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The stock price is assumed to follow a jump-diffusion process which may exhibit time-varying volatilities. An econometric

technique is then developed for this model and applied to high-frequency time series of stock prices that are subject to

microstructure noises. Our method is based on first devising a localized particle filter and then employing fixed-lag smoothing

in the Monte Carlo EM algorithm to perform the maximum likelihood estimation and inference. Using the intra-day IBM

stock prices, we find that high-frequency data are crucial to disentangling frequent small jumps from infrequent large jumps.

During the trading sessions, jumps are found to be frequent but small in magnitude, which is in sharp contrast to infrequent

but large jumps when the market is closed. We also find that at the 5- or 10-minute sampling frequency, the conclusion will

critically depend on whether heavy-tailed microstructure noises have been accounted for. Ignoring microstructure noises can,

for example, lead to an overestimation of the jump intensity of 50% or more.

Keywords: Particle filtering, jump-diffusion, maximum likelihood, EM-algorithm.

JEL classification code: C22.

A tanulmányban feltételezzük, hogy a részvényárfolyamok mozgását idõben változó szórású ugró-diffuziós folyamatok írják

le. A modell vizsgálatára egy ökonometriai módszert fejlesztettünk ki, amit nagyfrekvenciás adatokon mikrostrukturális zajok

jelenlétében alkalmaztunk. A módszer egy lokalizált részecske szûrõ és egy Monte-Carlo EM-algoritmus segítségével ad ma-

ximum likelihood becslést. 2004-es napon belüli IBM-részvényárakat vizsgálva azt találtuk, hogy döntõ fontosságú a nagy-

frekvenciás adatok alkalmazása ahhoz, hogy a gyakori kis ugrásokat elkülönítsük a ritka nagy ugrásoktól. Kereskedési idõ-

ben az ugrások gyakoriak és kis méretûek, amik jelentõsen különböznek a kereskedési idõn kívüli ritka és nagy ugrásoktól. 

5, illetve 10 perces mintagyakoriság esetében az eredmények döntõ módon függenek attól, hogy a leptokurtikus mikrostuk-

turális zajokat figyelembe vesszük-e. A mikrostrukturális zajok figyelmen kívül hagyása az ugrási gyakoriság  50 százalékos

felülbecsléséhez vezethet.

4

Abstract

Összefoglalás



Arguably, few financial researchers or market practitioners will question the premise that stock prices face jumps. The exact

nature of jumps is, however, subject to much debate. Do stock prices jump frequently? What are the jump magnitudes? Major

market news are often released, by design, after the trading session to allow for an orderly digestion of information. Shouldn’t

this practice imply that jumps are likely to be infrequent but large in magnitude when the market is closed vis-a-vis open? Are

the observed jumps a result of microstructure noises or due to fundamental changes in the “efficient” stock value? 

Intuitively, high-frequency data will be critical to answering the aforementioned questions. With the availability of intra-day

stock prices, one can begin to address this issue in a more intelligent way. In a similar spirit, recent advancements on “realized

volatility” based on high-frequency data are, for example, made possible by the availability of intra-day data. However, using

high-frequency data can have its hazards.

1

The observed prices are contaminated by microstructure noises naturally arising

from trading based on information and/or liquidity. The observed prices are also subject to tick-size discretization. While these

may not have much effect when one deals with daily or lower-frequency data, microstructure noises are likely to have

increased importance when one moves to high-frequency data. 

This paper devises an econometric technique attempting to shed light on the nature of stock price jumps. Specifically, we

assume the stock price follows a jump-diffusion process with the volatility being time-varying. Time-varying volatility is

captured via using the so-called realized volatility computed from high-frequency data. Microstructure noises of two types are

incorporated into our model. First, the information/liquidity induced microstructure noises are proxied by a heavy-tailed

distributed measurement error. Second, the tick-size induced distortion is explicitly accounted for in our model. The resulting

specification is a highly complex nonlinear state-space model with non-Gaussian random variables. Our solution technique

relies on particle filtering (a sequential Monte Carlo technique), a recent advancement for solving non-linear, non-Gaussian

filtering problems. 

In a parametric context, there are a number of papers estimating models with jumps using daily stock prices (sometimes

supplemented with derivative prices); for example, Eraker, et al. (2003), Bates (2000), and Pan (2002). These papers tend to

find less frequent but larger jumps vis-a-vis the results obtained in this paper. This is not at all surprising because frequent

small jumps in the stock value may give rise to an appearance of infrequent large jumps if one only uses lower-frequency data

such as daily. Building on the realized volatility literature, Tauchen and Zhou (2005) use daily measures of quadratic and

bipolar variations to test whether there were jumps on a given day. They then use the days with jumps to estimate the jump

intensity and magnitude. A crucial identifying assumption is that on a given day there is at most one jump and the price

movement on that day is due to the jump. Thus, Tauchen and Zhou’s (2005) approach is really about pinning down

infrequent large jumps. Our parametric approach is thus complementary to their nonparametric approach and allows for

identifying frequent small jumps. This paper can also be viewed as a generalization to the parametric approach of Ait-Sahalia,

et al. (2005b) to take full advantage of the information contained in high-frequency data. 

This paper offers two econometric innovations. First, we design a new particle filter to deal with jumps in high-frequency

data. A tailor-made particle filter is needed because jumps in high-frequency setting inevitably lead to extremely peaked

densities making Monte Carlo approximations poor. Our device is to localize the particle filter using four subsets of particles

with each corresponding to one of the four possible combinations of jump/no jump in the stock price and the measurement

error for each forward time step. Doing so ensures that an occurrence of jump in a tiny time step, albeit unlikely from a

probabilistic point of view, will always be considered. If an actual stock price points to a high likelihood of a jump at that

moment, the updated filtering weights assigned to the corresponding subset of particles will become non-negligible, simply

because a small ex-ante probability of the jump occurrence is offset by a high likelihood (peaked density) conditional on the

actual stock price. 
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1 Ait-Sahalia, et al (2005a) and Bandi and Russell (2006), for example, show that microstructure noises can induce a bias in the realized volatility estimate using high-

frequency data. 



The second innovation hinges upon the recognition of the fact that resampling, a critical step for any particle filter, cannot

be performed smoothly for our model even with the smoothed empirical filtering distribution, an innovative technique

proposed by Pitt (2002).

2

In other words, the sample likelihood function obtained via the particle filter cannot be made

smooth enough in relation to the model parameters, making it impossible to use gradient-based optimization and/or to

conduct maximum likelihood inference. Our solution is to use the Monte Carlo EM algorithm to indirectly optimize the

sample likelihood function where our localized particle filter plays a key role in performing efficiently the simulated E-step.

In essence, we take advantage of the fact that the Monte Carlo average of the complete-data log-likelihood is a smooth

function of the model parameters (the ones to be updated) even though it is not smooth with respect to the model parameters

being used to compute the Monte Carlo average. Thus, the irregularity induced by the use of a non-smooth particle filter has

been circumvented. 

We use the intra-day stock price for IBM in our empirical implementation. Performing the estimation for data in 2004, several

interesting findings are obtained. In particular, as one increases the sampling frequency from once every hour to once every

10 minutes, the estimated mean number of jumps in prices per trading session rises from 5.4 to 13.6. The jump size also

depends on the sampling frequency. The standard deviation of the jump size drops from 0.3% to 0.17%. This finding suggests

that frequent small jumps may be disguised as large infrequent jumps if the sampling frequency is low, a result that is

intuitively plausible. Our second finding is that at the 5-minute or 10-minute sampling frequency, the jump intensity can be

overestimated by more than 50% if one ignores microstructure noises. At the hourly or 30-minute sampling frequency,

however, ignoring microstructure noises does not seem to change the estimate for the jump intensity if one ignores

microstructure noises. This is in line with the intuition that as the sampling frequency increases, microstructure noises become

increasingly consequential. Third, our finding suggests that it is important to allow for heavy-tailed microstructure noises,

perhaps to account for occasional large information-motivated deviations from the “efficient” price. Finally, we find a large

difference in the nature of jumps when the market was open vis-a-vis closed. Jumps in the closed period seem to be infrequent

but larger in magnitude, likely reflective of a common practice of announcing significant corporate news after the market is

closed. To see whether the conclusions reached for the 2004 data hold true for other years, we repeat the estimation for 2002,

2003 and 2005. The results are consistent with those of 2004. 

MAGYAR NEMZETI BANK
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2 In a recent paper by Duan and Fülöp (2006), Pitt’s (2002) smoothing technique was successfully employed to deal with the structural credit risk model. We believe two

factors contribute to its successful application there. First, the model has no jumps. Second, using daily data makes the empirical filtering distribution more regular. 



2.1. THE MODEL 

The true logarithmic stock value process is assumed to follow a jump-diffusion process: 

(1) 

where W
t
is a Wiener process, N

t
is a Poisson process with intensity λ

x,t
, and J

t
is a normally distributed jump size with mean

μ
Jx

and variance σ2

Jx,t
which is independent of W

t
and N

t
. The Poisson intensity and jump size variance are allowed to depend

on whether the market is open; that is, 

where τ
op

denotes the time set when the market is open. Note that we have allowed the process to be potentially mean-

reverting, i.e., ρ ≠ 0. For our implementation later, we set ρ = 0 to reflect the typical random walk assumption for stock

prices. We state the problem in a more general setup so that the method can be applied to other financial time series such as

interest rates that are expected to exhibit a mean-reverting behavior. The local volatility σ
x,t

is allowed to be time-varying. Its

exact specification will be described later.

The observed logarithmic stock prices are assumed to be contaminated by microstructure noises of two types – trading effects

due to illiquidity and asymmetric information being the first and tick size the second. We assume that the first type of

microstructure noise is composed of a normally distributed term plus a Bernoulli event with a normally distributed magnitude.

Specifically, the contaminated logarithmic stock price before subjecting to the tick size adjustment is 

(2) 

where ε
t

and ξ
t

are independent normal random variables with zero means and variances σ
y

and σ
Jy
, and q

t
is a Bernoulli

random variable independent of ε
t
and ξ

t
. λ

y
is the probability for q

t
= 1 and 1 – λ

y
is for q

t
= 0.

For lower-frequency data, it is both customary and reasonable to ignore the effect of tick size. For high-frequency data,

however, tick size needs to be explicitly incorporated so as not to bias a study’s conclusion. The presence of tick size

complicates the matter significantly. We assume that the contaminated stock price is rounded to the nearest tick with the tick

size being c, which means that the observed stock price is 

(3)

where [
.
] denotes an integer operator which takes the value inside down to the nearest integer. The NYSE and other US stock

exchanges were ordered to switch to the decimal pricing by April 9, 2001. The switch-over at the NYSE actually began on

August 28, 2000 with seven stocks being traded in decimals in a pilot program. Later the decimal pricing was expanded to

all stocks on January 29, 2001. Before the switch-over shares were traded in the NYSE in the multiples of one-sixteenth or

one-eighth of a dollar, depending on the price range of a particular stock. This means that prior to the switch-over, c =0.0625

or 0.125, and afterwards c =0.01. 

We denote the data set of observed stock prices by D
n

={s
0
,s

1
,s

2
,...,s

n
} which was sampled at time {t

0
,t

1
,t

2
,...,t

n
}. Note that

the sample need not be equally-spaced in time. To simplify notations, we denote the time between two sampling points by 
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Δt
i
= t

i
– t

i–1
, and use S

i
to represent S

ti
and so on. The estimation task can then be formulated as the following non-linear,

non-Gaussian state-space problem: 

(4) 

(5) 

(6) 

Note that equation (6) is based on an Euler approximation to equation (1) and ΔN
i

is a Poisson random variable with 

λx,t
i
Δt

i
as its parameter. The local volatility process σ

x,ti
is assumed to be measurable with respect to the information set

generated by the observed stock prices up to t
i–1

, i.e., D
i–1

. Under this assumption, the local volatility is in effect observable,

and therefore need not be filtered which simplifies the estimation task. In our implementation later, we make local volatility

dependent on the realized volatility computed from high-frequency data. 

The non-linear, non-Gaussian filtering system is complex in two aspects. First, jumps in both the “efficient” stock value and

the measurement error make the system non-Gaussian. Second, the tick size adjustment is a non-linear operation. Either fact

renders the standard Kalman filtering technique or the extended Kalman filters unsuitable for the task in hand. It turns out

that the standard particle filtering technique is also ill-suited for the problem because microstructure noises are typically small

in magnitude, which means that the measurement equation is associated with a peaked density function. The problem is

further complicated by the fact that high-frequency data by definition will associate the transition equation with an extremely

peaked multi-modal density function. Interestingly, the peaked density problem can be resolved by suitably designing a local

sampling-resampling scheme. Our proposed filtering algorithm is described next. 

2.2. A LOCALIZED PARTICLE FILTER 

Our algorithm is based on the following decomposition of the joint filtering density/distribution: 

(7)

The last expression in (7) suggests a way to sample from the filtering distribution, given a sample of particles representing 

f (X
i–1

|D
i–1

). First, augment the old particles with jumps, i.e., extending the state-space to include jumps in the system. Then,

perform resampling to obtain the particle (X
i–1

,q
i
, ΔN

i
) based on the weights f (s

i
| X

i–1
,q

i
, ΔN

i
)p(q

i
, ΔN

i
). This step amounts to

“peaking into the future” because resampling has yielded a sample that uses the knowledge of s
i
. This approach is analogous

to the idea of auxiliary particle filtering in Pitt and Shephard (1999). Finally, sample (X
i
,Y

i
) according to f (X

i
| Y

i
,X

i–1
,q

i
, ΔN

i
)

f (Y
i
| s

i
,X

i–1
,q

i
, ΔN

i
).

The necessary quantities for executing this algorithm are described below. For the joint jump probability, we have 

(8) 

where 

(9) 

(10)

MAGYAR NEMZETI BANK
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We now turn to the expression for the conditional likelihood of the observed value, f (s
i
| X

i–1
,q

i
, ΔN

i
). 

Equations (5) and (6) imply that the conditional distribution f (Y
i
| X

i–1
,q

i
, ΔN

i
) is normal with mean and variance: 

(11) 

(12)

Corresponding to s
i
, it must be that . Thus, we can compute: 

(13)

where Φ(
.
) stands for the standard normal cumulative distribution function. 

For f (Y
i
|s

i
, X

i–1
, q

i
, ΔN

i
), one only needs to recognize that it is identical to f (Y

i
|X

i–1
, q

i
, ΔN

i
) truncated to the interval

.

Finally, f (X
i
|Y

i
, X

i–1
, q

i
, ΔN

i
) is a normal density function because by equations (5) and (6), we have

(14)

(15)

where 

(16)

(17)

(18)

Thus, 

(19)

ESTIMATION TECHNIQUE FOR A MODEL OF HIGH-FREQUENCY STOCK PRICES 
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This in turn implies that X
i
has a conditional normal distribution with 

(20)

(21)

Our localized particle filter with M particles consists of the following steps: 

Step 1: Initializing the particle filter by sampling M times of ε
0
, q

0
and ξ

0
according to equation (5), and then compute 

x
0

(m)

= ln s
0

– e
0

(m)

– q
0

(m)ε
0

(m)

for m =1, 2,...,M. (The tick size effect is ignored in initializing the filter.) 

Step 2: For any t
i
(i = 1, 2,...,n) and corresponding to each x

i-1

(m)

, generate a set of four particles for (q
i

(m)

, ΔN
i

(m)

). They are 

Note that ΔN
i

(m)

in two cases are zero, but in the other two cases, it can be any value from the set {1, 2, ···}, which is sampled

according to the conditional probability p(ΔN
i
|ΔN

i
> 0). To arrive at an empirical representation of f (X

i–1
, q

i
, ΔN

i
|D

i
), we

attach to (x
i-1

(m)

, q
i

(m)

, ΔN
i

(m)

), each of the 4 × M particles, an importance weight: 

The elements of the above expression are available in equations (9), (10) and (13). Let for 

j = 0,1 and k = 0 or k ≥ 1. The likelihood value for the i-th observed stock price is the sum of four values corresponding to

four subsets of particles: 

and the filtered jump/no jump probabilities are 

Step 3: Resample from the 4 × M the particle set according to the probability to yield M equal-weight

particles denoted by (x
i–1|i

(m)

, q
i

(m)

, ΔN
i

(m)

). This equal-weight M-particle set is again an empirical representation of 

f (X
i–1

, q
i
, ΔN

i
|D

i 
).

Step 4: Corresponding to each particle (x
i–1|i

(m)

, q
i

(m)

, ΔN
i

(m)

), sample from the truncated normal density f (Y
i
|s

i
, x

i–1|i

(m)

, q
i

(m)

, ΔNi
(m)

)

to generate the particle (y
i

(m)

, x
i–1|i

, qi
(m)

, ΔN
i

(m)

), which empirically represents f (Y
i 
, X

i–1
, q

i
, ΔN

i
|D

i 
).

MAGYAR NEMZETI BANK

MNB WORKING PAPERS • 2007/410



Step 5: Equations (20) and (21) make sampling from f (X
i
|y

i

(m)

,x
i–1|i

,qi
(m)

, ΔN
i

(m)

) a straightforward task. This yields M particles:

(x
i

(m)

, y
i

(m)

, x
i–1

(m)

, q
i

(m)

, ΔN
i

(m)

), which represent f (X
i
, Y

i 
,X

i–1
, q

i
, ΔN

i
|D

i 
). One can then proceed to marginalize X

i
(i.e., keeping

only x
i

(m)

) to have M particles (equal-weight) to represent the filtering distribution of X
i
. 

Remarks: It may appear more natural to directly sample M particles in Step 2 as opposed to 4M particles. This sample can

be easily obtained by first sampling q
i
and ΔN

i
and then proceeding to sample X

i
. (The importance weight will of course need

to be adjusted accordingly.) However, such a sampling scheme would yield a poor particle filter mainly because the event of

ΔN
i
≥ 1 can have an extremely small probability for high-frequency data. In other words, the simulated sample is likely to

miss out the particles associated with jumps in the “efficient” stock value. When the data have been subjected to jumps, the

simulated particle set will fail to include those points of extremely high likelihood. 

Note that the particle filter provides a sample on the entire past of the system up to t
i
. Any quantity of interest based on the

past particles can be computed and carried forward alongside with X
i
. This is true because at any time t

i
, X

i
is sufficient for

moving the algorithm forward. Denote by Ii the quantity whose distribution is of interest; for example, one may be interested

in I
i
= (X

0
+ X

1
+...+ X

i
) / (i + 1). Then, in all of the preceding derivations one can use the vector (I

i
, X

i
) in place of X

i
.

Conditional on X
i
, the system’s forward evolution has nothing to do with I

i
, and thus the algorithm remains unchanged.

However, the output of the filter at any time ti will be a set of particles representing the joint filtering distribution of (I
i
, X

i
),

i.e., f (I
i
, X

i
, |D

i
).

2.3. MONTE CARLO EM ALGORITHM 

We now address the issue of computing the maximum likelihood (ML) estimates for the model parameters. The particle

filtering algorithm described in the preceding section can generate the log-likelihood function for any fixed parameter values.

However, it is ill-suited for finding the ML estimates because the log-likelihood function is inherently irregular with respect

to the parameters even with the use of common random numbers. This irregularity arises from the resampling step required

for any particle filter. It turns out that smooth resampling proposed by Pitt (2002) is still not smooth enough for the problem

in hand, because the jump model in conjunction with high-frequency data inevitably makes the density function associated

with the jump components extremely peaked and multi-modal. We thus adopt an indirect approach to the ML estimation via

the EM algorithm of Dempster, et al. (1977). 

The EM algorithm is an alternative way of obtaining the ML estimate for the incomplete data model, where incomplete data

refers to the situation that the model contains some random variable(s) without corresponding observations. In our case, the

presence of microstructure noises makes the observed data generically incomplete; that is, one can think of the complete data

as including both the true and observed stock prices.

3

The EM algorithm involves two steps – expectation and maximization

– and hence its name. One first writes down the complete-data log-likelihood function. Since it is not observable, one needs

to compute its expected value by conditioning on the observed data in conjunction with some assumed parameter values. This

completes the expectation step. In the maximization step, one finds the new parameter values that maximize the expected

complete-data log-likelihood function. The updated parameter values are then used to repeat the E-and M-step until

convergence. Interestingly, the EM algorithm will converge to the ML estimate under some regularity conditions. 

For our ML estimation, the E-step due to its complexity will have to be computed using the particle filter, which means that

we are using the Monte Carlo EM (MCEM) algorithm.

4

Casting optimization as an EM algorithm problem effectively

circumvents the irregularity induced by the particle filter, because the E-step ensures that the expected complete-data log-

likelihood function is smooth with respect to the model parameters that define the complete-data log-likelihood function.

Even though the function is still inherently irregular in relation to the assumed parameter values used in computing the

expectation, it becomes immaterial as far as optimization is concerned. In effect, one has decoupled optimization from

filtering in each iteration. 

ESTIMATION TECHNIQUE FOR A MODEL OF HIGH-FREQUENCY STOCK PRICES 
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4 For a general introduction to the MCEM algorithm, see for instance Wei and Tanner (1990). 



In general, the complete-data representation of the model is not unique. The choice of representation can be crucial to the

convergence speed of the EM algorithm. We define the complete data as {(Y
i
, U

i
, q

i
, ΔN

i
); i = 0, ..., n} where 

(22)

Working with Yi instead of the discretized observations si and including the jumps, qi and .Ni, make the complete-data model

essentially linear and Gaussian, which speeds up the M-step. Also note that we include the combined measurement error, U
i
,

instead of the “efficient” stock price, X
i
. The combined error is a standard normal random variable, conditional on q

i
, because

q
i
= 0 or 1. This representation will lead to a better performing EM-algorithm particularly when the magnitude of

microstructure noises is small.

5

The complete-data model’s log-likelihood function allows the jump intensities – λ
x,op

, λ
x,cl

and λ
y

– to be separated from other

parameters. This feature can be utilized to simplify the estimation problem. Denote all other parameters by χ and use the

variables without the subscript i to represent the entire time series of those variables; for example, Y stands for {Y
0
,..., Y

n
}. 

As shown in Appendix A, the complete-data log-likelihood function can be decomposed into three parts: 

(23)

where 

For the E-step of the EM algorithm, we need to evaluate the conditional expectation of the complete-data log-likelihood in

(23). To do this we need to evaluate expectations of the following form: 

The localized particle filter described in section 2.2. can be used to compute this quantity. We run the filter using the

parameters (χ′, λ′
x,op

,λ′
x,cl

, λ′
y
) to generate the particle set that represents the smoothed distribution for (Y

i
, Y

i-1
, q

i
, q

i-1
, ΔN

i
, U

i
,

U
i-1

). The m-th particle is denoted by (y
i|n

(m)

, y
i-1|n

(m)

, q
i|n

(m)

, q
i-1|n

(m)

, ΔN
i|n

(m)

, U
i|n

(m)

, U
i-1|n

(m)

). Thus, the expectation can be approximated

by the sample average as follows: 

(24)

MAGYAR NEMZETI BANK
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5 The intuition is that the measurement-error based representation is less informative on the measurement-error parameters. It is well-known in the EM literature that

the more informative the complete data is on the model parameters, the slower the EM-algorithm. 



When the sample size n is large, undesirable Monte-Carlo noise will be introduced by the use of the smoothed distribution.

Intuitively, the particle filter always adapts to the newest observation, and thus its representation of the distant past is bound

to be poor. Cappe and Moulines (2005) suggest to use the information only up to i + L when computing any quantity that

involves the unobserved state variable at time i. The rationale is the forgetting property expected of the dynamic system; that

is, for large enough L, the distribution for the unobserved state variable at time i conditional on the information up to i + L

will be almost identical to that conditional on the entire sample.

6

Cappe and Moulines (2005) thus propose to use fixed-lag

smoothing by using information only up to i + L. They present examples in which the bias induced by fixed-lag smoothing

is minimal but the reduction in the Monte-Carlo error is dramatic. Adopting fixed-lag smoothing leads to our approximation

as follows: 

(25)

Applying this procedure to L
1

(Y|U, q, ΔN, χ) yields 

(26) 

The expectation operator Ê(
.
) denotes the expected value computed with the particle filter and using fixed-lag smoothing.

One can similarly approximate the conditional expectations of L
2
(ΔN|λ

x,op
,λ

x,cl
) and L

3
(q|λ

y
).

The MCEM algorithm can be summarized as follows: (1) Set some initial parameter values, (χ(0)

, λ(0)

x,op
, λ(0)

x,cl
, λ(0)

y 
); (2) Repeat

the following E-and M-steps until convergence. 

E-step: Run the localized particle filter at the parameter values (χ(k–1)

, λ(k–1)

x,op
,λ(k–1)

x,cl
, λ(k–1)

y   
). 

M-step: Maximize the conditional expected value of the complete-data log-likelihood function obtained in the E-step. The

decomposition in (23) suggests that the M-step can be performed separately. 

ESTIMATION TECHNIQUE FOR A MODEL OF HIGH-FREQUENCY STOCK PRICES 
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6 The practical filter in the MCMC algorithm of Polson, et al (2006) in effect uses the same rationale. 



In the above, λ(k)

x,op
, λ(k)

x,cl
and λ(k)

y
have the closed-form solutions expressed in terms of some conditional sufficient statistics.

However, χ(k)

needs to be solved for numerically because the conditional expectation of L
1

(Y|U, q, ΔN, χ) cannot be similarly

simplified. 

Since one item in the M-step (i.e., χ(k)

) calls for repeated runs through a particle filter with the same model parameters, the

above MCEM algorithm will be quite inefficient. A remedial device becomes available by considering the so-called generalized

EM algorithm, meaning that one need not actually maximize the conditional expected value of the complete-data log-

likelihood. As long as a parameter update improves the conditional expected value of the complete-data log-likelihood, the

iterative system will still give rise to the desirable result. 

We group the parameters in χ into three subsets – χμ consisting of the parameters affecting the conditional mean of Y
i
, χσx

consisting of the parameters determining the conditional variance process (σ
x,t

), and χσJx
consisting of the jump volatility

parameters (i.e., σ
Jx,op

and σ
Jx,cl

). First, we optimize L
1

over χμ at some given values for χσx
and χσJx

. Optimizing over χσx
or

χσJx
by fixing the other parameter values turns out to still require running through the particle filter repeatedly. The reason

is that χσx
and χσJx

are not separable in L
1

. We need to extend the complete-data space to achieve a separation and thus yield

a more efficient scheme. 

Decompose the innovation of X
i

into the diffusion and jump components, denoted by Z
i

C ≡ σ2

x,ti
ΔW

i
and Z

i

J ≡ J
i
ΔN

i
,

respectively. They are obviously independent of each other and with normal distributions: Z
i

C ≈ N(σ2

x,ti
Δt

i
) and Z

i

J ≈
N(ΔN

i
σ2

x,ti
). In Appendix B, we show that when we extend the complete data to include both Z

i

C

and Z
i

J

, the complete-data

log-likelihood function, with respect to χσx
and χσJx

, can be decomposed nicely. It becomes a sum of two functions – 

LC (Y, U, q, ΔN, Z
C

,Z
J

; χσx
) and LJ (Y, U, q, ΔN, Z

C

, Z
J

; χσJx
). Moreover, with the extended complete data space, both χσx

and

χσJx
can be taken out of their respective conditional expectations, and therefore one only needs to run through the particle

filter once. Optimization over χσx
and χσJx

can thus be carried out efficiently. 

Our more efficient MCEM algorithm can be summarized as follows: (1) Set some initial parameter values, χμ
(0)

, χσx

(0)

, χσJx

(0)

, λ
x,op

(0)

,

λ
x,cl

(0)

, λ
y

(0)

; (2) Repeat the following E-and M-steps until convergence.

7

E1-step: Run the particle filter using the parameter values χμ
(k-1)

, χσx

(k-1)

, χσJx

(k-1)

, λ
x,op

(k-1)

, λ
x,cl

(k-1)

, λ
y

(k-1)

. Store all the conditional sufficient

statistics needed for the M1-step. 

M1-step: Maximize the expected value of the complete-data log-likelihood function over the subset of parameters, (χμ, λ
x,op

,

λ
x,cl

, λ
y
). This maximization yields closed-form solutions expressed in terms of the conditional sufficient statistics computed

in the E1-step. 

MAGYAR NEMZETI BANK
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7 Our algorithm is in effect a simulated version of the space alternating generalized EM algorithm of Fessler and Hero (1994).



E2-step: Run the particle filter using the parameter values, (χμ
(k)

, χσx

(k-1)

, χσJx

(k-1)

, λ
x,op

(k)

, λ
x,cl

(k)

, λ
y

(k)

). Store all the conditional sufficient

statistics needed for the M2-step. 

M2-step: Optimize the expected value of the complete-data log-likelihood function defined specifically for χσx
and χσJx

where

the complete data space has been extended to (Z
C

,Z
J

, Y, U, q, dN). 

In the M2-step, χσJx

(k)

has a closed-form solution. If the conditional variance process (σ
x,t

) were non-stochastic, χσx

(k)

would also

have a closed-form. But in our empirical analysis presented later, we have adopted a GARCH-type conditional variance

process, which means that getting χσx

(k)

requires iterations. Such iterations, however, do not need repeated runs through the

particle filter. In short, this optimization is equivalent to estimating a GARCH-type time-series model with n observations.

Better still, one only need to, by the generalized EM algorithm, take a couple of iterations for this part of the M2-step. 

In order to conduct statistical inference, we need to get an estimate for the asymptotic covariance matrix. The usual approach

to computing the outer product of the observed-data individual scores is not applicable here because of the incomplete-data

structure. However, we describe in Appendix C that there is an asymptotically equivalent covariance estimator that only uses

the smoothed complete-data individual scores, which in turn can easily be approximated with our particle filter using fixed-

lag smoothing.

ESTIMATION TECHNIQUE FOR A MODEL OF HIGH-FREQUENCY STOCK PRICES 
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3.1. SPECIFICATION OF THE VOLATILITY MODEL 

In order to implement the estimation method on real data, we need to be specific about the volatility dynamic. The empirical

success of the GARCH model in handling daily return volatility motivates our model choice. We assume a GARCH-like

volatility dynamic for the daily variance, but the variance innovation comes from the unanticipated change in the previous

day’s realized variance rather than from the daily return innovation. Specifically, we deal with d =1, ..., D days in the sample

and denote the observations on day d with the set τ
d
. Each day is assumed to last from the close of the previous day’s trading

session until close of the current day’s trading session. For each day, the annualized realized variance RV
d

is defined as 

(27)

The daily variance is assumed to evolve according to 

(28) 

where 

a result from ignoring the price discretization error and all terms at or above the order of (Δt)
2

. 

Furthermore, we assume that the local variance on day d remains at hd throughout the entire trading session. However, we

account for the well-known fact that information arrives at a different rate when markets are closed vis-a-vis open. The closed

session variance differs from the open session by a constant ratio, ϕ; that is, for t
i
∈ τ

d
and d = 1,..., D,

(29) 

To summarize, the parameter vector defining σ
x,t

is χσx
= (α

0
, α

1
, ß

1
, h

1
, ϕ), where the initial value of the daily variance

process, h
1
, has been treated as an unknown parameter. 

3.2. EMPIRICAL RESULTS 

Frequent small jumps in the stock price may give rise to an appearance of infrequent large jumps if one uses lower-frequency

data to conduct the analysis. The reason is fairly clear. Both frequent small and infrequent large jumps can force the daily

stock return to be skewed and heavy-tailed. For example, a stock that is subject to an average of 25 relative large jumps a year

will, loosely speaking, have 10% daily returns coming from the heavy-tailed distribution. In contrast, a stock that is subject

to many small jumps within a day will after aggregation also have some of its daily returns to exhibit heavy tails. The only

way to detect the true nature of jumps with a reasonable level of confidence is to utilize high-frequency data. In a way,

frequent small jumps can reveal themselves to be distinctively different from infrequent large jumps.

8

Being able to extract the

“efficient” stock value from the observed stock price contaminated by microstructure noises is critical. Otherwise, one can

easily mistake microstructure noises as frequent small jumps. 
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3. Disentangling genuine jumps from
microstructure noise 

8 When the true data generating process is of frequent small jumps, using lower-frequency data to estimate the jump intensity and magnitude will lead to large

estimator uncertainty and thus may give rise to an appearance of a low jump intensity coupled with a large jump magnitude. We are definitely not claiming that

infrequent large jumps and frequent small jumps will always leave the same signature when one uses, say, daily data. 



We use intra-day data from the NYSE TAQ database to extract a price series at the sampling frequency of 5 minutes. Specifically,

for each point on a 5-minute time grid between 9.30 and 16.00, we store the transaction prices closest to the time grid. 

We use 100 particles (i.e., Μ = 100) for our particle filter when microstructure noises are allowed. For the fixed-lag

smoothing algorithm, we set L = 5. For the asymptotic variance calculations we use 5,000 particles (i.e., Μ = 5,000). 

Tables 1-4 report the results for the IBM data in 2004 with several sampling frequencies – 5 minutes, 10 minutes, 30 minutes

and 1 hour. For each sampling frequency, we estimate the model with and without jumps in the “efficient” stock price. We

also investigate the consequences of different assumptions on microstructure noises. In all cases, we have set the mean-

reversion parameter to zero (i.e., ρ = 0). 

There are several points to be noted in these tables. First, the intuition mentioned earlier seems to bear out in these results;

that is, sampling at a lower frequency leads to estimates that indicate a lower jump intensity but a larger jump magnitude. Let

us turn attention to M6, which is a model allowing for asset jumps and heavy-tailed microstructure noises. As we move the

sampling frequency from hourly to every 10 minutes, the jump intensity estimate for the trading session (i.e, .x,op) goes up

from around 5,600 to 14,100, indicating that the average number of jumps during one trading session (9:30am to 4:00pm

Eastern Standard Time) increases from roughly 5.4 to 13.6. At the same time, we find the estimate for the jump size volatility

for the trading session (i.e., σ
Jx,op

) decreases from 0.003 to 0.0017. In conclusion, if one wants to detect small frequent jumps,

it is important to sample at a higher frequency. 

Our results also underline another point raised earlier; that is, the importance of allowing for microstructure noises when

high-frequency data are used to estimate jumps. Tables 2 and 3 show that at the hourly and 30-minute sampling frequencies,

microstructure noises have minor effects on the estimates. However, Table 1 indicates that microstructure noises are indeed

important at the 10-minute sampling frequency. When one ignores microstructure noises (i.e., M4), the estimate for the jump

intensity is λ
x,op

= 22,900. When they are allowed but are forced to be normally distributed (i.e., M5), the jump intensity

estimate goes down to λ
x,op

= 20,900. An even larger decrease can be seen when microstructure noises are allowed to be

heavy-tailed (i.e., M6). In that case, λ
x,op

= 14,100. Thus, ignoring microstructure noises in estimation will give rise to an

appearance of more jumps, leading to an overestimation of the jump intensity by roughly 50%. 

Our results are by and large in line with the literature in other aspects. First, there are marked differences between the trading

and closed sessions. The diffusion part of the asset movement seems to be less active during the closed session with the ratio

of activities, ρ, estimated to be around 40% to 50%. Jumps in the closed session seem to be much less frequent but larger in

magnitude. One possible explanation is that important corporate news are announced when the market is closed. Thus, the

estimates simply reflect the industry practice in handling news release. Second, we find strong evidence for volatility

clustering, with the parameter controlling the volatility persistence, α
1
, to be around 0.8-0.9. 

To make sure that the results are not unique to year 2004, we repeat the estimation for 2002, 2003 and 2005. To conserve

space, Table 5 only reports the estimates for the jump intensity in the open period, i.e., λ
X,op

and the corresponding jump

size’s standard deviation, i.e., σ
JX,op

. The numbers are consistent with the findings for 2004. First, accounting for

microstructure noises is important at high frequency and becomes immaterial as the sampling frequency decreases. Second,

as the sampling frequency increases, jumps appear to be more frequent but smaller in magnitude. 

The filtering technique allows one to go beyond parameter estimation; for example, one can ask how the observed stock price

differs from the “efficient” price. At the ML parameter estimates, one can run through the particle filter to come up the series

of either filtered or smoothed “efficient” stock prices.

9

We pick two days (January 2, 2004 and May 25, 2004) to show the

magnitude of microstructure noises. We use the full model (i.e., M6) on the IBM prices sampled every 5 minutes. Figures 1

and 2 show that the observed stock prices stay within 5 cents of the filtered prices, suggesting that the microstructure effect

is no more than 5 cents in these two days. The smoothed prices, however, tell a different story. The results indicate that the

difference between the observed and smoothed prices was much larger and in fact was sometimes larger than 10 cents in these

two days. Large differences also appear to cluster towards the end of a trading session.

DISENTANGLING GENUINE JUMPS FROM MICROSTRUCTURE NOISE 
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9 The filtered price means conditioning on the observed prices only up to the time point of interest, whereas the smoothed price refers to conditioning on the entire

sample of the observed prices. 



APPENDIX A: THE COMPLETE-DATA LOG-LIKELIHOOD FUNCTION 

First note the following facts about the complete-data representation: 

C1: q
i
are i.i.d. Bernoulli draws with the parameter P(q

i
= 1) = λ

y
. Thus, the likelihood of q

i
only depends on λ

y
.

C2: ΔN
i
are independent Poisson draws with parameters λ

x,ti
Δt

i
. Thus, the likelihood of ΔN

i
only depends on λ

x,ti
. 

C3: Conditional on q
i
, the distribution of U

i
does not depend on the model parameters because it is a standard normal random

variable. 

C4: Using the definition of U
i
, equation (5) can be rewritten as 

(30)

Express X
i
in terms of other variables using (30) and then substitute it into (6). Conditioning on (U

i
, q

i
, ΔN

i
), we obtain the

following transition equation for Y
i
:

(31)

where υ
i
is a standard normal random variable independent of (U

i
, q

i
, ΔN

i
). Equation (31) shows that conditional on (U

i
, q

i
,

ΔN
i
), Y

i
follows an autoregressive process with a time-varying mean and variance. Moreover, the innovation of the

autoregressive system is normally distributed. Needless to say, the likelihood of Y
i
, conditional on (U

i
, q

i
, ΔN

i
), does not

depend on λ
y
, λ

x,op
or λ

x,cl
.

C1-C4 allow us to decompose the complete-data log-likelihood function into three parts with each governed by different

disjoint subsets of parameters. 

(32)
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The above derivation utilizes the fact that conditional on q
i
, Ui is always a standard normal random variable, and thus the

likelihood function does not depend on any model parameter and amounts to an irrelevant constant. The above result in turn

implies 

where

APPENDIX
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APPENDIX B: SEPARATING DIFFUSION INNOVATIONS FROM JUMPS 

Extend the complete-data space to (Z
C

, Z
J

, Y, U, q, ΔN). The two new elements, Z
i

C

and Z
i

J

, decompose the innovation in the

“efficient” stock price, X
i
, into the diffusion and jump components. Define Z

C

= (Z
i

C

; i = 1,..., n) and Z
J

= (Z
i

J

; i =1,..., n).

Clearly, Z
i

C

and Z
i

J

are independent over time and with each other. They are also normally distributed as follows: 

Denote by F
i-1

the information generated by the complete data up to i-1. The extended complete-data likelihood function

(focusing on the parameters of interest, χσx
and χσJx

) can be simplified to 

The first relationship utilizes the fact that the terms unrelated to the two parameters of interest can be dropped. The second

equality of course follows from the conditional independence of Z
i

C

and Z
i

J

. Since the extended complete-data log-likelihood

function is separable in terms of χσx
and χσJx

, it can be written as a sum of L
C

(Y, U, q, ΔN, Z
C

, Z
J

; χσx
) and L

J

(Y, U, q, ΔN,

Z
C

, Z
J

; χσJx
), after dropping the irrelevant constant. Hence 

Although sx,ti is allowed to be stochastic, our maintained assumption requires it to be measurable with respect to D
i-1

. Taking

the conditional expectation with respect to the smoothed distribution for the complete data (suppressing some conditioning

parameters for notational simplicity) gives rise to 

Moreover, 

The above expression turns out to have a closed-form solution. First note that 
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which implies 

Thus, 

where dependence on time and particle is reflected in the subscript (i, m). To summarize, we have the following

approximation to one of the two components for the expected value of the extended complete-data log-likelihood: 

In a similar fashion, one can compute the other component of the expected value of the extended complete-data log-

likelihood; that is, E [L
J
(Y, U, q, ΔN, Z

C

, Z
J

; χσx
) ⏐ D

n
, χσx

(k-1)

, χσJx

(k-1)

].

APPENDIX

MNB WORKING PAPERS • 2007/4 21



APPENDIX C: COMPUTING ASYMPTOTIC STANDARD ERRORS 

The usual way to compute the asymptotic standard error for the maximum likelihood estimate is to use the negative Hessian

matrix or the inner product of the individual scores. But in our case, either one is not directly computable because the

individual log-likelihood function, ln f(si; i = 1,...,n⏐θ) is highly irregular with respect to θ due to using the particle filter. An

alternative estimator proposed by Duan and Fülöp (2006b) can be applied to our setting, however, which uses the smoothed

individual scores to compute the asymptotic error. 

Denote by α
i
the complete-data vector at i. In our case, α

i
= (Y

i
, q

i
, ΔN

i
, U

i
) as defined in section 2.3. The complete-data log-

likelihood function, ln g(a
i
; i = 1,...,n⏐θ), can be expressed as 

where ln g
i
(α

i
|α

i-1
, θ) is the complete-data individual log-likelihood function. Dempster, et al (1977) and Louis (1982) show

that the observed-data score can be decomposed into the sum of smoothed individual scores: 

where . Note that the smoothed individual scores, a
i
(θ)’s, can be computed in a

straightforward fashion within our particle filter using fixed-lag smoothing. Duan and Fülöp (2006b) devise an estimator with

the insight that the variance of the observed-data score equals the negative Hessian matrix when both are evaluated at the

true parameter value, .0. Then, they seek for an alternative way to approximate Var(S
n
(θ

0
)). Their solution is to recognize that

the smoothed individual scores are not martingale differences but the variance can be approximated with the Newey-West

(1987) estimator. Assume that beyond some lags, say l, dependence among a′
i
s becomes negligible. The alternative estimator

for the asymptotic error is: 

where 
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M1 M2 M3 M4 M5 M6

Asset Diffusion Parameters

μ
X

-0.119 -0.104 -0.0341 -0.276 -0.265 -0.246

(-0.5714) (-0.5059) (-0.1707) (-2.399) (-2.427) (-2.237)

α
0

0.00912 0.00967 0.0149 0.0114 0.00935 0.0108

(10.57) (11.92) (11.67) (9.573) (9.601) (9.186)

α
1

0.92 0.903 0.841 0.771 0.746 0.749

(117.1) (105.1) (59.24) (33.66) (30.51) (28.74)

β
1

0.277 0.272 0.211 0.179 0.182 0.16

(26.23) (25.88) (18.23) (14.13) (14.38) (13.04)

h
1

0.0972 0.0817 0.0743 0.0667 0.0543 0.0593

(13.08) (10.27) (7.371) (5.92) (4.651) (5.299)

ϕ 0.377 0.401 0.431 0.396 0.466 0.408

(55.86) (56.41) (59) (20.18) (19.36) (18.75)

Asset Jump Parameters

λ
X,op

0 0 0 3.7e+004 3.64e+004 2.37e+004

(15.52) (15.63) (11.5)

λ
X,cl

0 0 0 11.3 9.95 12.7

(1.745) (1.618) (1.802)

σ
JX,op

0 0 0 0.00127 0.00127 0.00132

(40.73) (41.22) (30.87)

σ
JX,cl

0 0 0 0.0237 0.0247 0.0224

(2.973) (2.604) (3.297)

μ
JX

0 0 0 4.51e-005 3.88e-005 5.73e-005

(2.276) (2.053) (2.33)

Measurement Error Parameters

σ
Y

0 0.000262 1.22e-005 0 0.000254 0.000108

(24.16) (0.1108) (24.32) (3.941)

λ
Y

0 0 0.0594 0 0 0.1

(16.39) (10.4)

σ
JY

0 0 0.00179 0 0 0.0011

(41.95) (26.61)

Loglikelihood 80184.0 80235.5 80968.0 81273.7 81339.9 81488.0

Table 1

2004 IBM stock prices, 5-minute sampling frequency

The values inside parentheses are t-statistics.

M1 is the model without value jumps and without measurement errors.

M2 is the model without value jumps and with normally distributed measurement errors.

M3 is the model without value jumps and with heavy-tailed measurement errors.

M4-M6 correspond to M1-M3 except for allowing value jumps.

Tables and figures
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M1 M2 M3 M4 M5 M6

Asset Diffusion Parameters

μ
X

-0.118 -0.112 0.124 -0.265 -0.267 -0.236

(-0.5679) (-0.5411) (0.6727) (-2.353) (-2.48) (-2.142)

α
0

0.0132 0.0132 0.0147 0.0067 0.00578 0.00667

(8.533) (9) (7.783) (6.538) (6.555) (6.372)

α
1

0.874 0.862 0.835 0.845 0.837 0.831

(56.98) (53.72) (36.71) (36.9) (36.06) (33.06)

β
1

0.249 0.245 0.175 0.162 0.162 0.147

(16.93) (16.59) (11.07) (11.47) (11.55) (10.68)

h
1

0.0976 0.0874 0.0756 0.0623 0.0581 0.0538

(7.992) (6.877) (5.863) (4.392) (3.957) (3.949)

ϕ 0.396 0.413 0.435 0.424 0.472 0.428

(56.82) (51.24) (50.22) (19.37) (17.75) (17.4)

Asset Jump Parameters

λ
X,op

0 0 0 2.37e+004 2.02e+004 1.34e+004

(10.88) (10.83) (8.552)

λ
X,cl

0 0 0 12.2 10.7 14.4

(1.876) (1.786) (1.863)

σ
JX,op

0 0 0 0.00157 0.00165 0.00177

(28.42) (28.13) (22.35)

σ
JX,cl

0 0 0 0.0229 0.0236 0.0214

(3.301) (2.971) (3.683)

μ
JX

0 0 0 5.6e-005 6.47e-005 8.52e-005

(1.879) (1.992) (1.964)

Measurement Error Parameters

σ
Y

0 0.000298 9.3e-005 0 0.000322 0.000116

(10.14) (1.043) (15.23) (1.684)

λ
Y

0 0 0.0556 0 0 0.127

(10.37) (6.714)

σ
JY

0 0 0.00252 0 0 0.00126

(28.63) (16.46)

Loglikelihood 37352.1 37363.5 37673.6 37897.2 37921.1 37985.7

Table 2

2004 IBM stock prices, 10-minute sampling frequency

The values inside parentheses are t-statistics.

M1 is the model without value jumps and without measurement errors.

M2 is the model without value jumps and with normally distributed measurement errors.

M3 is the model without value jumps and with heavy-tailed measurement errors.

M4-M6 correspond to M1-M3 except for allowing value jumps.
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M1 M2 M3 M4 M5 M6

Asset Diffusion Parameters

μ
X

-0.102 -0.102 -0.104 -0.27 -0.271 -0.25

(-0.4751) (-0.5594) (-2.389) (-2.411) (-2.37)

α
0

0.0128 0.0128 0.0128 0.00534 0.00474 0.00477

(4.49) (4.197) (3.278) (3.172) (3.058)

α
1

0.866 0.866 0.856 0.836 0.837 0.838

(28.93) (23.76) (17.13) (17.8) (17.02)

β
1

0.137 0.137 0.113 0.102 0.0994 0.0943

(6.986) (5.704) (5.438) (5.419) (5.19)

h
1

0.111 0.111 0.104 0.0563 0.0561 0.0529

(4.193) (3.63) (2.355) (2.31) (2.27)

ϕ 0.418 0.418 0.417 0.478 0.509 0.479

(48.66) (34.09) (13.92) (11.77) (11.18)

Asset Jump Parameters

λ
X,op

0 0 0 1.11e+004 1.12e+004 1.21e+004

(5.975) (6.09) (5.515)

λ
X,cl

0 0 0 15.4 13.9 14.6

(2.054) (2) (2.139)

σ
JX,op

0 0 0 0.00234 0.00234 0.00219

(15.59) (15.82) (13.79)

σ
JX,cl

0 0 0 0.0205 0.0214 0.0211

(4.127) (3.772) (3.98)

μ
JX

0 0 0 0.000118 0.000116 8.53e-005

(1.903) (1.904) (1.536)

Measurement Error Parameters

σ
Y

0 1e-010 5.73e-005 0 0.000284 0.000176

(0.1058) (2.332) (0.8962)

λ
Y

0 0 0.0243 0 0 0.0121

(4.339) (1.528)

σ
JY

0 0 0.0053 0 0 0.00396

(13.07) (4.287)

Loglikelihood 11161.6 11161.6 11232.3 11373.1 11374.4 11380.5

Table 3

2004 IBM stock prices, 30-minute sampling frequency

The values inside parentheses are t-statistics.

M1 is the model without value jumps and without measurement errors.

M2 is the model without value jumps and with normally distributed measurement errors.

M3 is the model without value jumps and with heavy-tailed measurement errors.

M4-M6 correspond to M1-M3 except for allowing value jumps.
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M1 M2 M3 M4 M5 M6

Asset Diffusion Parameters

μ
X

-0.118 -0.11 -0.125 -0.29 -0.283 -0.271

(-0.5469) (-0.5276) (-0.7788) (-2.588) (-2.374)

α
0

0.00808 0.00748 0.00874 0.00325 0.00329 0.00361

(2.514) (2.601) (2.343) (2.616) (2.572)

α
1

0.914 0.912 0.899 0.871 0.871 0.857

(26.98) (27.11) (20.89) (19.14) (16.3)

β
1

0.0452 0.0453 0.0592 0.074 0.0741 0.0766

(2.51) (2.473) (2.423) (3.714) (3.632)

h
1

0.217 0.209 0.164 0.0649 0.0653 0.0643

(4.029) (3.83) (3.584) (1.688) (1.405)

ϕ 0.415 0.425 0.378 0.578 0.58 0.568

(32.76) (26.17) (29.44) (9.394) (7.752)

Asset Jump Parameters

λ
X,op

0 0 0 7.56e+003 7.62e+003 6.19e+003

(4.559) (3.863)

λ
X,cl

0 0 0 10.2 10.6 10.7

(1.86) (1.834)

σ
JX,op

0 0 0 0.00307 0.00306 0.0032

(10.9) (9.133)

σ
JX,cl

0 0 0 0.0242 0.0238 0.0237

(2.907) (2.942)

μ
JX

0 0 0 0.000196 0.000186 0.000205

(1.804) (1.571)

Measurement Error Parameters

σ
Y

0 0.000735 3.59e-005 0 1e-010 0.000222

(3.429) (0.02487) (0.4505)

λ
Y

0 0 0.0378 0 0 0.0741

(2.92) (1.206)

σ
JY

0 0 0.00571 0 0 0.0027

(9.584) (2.769)

Loglikelihood 4898.5 4900.5 4928.8 5022.5 5022.5 5025.5

Table 4

2004 IBM stock prices, 1-hour sampling frequency

The values inside parentheses are t-statistics.

M1 is the model without value jumps and without measurement errors.

M2 is the model without value jumps and with normally distributed measurement errors.

M3 is the model without value jumps and with heavy-tailed measurement errors.

M4-M6 correspond to M1-M3 except for allowing value jumps.
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Estimates for λλ
X,op

2002 2003 2004 2005

5-minute sampling frequency

No Noise 2.38e+004 2.66e+004 3.69e+004 2.85e+004

Normal Noise 2.32e+004 2.65e+004 3.63e+004 2.85e+004

Fat-tailed Noise 1.81e+004 1.98e+004 2.37e+004 1.74e+004

10-minute sampling frequency

No Noise 1.22e+004 1.27e+004 2.36e+004 1.37e+004

Normal Noise 1.23e+004 1.26e+004 2.02e+004 1.39e+004

Fat-tailed Noise 1.23e+004 1.15e+004 1.33e+004 1.02e+004

30-minute sampling frequency

No Noise 4.69e+003 4.87e+003 1.11e+004 3.36e+003

Normal Noise 4.47e+003 4.82e+003 1.12e+004 3.24e+003

Fat-tailed Noise 4.51e+003 5.17e+003 1.20e+004 2.92e+003

1-hour sampling frequency

No Noise 2.53e+003 2.96e+003 7.56e+003 4.09e+003

Normal Noise 2.53e+003 3.24e+003 7.61e+003 4.09e+003

Fat-tailed Noise 2.63e+003 2.95e+003 6.19e+003 3.73e+003

Estimates for σσ
JX;op

5-minute sampling frequency

No Noise 0.00267 0.00165 0.00127 0.00139

Normal Noise 0.00269 0.00165 0.00127 0.00140

Fat-tailed Noise 0.00265 0.00166 0.00132 0.00151

10-minute sampling frequency

No Noise 0.00371 0.00222 0.00157 0.00198

Normal Noise 0.00370 0.00222 0.00165 0.00197

Fat-tailed Noise 0.00335 0.00214 0.00177 0.00202

30-minute sampling frequency

No Noise 0.00607 0.00380 0.00234 0.00370

Normal Noise 0.00617 0.00381 0.00233 0.00374

Fat-tailed Noise 0.00615 0.00362 0.00219 0.00378

1-hour sampling frequency

No Noise 0.00897 0.00524 0.00307 0.00417

Normal Noise 0.00873 0.00506 0.00305 0.00417

Fat-tailed Noise 0.00888 0.00518 0.00320 0.00421

Table 5

IBM stock prices, multiple-year estimation results
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Figure 1

Filtered, smoothed and observed stock prices for IBM on January 2, 2004
(5-minute frequency)
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B: Smoothed vs. observed
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For plot A, the left axis is for the filtered means of the “effcient” stock prices (�) and the observed stockprices (O). Their differences are plotted against

the right axis. The smoothed means vs. the observed stockprices are plotted in plot B in the same manner. The values are obtained by estimating the full

model allowing for jumps in the stock price with heavy-tailed microstructure noises (i.e., M6).
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Figure 2

Filtered, smoothed and observed stock prices for IBM on May 25, 2004
(5-minute frequency)

A: Filtered vs. observed
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B: Smoothed vs. Observed
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For plot A, the left axis is for the filtered means of the “effcient” stock prices (�) and the observed stockprices (O). Their differences are plotted against

the right axis. The smoothed means vs. the observed stockprices are plotted in plot B in the same manner. The values are obtained by estimating the full

model allowing for jumps in the stock price with heavy-tailed microstructure noises (i.e., M6).
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