estimates (BACE) to determine

which growth regressors should be included in linear cross-country growth regressions.10 In a

pure Bayesian spirit, Fernandez et al. (2001) apply the Bayesian Model Averaging approach with

different priors but the same objective as Sala-i-Martin et al. (2004). Given that both papers are

cross-sectional studies, Moral-Benito (2009) extends the BACE approach to a panel data setting

taking into account the presence of country-specific fixed effects and the endogeneity of the lagged

dependent variable. However, there is no paper considering at the same time model uncertainty

and the predetermined nature of growth determinants.

Specifically, in this section model averaging techniques are combined with the likelihood-based

estimator previously introduced in order to simultaneously address the issues of endogeneity,

10See also Raftery (1995).
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omitted variable bias, parameter heterogeneity, measurement error and model uncertainty. Thus,

we will be able to obtain consistent estimates of what we can call causal effects in the growth

context, which take into consideration the dependence of model-specific estimates on a given

empirical growth model and, therefore, the uncertainty at the two different levels mentioned

above.

5.1 Growth Determinants

As previously mentioned, the augmented Solow-Swan model can be taken as the baseline em-

pirical growth model. It consists of four determinants of economic growth, initial income, rates of

physical and human capital accumulation, and population growth. In addition to those four de-

terminants, Durlauf et al. (2005)’s survey of the empirical growth literature identifies 43 distinct

growth theories and 145 proposed regressors as proxies; each of these theories is found to be statis-

tically significant in at least one study. The set of growth determinants considered in this paper is

only a subset of that identified by Durlauf et al. (2005). This is so because of three main reasons:

(i) Data availability in the panel data context for the postwar period 1960-2000 is smaller than

in the cross-sectional case. (ii) Since number of models to be estimated increases exponentially

with the number of regressors considered and it is necessary to resort to numerical optimization

methods for each model estimation, the problem would be computationally intractable if we in-

clude too many candidates. (iii) Finally, as found by Ciccone and Jarocinski (2007), the fewer

the potential growth determinants considered, the smaller the sensivity of the results. Therefore,

for the purpose of robustness, I focus on the subset of available growth determinants given by

those variables that are more relevant from a policy maker perspective. This excludes from the

analysis geographic variables such as the fraction of land area in geographical tropics, that in

spite of being available, they are of little relevance from a policy perspective.

In particular, I consider here the following growth determinants11:

• Initial GDP: One of the main features of the neoclassical growth model is the prediction of

a low (less than one) coefficient on initial GDP (i.e. it predicts conditional convergence). If

the other explanatory variables are held constant, then the economy tends to approach (or

not) its long-run position at the rate indicated by the magnitude of the coefficient.

• Investment Ratio: The ratio of investment to output represents the saving rate in the

neoclassical growth model. In this model, a higher saving rate raises the steady-state level

of output per effective worker and therefore increases the growth rate for a given starting

value of GDP. Many empirical studies such as DeLong and Summers (1991) have found an

important positive effect of the investment ratio on economic growth.

11A more detailed description of the data and its sources can be found in Appendix A.4
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• Education: In the neoclassical growth model, since the seminal work of Lucas (1988), the

concept of capital is usually broadened from physical capital to include human capital.

Education is the form of human capital that has generated most of the empirical work. In

spite of the positive theoretical effect, many empirical studies have failed in finding such an

effect. In particular I consider here the years of secondary education from Barro and Lee

(2000).

• Life Expectancy: Another commonly considered form of human capital is health. In par-

ticular, the log of life expectancy at birth at the start of each period is typically used as

an indicator of health status. There is a growing consensus that improving health can have

a large positive impact on economic growth. For example, Gallup and Sachs (2001) argue

that wiping out malaria in sub-Saharan Africa could increase per capita GDP growth by

2.6% a year.

• Population Growth: The steady-state level of output per effective worker in the neoclassical

growth model is negatively affected by a higher rate of population growth because a portion

of the investment is devoted to new workers rather than to raise capital per worker. However,

this implication is not always confirmed when estimating empirical growth models.

• Investment Price: Since the seminal work of Agarwala (1983), it is often argued that dis-

tortions of market prices impact negatively on economic growth. Given the connection

between investment and growth, such market interferences would be especially important if

they apply to capital goods. Therefore, following Barro (1991) and Easterly (1993) among

others, I consider the investment price level as a proxy for the level of distortions of market

prices that exists in the economy.

• Trade Openness: The trade regime/external environment is captured by the degree of open-

ness measured by the trade openness, imports plus exports as a share of GDP. It is often

argued that a higher degree of trade openness increases the opportunity set of profitable

investments and therefore promotes economic growth. Many authors such as Levine and

Renelt (1992) and Frankel and Romer (1999) have considered this ratio.

• Government Consumption: Since the seminal work of Barro (1991), many authors have

considered the ratio of government consumption to GDP as a measure of distortions in the

economy. The argument is that government consumption has no direct effect on private

productivity but lower saving and growth through the distorting effects from taxation or

government-expenditure programs.

• Polity Measure: The role of democracy in the process of economic growth has been the

source of considerable research effort. However, there is no consensus about how the level of
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democracy in a country affects economic growth. Some researchers believe that an expan-

sion of political rights (i.e. more democracy) fosters economic rights and tends thereby to

stimulate growth. Others think that the growth-retarding aspects of democracy such as the

heightened concern with social programs and income redistribution may be the dominant ef-

fect. Many authors such as Barro (1996) and Tavares and Wacziarg (2001) have empirically

investigated this issue. In this paper I consider the Polity IV index of democracy/autocracy

for analyzing the overall effect of democracy on growth.

• Population: Romer (1987, 1990) and Aghion and Howitt (1992) among others, developed

theories of endogenous growth that imply some benefits from larger scale. In particular, if

there are significant setup costs at the country level for inventing or adapting new products

or production techniques, then the larger economies would, on this ground, perform better.

This countrywide scale effect is tested by considering country’s population in millions of

people.

5.2 Bayesian Averaging of Maximum Likelihood

Estimates (BAMLE)

The basic idea behind model averaging is to estimate the distribution of unknown parame-

ters of interest across different models. The fundamental principle of Bayesian Model Averaging

(BMA) is to treat models and related parameters as unobservable, and to estimate their distri-

butions based on the observable data. In contrast to classical estimation, model averaging copes

with model uncertainty by allowing for all possible models to be considered, which consequently

reduces the biases of parameters and makes inference more reliable.

Formally, consider a generic representation of an empirical model of the form:

Ψ = θX + ε (11)

where Ψ is the dependent variable of interest, and X represents a set of covariates. Imagine

that there exist potentially very many empirical models, each given by a different combination of

explanatory variables (i.e. different vectors X), and each with some probability of being the ’true’

model. Suppose we have K possible explanatory variables. We will have 2K possible combinations

of regressors, that is to say, 2K different models - indexed by Mj for j = 1, ..., 2K- which all seek

to explain y -the data-.

In order to obtain parameter estimates that formally consider the dependence of model-specific

estimates on a given model, BMA techniques construct point estimates from the posterior distri-

bution of the parameters. This posterior distribution is calculated as a weighted average of all

the 2K model specific posterior distributions. The weights are given by the posterior probability
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of the model to be the ’true’ model12. To be more precise, the point estimate of interest will be

the mean of the posterior distribution of the parameters given the data:

E(θ|y) =
2K∑
j=1

P (Mj|y)E(θ|y,Mj)

Moreover, if we assume diffuse priors on the parameter space for any given sample size, or, if

we have a large sample for any given prior on the parameter space we can write:13

E(θ|y) =
2K∑
j=1

P (Mj|y)E(θ|y,Mj) =
2K∑
j=1

P (Mj|y) θ̂jML (12)

where θ̂jML is the ML estimate for model j. In this particular case, the sub-system LIML estimator

presented in Section 2. It is important to note at this point, that each of the models being

considered here is comprised by a set of simultaneous equations. Therefore, the sub-system LIML

estimator maximizes the joint density of all the 1 + 2K variables for all the possible models

conditional on the strictly exogenous variables (i.e. initial observations). Then, a regressor is

excluded from a particular model by restricting to zero its coefficients in the structural form

equation. By doing so, the densities of the different models are comparable.

Similarly, following Leamer (1978) I also compute the posterior variance:

V (θ|y) =
∑2K

j=1
P (Mj|y)V (θ|y,Mj) (13)

+
∑2K

j=1
P (Mj|y) (E(θ|y,Mj)− E(θ|y))2

Inspection of (13) shows that the variance incorporates both the estimated variances of the

individual models as well as the variance in estimates of the θ’s across different models. Hence,

the uncertainty at the two different levels mentioned above is taken into account. It is important

to note that the posterior mean and the posterior variance considered here are both conditional

on the inclusion of a particular regressor in the model. That is to say, when computing both

of them from the posterior distribution I will only consider the models in which the coefficient

of the regressor is not restricted to be zero (i.e. the model does not include that variable).

However, the unconditional posterior mean can be easily obtained by multiplying the conditional

posterior mean (column (1) in Table 4) times the Posterior Inclusion Probability (PIP) in column

5 of Table 4. Similarly, the unconditional posterior variance can be computed according to

V (θ|y)uncond = [V (θ|y)cond + E2(θ|y)cond]× PIP − E2(θ|y)uncond.

12A more detailed discussion of the BMA methodology can be found in Hoeting et al. (1999) and Koop (2003)

among others.
13The equivalence of classical inference and Bayesian inference under diffuse priors is well-known in the classical

normal regression model. For the LIML case, Kleibergen and Zivot (2003) show this equivalence for a particular

choice of non-informative priors. Note also that the large sample equivalence is only an approximation.
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Moreover, the weights14 (i.e. the posterior model probabilities P (Mj|y)) are based on the

Schwarz asymptotic approximation to the Bayes Factor, and therefore:

P (Mj|y) =
P (Mj) (NT )

−kj
2 f(y|θ̂j,Mj)∑2K

i=1 P (Mi) (NT )
−ki
2 f(y|θ̂i,Mi)

(14)

where f(y|θ̂j,Mj) is the maximized likelihood function for model j. Kass and Wasserman (1995)

show that the Schwarz asymptotic approximation formula in (14) could also be obtained with

a reasonable prior on the parameter space15 that is known as Unit Information Prior (UIP).

Moreover, Eicher et al. (2009) conclude that this UIP combined with the uniform model prior

(i.e. all models are equally probable a priori) I consider in the paper outperforms any other

possible combination of priors previously considered in the BMA literature in terms of cross-

validated predictive performance. This combination of priors also identifies the largest set of

growth determinants.

Following Sala-i-Martin et al. (2004) from the posterior distribution I will also estimate the

posterior probability that conditional on a variable’s inclusion a coefficient has the same sign as

its posterior mean (sign certainty probability). The fraction of models that include a particular

regressor in which the corresponding t statistic is larger than 2 in absolute value is also reported.

Note that this number is not informative about the sign of the estimated coefficient that can be

either positive or negative regardless of its significance. Finally, the posterior inclusion probability

of a variable is the sum of the posterior probabilities of all models including the variable and it is

also reported in Table 4. This probability is an indicator of the weighted average goodness-of-fit

of models containing a particular variable relative to models not containing that variable. Table 4

presents the results when aplying the BAMLE methodology together with the sub-system LIML

estimator. Therefore, both model uncertainty and endogeneity are taken into consideration.

Regarding the issue of convergence, the point estimate of the rate of convergence of an economy

to its steady state is 0.73%. This estimate is a weighted average of estimates across all possible

empirical growth models. However, considering both levels of uncertainty described above (i.e.

applying the delta method to the standard error in column (2)), the estimate of the rate of

convergence is not significantly different from zero. Therefore I can not reject the null hypothesis

of no conditional convergence across the countries in my sample16. This result casts doubt on the

conventional wisdom of conditional convergence as a strong empirical regularity in the country

level data. For example, early versions of endogenous growth theories (e.g. Romer (1987, 1990)

14Unweighted counterparts of the three measures in equations (12)-(13) are not reported here but they are

available upon request.
15A prior on the parameter space that is a multivariate normal with mean the MLE of the parameters and

variance the inverse of the expected Fisher information matrix for one observation.
16This result was previously found in Moral-Benito (2009), where model uncertainty and the endogeneity of

the lagged dependent variable were considered.
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Table 4: BAMLE Results

Posterior mean Posterior s.d. Sign Fraction of Posterior

conditional on conditional on certainty models with Inclusion

inclusion inclusion probability |tstat| > 2 Probability

(1) (2) (3) (4) (5)

Dependent variable is ln(yt)

ln(yt−1) 0.930 0.091 100.0% 100.0% -

I/GDP 0.949 0.284 100.0% 98.8% 63.4%

Education 0.033 0.058 75.4% 4.3% 56.1%

Pop. Growth −0.566 2.897 57.8% 17.6% 55.3%

Population 0.0006 0.0010 79.3% 14.1% 98.0%

Inv. Price −0.0005 0.0006 94.5% 31.3% 47.9%

Trade Openness 0.038 0.052 87.1% 64.1% 60.7%

G/GDP 0.048 0.204 60.9% 25.0% 60.3%

ln(life expect) 0.078 0.222 78.1% 60.9% 75.7%

Polity −0.125 0.128 68.4% 46.9% 50.4%

Notes: In this table, the sub-system LIML estimator introduced in Section 2 is combined with the BAMLE methodology

described in the main text. The sample covers the period 1960 to 2000 divided in 10-years subperiods. Column (1)

reports the weighted average of the sub-system LIML estimates across all the possible models containing the variable

(i.e. it corresponds to equation (12)). Column (2) refers to the square root of the posterior variance presented in

equation (13). In column (3) I report the sign certainty probability. Column (4) presents the percentage of models in

which the coefficient is significantly different from zero (positive or negative). Finally, column (5) refers to the posterior

inclusion probability of a variable to be included in the ’true’ empirical growth model. It is calculated as the sum of

the posterior model probabilities of all the models containing that variable. Finally, while the results on the table are

based on the assumption of a prior expected model size equal to K/2 (i.e. uniform model prior), results with different

prior expected model sizes are very similar and available upon request.

and Aghion and Howitt (1992)) were criticized because in contrast to the neoclassical growth

model, they no longer predicted conditional convergence.

The empirical evidence on growth determinants seems to be conclusive for only one variable,

the investment ratio. While the associated standard errors are not distributed according to the

usual t-distribution, Sala-i-Martin et al. (2004) note that in most cases, having a ratio of posterior

mean to standard deviation around two in absolute value indicates an approximate 95-percent

Bayesian coverage region that excludes zero. This ’pseudo-t’ statistic would indicate that in

the case of the investment ratio, its positive effect on growth is significantly different from zero.

On the other hand, the probability of its coefficient to be positive is 100% according to the sign

certainty probability. Moreover, in the 98.8% of the estimated models its coefficient was estimated

to be significant at the 95% level.

For the rest of the growth determinants the picture emerging from Table 4 is a bit pessimistic

since little can be said about them once all the potential biases and inconsistencies have been
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addressed. Based on the mentioned ’pseudo-t’ statistic, there is no variable with an estimated

causal effect significantly different from zero. At this point it is important to remark the difference

between correlations and causal effects. While previous BMA studies applied to growth regressions

obtain correlations, I claim to obtain here estimates of what can be labeled as causal effects.

This would mean that given the available data, despite of the existence of variables robustly

correlated with growth (see for example Sala-i-Martin et al. (2004), Fernandez et al. (2001) and

Moral-Benito (2009)), besides the investment ratio, little can be said about which variables cause

economic growth once inference is based on the proper measures of uncertainty.

It is interesting to analyze in more detail these results. There are two possible reasons why the

variables do not robustly cause growth according to our results. On the one hand, it might be the

case that the coefficients corresponding to a particular variable are very imprecisely estimated

in most models despite there is little variation across the estimates in different models. For

example, this seems to be the case of the investment price, that has a sign certainty probability

of 94.5% but in only 31.3% of the models its coefficient is significantly different from zero. On the

other hand, there are other variables whose coefficients are precisely estimated in many models

(i.e. high fraction of models with |tstat| > 2) but there is a lot of variation across models (low

sign certainty probability). This indicates that in some models the coefficient is estimated to be

positive and significative and in other models is negative and significative. This is the case of

variables such as the polity index for which there is no consensus in the literature about the sign

of their effect on growth. In any event, both explanations lead to high posterior variances that

preclude the variables from having a robust causal effect on economic growth.

Finally, the posterior inclusion probability (PIP), the sum of the model probabilities of all the

models containing a particular variable, is quite high for some variables. For instance, population,

which captures scale effects, has a PIP of 98.0%. Therefore, in spite of being not significant,

population should be included in empirical growth regressions as a control variable since the

models including population are those with the highest probability of being the true empirical

growth model (i.e. the models with better goodness-of-fit in relative terms). Other variables with

high PIP that should be included are life expectancy and the investment ratio.

For further insights we can see in Figure 1 the marginal posterior distributions of the co-

efficients that correspond to the variables investment share and population. Analogously to

the posterior mean, these distributions are weighted averages of marginal posterior distributions

conditional on each individual model. More concretely, these posteriors are mixture normal dis-

tributions because model-specific posteriors are normal. This is so because we make use of the

Bernstein-von Mises theorem17 (also known as the Bayesian CLT) which basically states that

a Bayesian posterior distribution is well approximated by a normal distribution with mean at

the MLE and dispersion matrix equal to the inverse of the Fisher information. BMA marginal

17Berger (1985) provides an in-depth analysis and an excelent illustration.
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posterior distributions consist of two parts, a continuous distribution on the real line and a point

mass at zero. Therefore, in addition to the continous mixture normal distribution a gauge that

represents the Posterior Inclusion Probability (PIP) of the variables is included in Figure 1.

Figure 1: Posterior Distributions of Selected Coefficients

Figure 1 presents the marginal posterior distributions of the investment share and population

coefficients. In particular, each graph consists of two parts: a gauge on top of the graphs that in-

dicates the Posterior Inclusion Probability (PIP) of the variables and the normal mixture density

for each coefficient. A dashed vertical line indicates the posterior mean conditional on inclu-

sion presented in column 1 of Table 4. The equivalent to a classical 95% confidence interval is

represented by two vertical dotted lines.

Analyzing Figure 1 we can easily observe that despite the investment share’s PIP is low, its

estimated causal effect on growth is unambiguously positive. This is so because the posterior

distribution cumulates more than 99% of its density on the right of zero. On the other hand,

zero is clearly outside the classical 95% confidence interval. However, the opposite is true for the

population variable. While its PIP is high, its marginal posterior distribution presents probability

mass on both sides of zero, indicating that its causal effect on growth could be either positive or

negative.
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6 Concluding Remarks

This paper has two main contributions: on the one hand, the likelihood-based (or sub-system

LIML) counterpart of GMM estimators in a dynamic panel data model with general endogenous

or predetermined variables and fixed effects has been introduced and shown to have good (better

than its GMM counterpart) finite sample properties via Monte Carlo simulations. On the other

hand, by combining the aforementioned estimator with Bayesian Model Averaging methods, both

endogeneity issues and model uncertainty are simultaneously considered in the empirical growth

context. To the best of my knowledge, this paper is the first one in doing so.

While both LIML and one-step GMM have approximately the same distribution for sufficiently

large sample sizes, based on my Monte Carlo simulations I find that the proposed sub-system

LIML estimator outperforms standard GMM in terms of finite sample behavior. This result can

be viewed as a generalization of the single equation case (see for example Anderson et al. (1982)).

Regarding the growth context, my results indicate that both model uncertainty and endogene-

ity matter in empirical growth regressions. This is so because the conclusions very much depend

on whether you consider these issues or not. In particular, I claim that only after addressing

both problems we can obtain reliable conclusions about two prominent questions in the empirical

growth literature: what variables cause economic growth and, whether there exists conditional

convergence or not.

Once model uncertainty and endogeneity issues are controled for, I conclude that the hy-

pothesis of lack of conditional convergence can not be rejected (at least accross the countries in

my sample (see Appendix A.4)). This result casts doubt on one of the main predictions of the

neoclassical model of growth that has been traditionally accepted, the existence of convergence

of national economies towards a steady state.

With regard to the causes of economic growth, according to my results, there is only one vari-

able that robustly promotes growth, the investment ratio. This conclusion is based on consistent

estimates, and also on the correct measures of uncertainty for inference purposes. As for the rest

of growth determinants considered in this paper, the available empirical evidence is not enough

to conclude whether they significantly cause growth or not.

Finally, looking at the posterior inclusion probability of the variables, I conclude that some

of them (e.g. population, life expectancy, and the investment ratio) should always be included

as controls in empirical growth regressions. This is so because the models that contain these

variables are models that have better goodness-of-fit than models without these variables.
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A Appendix

A.1 Simultaneous Equations Model (SEM)

Representation

In this appendix I present a Simultaneous Equations Model (SEM) representation that al-

lows me to concentrate some free parameters of the resulting log-likelihood in order to make its

maximization feasible. The key idea is to translate into the variance-covariance matrix some of

the reduced form parameters given the one-to-one mapping between the matrix of coefficients B

and the variance-covariance matrix Ω in the FCS representation. As discussed in the main text,

this SEM parametrization is a very convenient representation of the model because it allows me

to reduce the dimension of the problem by concentrating the log-likelihood of the system with

respect to some reduced form parameters.

Given the spirit of the SEM representation, I first define:

ηi = γ0yi0 + x′i1γ1 + εi (15)

Note that, again, in (15) we are implicitly assuming that Cov(ηi, wi) = 0 in order to ensure

identification of δ.

Moreover, by substituing (15) in (1) the whole model can be written as follows:

yi1 = (α + γ0)yi0 + x′i1(β + γ1) + w′iδ + εi + vi1 (16a)

and for t = 2, ..., T :

yit = αyi,t−1 + x′itβ + γ0yi0 + x′i1γ1 + w′iδ + εi + vit (16b)

xit = πt0yi0 + πt1xi1 + πwt wi + ξit (16c)

where ξit, γ1 and πt0 are k × 1 vectors, πt1 is a k × k matrix and πwt a k ×m matrix.

In order to rewrite the system in matrix form, I define the following T + (T − 1)k× 1 vectors

of data and errors for individual i:

RS
i = (yi1, yi2, . . . , yiT , x

′
i2, x

′
i3, . . . , x

′
iT )′

Ui = (εi + vi1, . . . , εi + viT , ξ
′
i2, . . . , ξ

′
iT )′

Therefore I am now able to rewrite the model in matrix form as follows:

BSRS
i = Πzi + Ui (17)

where BS and Π are matrices of coefficients defined below and zi is the (1 + k+m)× 1 vector of

strictly exogenous variables:

zi = (yi0, x
′
i1, w

′
i)
′
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Moreover, if I additionally define the following vectors:

RS
i1 = (yi1, yi2, . . . , yiT )′

RS
i2 = (x′i2, x

′
i3, . . . , x

′
iT )′

Ui1 = (εi + vi1, . . . , εi + viT )′

Ui2 = (ξ′i2, . . . , ξ
′
iT )′

it is then possible to rewrite:(
BS

11 BS
12

0 Ik−1

)(
RS
i1

RS
i2

)
=

(
Π1

Π2

)
zi +

(
Ui1

Ui2

)
(18)

where:

BS
11 =



1 0 0 . . . 0

−α 1 0 . . . 0

0 −α 1 . . . 0
...

...
. . . . . .

...

0 . . . 0 −α 1


T×T

BS
12 =



0 0 . . . 0

−β′ 0 . . . 0

0 −β′ . . . 0
...

...
. . .

...

0 . . . 0 −β′


T×k(T−1)

Π1 =


α + γ0 β′ + γ′1 δ′

γ0 γ′1 δ′

...
...

...

γ0 γ′1 δ′


T×(1+k+m)

Π2 =


π20 π21 πw2
...

...
...

πT0 πT1 πwT


k(T−1)×(1+k+m)

In contrast to the FCS representation, considering the SEM parametrization we can see that

the number of non-zero coefficients in the matrixBS is only k+1. This is so because they have been

”translated” into the variance-covariance matrix of the model that is no longer block-diagonal.

In particular:

ΩS = V ar(Ui) = V ar

(
Ui1

Ui2

)
=

(
ΩS

11 ΩS
12

ΩS
21 ΩS

22

)
(19)

where:

• ΩS
11 has the classical error-component form but allowing for time-series heteroskedasticity:

ΩS
11 = σ2

ε ιι
′ +


σ2
v1

. . . 0
...

. . .
...

0 . . . σ2
vT


where ι is a T × 1 vector of ones.
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• ΩS
22 is the (T − 1)k× (T − 1)k covariance matrix that gathers all the contemporaneous and

dynamic relationships between the x variables:

ΩS
22 =


Σ2,2

Σ2,3 Σ3,3

...
...

. . .

Σ2,T Σ3,T . . . ΣT,T


where Σf,g is the k × k covariance matrix between xif and xig.

• ΩS
12 captures the feedback process. In particular, given the assumptions above I can write:

cov(εi, ξit) = φt ∀t = 2, ..., T (20a)

cov(vih, ξit) =

{
ψh,t if h < t

0 otherwise
(20b)

where φt, ψh,t and 0 are k × 1 vectors. Therefore:

ΩS
12 =



φ′2 + ψ′1,2 φ′3 + ψ′1,3 . . . φ′T + ψ′1,T

φ′2 φ′3 + ψ′2,3 . . . φ′T + ψ′2,T

φ′2 φ′3 . . . φ′T + ψ′3,T
...

...
. . .

...

φ′2 φ′3 . . . φ′T + ψ′T−1,T

φ′2 φ′3 . . . φ′T


T×(T−1)k

Under normal errors the log-likelihood for the model can be written as18:

LS ∝ −
N

2
ln det(ΩS)− 1

2
tr
(
(ΩS)−1U ′U

)
(21)

where U ′ is a T + (T − 1)k × N matrix that consists of the Ui column vectors of each of the N

individuals. Note that this is an integrated likelihood that is marginal on ηi but conditional on

zi = (yi0, x
′
i1, wi)

′:

f(yTi , x
T
i |zi) =

∫ T∏
t=1

f(yit|yt−1
i , xti, wi, ηi)

T∏
t=2

f(xit|yt−1
i , xt−1

i , wi, ηi)dG(ηi|zi) (22)

As in the case of the FCS representation in the main text, the maximizer of LS is a consis-

tent and asymptotically normal estimator regardless of non-normality. Moreover, the number of

parameters to be estimated in (21) is the same as in (4). In order to make the problem feasible I

will work with the concentrated log-likelihood with respect to the free parameters in the matrices

Π2 and ΩS
22 (i.e. the parameters that capture the dynamic and contemporaneous relationships

between the x variables and between the variables and the strictly exogenous variables). See

Appendix A.2 for more details on the concentration of the SEM log-likelihood.

18Note that det(BS) = 1
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A.2 Concentrated Likelihood using the SEM

Parametrization

Maximizing the log-likelihood in (21) may be cumbersome (or even impossible depending on

the number of available observations) since the dimension of the numerical optimization problem

is enormous. In particular, the number of parameters to be estimated (p) in (21) is determined

by the following expression:

p = 3 + 2k + T + (T − 1)(2 + k +m)k +
(T − 1)k[(T − 1)k + 1]

2
+

T−1∑
r=1

rk

As an illustrative example, suppose we have a panel with T = 5, k = 7 and m = 4, then

p = 862. This number is huge and may cause the problem to be intractable, but it can be

drastically reduced by concentrating some free parameters of the model. In particular, for this

illustrative example, the number of parameters after concentrating the log-likelihood is reduced

from p = 862 to p = 120.

The log-likelihood function in (21) will be concentrated with relation to ΩS
22 and Π2 under

the assumption that both terms are unconstrained. The concentrated log-likelihood will then be

maximized by means of numerical optimization with relation to BS
11, BS

12, Π1, ΩS
11 and ΩS

12 that

are all restricted. In what follows, I refer to ΩS
22, BS

11, BS
12, ΩS

11 and ΩS
12 as Ω22, B11, B12, Ω11 and

Ω12 for the sake of notational simplicity.

By grouping the observations for all individuals in columns, the model can be written as

follows: (
B11 B12

0 Ik−1

)(
R′1
R′2

)
=

(
Π1

Π2

)
Z ′ +

(
U ′1
U ′2

)
First of all, we define:

Ω−1 =

(
Ω11 Ω12

Ω21 Ω22

)−1

=

(
G11 G12

G21 G22

)
F12 = G12G

−1
22

F21 = F ′12

and then rewrite:

det Ω = det Ω11/ detG22

tr(Ω−1U ′U) = tr(Ω−1
11 U

′
1U1) + 2tr(G12U

′
2U1) + tr(G22U

′
2U2) + tr(G12G

−1
22 G21U

′
1U1)

Therefore, (21) can be written as follows:

L ∝ −N
2

ln det Ω11 +
N

2
ln detG22 −

1

2
tr(Ω−1

11 U
′
1U1)− tr(F12G22U

′
2U1) (23)

− 1

2
tr(G22U

′
2U2)− 1

2
tr(F12G22F21U

′
1U1)
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Note that we can also write Ω−1
11 = G11 − G12G

−1
22 G21 and I have added and substracted the

term tr(G12G
−1
22 G21U

′
1U1).

Step 1: Concentrating out Π2

Noting that U ′2 = R′2 − Π2Z
′, we can maximize the likelihood in (23) with respect to Π2 and

obtain its ML estimate:

Π̂2 = R′2Z(Z ′Z)−1 + F21U
′
1Z(Z ′Z)−1

Given Π̂2 we can write:

Û ′2U1 = R′2QU1 − F21U
′
1MU1

Û ′2Û2 = R′2QR2 + F21U
′
1MU1F12

where M is the projection matrix on the exogenous variables of the system and Q the annihilator:

M = Z(Z ′Z)−1Z ′

Q = IN −M

Replacing in (23), we obtain L2, the log-likelihood concentrated with respect to Π2:

L2 ∝ −N
2

ln det Ω11 +
N

2
ln detG22 −

1

2
tr(Ω−1

11 U
′
1U1) (24)

− 1

2
tr{(R2 + U1F12)′Q(R2 + U1F12)G22}

Step 2: Concentrating out Ω22

I now turn to the concentration of L2 with relation to Ω22. Note that the log-likelohood is now

written in terms of G22 and therefore, in practice I will obtain the concentrated likelihood with

respect to G22 instead of Ω22. However, since they are unconstrained, this is simply a matter of

notation.

First, we define:

H = (R2 + U1F12)′Q(R2 + U1F12)

Therefore:

L2 ∝ −N
2

ln det Ω11 +
N

2
ln detG22 −

1

2
tr(Ω−1

11 U
′
1U1)− 1

2
tr{HG22}

By differentiating the log-likelihood function, we obtain:

dL2 =
N

2
tr(G−1

22 dG22)− 1

2
tr(HdG22)

= tr[(
N

2
G−1

22 −
1

2
H)dG22] = 0
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This implies that:

Ĝ−1
22 =

1

N
H

and so the final concentrated log-likelihood is:

L3 ∝ −
N

2
ln det Ω11 −

1

2
tr(Ω−1

11 U
′
1U1)− N

2
ln det(

1

N
H) (25)
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A.3 Monte Carlo Details

For simulating the data in the Monte Carlo experiment, I first estimate a trivariate VAR

process for GDP19 (y), investment ratio (x1) and population growth (x2). In particular, I consider

the following VAR process:

wit = Γwit−1 + ζi + ϑit

where:

wit = (yit, x
1
it, x

2
it)
′

ζi = (ζyi , ζ
1
i , ζ

2
i )′

ϑit = (εyit, ε
1
it, ε

2
it)
′

V ar ((w′i0, ζ
′
i)
′) = ΩMC

V ar (ϑit) = ΣMC

Once I get the estimates Γ̂, Ω̂MC and Σ̂MC , the procedure for generating the data is as follows:

1. Generate wi0 and ζi according to (w′i0, ζ
′
i)
′ ∼ N(0, Ω̂MC).

2. For t = 1, ..., T :

(a) Generate ϑit according to ϑit ∼ N(0, Σ̂MC)

(b) Then generate wit according to wit = Γ̂wit−1 + ζi + ϑit

More concretely, the employed parameter values when considering ten-year periods in the

baseline Monte Carlo simulations are as follows:

Γ̂ =


.95 .20 −.10

.10 .70 0

−.20 0 .60

 Σ̂MC =


.167

−.002 .071

−.002 .002 .077



Ω̂MC =



.913

.367 .602

−.061 −.039 .021

−.095 −.088 .007 .019

−.010 .051 −.002 −.007 .017

.161 .072 −.004 −.018 .0005 .034



19In the estimation of the VAR all variables are expressed in logs
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As mentioned in the main text, additional Monte Carlo experiments were carried out con-

sidering five-year periods data for the calibration. In this case I obtain and use the following

parameter values:

Γ̂ =


.98 .10 −.05

.05 .80 0

.10 0 .40

 Σ̂MC =


.125

−.001 .109

−.001 .0003 .085



Ω̂MC =



.913

.400 .657

−.049 −.029 .019

−.089 −.119 .009 .027

−.132 −.031 .007 .005 .024

.166 .086 −.007 −.019 −.023 .032


Moreover, the Monte Carlo results of the five-year periods experiments are represented in the

following table:

Table A1: Additional Monte Carlo Results

α = 0.98 β1 = 0.10 β2 = −0.05

WG
diff sub-sys

WG
diff sub-sys

WG
diff sub-sys

GMM LIML GMM LIML GMM LIML

Panel A: T = 4, N = 100

median .453 .357 .952 .064 −.096 .075 −.059 −.017 −.052

iqr .078 .342 .169 .082 .231 .194 .096 .160 .173

MAE .527 .623 .076 .048 .198 .102 .047 .082 .086

Panel B: T = 4, N = 500

median .454 .508 .970 .063 −.076 .087 −.061 −.023 −.051

iqr .034 .317 .122 .036 .147 .099 .042 .075 .073

MAE .526 .472 .052 .037 .176 .049 .022 .041 .037

Panel C: T = 4, N = 1000

median .454 .609 .973 .062 −.039 .091 −.061 −.029 −.054

iqr .024 .288 .108 .027 .116 .067 .031 .057 .058

MAE .526 .371 .048 .038 .139 .034 .017 .032 .029

Panel D: T = 8, N = 100

median .712 .650 .982 .081 .013 .098 −.055 −.025 −.050

iqr .043 .145 .089 .046 .101 .096 .065 .080 .088

MAE .268 .330 .043 .027 .088 .048 .031 .044 .044

Panel E: T = 8, N = 500

median .714 .761 .982 .079 .029 .099 −.059 −.028 −.051

iqr .019 .112 .067 .024 .052 .041 .028 .038 .036

MAE .266 .219 .034 .021 .071 .021 .016 .025 .018

Panel F: T = 8, N = 1000

median .714 .826 .979 .081 .050 .101 −.060 −.035 −.051

iqr .013 .084 .056 .016 .039 .032 .019 .025 .025

MAE .266 .154 .027 .019 .050 .016 .012 .018 .013

Notes: 1,000 replications. iqr is the 75th-25th interquartile range; MAE denotes

the median absolute error. Parameter values calibrated to five-year periods data.
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A.4 Data Appendix

Table A2: Variable Definitions and Sources

Variable Source Definition

GDP PWT 6.2 Logarithm of GDP per capita (2000 US dollars at PP)

I/GDP PWT 6.2 Ratio of real domestic investment to GDP

Education Barro and Lee (2000) Stock of years of secondary education in the total population

Pop. Growth PWT 6.2 Average growth rate of population

Population PWT 6.2 Population in millions of people

Inv. Price PWT 6.2 Purchasing-power-parity numbers for investment goods

Trade Openness PWT 6.2 Exports plus imports as a share of GDP

G/GDP PWT 6.2 Ratio of government consumption to GDP

ln (life expect) WDI 2005 Logarithm of the life expectancy at birth

Polity Polity IV Project
Composite index given by the democracy score minus the autocracy score.

Original range -10,-9,...,10, normalized 0-1.

Notes: All variables are available for all the countries in the sample (see table below) and for the whole pe-

riod 1960-2000. PWT 6.2 refers to Penn World Tables 6.2 and it can be fount at http://pwt.econ.upenn.edu/.

WDI 2005 refers to World Development Indicators 2005. Data from Barro and Lee (2000) is available at

http://www.cid.harvard.edu/ciddata/ciddata.html. Finally, data from the Polity IV Project can be downloaded from

http://www.systemicpeace.org/polity/polity4.htm.

Table A3: List of Countries

Algeria France Mali Singapore

Argentina Ghana Mauritius South Africa

Australia Greece Mexico Spain

Austria Guatemala Mozambique Sri Lanka

Belgium Honduras Nepal Sweden

Benin India Netherlands Switzerland

Bolivia Indonesia New Zealand Syria

Brazil Iran Nicaragua Thailand

Cameroon Ireland Niger Togo

Canada Israel Norway Trinidad & Tobago

Chile Italy Pakistan Turkey

China Jamaica Panama Uganda

Colombia Japan Paraguay United Kingdom

Costa Rica Jordan Peru United States

Denmark Kenya Philippines Uruguay

Dom. Republic Lesotho Portugal Venezuela

Ecuador Malawi Rwanda Zambia

El Salvador Malaysia Senegal Zimbabwe

Finland
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