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ABSTRACT 

Optimal Monetary Policy using a VAR* 

In this paper we propose a new way to formulate optimal policy based on a 
quadratic intertemporal welfare function where the dynamic constraint is 
based on a VAR model of the economy which we call the PVAR method. We 
argue that the VAR under control should not be derived simply by replacing 
the VAR equation for the policy instruments by an optimal control rule 
because this alters the stochastic structure of the VAR. Instead, one should 
first transform the VAR in order to condition the non-policy variables on the 
policy instruments, then use the resulting sub-system as the dynamic 
constraint, and finally construct the VAR under control by combining this sub-
system with the resulting optimal policy rule. In this way the original stochastic 
structure of the VAR is retained. In comparing the two approaches we explain 
the theoretical advantages of the PVAR over the standard method and we 
illustrate the methods by examining the formulation of optimal monetary policy 
for the US. We suggest that since the whole process is easily automated, the 
PVAR method may provide a useful benchmark for use in real time against 
which to compare other, probably far more labour intensive, policy choices. 
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1 Introduction

Given a welfare function and knowledge of the structure of the economy, monetary policy based on

commitment to a rule is usually superior to one based on discretion, yet almost all central banks

use discretion. There are several reasons for this. First, most monetary authorities do not have a

clearly articulated welfare function. This also holds true for a monetary authority who is formally

a strict in�ation targeter. Second, even if the monetary authority did have such a welfare function,

it is not clear how the monetary policy rule should be speci�ed. A Taylor (1993) rule is commonly

invoked, but it is unlikely to be optimal. In order to obtain an optimal rule it is necessary to

maximise the welfare function subject to a model of the economy. Third, it is often di¢ cult

to get agreement on how to specify a structural model of the economy. In these circumstances,

a policy of discretion is likely to be less di¢ cult to defend before the public than one based on

commitment. Nonetheless, if a reasonably satisfactory way around these problems could be found,

a policy based on commitment might be the more attractive. The aim of this paper is to suggest

a simple and transparent way to derive an optimal monetary policy rule. Since the whole process

is easily automated, it may provide a useful benchmark against which to compare other, probably

far more labour intensive, policy choices. For recent related work on optimal monetary policy see

Rudebusch (2001), Sack and Wieland (2000), Svensson (1997) and Taylor (1995, 2000).

Our proposal is to maximise an intertemporal quadratic objective function based on a trade-o¤

between in�ation and output subject to a dynamic constraint that is based on a vector autoregres-

sive (VAR) model of the economy. The choice of a quadratic objective function in in�ation and

output (or the output gap) re�ects common practice in the control and in�ation targeting litera-

tures, for example, Rudebusch and Svensson (1999) and Sack (2000). A more formal justi�cation

was provided by Rotemberg and Woodford (1999) - see also Woodford (2003) - who showed that

such a quadratic function can be derived as an approximation to a micro founded macro model

with standard preferences in terms of consumption.
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More controversial is the choice of dynamic constraint relating the targeted variables to the

policy instruments. Kydland and Prescott (1977), Barro and Gordon (1983) and Rogo¤ (1985)

studied optimal monetary policy using rational expectations models of output and in�ation. In

contrast, Rudebusch and Svensson (1999) used a dynamic constraint obtained from an entirely

backward looking model of output and in�ation, while Clarida, Gali and Gertler (1999) and

Rotemberg and Woodford (1998) employed a New Keynesian model. Optimal policy will clearly

be a¤ected by this choice. A more agnostic approach that seeks to avoid imposing a constraint

not supported by the data is to use instead a data-based VAR. The logical drawback of using

a VAR is that a change of policy rule will alter it. As a result, there must be a concern that

any VAR is vulnerable to structural change. In principle, therefore, the Lucas Critique (Lucas,

1976) applies here. In practice, however, like Rudebusch (2002), we �nd that structural change

to a VAR as a result of changing policy appears not to be much in evidence. Without wishing to

claim that basing policy on VAR is a �rst-best approach compared with using a correctly-speci�ed

structural model, given the di¢ culty of agreeing on what that structural model should be, using

a VAR may still provide a helpful benchmark against which to compare a �rst-best policy and

any other policies such as one based on a Taylor rule or a policy of discretion. Moreover, using a

VAR is consistent with Woodford�s (2007) recommendation to base US monetary policy strategy

on in�ation forecast targeting whilst making no mention of how the forecasts should be obtained.

The idea of basing optimal monetary policy on a VAR is not new. Sack (2000) shows how this

may be accomplished using a VAR in which the disturbances in the equations for the non-policy

and policy variables are assumed to be uncorrelated. Martin and Salmon (1999) also use a VAR

but with a di¤erent set of identifying restrictions from Sack. Having obtained the optimal policy

rule, forecasts of the non-policy variables are derived from the VAR under control by replacing

the original VAR equations for the policy instruments by the optimal policy rule. We refer to this

methodology as the standard approach. Stock and Watson (2001) have made a related suggestion,

namely to replace the interest rate equation in a VAR with a Taylor rule. This has the added
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drawback that the Taylor rule may not be an optimal choice.

Rather than make any assumptions about the correlation structure of the VAR disturbances,

we estimate the VAR unrestrictedly and then derive the dynamic constraint relating the non-policy

variables to the policy instruments by transforming the VAR so that the non-policy variables are

conditioned on the policy instruments. Having derived the optimal policy rule, we construct the

VAR under control by combining the sub-system of equations for the non-policy variables that

make up the dynamic constraint with the optimal rule. We refer to this approach as the policy

VAR (PVAR) method, where the PVAR is the resulting VAR under control.

Whereas in the optimal policy rule under the standard approach based on dynamic program-

ming the policy instruments are related contemporaneously to the non-policy variables, in the

PVAR approach the non-policy variables a¤ect the policy instruments with a lag. For both meth-

ods the VAR under control has a lagged response to the policy instruments. Due to the structure

of the optimal policy rule, in the standard method, the policy instruments are a¤ected by the

current disturbances to the non-policy VAR equations. If the identi�cation is invalid due to cor-

relation between the VAR disturbances of the non-policy and policy equations in the estimated

VAR, then shocks to the non-policy variables in the VAR under control will be correlated with

the disturbances of the original VAR equations for the policy instruments. This does not happen

with the PVAR method.

There is, however, a potential problem with Sacks�s approach. This is due to the particular

identifying restrictions imposed on the VAR, notably, the assumption that the VAR disturbances

of the equations for the non-policy and the policy variables are uncorrelated. It is common to

introduce some minimal restrictions on a VAR in order to identify policy and other shocks. These

usually take the form of assumed delays in the response of non-policy variables to policy shocks.

A Choleski decomposition on the error covariance matrix of the VAR disturbances is the standard

way to do this. Thus Sack assumes that there is a single-period lag in the response of non-policy

variables to the policy instruments, and that the disturbances of the equations for the non-policy
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variables and the policy instruments are uncorrelated. Prominent studies along these lines are,

for example, Sims (1980), Leeper et. al. (1996) and Christiano, Eichenbaum and Evans (1999).

We refer to this as the standard approach. An alternative adopted by Bernanke and Blinder

(1992) and Bernanke and Mihov (1998) is to start with a structural VAR which has uncorrelated

disturbances, and then identify the resulting VAR by imposing zero restrictions on the coe¢ cient

matrix of the current variables.

As noted by Stock and Watson (2001), such assumptions are clearly more appropriate for high

frequency macroeconomic data, such as daily or weekly than for lower frequency data, such as

monthly, quarterly or annual data. The problem is that little macroeconomic data are available

on a monthly basis, and often there is no good reason, beyond convenience, to assume that there

are delays in the response to VAR shocks. For example, if the VAR is derived from a dynamic

general equilibrium model, then a shock to households is most likely to a¤ect simultaneously all

of the households�decisions variables such as consumption, leisure and money demand. Moreover,

�nancial markets and asset prices may be expected to response more or less instantaneously to

policy shocks, see for example Bernanke and Mihov (1998) and Walsh (2003). For these reasons,

but mainly because it is unnecessary to do so in order to formulate optimal policy, we prefer not

to impose such identifying restrictions.

We argue that there are additional reasons for preferring the PVAR method. It is suitable

for re-optimising policy each period based on up-dated estimates of the VAR as one would do

in real-time applications and the optimal solutions for the state vector are the same whether

one uses a state-space representation of the VAR under control, or a VAR based on the original

variables. None of these holds for the standard approach as the outcomes for the non-policy

variables next period, calculated from the VAR under control based on the orginal variables, are

just the one-period ahead forecasts from the estimated VAR, and are di¤erent from the outcomes

based on a state-space representation of the VAR under control. This �rst-period problem is akin

to Woodford�s (2003) timeless perspective.
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We compare the two methods by deriving an optimal policy monetary rule using data for the

US for the period 1960-2007. We examine alternative choices of the intertemporal welfare function

based on �exible and strict in�ation targeting, strict output targeting, interest rate smoothing and

optimal �exible in�ation targeting derived from Woodford�s (2003) quadratic approximation to

the type of intertemporal utility functions used in dynamic general equilibrium models. We also

compare these methods with the use of a Taylor rule.

The paper is set out as follows. In section 2 we discuss how to formulate the dynamic constraint

based on a VAR or a cointegrated VAR. In section 3 we derive the optimal policy rules for the

standard and the PVAR methods and discuss some of the problems in implementing them. In

section 4 we consider the problem of formulating optimal monetary policy for the US and the

appropriate speci�cation of the welfare function. Our results are reported in section 5 and our

conclusions are stated in section 6. Our �ndings indicate that optimal monetary policy would

have di¤ered signi�cantly from actual policy since 1991.

2 Formulating the dynamic constraint from a VAR

2.1 Stationary VAR

The aim of optimal policy is to respond to temporary and permanent shocks to the economy. The

temporary shocks may be estimated from the disturbances of the original VAR. By evaluating

the intertemporal welfare or cost function using the original data and with the forecasts derived

from the VAR under control it is possible to compare the behaviour of the economy under control

with not under control. Another way to compare the two is to examine the corresponding sets of

dynamic multipliers. Permanent shocks are the due to changes in the non-stationary exogenous

variables. This requires the use of a cointegrated VAR which we discuss below. Our discussion

at this stage is based on all of the variables being stationary with the result that there are only
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temporary shocks.

The standard approach to formulating optimal policy based on a VAR used by Sack (2000) is to

start by estimating a VAR which has equations for the target variables (those to be controlled), for

the policy instruments (the control variables) and, optionally, for any other variables that might

be involved in the transmission mechanism from the policy instruments to the policy targets.

The second step is to derive the optimal rules by minimising an intertemporal cost function

de�ned in terms of the target variables (and possibly also the policy instruments) subject to the

constraint that the non-policy variables must satisfy their corresponding VAR equations. Thus

the policy instruments are assumed to a¤ect the non-policy variables with a lag. The welfare

function is commonly chosen to be a quadratic function of the targets around their desired values.

The optimal rules relate the instruments to the current values of the non-policy variables and

the lagged state vector. The �nal step is to replace the original VAR equations for the policy

instruments with optimal policy rule to form a new VAR in the original variables, the VAR under

control.

This methodology is only valid if, as Sack assumes, the VAR disturbances of the non-policy

and policy variables are uncorrelated. If the VAR disturbances are correlated, as will generally be

the case, especially with quarterly data, a di¤erent method is required. This is because replacing

the VAR equations for the policy variables with the control rule will alter the original correlation

structure. Since the original disturbances of these equations are what optimal policy should be

reacting to, this will not result in an optimal policy under control. Only if the VAR is restricted

so that the disturbances of the non-policy equations are uncorrelated with those of the policy

instrument equations will the standard procedure give the correct answer. If this is not a valid

restriction then it would result in biased estimates of the shocks and an incorrect policy rule.

We suggest an alternative procedure when the disturbances are correlated which we call the

policy VAR ( PVAR) method, where the PVAR is the VAR under control. Rather than make

any assumptions about the correlation structure of the VAR disturbances, we estimate the VAR
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unrestrictedly and then derive the dynamic constraint relating the non-policy variables to the

policy instruments by transforming the VAR so that the non-policy variables are conditioned on

the policy instruments. Having derived the optimal policy rule, we construct the VAR under

control by combining the sub-system of equations for the non-policy variables that make up the

dynamic constraint with the optimal rule. The disturbances in the non-policy equations are now

di¤erent from those in the original VAR and not the same as in the standard method. In the PVAR

these disturbances are the projection of the original disturbances onto the space orthogonal to the

disturbances of the policy equation disturbances.

We examine the details more closely. Consider the VAR(p)

zt = a+A (L) zt�1 + et; (1)

where z0t = (z01;t; z
0
2;t), z1;t is an s � 1 vector of non-policy or state variables, z2;t is a c � 1

vector of policy instruments or control variables, q = s + c, a is a vector of constant terms,

A (L)=�p�1i=0AiL
i, with Ai indicating a q� q matrix of lag i coe¢ cients, L is the lag operator, et

is a vector of stochastic disturbances with E [et] = 0, E [ete0t] = � and E[ete0t�i] = 0 for i > 0:

We assume that � is unrestricted, thereby allowing the VAR disturbances to be correlated. The

VAR can be partitioned as

2664 z1;t

z2;t

3775 =
2664 a10

a20

3775+
2664 A11 (L) A12 (L)

A21 (L) A22 (L)

3775
2664 z1;t�1

z2;t�1

3775+
2664 e1t

e2t

3775 (2)

where A11 (L) = �p�1i=0A11iL
i, A12 (L) = �p�1i=0A12iL

i, A21 (L) = �p�1i=0A21iL
i and A22 (L) =

�p�1i=0A22iL
i. e0t = (e01;t; e

0
2;t) and the covariance matrix of the disturbances is partitioned con-

formably as

�=

2664 �11 �12

�21 �22

3775 :
where �12 = �021. Sack (2000) imposes the restriction �12 = 0, implying that shocks to his single
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policy instrument (including unanticipated policy changes) have no contemporaneous e¤ect on the

non-policy variables.

Bernanke and Blinder (1992), whose purpose was to identify the shocks rather than perform

optimal control analysis, started not with equation (1), but with a structural VAR, i.e. with the

SVAR

Bzt = a+A (L) zt�1 + ut;

where the disturbances ut of the policy and non-policy instruments are assumed to be uncorrelated.

They then consider two possible identi�cation schemes: partitioning B, they set either B12 or B21

equal to zero. If the variables in zt are ordered non-policy and policy as before then this implies,

respectively, that either the policy variables a¤ect the non-policy variables with a lag or vice-versa.

Bernanke and Mihov (1998) argue in favour of the restriction B12= 0. They also point out that

even this restriction may not be suitable if the data period is so long that the non-policy variables

have time to react to the policy instruments within the period of observation. The restrictions

imposed by Sack, Bernanke and Blinder, and Bernanke and Mihov are sometimes known as partial

identi�cation of a VAR, or using a semi-structural VAR. Martin and Salmon (1999), who also

consider optimal policy with a VAR, argue that identifying a VAR through the sort of recursive

restrictions used by Sack is unsatisfactory. Instead they use selective contemporaneous non-

recursive restrictions to the disturbances.

In contrast, we impose no identi�cation restrictions on the state-vector equations of the VAR

and so allow �12 6= 0, implying that shocks to the policy instrument (including unanticipated

policy changes) may a¤ect the non-policy variables contemporaneously. If e1;t is correlated with

e2;t then we can express their relation through

e1;t = �t +Ge2;t;
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where �t is the component of e1;t that is uncorrelated with e2;t. Consequently, we may write

et =

2664 e1;t

e2;t

3775 =
2664 I G

0 I

3775
2664 �1t

e2;t

3775 = H
2664 �t

e2;t

3775 :
It follows from E[ete

0
t] = � that �12 = G�22, implying that G = �12�

�1
22 .

We now pre-multiply the VAR by the transformation matrix

H�1=

2664 I �G

0 I

3775 .
to obtain

H�1zt = H
�1a+H�1A (L) zt�1 +H

�1et;

This de�nes two sets of equations with uncorrelated disturbances:

z1;t = [a10 �Ga20] +Gz2;t + [A11 (L)�GA21 (L)] z1;t�1 +

+ [A12 (L)�GA22 (L)] z2;t�1 + �t (3)

z2;t = a20 +A21 (L) z1;t�1 +A22 (L) z2;t�1 + e2;t: (4)

Hence, from equation (3), under the PVAR method the state vector z1;t is conditioned on the

control vector z2;t which is uncorrelated with �1t. Equation (3) describes the law of motion of the

state vector of non-policy variables, conditional on the policy instruments. The optimal policy is

derived subject to this equation, not the equation for z1;t in the original VAR, equation (2).

2.2 Cointegrated VAR

If the data are non-stationary, or a mixture of stationary and non-stationary variables, then

we have a choice. We could just ignore the presence of non-stationary variables and still use a

conventional levels VAR to represent the data. Or we could estimate a cointegrated VAR and

then re-write this as a levels VAR. And if there is no cointegration we could �rst di¤erence the

variables and then estimate a levels VAR.
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If we ignore the presence of cointegration we would, of course, be throwing away information

which could be used to improve the e¢ ciency of the coe¢ cient estimates of the VAR when re-

written in levels. In particular, we would be ignoring information on how many cointegrating

vectors there are. This is information that could be incorporated in the estimation method as in

the Johansen estimator. Further, we know that where there is more than one cointegrating vector

they cannot be given an economic interpretation even though they are identi�ed in a statistical

sense, see Wickens (1996). Wickens and Motto (2003) have suggested a way of identifying the

cointegrating vectors that imposes minimal restrictions. This consists of using long-run structural

information to restrict the cointegrating vectors and, optionally, classifying the variables as either

endogenous or exogenous.

Henceforth, however, we will proceed as though the variables are stationary.

3 Optimal policy with a VAR

3.1 The problem

The optimal control of a time-separable inter-temporal quadratic objective function constrained

by a stochastic linear dynamic system is well known. The solution may be obtained either by using

the method of dynamic programming or the method of Lagrange multipliers; both techniques lead

to the same solution.1 When dynamic programming is used the problem is commonly referred

to as linear quadratic dynamic programming. We wish to compare the optimal solution based on

the PVAR method with that based on the standard method using a VAR. We therefore derive the

solutions for the policy variables z2t for the case where the dynamic constraint determining the

non-policy variables z1t is the conditional VAR, equation (3), and for the case where the equations

for z1t are those in the VAR, equation (1).

1 An accurate comparison of the use of dynamic programming and Lagrange multipliers tecniques for the
assessment of optimal policy rules can be found in Chow (1976).
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We assume that the quadratic loss function of the policy maker is

Lt = Et

1X
s=0

�s
�
(yt+s��y)0W (yt+s��y)

�
; (5)

where y0t =
�
z01t : : : z01;t�p z02t : : : z02;t�p

�
, �y is a target vector and W is a symmetric

positive semi-de�nite matrix of policy weights which are assumed to be constant. This formulation

is su¢ ciently general to allow the objective function to include �rst di¤erences of the variables.

This will only a¤ect the form of the matrixW.

The value function V (yt), i.e. the minimum value at time t of the welfare loss under the

in�nite sequence of controls fz2t+sg1s=0, is given by

V (yt) = min
fz2t+sg1s=0

Et

1X
s=0

�s
�
(yt+s��y)0W (yt+s��y)

�
Using the Bellman (1957) principle, the value function can be re-written in the recursive form

V (yt) = min
fz2t+sg1s=0

(yt��y)0W (yt��y) + �Et [V (yt+1)] (6)

3.2 Standard VAR

The dynamic constraint in the standard approach is based on the sub-system of equations for z1t

in the original VAR, equation (1). In state-space (companion) form it can be re-written as

yt = ea+ eAyt�1 + eBz2;t�1 + vt (7)

where Et
�
z02;t�1vt

�
= 0. Maximising the value function (6) subject to (7) gives the optimal rule,

see Sack(2000) and Ljungqvist and Sargent (2004). The optimal solution is

z2t = ~f + ~Fyt; (8)

~F = �
�eB0~PeB��1 eB0~PeA

~f = �
�eB0~PeB��1 eB0 �~p�~Pea� ;
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where ~P and ~p satisfy the time-invariant Riccati equations

~P = W+� eA0~PeA�� eA0~PeB�eB0~PeB��1 eB0~PeA (9)

~p = W�y + �
�eA0 + ~F0 eB0��~p� ~Pea� (10)

Hence, in the standard method, equation (8), the policy instrument responds contemporaneously

to yt. Note that this solution di¤ers from that of Chow (1976), pp. 156-160 and 176-178 due to

the presence of the discount factor �. The loss function, equation (5), di¤ers from Chow�s which

replaces �sW by the more general Ws. Equation (9) is non-linear but satis�es a �xed-point

theorem, the solution for P must be therefore be obtained through numerical iteration.

The maximised value function is now given by

V (yt) = y
0
t
~Pyt + 2y

0
t~p+ ec (11)

Substituting (8) into (7) gives the state-space representation

yt = er+ eRyt�1 + vt (12)

where ert = ea+ eBef and eR = eA+ eBeF.
Although commonly used to calculate the outcomes for the non-policy variables, equation (12)

must be interpreted with care. It determines the behaviour of the state vector on the implicit

assumption that the policy instruments have always been generated by the above policy rule, and

there has been no switch of policy. This has echoes of Woodford�s timeless perspective in which

the di¤erent behaviour of the non-policy variables in �rst period is ignored, see Woodford (2003).

If the optimal policy is implemented at time t then past values of the state vector, which are

required to calculate yt in equation (24), will be determined prior to the change of policy and not,

as implicitly assumed, by equation (24).

Further appreciation of this problem may be acquired by considering an alternative way of

writing the VAR under control. Written in terms of the original variables, the control rule in the
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standard approach takes the form

�z1t+z2t=ea20+eA21(L)z1;t�1+
eA22(L)z2;t�1 (13)

Thus it is necessary for the policy maker to know the non-policy variables z1t in order to set

policy. The VAR under control for the standard approach is obtained by combining the original

VAR equations for z1t with the policy rule to give2664 I 0

� I

3775
2664 z1t

z2t

3775 =

2664 a10

ea20
3775+

+

2664 A11(L) A12(L)

eA21(L) eA22(L)

3775
2664 z1;t�1

z2;t�1

3775+
2664 e1t

0

3775 (14)

This can be re-written as the VAR under control by pre-multiplying by the inverse of the matrix

of coe¢ cients of zt,2664 z1t

z2t

3775 =

2664 a10

��a10 + ea20
3775+

+

2664 A11(L) A12(L)

��A11(L) + eA21(L) ��A12(L) + eA22(L)

3775
2664 z1;t�1

z2;t�1

3775+
2664 e1t

��e1t

3775(15)
It can be shown that the equation for the non-policy variables z1t in equation (15) is di¤erent

from that in equation (12). This is entirely due to the presence of the current value of z1t in the

control rule, equation (13) which requires that z1t must be known in order to set policy, and then

z2t a¤ects z1;t+1: Hence, equation (15), and not equation (12), should be used following a switch

of policy.

The expected loss under the standard approach may be evaluated as before. It is

Lt =
1X
s=0

�s
�
(Etyt+s��y)0W (Etyt+s��y)

�
+

1X
s=0

�strWe�s (16)
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where

e�s = Et(yt+s�Etyt+s)(yt+s�Etyt+s)0

= (I+eR+:::+eRs�1)e
(I+eR+:::+eRs�1)
0

= eRe�s�1 eR0 + e

e�0 = 0 and Evtv0t = e
. Thus �s is the conditional covariance matrix of yt+s given information
at time t. Equation (16) shows that the expected welfare cost can be decomposed into two parts.

The �rst term on the right hand side of equation (16) is the deterministic component of the welfare

cost and measures the cost of having a long-run target di¤erent from the conditional expectation of

the vector yt+s. The second term is the stochastic component of the welfare cost, which depends

upon the volatility of the vector yt+s. In particular, �s measures the volatility of the forecast

error due to the presence of random disturbances e1;t+s which cause deviations of yt+s from its

expected path. �s may be obtained from equation (12).

3.3 PVAR method

In the PVAR approach the dynamic constraint is based on equation (3). In state-space form it

can be re-written as

yt = ba+ bAyt�1 + bBz2t + ut (17)

where Et [z02tut] = 0, see the appendix for further details. It can be shown that maximising (6)

subject to (17) gives the optimal rule

z2t = f + Fyt�1; (18)

F = �
�bB0PbB��1 bB0PbA (19)

f = �
�bB0PbB��1 bB0 (Pba� p) (20)

where P and p satisfy the time-invariant Riccati equations
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P = W+� bA0PbA�� bA0PbB�bB0PbB��1 bB0PbA (21)

p = W�y + �
�bA0 + F0 bB0� (p�Pba) (22)

The maximised value function is then given by

V (yt) = y
0
tPyt + 2y

0
tp+ c (23)

The behaviour of the state vector under control is usually expressed in state-space form. It is

obtained by substituting the optimal rule (18) into equation (17) to give

yt = r+Ryt�1 + ut; (24)

where r = ba+ bBf and R = bA+ bBF. Although equation (24) has the same form as equation (12),

it does not have the same drawback. To see this we express the VAR under control in terms of

the original variables. The control rule is

z2t = a
�
20 +A

�
21(L)z1;t�1 +A

�
22(L)z2t�1

where the policy instrument is based on information prior to period t. The VAR under control -
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the policy VAR or PVAR - may be written as2664 z1t

z2t

3775 =

2664 I G

0 I

3775
2664 a10 �Ga20

a�20

3775+

+

2664 I G

0 I

3775
2664 A11 (L)�GA21 (L) A12 (L)�GA22 (L)

A�
21(L) A�

22(L)

3775
2664 z1;t�1

z2;t�1

3775

+

2664 I G

0 I

3775
2664 �t

0

3775

=

2664 a10 �G(a20 � a�20)

a�20

3775+
2664 A11 (L)�G[A21 (L)�A�

21(L)] A12 (L)�G[A22 (L)�A�
22(L)]

A�
21(L) A�

22(L)

3775
2664 z1;t�1

z2;t�1

3775

+

2664 �t

0

3775 (25)

In contrast to the standard approach, where the equation for the non-policy variables z1t in

equation (15) is di¤erent from that in equation (12), it can be shown that the equation for z1t in

equation (25) is identical to that in equation (24). In other words, in calculating the outcomes

for the variables under control, the PVAR approach does not su¤er from the ambiguities of the

standard approach.

On the other hand, the new equation for the non-policy variables z1t in equation (25) di¤ers

from the original VAR if the new policy rule di¤ers from the original VAR equations for the policy

variables. Equation (25) shows that there is a lag in the e¤ect of the policy instrument on the

non-policy variables. Hence, in e¤ect, policy is based on the expected future values of the non-

policy variables next period. It therefore accords with Woodford�s (2007) recommendation to base

monetary policy on forecasting in�ation. We also note that as a result of switching to the optimal

policy the coe¢ cients of the VAR have changed. This shows that the Lucas Critique applies even
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when the original model is a VAR. Further, we note that the VAR under control has a singular

error covariance matrix because the new VAR equations for the policy variables are deterministic.

The VAR under control in the PVAR approach di¤ers from that for the standard approach

in two further ways. First, in the standard approach, because policy requires a knowledge of the

current non-policy variables z1t, the equations for the policy instruments in the VAR under control

have a disturbance term e1t that is perfectly correlated with disturbances in the policy equations.

In the PVAR the policy equations have no disturbance term. Since there is a one period lag in

the response of the non-policy variables and future disturbances would be unknown in practice,

setting these disturbances to zero implies that, as in the PVAR method, in e¤ect, policy is once

again based on the expected future values of the non-policy variables next period.

The second di¤erence is that, in the standard approach the dynamic structure of the equations

for the non-policy variables are una¤ected when under control, whereas they are altered in the

PVAR. This implies that re-optimising each period and building back the disturbances e1t would

result in no di¤erence in the non-policy variables from their actual values even though the values

of the policy instruments would be di¤erent from the actual data. This point is pertinent for our

empirical experiments below.

The loss function, equation (5), may be evaluated under control by re-writing it as

Lt =
1X
s=0

�s
�
(Etyt+s��y)0W (Etyt+s��y)

�
+

1X
s=0

�strW�s (26)

where �s now measures the volatility of the forecast error due to the presence of random distur-

bances �t+s which cause deviations of yt+s from its expected path. �s may be obtained from

equation (1). Denoting Eutu0t = 
, then, as ut+s has a constant variance,

�s = Et(yt+s�Etyt+s)(yt+s�Etyt+s)0

= (I+R+ :::+R
s�1
)
(I+R+ :::+R

s�1
)
0

= R�s�1R
0 +


where �0 = 0:

17



To summarise, if the original VAR disturbances are correlated, then the PVAR method should

be followed instead of the standard approach which assumes that they are uncorrelated, and hence

that G = 0. The optimal rules are then di¤erent, as are the behaviour of the non-policy variables

under control and the expected losses. The disturbances of a VAR under control have been shown

to be di¤erent in the two methods. Using the standard method the covariance matrix of the

disturbances of the non-policy and the policy equations will be perfectly correlated; under the

PVAR method the covariance matrix of these disturbances will be singular. We have also shown

that for the standard approach the calculation of the outcomes under control using the state-space

VAR and the VAR under control written in terms of the original variables di¤er, whereas for the

PVAR the two methods give the same solution. This implies that for the standard approach, in

order to deal with the initial e¤ects of a switch to the optimal policy, the VAR under control

should be used rather than the state-space VAR. However, if, for the standard approach, policy is

re-optimised each period, and so only the �rst period is implemented, then using the VAR under

control rather than the state-space representation, implies that the outcomes for the non-policy

variables are una¤ected by policy as they are simply the one-period ahead forecasts from the

original VAR. All of this makes the case for preferring the PVAR approach compelling.

3.4 Options for implementing optimal policy

Our policy experiments all assume that policy is re-optimised each period. This implies that we

only need to consider the �rst period following the execution of the new policy. There are several

ways to implement this which di¤er in the amount of information used.

Option1

This option makes the arti�cial assumption that the VAR coe¢ cients are known for the whole

sample period, even though the VAR cannot be estimated until after this period has passed. It

is therefore a counter-factual experiment. It is also the experiment considered by Sack. Thus,

we estimate the VAR for the whole data period and then re-construct the VAR under control
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for both the standard and the PVAR policy rules by computing the optimal values of the policy

instruments and the one-period ahead forecasts of the policy target variables using actual past

values of the state vector zt�1 and ignoring the period t disturbances e1t (ST) and �t (PVAR).

This gives expected one-period-ahead forecasts. For the standard approach these forecasts are

obtained from equation (15) and hence are just the one-period ahead in-sample forecasts from the

original VAR; the switch of policy has therefore had no e¤ect. If the state-space representation,

equation (12) were used instead, the one-period ahead forecasts under control would di¤er from

the in-sample forecasts from the original VAR. In contrast, the PVAR forecasts under control will

di¤er from in-sample forecasts from the original VAR.

Option 2

This is the same as Option 1 except the period t disturbances e1t (ST) and �t (PVAR) are

added to the VAR forecasts. This gives the "actual" outcomes under control. For the standard

approach the outcomes under control are identical to the actual values because actual data is used

for past values of the non-policy variables in the VAR under control. For the PVAR the outcome

for the policy instrument (the Federal Funds rate) is the same as for option 1, but the equations

for the non-policy variables in the VAR under control are altered.

Option 3

A step towards great realism is to estimate the VAR recursively adding one period at a time

before re-constructing the VAR under control for both the standard and the PVAR policy rules.

For this option, where policy is re-optimised each period, it is even more appropriate to use the

VAR under control and not the state-space representation under control. In this option the data

used at each recursion are the actual values observed and not the variables under control. This

corresponds to Options 1 and 2 where the actual data are used to estimate the VAR. The rest is

the same as in Option 1. In particular, we obtain expected one-period-ahead forecasts. For the

standard approach the one-period ahead forecasts are the same as the those from the recursively
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estimated VAR and hence are also una¤ected by a switch of policy.

Option 4

This is the same as Option 3 except that we include the period t disturbances e1t (ST) and �t

(PVAR) to give the "actual" outcomes under control. For the standard approach the outcomes

under control are again identical to the actual values because actual data is used for past values of

the non-policy variables in the VAR under control and, in addition, actual data are being used to

estimate the VAR. For the PVAR the outcome for the policy instrument is the same as for option

3, but the equations for the non-policy variables in the VAR under control are di¤erent.

It is clear that using a VAR under control rather than the state-space representation under

control and assuming re-optimisation each period renders the standard approach useless. For the

standard approach to possess any value it is necessary to use the state-space representation under

control. This is what Sack does. Hence, given the logical problems associated with using the

state-space representation, only the PVAR approach has any practical value. This argument is

reinforced if we re�ect that in practice - i.e. in real time - we would re-estimate the VAR each

period and then re-optimise each period.

4 Optimal monetary policy

We now apply the PVAR method to the problem of optimal monetary policy based on using the

o¢ cial interest rate as the monetary policy instrument where the monetary authority is either a

strict or a �exible in�ation targeter. We also allow the monetary authority to smooth the o¢ cial

interest rate, if it wishes, in order to avoid instrument instability, see Goodhart (1998), Rudebusch

(1998) and Sack (2000). We therefore consider the following quadratic intertemporal cost function:

L = Et

1X
s=0

�t+s
h
�� (�t+s � ��t )

2
+ �y(yt+s � y�t )2 + ��rs�rs2t+s

i
; (27)
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where �t is the rate of in�ation, yt is the output gap, rst is a nominal short-term interest rate,

and is the o¢ cial interest rate controlled by the monetary authority. ��t and y
�
t are target levels.

We set �� = 1 throughout. If in addition �y = ��rs = 0 then the monetary authority is a

strict in�ation targeter. Setting �y > 0 implies that the monetary authority is a �exible in�ation

targeter and setting ��rs > 0 implies that the monetary authority attaches a cost to changing the

o¢ cial interest rate and so prefers to smooth interest rates. We consider the e¤ects of di¤erent

choices of �y and ��rs.2

In order to evaluate the e¤ect on optimal policy of di¤erent choices of the weights �y and ��rs,

like Rudebusch and Svensson (1999), we consider a range of values. These are summarised in table

1. The choices range from strict in�ation targeting where �y = ��rs = 0, to �exible targeting

where �y 6= 0, to interest rate smoothing where ��rs 6= 0. An alternative approach would be to

calibrate the quadratic approximation to a standard intertemporal utility as derived by Woodford

(2003); see also Wickens (2008). Starting with the instantaneous utility function

Ut = ln ct � 
 ln yt(z) (28)

where ct is an index of total consumption given by the CES function

ct =
hR 1
0
ct(z)

��1
�

i �
��1

, � > 1

and the last term in the utility function re�ects utility from leisure which is inversely related to

the work e¤ort required to produce yt(z) of good z. If, under Calvo pricing, a proportion � of

�rms can change their price in any period and � = 1
1+� is the rate of time discount, then it can

be shown that

EtUt � U�t ' �
1

2
[Et(yt � y�t )2 + �(Et�t+1 � ��t )2] (29)

where U�t is utility at c
�
t and y

�
t (= c

�
t ), the optimal levels of consumption and total output, �

�
t is

the target level of in�ation and � = 

�
��(1��)
�+�

�2
' 
[�(1 � �)]2 as � ' 1. If expenditure shares

2 For a critical review of the optimal monetary policy literature, see Svensson (2003).
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are approximately constant near equilibrium so that � = 1, and the average duration of price

changes is 4 months - see Bils, Klenow and Krystov (2003) - so that � = 0:25 per month, then for

quarterly data � ' 0:6. A typical value of 
 in calibration exercises is 2. On these grounds we

assume that � ' 0:16
 ' 0:32. In Table 1 we list the alternative weighting schemes we examine

initially.

The alternative speci�cations of the instantaneous welfare that we consider are summarised in

the following table.

Table 1: Alternative speci�cations of the objective function

Policy Weights

Model �� �y ��rs

M1 - �exible in�ation targeting 1 1 0

M2 - strict in�ation targeting 1 0 0

M3 - strict output targeting 0 1 0

M4 - �exible IT with int smoothing 1 1 1

M5 - �exible IT with DSGE prefs 1 0.32 0

Each speci�cation of the welfare function may be computed for each optimal policy option. In

addition, for comparison purposes, we compute monetary policy based on the Taylor rule.

5 Empirical results

5.1 VAR

The VAR model of the economy must contain the target variables and the policy instruments. It

may also include other non-policy variables. The choice of non-policy variables determines which

shocks we would like to include in our analysis. The vector of variables modelled in the VAR

is z0t = (�t; yt; �
o
t ; r

10
t ; r

3
t ; Rt), where �t, the rate of in�ation, and yt, the output gap, which is

22



measured by the deviation of log GDP from a quadratic time trend, are the target variables. Rt

is the e¤ective federal funds rate and is the monetary policy instrument. Additional non-policy

variables are �ot , the rate of change of the price of oil, and r
10
t , the 10-year long-term interest rate,

and r3t , the 3-month Treasury bill rate. r
10
t and r3t are included to help capture the monetary

transmission mechanism via the term structure. The data are quarterly for the US 1964q1-2007q3

and the VAR has a lag length of 8.3 As we wish to conduct a counter-factual analysis compared

with the actual data, we use the sample averages as the target levels.

To check the structural stability of the VAR we computed recursive Chow tests, but with

one marginal exception none were signi�cant. We also examined recursive estimates of the VAR

coe¢ cients. These showed little variation beyond the initial start-up observations. These �ndings

support Rudebusch�s conclusion that a monetary policy VAR for the US does not display much

evidence of the sort of structural instability predicted by the Lucas Critique, Lucas (1976).

5.2 Option 1

First we consider the results for option 1 in some detail. We give the outcomes for each welfare

function. We focus on the results for optimal policy and do not report the VAR estimates as these

are not of especial interest.

5.2.1 Interest rates

In Table 2 we report the policy rules implied by the di¤erent speci�cations of the welfare function

for the standard and the PVAR approaches together with federal funds equation in the VAR.

We note that, although under the standard approach, executing the optimal interest rate policy

makes no di¤erence to the one-period ahead forecasts of in�ation and output, it is still of interest

to know what the optimal interest rate would be.

3 The data are taken from the Federal Reserve Bank of St. Louis�database.
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Table 2: Interest rate rules, long run coe¢ cients

R = �0 + �1� + �2y + �3�
o + �4r

10 + �5r
3

VAR Standard PVAR

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

�c 0:16 0:65 0:86 0:11 0:55 0:76 0:49 0:65 �0:03 0:42 0:57

y 0:09 0:44 0:17 1:20 0:32 0:29 0:04 0:04 �0:03 0:00 0:04

�o 0:00 �0:06 �0:08 0:00 �0:05 �0:07 �0:06 �0:11 0:05 �0:04 �0:08

r10 0:02 0:11 0:15 �0:06 0:1 0:13 0:19 0:28 �0:12 0:18 0:24

r3 1:03 0:81 0:72 1:10 0:83 0:76 0:62 0:47 1:04 0:67 0:55

const �0:37 �1:89 �2:50 �0:01 �1:47 �2:22 �0:78 �1:20 1:28 �0:69 �1:02

We recall that the interest rates r10 and r3 are present in the rules. Since, as a �rst approxi-

mation, they will move one-for-one with the federal funds rate in the long run, in order to obtain

the long-run response of the federal funds rate to the other variables, and in particular in�ation

and the output gap, it is necessary solve the equations on the assumption that the three interest

rates are identical. As expected, we �nd that interest rates respond the most strongly to in�ation

under strict in�ation targeting, M2. Under �exible in�ation targeting (M1, M4 and M5) we �nd

that the interest rate responds more strongly to the output gap in the standard than the PVAR

method. In fact, under the PVAR method the response under �exible targeting is similar to that

under strict in�ation targeting.

In Table 3 we report the variability of the federal funds rate for the di¤erent welfare functions.

24



Table 3: Interest rate volatility: standard deviation

Standard PVAR

M1 4.01 2.96

M2 4.72 3.52

M3 4.01 2.75

M4 3.44 2.71

M5 4.27 3.19

The standard deviation for the Taylor rule is 4:79 and the actual standard deviation of the

Federal Funds rate is 3:27. Thus the standard deviation for the PVAR is less than that for the

standard approach. Apart from strict in�ation targeting it is also less than the actual standard

deviation. In Figures 1-5 we plot the time series behaviour of interest rates under control and

compare these with the actual behaviour. In Figure 6 we compare the alternative interest rates

under the PVAR approach with the actual values and those based on a Taylor rule.

Figure 1

Interest rates under flexible inflation targeting model M1
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Figure 2

Interest rates under strict inflation targeting model M2
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Figure 3

Interest rates under strict output targeting model M3
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Figure 4

Interest rates under flexible inflation targeting (equal weights) with interest rate smoothing
 model M4
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Figure 5

Interest rates under flexible inflation targeting with calibrated weights
model M5
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Figure 6

Interest rates for the PVAR under different models and the Tayor rule
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With the exception of the strict output targeting and the Taylor rule, in general, the Federal

Funds rate under optimal policy is not hugely di¤erent from its actual historic value. Nonetheless,

there are episodes when they do di¤er, especially when the PVAR method is used. For example,

in the mid 1980�s and early 1990�s the optimal PVAR rate implies tighter monetary policy. Of

more immediate interest, according to the PVAR method rates should have been higher in 2003-4

but then lower in 2005-6.

In contrast, interest rates based on the Taylor rule are much more volatile than the actual and

the PVAR rates in which the control of in�ation is an explicit objective. Strict output targeting

(M3) results in much lower interest rates over the period 1979-82 and higher rates for the period

1997-2000.

5.2.2 In�ation and output

In order to calculate the outcomes for in�ation and output we have explained that we should use

the VAR under control. We have also argued that for the standard approach for Option 1 this

is simply the one-period ahead forecasts from the original VAR. In order to make a comparison
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of the standard with the PVAR approach meaningful we start by reporting the in�ation and

output outcomes based on the state-space representations under control. Since there is no point

in reporting the outcomes for the standard approach calculated from the VAR under control, we

then just consider the outcomes for the PVAR.

In Table 4 we report the standards deviations for in�ation and the output gap for the standard

and the PVAR approaches based on the state-space representations under control. The actual

standard deviations for in�ation and output are 2:97 and 2:13, respectively. The volatility of

in�ation is lower for the PVAR than the standard approach for each speci�cation of the welfare

function but higher for the output gap. It is also lower than the actual volatility of in�ation but

not the actual volatility of the output gap.

Table 4

ST PVAR

sd (�t) sd (yt) sd (�t) sd (yt)

M1 2.79 1.81 2.56 2.36

M2 2.83 1.91 2.77 2.44

M3 2.76 1.58 2.09 2.45

M4 2.76 1.93 2.54 2.10

M5 2.81 1.86 2.66 2.38

In Figure 7 we show the time series behaviour of optimal in�ation and the output gap for model

M5 for the standard and the PVAR approaches based on the state-space representations under

control together with their actual values. The di¤erences between the three series are not large

for both in�ation and output, nonetheless, the PVAR di¤ers more from the actual values than the

standard approach. Similar results occur for the other speci�cations of the welfare function.
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Figure 7

Inflation and output for model M5: actual, standard and PVAR methods
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Inflation

Output gap

In Figure 8 we show the outcomes for in�ation for all �ve speci�cations of the welfare function

for just the PVAR. Figure 9 gives the corresponding outcomes for the output gap. With the

exception of strict output targeting, the outcomes for in�ation are fairly similar and they are even

closer for the output gap.
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Figure 8

Inflation for the PVAR approach: models M1­M5
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Figure 9

Output gap for the PVAR approach: models M1­M5
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5.2.3 Welfare

In Figure 10 we examine the in�ation-output trade-o¤ in more detail by considering the e¤ect of

di¤erent choices of the welfare function through using a continuum of relative weights on in�ation

and the output gap. We report the results with and without interest rate smoothing. We use
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the state-space representation of the VAR. Compared with the standard method, the variability

of in�ation is generally lower using the PVAR method but that of the output gap is higher.

Smoothing interest rates seems to improve the trade-o¤ for the PVAR method principally by

lowering the variability of the output gap

Figure 10. In�ation-output trade o¤

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

2.40

2.50

2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00

Inflation SD

O
ut

pu
t S

D

PVM1

PVM4

STM4

STM1

Actual

5.3 Options 1-4

We now examine the outcomes for the four options for just the PVAR method for the wefare

function M5 over the period 1984-2007. We do not consider the standard approach as without

building back the disturbances it gives the same results as the one-period forecasts from the original

VAR, and when building back the disturbances it gives the orginal data. Option 1, previously

analysed, involves forecasting one period ahead without building back the errors we know to have

occurred. In option 2 we include the errors. In options 3 and 4 we re-estimate the VAR each

period before calculating the optimal policies corresponding to options 1 and 2; we also report the

actual historic values. We recall that for the PVAR the optimal Federal Funds rate will be the
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same under options 1 and 2 and under options 3 and 4, but the outcomes for in�ation and output

will di¤er.

5.3.1 Interest rates

The optimal Federal Finds rates are shown in Figure 11. They show considerable di¤erences.

The optimal rates are more volatile than the actual rates, and re-estimating the VAR each period

results in greater volatility than using the VAR estimates for the whole sample. This is consistent

with needing to have a more �exible monetary policy the more one wishes to stabilise in�ation

and output as the interest rate must absorb more of the shocks to in�ation and output. And since

re-estimating the VAR each period will mean the VAR coe¢ cients will vary instead of staying

�xed, even with the same shocks to in�ation and output, interest rates will �uctuate more.

Figure 11

Optimal Federal Funds Rates model M5: Actual and Options 1­4
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5.3.2 In�ation and output

We now consider the consequences for in�ation and output over the period 1984-2007. In Table

6 we report the standard deviations for in�ation and output for the PVAR approach for the four
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options and the �ve welfare speci�cations. Even though the optimal interest rates are the same

for options 1 and 2 and for options 3 and 4, the in�ation and output gaps will be di¤erent. The

table shows that re-estimating the VAR each period tends to increase the volatility of in�ation

but not output. Adding back the disturbances has little e¤ect.

Table 6. Standard deviations for in�ation and the output gap 1984.1-2007.3

Option M1 M2 M3 M4 M5

� y � y � y � y � y

1 2:66 0:16 1:76 0:75 4:41 0:98 2:54 0:24 2:22 0:45

2 3:10 0:14 2:19 0:73 4:84 1:00 2:97 0:22 2:65 0:43

3 3:71 0:45 2:80 0:22 4:81 1:25 3:24 0:12 3:43 0:25

4 3:62 0:25 2:72 0:42 4:73 1:05 3:16 0:08 3:35 0:05

Standard deviations for the observed data: In�ation: 2:67; Output: 0:41

In Figures 12 and 13 we show the time series behaviours of in�ation and the output gap for

the welfare speci�cation M5. From 1996 in�ation is similar for the di¤erent options and similar

to actual in�ation, but prior to this optimal in�ation tends to be higher than actual in�ation but

to di¤er between the options. The di¤erences are most marked in the periods 1991-4, 2001-4 and

from mid 2006. The explanation for the di¤erences in the period 1991-4 is to be found in the

output gap series as during this period the actual output gap was negative whilst as a result of

stimulating in�ation it becomes positive for options 3 and 4 and closer to zero under options 1

and 2. In the period 2001-4 output would have been higher without in�ation being much a¤ected.

And from mid 2006 the optimal output gap is much more negative than actually occurred. This

is because optimal policy was trying to bring down the high actual in�ation over this period.

Another part from these periods the output gap is similar for all of the options and similar to the

actual output gap.
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Figure 12

Inflation: Actual and for PVAR M5, options 1­4
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Figure 13

Output: Actual and for PVAR M5, options 1­4
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6 Conclusions

In this paper we have suggested a way of formulating optimal policy based on a VAR that avoids

many of the problems found in the standard approach. For example, and perhaps the most
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important advantage, our proposed PVAR method does not involve having to make any identifying

restrictions in the VAR. It is suitable for re-optimising policy each period based on up-dated

estimates of the VAR as one would do in real-time applications. The optimal solutions for the

state vector are the same whether one uses a state-space representation of the VAR under control

or a VAR based on the original variables. None of these holds for the standard approach. Since

the whole process is easily automated, the PVAR method may provide a useful benchmark for use

in real time against which to compare other, probably far more labour intensive, policy choices.

Although basing optimal policy on a VAR has the merit of simplicity, it is not without its

drawbacks. We have shown that as a result of implementing optimal policy, the VAR under

control is di¤erent from the original VAR. This is not necessarily a problem in itself, but it does

draw attention to the fact that any previous changes of policy are likely to have caused structural

change in the original VAR. This shows the vulnerability - at least in theory - of any VAR to

structural change. The problem is further exacerbated because the VAR is just a particular time

series representation of a structural model. If the parameters of the structural model alter as a

result of policy changes, then we would expect the VAR coe¢ cients to change too. In practice,

like Rudebusch, we �nd little evidence of structural change in the dynamics of a VAR suitable for

analysing monetary policy fo the US.

Another drawback of using a VAR is that it is not suitable for handling the e¤ects on non-policy

variables of anticipated policy changes. One cannot avoid using a structural rational expectations

model if one wishes to analyse this problem. To avoid any misapprehensions, therefore, we em-

phasise that in arguing the merits of adopting the PVAR method for formulating policy based on

a VAR, we are not suggesting that using a VAR is necessarily preferable to using a well speci�ed

structural model.

We illustrate the use of the PVAR method by analysing monetary policy for the US since

1966. We examine the e¤ect of di¤erent speci�cations of the welfare function and di¤erent ways

of implementing optimal policy. And we compare the PVAR method with the standard approach
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and with a Taylor rule. Our results suggest that optimal monetary policy obtained using the

PVAR method would have been tighter during the periods 1991-4 and 2001-4 and looser from

2005. As a result, output would have been higher over the periods 1991-4 and 2001-4, but lower

from 2005. In�ation is little di¤erent, except from 2005 when it would have been lower.
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