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Abstract 

 

In this paper, we use the bootstrap technique to obtain prediction errors for different 
claim reserving methods, namely the chain ladder technique and methods based on 
generalised linear models. We discuss several forms of performing the bootstrap and 
illustrate the different solutions using the data set from Taylor and Ashe (1983) which 
has already been used by several authors. 
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1. Introduction 

The prediction of an adequate amount to face the responsibilities assumed by an 
insurance company is a major subject in actuarial science. Despite its well-known 
limitations, the chain ladder technique (see for instance Taylor (2000) for a 
presentation of this technique) is the most widely applied claim reserving method. 
Moreover, in recent years, considerable attention has been given to discuss possible 
relationships between the chain ladder and various stochastic models (Mack (1993), 
(1994), Mack and Venter (2000), Verrall (1991), (2000), Renshaw and Verrall (1994), 
England and Verrall (1999), etc.). 

The bootstrap technique has proved to be a very usefull tool in many fields and can be 
particularly interesting to assess the variability of the claim reserving predictions and 
to construct upper limits at an adequate confidence level. Some applications of the 
bootstrap technique to claim reserving can be found in Lowe (1994), England and 
Verrall (1999) and in Taylor (2000). However, the definition of the propper residuals 
to base the bootstrap methodology in the claim reserving process is still an open 
subject as well as the particular technique to use, when bootstrapping, to obtain upper 
limits for the predictions.  

The main purpose of this paper is to discuss those different methods when combined 
with different stochastic models and to identify the most important differences in a 
benchmark example, the data set provided in Taylor and Ashe (1983) which has been 
used by many authors.  

The problem of claim reserving can be summarised in the following way: Given the 
available information about the past, how can we obtain an estimate of the future 
payments (or eventually the number of claims to be reported) due to claims occurred 
in those years? Furthermore we need to determine a prudential margin which is to say 
we want to estimate an upper limit for the reserve with an adequate level of 
confidence. 

 

Figure 1 – Pattern of the available data 

Origin Development year 

year 1 2 … j  … 1−n  n  

1 
11C  12C  ... 

jC1  ... 
1,1 −nC  nC1  

2 
21C  22C  ... 

jC2  ... 
1,2 −nC   

… ... ... ... ...    

i  
1iC  2iC  ... 

iniC −+1,     

…        

1−n  
1,1−nC  2,1−nC       

n  
1,nC        
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Let ijC  represent either the incremental claim amounts or the number of claims 

arising from accident year i and development year j and let us assume that we are in 
year n and that we know all the past information, i.e. ijC  ( ni ,...,2,1=  and 

inj −+= 1,...,2,1 ). The available data presents a characteristic pattern, which can be 

seen in figure 1. From now on, and without loss of generality, we consider that the ijC  

are the incremental claim amounts. 

More than to predict the individual values, ijC  ( ni ,...,3,2=  and 

nininj ,...,3,2 −+−+= ), we are interested in the prediction of the rows total, •iC  

( ni ,...,3,2= ), i.e. the amounts needed to face the claims occurred in year i and 
especially in the aggregate prediction, C, which represent the expected total liability. 
Keep in mind that we want to obtain upper limits to the forecasts and to associate a 
confidence level to those limits. 

In section 2 we present a brief review of generalised linear models (GLM) and their 
application to claim reserving while in section 3 we discuss some aspects linked to the 
bootstrap methodology. Section 4 is devoted to the application of the different 
methods to the data set provided in Taylor and Ashe (1983) and to draw some 
conclusions.  

2. Generalised Linear Models (GLM) and claim reserving methods 

Following Renshaw and Verrall (1994) we can formulate most of the stochastic 
models for claim reserving by means of a particular family of generalised linear 
models (see McCullagh and Nelder (1989) for an introduction to GLM). The structure 
of those GLM will be given by 

(1) ),;(~ φµijij yfY  with independent ijY , )( ijij YE=µ  and where (.)f , the density 

(probability) function of ijY  belongs to the exponential family. φ  is a scale parameter. 

(2) )( ijij g µη =  

(3) jiij c βαη ++=  with 011 == βα  to avoid over-parametrization. 

It is common in claim reserving to consider three possible distributions for the 
variable ijC : Lognormal, Gamma or Poisson. For models based on Gamma or Poisson 

distributions, the relations (1)-(3) define a GLM with ijij CY =  denoting the 

incremental claim amounts. The link function is )ln( ijij µη = . 

When we consider that the claim amounts follow a lognormal distribution, see Kremer 
(1982), Verrall (1991) or Renshaw (1994) among others, we observe that )ln( ijij CY =  

has a normal distribution and consequently the relations (1)-(3) still continue to define 
a GLM for the logs of the incremental claim amounts. Now the link function is given 
by ijij µη =  and the scale parameter is the variance of the normal distribution, i.e. 

2σφ = . 

The linear structure given by (3) implies that the estimates for some of the parameters 
depend on one observation only, i.e. there is a perfect fit for these observations. If the 
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available data follows the pattern shown in figure 1 it is straightforward to see that 

nn y ,1,1ˆ =µ  and that 1,1,ˆ nn y=µ . 

When we define a GLM, we can omit the distribution of ijY  and specify only the 

variance function and estimate the parameters by maximum quasi-likelihood 
(McCullagh and Nelder (1989)) instead of maximum likelihood. The estimators 
remain consistent. In this formulation, we replace the distributional assumption by 

)()var( ijij VY µφ= , where (.)V  is the variance function. As we know, for the normal 

distribution 1)( =ijV µ , for the Poisson (eventually “over-dispersed” when 1>φ ) 

ijijV µµ =)(  and for the Gamma 2)( ijijV µµ = . 

It is well known that a GLM with the linear structure given by (3) and ijijV µµ =)( , 

i.e. a quasi over-dispersed Poisson distribution gives the same predictions as those 
obtained by the chain ladder technique (see Renshaw and Verrall (1994)). However, if 
we use a quasi over-dispersed Poisson, it is necessary to impose the constraint that the 
sum of incremental claims in each column is greater than 0. Note that the same 
constraint apply to quasi gamma models and that we need a stronger constraint for 
lognormal, gamma or Poisson models (each incremental value should be greater than 
0).  

As we said, in claim reserving, the figures of interest will be the aggregate value 

∑ ∑= −+=• = n

i

n

inj ijYY
2 2

 and the rows total ∑ −+=• = n

inj iji YY
2

. The predicted values will 

be given by ∑ ∑= −+=• = n

i

n

inj ij2 2
ˆˆ µµ  and ∑ −+=• = n

inj iji 2
ˆˆ µµ  respectively. To obtain 

those forecasts the procedure will be: 

• Define the model  

• Estimate the parameters c , iα , jβ  for nji ,...,2,1, =  and φ . 

• Obtain the fitted values ijµ̂  ( ni ,...,2,1=  and inj −+= 1,...,2,1 ) 

• Check the model (eventually) 

• Obtain the “individual” forecasts jiij c βαµ ˆˆˆˆ ++=  ( ni ,...,2=  and 

ninj ,...,2 −+= ) 

• Obtain the forecasts for the rows reserve ∑ −+=• = n

inj iji 2
ˆˆ µµ  ( ni ,...,2= ) 

• Obtain the forecast for the total reserve ∑ = •• = n

i i2
ˆˆ µµ  

Obtaining estimates for the standard error of prediction is a more difficult task. 
Renshaw (1994), using first degree Taylor expansions, deduced some approximations 
to the standard errors. These values are given by: 

• Standard error for the “individual” predictions: 

(4) )ˆvar()()ˆvar()var()ˆ( 22
ijijijijijijij VYYE ηµµφµµ +≅+≅− , 
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where V(.) is the variance function and )ˆvar( ijη  is obtained as a function of the 

covariance matrix of the estimators and is usually available from most statistical 

software. The term 2
ijµ  is a consequence of the link function chosen. 

• Standard error for the row totals 

(5) ∑∑∑
>

••••

++≅

+≅−

12

21

2121
,

2

2

)ˆ,ˆcov(2)ˆvar()(                        

)ˆvar()var()ˆ(

jj
jj

ijijijij
j

ijij
j

ij
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V

YYE

ηηµµηµµφ
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where the summations are made for the “individual” forecasts in each row. 

• Standard error for the grand total 

(6) ∑∑∑
≠

•• ++≅−

2211

22

11

22112211

,,
,
,,

2

,

2 )ˆ,ˆcov()ˆvar()()ˆ(

jiji
ji
ji

jijijiji
ji

ijij
ji

ijVYE ηηµµηµµφµ  

where the summations are made for all the “individual” forecasts.  

Those estimates are difficult to calculate and are only approximate values, even in the 
hypothesis that the model is correctly specified. This is the main reason to take 
advantage of the bootstrap technique.  

3. The Bootstrap Technique 

The bootstrap technique is a particular resampling method used to estimate, in a 
consistent way, the variability of a parameter. This resampling method replaces 
theoretical deductions in statistical analysis by repeatedly resampling the “original” 
data and making inferences from the resamples. 

Presentation of the bootstrap technique could be easily found in the literature (see for 
instance Efron and Tibshirani (1993), Shao and Tu (1995) or Davison and Hinkley 
(1997)) 

The bootstrap technique must be adapted to each situation. For the linear model 
(“classical” or generalised) it is common to adopt one of two possible ways: 

• Paired bootstrap – The resampling is done directly from the observations (values 
of y  and the corresponding lines of the X  matrix in the regression model);  

• Residuals bootstrap – The resampling is applied to the residuals of the model. 

Despite the fact that the paired bootstrap is more robust than the residual bootstrap, 
only the later could be implemented in the context of the claim reserving, given the 
dependence between some observations and the parameter estimates. 

To implement a bootstrap analysis we need to choose a model, to define an adequate 
residual and to use a bootstrap prediction procedure. 

To define the most adequate residuals for the bootstrap it is important to remember 
two points: 

• The resampling is based on the hypothesis that the residuals are independent and 
identically distributed; 
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• It’s indifferent to resample the residuals or the residuals multiplied by a constant, 
as long as we take that fact into account in the generation of the pseudo data 

Within the framework of a GLM we could use different types of residual (Pearson, 
deviance, Anscombe…). In this paper, our starting point will be the Pearson residuals 
defined by 

(7) 
)(ˆˆ

ˆ

)r(âv

ˆ
)(

ij

ijij

ij

ijijP
ij

V

y

Y

y
r

µφ

µµ −
=

−
= . 

Since φ  is constant for the data set, we can take advantage of the second point and 
use  

(8) 
)(ˆ

ˆ
*)(

ij

ijijP
ij

V

y
r

µ

µ−
=  

instead of )(P
ijr  in the bootstrap procedure, that is to ignore, at this stage, the scale 

parameter. When using a normal model it is trivial to see that these residuals are 
equivalent to the classical residuals, ijijy µ̂− , since 1)( =ijV µ .  

However, these residuals need to be corrected since the available data combined with 
the linear structure adopted in the model leads to some residuals of value 0 (as we 
have already mentioned, in the typical case, nny ,1,1 µ̂=  and 1,1, ˆ nny µ= ). These 

residuals should not be considered as observations of the underlying random variable 
and consequently should not be considered in the bootstrap procedure. 

As in the classical linear model (see Efron and Tibshirani (1993)), it is more adequate 
to work with the standardised Pearson residuals and not the Pearson residuals since 
only the former could be considered as identically distributed. As it is well known the 
standardised Pearson residual should be given by  

(9) 
ij

P
ijP

ij
h

r
r

−
=

1
*)*( , 

where the factor ijh  is the corresponding element of the diagonal of the “hat” matrix. 

For the “classical” linear model, this matrix is given by 
TT XXXXH 1)( −=  

and for a GLM it can be generalised using 

WXXWXXH TT 1)( −=  

where W  is a diagonal matrix with generic element given by 

12

)(

−



















∂
∂

=
i

i
iii Vw

µ
η

µ  

(see McCullagh and Nelder (1989)). 

Considering the structure of our models (log link functions and quasi distributions), 
we have  
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κµ −= 2
iiiw , 

with 1=κ  for the quasi over dispersed Poisson and 2=κ  for the quasi gamma 
model. 

Note that similar procedure could be defined if we use another kind of residuals, 
namely the deviance residuals. 

Let us now briefly discuss the bootstrap prediction procedure. To obtain an upper 
confidence limit for the forecasts of the aggregate values we can use two approaches: 

The first one takes advantage of the Central Limit Theorem and consists on 
approximating the distribution of the reserve by means of a normal distribution with 
expected value given by the initial forecast (with the original data) and standard 
deviation given by the standard error of prediction. The main difference between 
the bootstrap estimation of these standard errors and the theoretical approximation 
obtained in the preceding section is that we estimate the variance of the estimator by 
means of a bootstrap estimate instead of using the (approximate) theoretical 
expression. For a detailed presentation of this method (in a general environment) see 
Efron and Tibshirani (1993). England and Verrall (1999) use this approach in claim 
reserving and suggest a bias correction for the bootstrap estimate to allow the 
comparison between the bootstrap standard error of prediction and the theoretical 
approximation presented in section 2. The bootstrap standard error of prediction will 
be given by 

(10) ( )2)ˆ(ˆˆ)( µµφµ bb SE
pN

N
SEP

−
+=  

where  µ  stands for the row totals,•iµ  ( ni ,...,3,2= ), or the aggregate total, •µ . φ̂  

and µ̂  are quasi-maximum likelihood estimates of the corresponding parameters, N is 
the number of observations, p the number of parameters (usually )1( −= nnN  and 

12 −= np ) while )ˆ(µbSE  is the bootstrap estimate of the standard error of the 

estimator µ̂ , i.e.  

( )2

1

* ˆ
1

)ˆ( ∑ =
−= B

k kb B
SE µµµ  

where B  is the number of bootstrap replicates and *
kµ  is the bootstrap estimate of µ  

in the k-th replicate ( Bk ,...,2,1= ). 

The second approach (see Davison and Hinkley (1997)) is more computer intensive 
since it require two resampling procedures in the same bootstrap “iteration” but the 
results should be more robust against deviations from the hypothesis of the model. 
The idea is to define an adequate prediction error as a function of the bootstrap 
estimate and a bootstrap simulation of the future reality and to record the value of this 
prediction error for each bootstrap “iteration”. We use the desired percentile of this 
prediction error and combine it with the initial prediction to obtain the upper limit of 
the prediction interval. 

Figure 2 presents the different stages of the bootstrap procedures. 
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Figure 2 - Bootstrap procedures 

Stage 1 – The preliminaries 

• Estimation of the model parameters jic βα ,,  ( nji ,...,2,1, = ) and φ ; 

• Calculation of the fitted values, ijµ̂  ( ni ,...,2,1=  and inj −+= 1,...,2,1 ); 

• Calculation of the residuals )ˆ,( ijijij yhr µ= ;  

• Forecasts with the original data ijµ̂ , •iµ̂  and •µ̂  ( ni ,...,2=  and ninj ,...,2−+= ) 

Stage 2 – bootstrap loop (to be repeated B times) 

Sub stage 2.1 – Bootstrap estimates 

• Resampling of the residuals obtained in stage 1 (original data) using replacement → *ijr  

• Create the pseudo data *ijy , solving )ˆ*,(* ijijij yhr µ= . 

• Estimate the model with the pseudo data and obtain the bootstrap forecast *ˆ ijµ , *ˆ •iµ  and *ˆ•µ . 

• Keep the bootstrap forecasts *ˆˆ )(
•• = i

b
i µµ  and *ˆˆ )(

•• = µµ b , b being the index of the cycle. 

 Sub stage 2.2 – Pseudo reality (only for procedure 2) 

• Resampling again the residuals obtained in stage 1 and select (with replacement) as much values as 
there are “individual” forecasts to be done → **ijr , ( ni ,...,2=  and ninj ,...,2−+= ). 

• Create the pseudo reality, **ijy , solving )ˆ*,*(** ijijij yhr µ=  ( ni ,...,2=  and ninj ,...,2−+= ).  

ijµ̂  are the predictions obtained in stage 1. 

• Obtain the prediction errors *)ˆ*,*()(
••• = ii

b
i yhr µ  and *)ˆ*,*()(

••• = µyhr b  and keep them. 

• Return to the beginning of stage 2 until the B repetitions are completed. 

Stage 3 – Bootstrap data analysis 

Stage 3.1 – (Essentially for procedure 1)  

• Obtain the bootstrap estimate for )ˆvar( •iµ  and )ˆvar( •µ  by mean of the empirical variance of the 

corresponding B bootstrap estimates. England and Verrall (1999) suggest that we could correct the 
bias of such estimates by multiplying them by a factor equal to )/( pnn − , n being the number of 

observations in the data triangle and p the number of parameters in the linear structure.  

• Apply the theoretical expressions of the standard error of prediction and use those estimates.  

Stage 3.2  (only for procedure 2)  

• Use the percentile k% of the bootstrap observations of prediction error, for instance *
,kr•  for the 

grand total, and obtain the corresponding percentile of the provisions by solving )ˆ,( *
,

*
, ••• = µkk yhr . 

•µ̂  is the prediction with the original data (stage 1) . 

 

4. An application 

Let us consider the data from Taylor and Ashe (1983) which are presented in table 1 
in incremental form. As already said, this data set has been used by several authors 
and acts as a sort of benchmark for claims reserving methods. England and Verrall 
(1999) have summarised the main results obtained by those authors and they also use 
bootstrap technique to evaluate the predictions standard errors related to the chain 
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ladder approach. For that purpose, they consider a model with a quasi over dispersed 
Poisson data to define the residuals, taking advantage from the fact that this particular 
GLM generates the same estimates as the chain ladder technique. They use Pearson 
residuals without correction (given in relation (8)) and they follow the first procedure 
for the bootstrap, based on the estimation of a standard error of prediction. Despite 
they use a GLM for the residual definition they obtain the predictions by means of the 
chain ladder. This difference is relevant since, in that particular example, the two 
methods do not agree for some pseudo data sets generated by the bootstrap. In fact, 
for some pseudo data sets we could have negative values in the north-east corner 
which do not allow the use of this GLM. 

 

Table 1 – Available data 

 1 2 3 4 5 6 7 8 9 10 

1 357 848 766 940 610 542 482 940 527 326 574 398 146 342 139 950 227 229 67 948 

2 352 118 884 021 933 894 1 183 289 445 745 320 996 527 804 266 172 425 046  

3 290 507 1 001 799 926 219 1 016 654 750 816 146 923 495 992 280 405   

4 310 608 1 108 250 776 189 1 562 400 272 482 352 053 206 286    

5 443 160 693 190 991 983 769 488 504 851 470 639     

6 396 132 937 085 847 498 805 037 705 960      

7 440 832 847 631 1 131 398 1 063 269       

8 359 480 1 061 648 1 443 370        

9 376 686 986 608         

10 344 014          

 

We extend the work of England and Verrall in three directions: First, we discuss the 
consequences of the introduction of the residual corrections. Second, we examine the 
differences in the results obtained by the two bootstrap procedures. Finally we 
consider the bootstrap predictions obtained by the gamma model. For this data set the 
gamma model presents a clear advantage: all the pseudo data generated by this model 
allow their estimation by the same model. 

To discuss the first point we consider the same methodology as England and Verall, 
which will be called by mixed model (quasi over dispersed Poisson for the residual 
definition and chain ladder for the predictions) and the first bootstrap procedure. We 
use the Pearson residuals without corrections, with the zeros corrected - we eliminate 
the residuals corresponding to the last column of row 1 and to the first column of row 
10 – and the residuals with the zeros corrected and the factor h (see relation (9)). 

Table 2 presents the standard errors of prediction for the three situations considered as 
well as the upper limits for a confidence level of 95%. Remember that the estimated 
reserve is the same. 

As expected, the standard errors of prediction grow up when we introduce the 
corrections and consequently the same happens to the upper limits. For the standard 
errors, the changes are between 16.9% and 24.4% when we compare the estimates 
with the zeros corrected and the h factor against the estimates obtained without 
corrections. The values for the situation where only the zeros are discarded are located 
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between the two extremes. We can also see that the impact of the introduction of the h 
factor is greater than the discard of the two zero values. When we look to the upper 
limits the differences act in the same way but the figures are necessarily smaller 
(between 4% and 16%).  

 

Table 2 – Quasi over-dispersed Poisson model (chain ladder) 

 Estimated Without correction 0's corrected 0's and h corrected 

Year Reserve SEP upper 95% SEP upper 95% SEP upper 95% 

2 94 634 108 949 273 840 112 665 279 952 135 339 317 246 

3 469 511 216 284 825 266 216 351 825 376 259 378 896 149 

4 709 638 258 377 1 134 631 261 856 1 140 353 313 130 1 224 691 

5 984 889 304 002 1 484 928 307 373 1 490 473 365 791 1 586 561 

6 1 419 459 376 754 2 039 163 377 001 2 039 570 449 639 2 159 048 

7 2 177 641 488 362 2 980 925 497 648 2 996 199 607 530 3 176 938 

8 3 920 301 792 406 5 223 693 797 738 5 232 463 943 367 5 472 000 

9 4 278 972 1 081 289 6 057 533 1 083 187 6 060 655 1 264 126 6 358 273 

10 4 625 811 2 034 469 7 972 214 2 091 412 8 065 876 2 516 470 8 765 034 

Total 18 680 856 2 993 352 23 604 480 3 109 410 23 795 378 3 590 809 24 587 209 

 

Table 3 - SEP against PPE bootstrap approaches 

Over-dispersed Poisson model (chain ladder) 

 Estimated 0's corrected 0's and h corrected 

Year Reserve SEP- 95% PPE - 95% SEP- 95% PPE - 95% 

2 94 634 279 952  317 246  

3 469 511 825 376 785 911 896 149 886 168 

4 709 638 1 140 353 1 090 954 1 224 691 1 175 163 

5 984 889 1 490 473 1 474 210 1 586 561 1 520 295 

6 1 419 459 2 039 570 1 990 773 2 159 048 2 106 503 

7 2 177 641 2 996 199 2 867 049 3 176 938 3 085 471 

8 3 920 301 5 232 463 4 994 792 5 472 000 5 286 592 

9 4 278 972 6 060 655 5 900 404 6 358 273 6 215 378 

10 4 625 811 8 065 876 8 182 354 8 765 034 9 370 058 

Total 18 680 856 23 795 378 22 516 534 24 587 209 23 678 710 

 

The second point is to compare the two bootstrap approaches. For that purpose we 
consider again the mixed model and we obtain the upper limits using the two 
bootstrap procedures: SEP, that is the approach based in the standard error of 
prediction, against PPE, that is the other procedure to obtain the adequate percentile of 
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the prediction error. Table 3 presents the results for the upper 95% limit using two 
residual corrections. Since some generated pseudo data set present negative values in 
the north-east corner, it is not possible to obtain the upper limit for year 2 when using 
PPE bootstrap procedure. 

The second bootstrap procedure generates smaller values for all but the last 
occurrence year. The differences amongst the results obtained with the two bootstrap 
procedures are not very important (less than 7% in absolute terms).  

Let us now compare the results for the quasi over-dispersed Poisson against the 
Gamma model. Table 4 shows the estimated reserve as well as the theoretical 
approximation to the standard error of prediction given by relations (5) and (6). 
Combining these two estimates and using the normal distribution we obtain the upper 
95% confidence limits which are also presented. Note that the gamma model provides 
a better fit than the over-dispersed Poisson. 

 

Table 4 - Over-dispersed Poisson against Gamma model 

 Over dispersed Poisson Gamma model 

Year Est. Reserve SEP Upper 95% Est. Reserve SEP upper 95% 

2 94 634 110 258 275 992 93 316 46 505 169 810 

3 469 511 216 265 825 235 446 504 165 315 718 423 

4 709 638 261 114 1 139 132 611 145 182 889 911 971 

5 984 889 303 822 1 484 632 992 023 262 013 1 422 996 

6 1 419 459 375 374 2 036 894 1 453 085 361 748 2 048 107 

7 2 177 641 495 911 2 993 342 2 186 160 541 888 3 077 486 

8 3 920 301 791 169 5 221 658 3 665 065 969 223 5 259 294 

9 4 278 972 1 048 624 6 003 804 4 122 398 1 210 801 6 113 988 

10 4 625 811 1 984 733 7 890 405 4 516 073 1 716 813 7 339 978 

Total 18 680 856 2 951 829 23 536 181 18 085 769 2 782 816 22 663 092 

 

Two main conclusions can be drawn:  

• Usually the gamma model produces smaller estimated reserves but the figures are 
not very different. The exception is the reserve for year 4 where the value obtained 
with the gamma model is 14% less than those estimated with the over-dispersed 
Poisson model. For the global prediction the same ratio is –3%. 

• However the standard errors of prediction are quite different and consequently the 
estimated upper limits. These differences tend to be greater in the first years 
(estimation based on few predictions). The upper confidence limits present 
smoother differences since they combine the standard errors of prediction with the 
estimated reserves. The upper limit for the global prediction is 4% lesser with the 
gamma model than with the over-dispersed Poisson model. 

Finally we compare the results obtained with the different models and the two 
bootstrap procedures. Table 5 presents those results when the residuals are corrected.  
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The main conclusion is that the aggregate predictions are not very different. The 
smaller value (23 460 724) is 92% of the biggest (24 857 209). Those differences are 
much more influenced by the choice of a model than by the selection of a bootstrap 
procedure. 

When we look at the results for each year the differences are more significant but, 
again, we see that the main problem is the choice of a model. In this particular 
example the gamma model presents a better fit to the observed values.  

 

Table 5 - Bootstrap results (corrected residuals) 

 Poisson based Gamma 

Year Est. Reserve SEP- 95% PPE - 95% Est. Reserve SEP- 95% PPE - 95% 

2 94 634 317 246  93 316 178 376 224 222 

3 469 511 896 149 886 168 446 504 742 285 797 805 

4 709 638 1 224 691 1 175 163 611 145 943 805 996 543 

5 984 889 1 586 561 1 520 295 992 023 1 492 281 1 522 673 

6 1 419 459 2 159 048 2 106 503 1 453 085 2 128 274 2 117 230 

7 2 177 641 3 176 938 3 085 471 2 186 161 3 206 829 3 240 837 

8 3 920 301 5 472 000 5 286 592 3 665 066 5 563 783 5 649 816 

9 4 278 972 6 358 273 6 215 378 4 122 398 6 519 504 7 063 204 

10 4 625 811 8 765 034 9 370 058 4 516 073 7 971 008 9 911 301 

Total 18 680 856 24 587 209 23 678 710 18 085 772 23 675 062 23 460 724 
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