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Abstract

Increased focus on price stability by a discretionary central bank re-
duces output and price volatility in a model with rationally inattentive
�rms. The volatility reduction can be arbitrarily large, e.g., imply a �Great
Moderation�, and is particularly pronounced when �rms can process infor-
mation almost perfectly. The model-implied vector auto-regressive (VAR)
dynamics are consistent with the empirical observation that the dynam-
ics before and after the Great Moderation di¤er mainly with respect to
the variance of the VAR residuals. These results emerge in the model
because increased focus on price stability by the central bank facilitates
�rms�information processing problem, thereby aligns expectations better
with policy decisions. This reduces aggregate real and nominal volatility.

Keywords: optimal monetary policy, information frictions, output and
price volatility.
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1 Introduction

The aim of this paper is to present a simple monetary policy model in which
increased emphasis on price stabilization by the central bank is associated with
a signi�cant reduction in the variance of aggregate output and in�ation.

The model thus suggests the existence of a causal link between two major
macroeconomic events that are widely believed to have taken place around 1980
in a number of developed economies: (1) following the in�ation experience of the
1970�s many central banks seem to have increasingly focused on insuring price
stability.1 In the U.S. this policy shift is typically associated with the appoint-
ment of Paul Volcker as chairman of the Federal Reserve and the subsequently

�Thanks go to Angelo Melino and Alex Wolman for valuable comments and suggestions.
European Central Bank, Monetary Policy Research Division, Kaiserstr. 29, 60311 Frank-
furt,Germany and CEPR, London. klaus.adam@ecb.int. Views expressed represent exclu-
sively the authors�own opinions and do not necessarily re�ect those of the European Central
Bank.

1Prominent proponents of this view include Clarida, Galì, and Gertler (2000), Cogley and
Sargent (2001), and Orphanides and Williams (2005).
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implemented disin�ation program; (2) the volatility of aggregate output and
in�ation has fallen signi�cantly around the beginning of the 1980�s, a fact gen-
erally referred to as the �Great Moderation�and �rst documented in McConnell
and Quiros (2000) and Blanchard and Simon (2001).

The monetary model presented is a standard rational expectations model
with maximizing �rms and consumers. A relatively new feature of the model is
that �rms are assumed to face constraints on the amount of information they
can process about aggregate shocks and policy decisions, as introduced by Sims
(2003). This follows a recent line of research stressing the scarcity of information
in decision making based on the observation that processing and incorporating
information into decisions is not a costless process.2 The paper emphasizes
the information processing problems of price setting �rms as these appear of
particular relevance for the conduct of monetary policy.3

The presence of information processing frictions implies that the quality of
�rms� information about their pro�t maximizing price is endogenous and de-
pends, amongst other things, on the conduct of monetary policy. Speci�cally,
monetary policies that give rise to large volatility of �rms�pro�t maximizing
price also make it harder for �rms to process information about their truly op-
timal price, i.e., result in larger information processing errors. Processing errors
increase the variability of �rms� information sets and lead to a misalignment
between the private sector information and the actual policy stance. These mis-
alignments generate unpredictable elements in �rms�price setting decisions and
thereby amplify the nominal and real volatility in the economy.

In the present setting discretionary maximization of social welfare by the
monetary authority is shown to generate excessively volatile monetary policy
decisions. Through the channels just described this leads to excessive real and
nominal volatility of the aggregate economy. Excess volatility is thereby partic-
ularly high in economies in which �rms can process information rather well and
emerges because discretionary policy fails to incorporate the amount of infor-
mation noise it generates. This is so because the variance of information noise
is a function of the average volatility of policy decisions in response to shocks,
while the discretionary policy problem consists of determining the strength of
the policy reaction to a speci�c shock realization. Since the latter contributes
little (nothing with continuous shock distributions) to the overall variance of
policy, it is rational to ignore it under discretionary maximization.

Assigning a price stabilization goal to monetary policy reduces the volatility
of policy decisions and allows (for an appropriate weight on this policy goal)
to replicate optimal commitment policy via discretionary maximization, as is
the case in Vestin (2006) in a sticky price economy. With commitment the
monetary policy response to shocks is less activist which reduces the variance
of �rms�optimal price and thereby their processing errors. This is shown to
unambiguously lower aggregate price and output volatility. Indeed, the volatility

2See Moscarini (2004), Reis (2003, 2006), or Adam (2007) for recent applications.
3Mackowiak and Wiederholt (2005) have shown such frictions to be important for explain-

ing �rms�pricing behavior.
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reduction associated with a shift from discretionary maximization to optimal
commitment policy turns out largest if �rms can process information very well.

The paper also analyzes the model-implied vector autoregressive (VAR) dy-
namics for output, prices and the monetary policy instrument. Interestingly, a
marginal improvement in monetary policy (less activist policy) can result in no
change of the auto-regressive coe¢ cients - including those coe¢ cients describ-
ing the VAR�s �policy equation�- but manifest itself via reduced variance of the
VAR residuals. This suggests that it is well possible that the �ndings of the
empirical VAR literature, e.g., Canova and Gambetti (2005), Primiceri (2005),
or Sims and Zha (2006), are caused by improvements in monetary policy. More
generally, the model suggests that the variability of private sector information
sets induced by information processing errors is one of the �fundamental�shocks
entering the residuals of empirical VARs and that the volatility of information
sets may be crucially in�uenced by the conduct of policy.

Obviously, the model (trivially) predicts lower price and output volatility
following reduced variance of standard shocks, i.e., of those shocks which are
not processing errors. Therefore, the model is equally consistent with the notion
that the �ndings of the empirical VAR literature are simply the result of reduced
shock variance.

In the literature only a few mechanisms have been suggested through which
increased focus on price stability by monetary policy can cause reduced output
and price volatility.
Orphanides and Williams (2003, 2005) show that the usual trade-o¤ can dis-

appear in a setting in which the private sector is perpetually learning about the
dynamics of the economy by extrapolating from past economic behavior. More
stable prices then reduce the volatility of the private sector�s price expectations
and thereby the overall volatility in the economy.
Mechanisms relying on rational expectations tend to be based on the pres-

ence of multiple equilibria. Clarida, Galì, and Gertler (2000), for example,
interpret the 1970�s as a period in which the monetary policy rule allowed for
sunspot �uctuations, while from start of the 1980�s policy behavior created a
determinate equilibrium. Surico and Benati (2007) explore the implications of
this idea for the Great Moderation. Branch et al. (2007) provide an explanation
of the Great Moderation using a model in which the private sector can choose
the level of attention and show how the model can give rise to a high and low
attention equilibrium with high and low aggregate volatility, respectively.
The present model di¤ers from the existing literature by assuming fully

rational agents and by giving rise to a unique equilibrium prediction for all
policy parameterizations. Due to the latter, the present model can rational-
ize policy-based explanations of the Great Moderation in a strong sense, as it
unambiguously predicts a fall in nominal and real volatility in response to an
improvement in the conduct of monetary policy.

The paper is structured as follows. Section 2 starts out by presenting a simple
static version of the model with imperfectly informed �rms and derives a linear-
quadratic approximation to the monetary policy problem. After introducing
�rms�information processing constraints in section 3, I illustrate the monetary
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policy implications in section 4. In particular, it is shown how the presence
of information processing constraints causes discretionary monetary policy to
generate excessive aggregate volatility and how increased focus on price stabil-
ity reduces volatility. Section 6 extends the static model to an in�nite horizon
economy. It derives and discusses the model-implied VAR dynamics for out-
put, prices, and monetary policy and compares it to �ndings of the empirical
literature. A conclusion brie�y summarizes the main �ndings.

2 The Basic Model

This section introduces a stylized monetary policy model and derives a linear-
quadratic approximation to the optimal monetary policy problem. To simplify
the exposition, I consider a static model and assume �rms�information to be
exogenous. Endogenous information sets will be introduced in section 3 when
studying �rms that optimally process information subject to processing con-
straints. Section 6 extends the setup to a fully dynamic model.

Households The household sector is described by a representative con-
sumer choosing aggregate consumption Y and labor supply L to maximize

U(Y )� �V (L) (1)

s:t:

0 =WL+�� T � PY

where W denotes a competitive wage rate, � monopoly pro�ts from �rms, T
lump sum taxes, and P the price index of the aggregate consumption good.
The parameter � > 0 is a stochastic labor supply shifter with E[v] = 1 and
induces variations in the e¢ cient level of output. Households are fully informed
about all relevant aspects in the economy.4 Furthermore, U 0 > 0, U 00 < 0,
limY!1 U

0(Y ) = 0; V 0 > 0, V 00 > 0 and V 0(0) < U 0(0).

Firms The supply side of the economy is characterized by a continuum
of monopolistically competitive �rms i 2 [0; 1] that can freely adjust prices but
possess imperfect information about the aggregate shocks hitting the economy.
Firm i produces an intermediate good Y i with labor input Li according to a
linear production function of the form

Y i = Li

Intermediate goods enter into aggregate output Y according to a Dixit-Stiglitz
aggregator

Y =

0B@ Z
[0;1]

(Y i)
��1
� di

1CA
�

��1

(2)

where the demand elasticity � > 1 is stochastic with mean E[�] = �:

4Households, however, would only need to know the wage rate, the prices charged by �rms,
and their income.
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Let Y i(P i=P ) denote household�s utility-maximizing demand for product Y i

induced by (2) when �rm i charges price P i and the price for the aggregate good
is P . The pro�t maximization problem of �rm i is then given by

max
P i

E
�
(1 + �)P iY i(P i=P )�WY i(P i=P )jI

�
(3)

where � denotes an output subsidy and I the �rm�s information set, which
contains information about the labor supply shock �, the demand shock �, and
monetary policy decisions. For simplicity it is assumed in equation (3) that all
�rms possess the same information set I.5 It is shown in section 5.3 that this
assumption is not essential for the results that follow. All that is required is that
�rms share some common (noisy) piece of information about fundamentals.

Monetary Policy The monetary policymaker is supposed to choose nomi-
nal demand and maximize the utility of the representative agent (1). To simplify
the analysis, I consider a linear-quadratic approximation to the optimal policy
problem, i.e., a quadratic approximation to social welfare and a linear approxi-
mation to the implementability conditions characterizing optimal private sector
behavior.
Appendix A.1 shows that for an appropriate level of the output subsidy �

a quadratic approximation of the representative agent�s utility function (1) is
given by

�(y � yn)2 (4)

where (y � yn) denotes the output gap. In particular, y is the average output
across �rms, i.e., y =

R
y(j)dj, and yn the e¢ cient output level.6 The latter

depends on the labor supply shock � only and is assumed normal, i.e., yn �
N(0; �2y). In the remaining part of the paper I will refer to yn as a natural rate
shock.
Appendix A.1 also derives the linear approximation to �rms�optimal price

setting behavior implied by problem (3)

p(i) = E [p+ �(y � yn) + "jI] (5)

The previous equation describes pro�t maximizing price setting behavior by
�rm i conditional on available information I.7 The variable p(i) thereby denotes
�rm i�s pro�t maximizing price and p the average price charged by �rms. The
parameter � > 0 in equation (5) indicates the sensitivity of �rms�prices to the
output gap and is given by

� = �U
00(Y )Y

U 0(Y )
+
V 00(Y )Y

V 0(Y )

where Y denotes the steady state output level. The pro�t-maximizing price also
depends on the expected value of ", which is a function of the price elasticity �:

" � �(� � �):
5With heterogeneous information sets, �rms have to form so-called higher-order beliefs,

i.e., beliefs about other �rms�information sets. This setting is discussed in Adam (2007).
6Lower case letters indicate that variables are expressed as percentage deviations from

steady state values.
7 It also incorporates the implementability conditions implied by the optimal labor-leisure

choice of households, see appendix A.1 for details.
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Figure 1: Sequence of events

Firms wish to charge a higher mark-up (" > 0) whenever the price elasticity
of demand � falls below its mean �. A positive value of " thus re�ects the
fact that product demand has become less price-sensitive. We refer to " as a
mark-up shock.8 It is assumed independent of the natural rate shock yn and
" � N(0; �2").

The central bank controls nominal spending q, which is de�ned as

q = y + p: (6)

Combining this with equation (5), one obtains that in a symmetric price setting
equilibrium

p = E [p�jI] (7)

where p� denotes the optimal price under perfect information

p� = q � yn +
1

�
" (8)

The price p� depends on the fundamental shocks and on monetary policy. As one
would expect the optimal price increases (decreases) one-for-one with nominal
demand (the e¢ cient output level) and increases in response to mark-up shocks.
The response to mark-up shocks is more pronounced the smaller is �. Low values
of � indicate that marginal costs react only little to output. Therefore, to obtain
the desired increase in mark-ups following a positive shock to ", a larger real
contraction is required, i.e., a larger increase in nominal price ceteris paribus.

Summarizing the previous results, the monetary policy problem consists of
choosing q so as to maximize (4) subject to (6)-(8).

Timing of Events Figure 1 illustrates the sequence of events taking place
in the economy. Namely, after the stochastic disturbances (yn; ") have realized
the central bank sets the desired level of nominal demand. Firms then process in-
formation about the shocks and the central bank�s policy choice, as is explained
in the next section, then simultaneously determine prices. Finally, consumers
demand products for consumption and production takes place.

8This follows Woodford (2003). Galí et al. (1999) refer to it as a �cost-push shock�.
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3 Optimal Information Processing

This section consider �rms that in addition to choosing prices also determine
what information to process. Firms choose prices and information structures to
maximize their pro�ts but face a constraint on the total amount of information
that can be processed each period, as in Sims (2003). The section �rst derives
results formally and then o¤ers a more intuitive interpretation of the �ndings.
The aim of this section is to show how in a setting with information processing
constraints monetary policy gives rise to a �coordination e¤ect�.

A quadratic approximation of the �rm�s pro�t is given by

�E
h
(p� p�)2 jI

i
(9)

The �rm chooses p and I so as to maximize (9) subject to an information
processing constraint

H (p�)�H (p�jI) < K (10)

where H(p�) denotes the entropy about p� before processing information and
H (p�jI) the entropy after information processing.9 Intuitively, entropy is a
measure of the uncertainty about a random variable. Stated in these terms,
the processing constraint (10) provides a bound K 2 [0;1] on the maximum
uncertainty reduction about p� that can be achieved by processing information.
The bound K is thereby measured in �bits�, i.e., number of zeros and ones, per
unit of time. For K = 0 no uncertainty reduction is possible, i.e., �rms cannot
process information at all, while for K !1 �rms process information perfectly.

For a given information structure I, the optimal price choice is p = E [p�jI]
so that the expected loss associated with information structure I is equal to
V ar(p�jI). Choosing an optimal information structure thus amounts to mini-
mizing V ar(p�jI) subject to the constraint that the conditional entropy H(p�jI)
cannot fall below the threshold de�ned by the processing constraint (10). Shan-
non (1948) shows that Gaussian variables minimize the conditional variance for
a given entropy level.10 It is therefore optimal to choose p�jI to be Gaussian
so as to achieve an in�mum value for V ar(p�jI). Since p� is Gaussian (due
to the assumption of Gaussian fundamental shocks), the posterior p�jI is also
Gaussian, provided the information I available to �rms takes the form a signal
s with representation

s = p� + �; (11)

where � � N(0; �2�) denotes the �rm�s information processing noise, which is
independent of all other random variables in the model. The variance of the
processing noise � is thereby given by11

�2� =
1

e2K � 1V ar(p
�): (12)

9The entropy H(X) of a continous random variable X is de�ned as H(X) =
�
R

2 log(x)p(x)dx where p(x) is the probability density function of X and where the conven-
tion is to take 2 log(x)p(x) = 0 when p(x) = 0.
10Shannon solves the dual problem of maximizing entropy for a given variance.
11This follows from equation (10), the fact that the entropy of a Gaussian random variable

is equal to one half its log variance plus a constant, and the updating formula for the variance
of normal variables, i.e., V ar(p�js) = V ar(p�)� V ar(p�)2=(V ar(p�) + �2�).
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This is the in�mum variance such that the information structure I = fsg still
satis�es the constraint (10). In particular, choosing a lower variance would imply
that �rms process more than K bits of information. As one would expect, the
processing noise falls and the information structure becomes more informative,
if �rms�processing capacity K increases.

Given the optimal information structure, the �rm�s optimal price is then

p = E[p�jI]
= E[p�js]
= k � s; (13)

where the Kalman gain k 2 [0; 1] is

k =
V ar(p�)

V ar(p�) + �2�
= (1� e�2K): (14)

The Kalman gain k is a useful summary statistic indicating how well agents
can process information about their environment. For k = 0 �rms receive no
information since �2� = 1. Conversely, for k = 1 �rms observe perfectly since
�2� = 0. At intermediate values of k the variance of the observation noise � is
positive and decreases with k.

Coordination E¤ect The expression for the variance of the processing
noise in equation (12) shows that a more variable full information price p�

causes �rms�to make larger processing errors. Intuitively, this occurs because
information about a more variable environment is harder to track for any given
capacity to process information. Since the noisy signal s enters with proportion-
ality factor k into �rms�prices, see equation (12), a more variable full informa-
tion price causes �rms�optimal price choice p to increasingly deviate from the
full information price. This is formally summarized in the subsequent result:

Lemma 1 A more variable optimal price p� increases �rms�pricing errors:

V ar(p� p�) = (1� k)V ar(p�)

Clearly, the variability of the full information price p� depends on the con-
duct of monetary policy, see equation (8). Therefore, if monetary policy causes
the full information price p� to be very volatile, �rms�will make larger process-
ing errors, implying that �rms� price choices will be less predictable for the
monetary policymaker.12 The endogeneity of the information structure thus
suggests that monetary policy in�uences the economy along a new margin: by
making p� less variable, policy can make the private sectors�price choices more
predictable, i.e., better coordinated around p� de�ned in equation (8). I call
this attenuation the �coordination e¤ect�.

Importantly, the coordination e¤ect not only reduces unpredictable move-
ments in prices, but also unpredictable movements in the output gap. From the

12The processing error � is unpredictable for policymakers as it realizes after monetary
policy has been set, see section 2.
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de�nition y = q � p and the results for �rms�optimal price and information
choice derived above one obtains

y � yn =
�
(1� k) q � (1� k)yn �

k

�
"

�
� k� (15)

which shows that, ceteris paribus, smaller information processing errors � also
reduce the variance of unpredictable output gap movements. Yet, whether or
not a policy change that reduces processing errors also reduces the volatility
of the output gap depends also on how the policy shift a¤ects the volatility of
terms in the square bracket in equation (15). This issue is investigated in the
next section.

4 Policy Implications of Processing Limitations

This section shows how the presence of the coordination e¤ect in�uences the
incentives of monetary policy to react to mark-up and natural rate shocks.
Under discretionary policymaking it turns out optimal to ignore the coor-

dination e¤ect. This is shown to result in suboptimally high real and nominal
volatility, when compared to the outcome under commitment. Increased focus
on price stability is shown to reduce aggregate volatility (real and nominal)
and even allows to implement the commitment allocation through discretionary
policymaking.
Throughout this section it is assumed that policymakers observe fundamen-

tal shocks without noise and that �rms�processing capacity is exogenously given,
i.e., independent of the way policy is conducted. Both assumptions will be re-
laxed in section 5, which shows that the main results extent to the case in which
the central bank itself has limited capacity to process information and to the
case with endogenous choice of �rms�processing capacity.

4.1 Monetary Policy with Commitment

This section determines optimal monetary policy under commitment, which will
serve as a benchmark for evaluating the distortions generated by discretionary
policymaking. Under commitment the policymaker determines contingent pol-
icy taking into account that the variability of the full information price implied
by policy decisions a¤ects the information errors of the private sector.
Summarizing results derived in sections 2 and 3, the policy problem under

commitment can be expressed as

max
q
�E[(y � yn)2] (16)

s:t: :

y � yn = (1� k) q| {z }
standard e¤ect

� (1� k)yn �
k

�
"� k�|{z}

coordination e¤ect

(17)

�2� =
1� k
k

V ar(p�) (18)

p� = q � yn +
1

�
" (19)
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with equation (17) describing the behavior of the output gap as a function of
the policy choice, the fundamental shocks, and the realization of the processing
error, and equation (18) determining the variance of the processing errors.

To gain insights into the policy problem, it is useful to distinguish in equa-
tion (17) between the �standard e¤ects�of monetary policy and the �coordina-
tion e¤ect�, as discussed before in section 3. The �standard e¤ect�of monetary
policy is that arising in traditional imperfect information models, e.g., Lucas
(1972, 1973). It predicts that an increase in nominal demand by one unit moves
output (and the output gap) by (1�k) units because the presence of processing
constraints implies that �rms react only with strength k 2 [0; 1] to nominal
demand movements. The standard e¤ect of monetary policy can be used to
amplify or dampen the natural rate and mark-up shocks entering on the r.h.s.
of equation (17), but cannot be used to eliminate the e¤ects of the processing
error �, which only realizes after monetary policy has been determined. Mone-
tary policy in�uences the behavior of the output gap through the standard e¤ect
and the coordination e¤ect and has to trade-o¤ the e¤ects on the output gap
arising from both policy channels. Below I discuss the nature of this trade-o¤
in response to natural rate and mark-up shocks.

Consider the case of a natural rate shock �rst. In response to these shocks
the output gap can be fully closed simply by moving nominal demand one for
one with the natural rate shock. This stabilizes the full information price level,
thereby eliminates all processing errors (achieves maximum coordination) but
also fully o¤sets the e¤ects of natural rate shocks in equation (17) through the
standard e¤ects of monetary policy. Natural rate shocks, thus, do not generate a
trade-o¤ between the standard and the coordination e¤ects of monetary policy.
Note that closing the output gap is equivalent to stabilizing the price level in
response to natural rate shocks.

The situation di¤ers radically for mark-up shocks. Ignoring the coordination
e¤ect in equation (15) for a moment, policy can stabilize the output gap through
the standard e¤ects of policy by setting

q =
k

(1� k)
1

�
" (20)

i.e., by appropriately nominally accommodating in response to positive mark-
up shocks. The coordination e¤ect in isolation, however, suggests that closing
the output gap requires nominally contracting in response to positive mark-up
shocks, i.e., to set

q = �1
�
"

Mark-up shocks thus generate a trade-o¤ implied, which is illustrated in �gure
2. The �gure depicts the required amount of contraction/accommodation to a
positive mark-up shock (" = 1) as a function of the processing index k. The
optimal reaction to mark-up shocks, which takes into account standard and
coordination e¤ects, is a convex combination of the two policies shown in the
�gure. The following proposition shows that the two policy incentives balance
each other precisely at the point where it is optimal not to react to mark-up
shocks at all.
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Figure 2: Policy trade-o¤ for mark-up shocks

Proposition 2 In a rational expectations equilibrium with optimal information
processing by �rms, optimal monetary policy under commitment is to set

q = yn (21)

The implied variability of the output gap and prices are

E[(y � yn)2] =
k

�2
�2" (22)

E[p2] =
k

�2
�2"

Note that the previous proposition has the slightly non-intuitive implication
that output gap variability increases, i.e., welfare decreases, when �rms can
process information better (larger values of k). Increased processing capacity
has two opposing e¤ects in the model. On the one hand, it reduces the size of
processing errors, which enhances welfare; on the other hand, it allows �rms to
observe aggregate mark-up shocks better. As a result, �rms�react more strongly
to these welfare reducing shocks. The latter e¤ect dominates the �rst, causing
output and price variability to linearly increase with �rms�ability to process
information (k).

4.2 Discretionary Policy Activism

This section considers a discretionary policymaker determining monetary pol-
icy at the time of implementation, i.e., only after the mark-up and natural rate
shocks have realized, see �gure 1. A policymaker that determines policy after
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economic disturbances have materialized can safely ignore the coordination ef-
fects of policy decisions, i.e., can treat �2� in the policy problem (16) as given.
This is rational because the policy reaction to a particular shock realization con-
tributes little (nil with continuous shock distribution) to the ex-ante variability
of the full information price p�. As the following proposition shows, ignoring
the coordination e¤ects of policy can have stark policy implications:

Proposition 3 In a rational expectations equilibrium with optimal information
processing by �rms, optimal discretionary policy is

q =
k

(1� k)
1

�
"+ yn (23)

The variance of the output gap and the price level implied by discretionary policy
is

E[(y � yn)2] =
k

(1� k)�2�
2
" (24)

E[p2] =
k

(1� k)2 �2
�2"

Ignoring the coordination e¤ect, discretionary monetary policy nominally
accommodates mark-up shocks, as suggested by �gure 2. Accommodative policy
causes q and " to move in the same direction, thereby increasing the overall
variability of the full information price p�, see equation (8). Increased variability
of the full information price increases �rms�processing errors and thereby the
variability of prices and output compared to the case with commitment. This
result holds independently of the model parameterization.

The increase in aggregate volatility is particularly pronounced when �rms
can process information almost perfectly (k close to 1). While an increase in the
processing index reduces �rms processing errors (ceteris paribus), it also results
in stronger nominal accommodation of mark-up shocks by policy, as suggested
by the upper curve in �gure 2. The overall e¤ect is an increase in processing
errors resulting in higher nominal and real volatility. In the limit, as k ! 1,
real and nominal volatility increase without bound compared to the case with
policy commitment.13

From propositions 2 and 3 it is clear that discretionary policy approaches
the commitment solution as k ! 0. For low levels of �rms� processing ca-
pacity, lack of monetary commitment would thus not entail large utility costs
due to increased aggregate volatility. Yet, if �rms�processing capacity increases
over time, a possible monetary commitment problem would become increasingly
apparent. The increase in aggregate volatility from the 1960�s to the 1970�s ex-
perienced in a number of developed countries might thus be interpreted as the
result of a monetary commitment problem and of an underlying trend that
would allow �rms to increasingly process aggregate information. By the begin-
ning of the 1980�s the monetary commitment problem has become so apparent
that policymakers were forced to actively look for a solution to the commitment
problem. This issue is discussed in the next section.
13Note that the discretionary policy reaction to natural rate shocks remains is optimal

because such shocks do not generate a trade-o¤ between the coordination e¤ects and standard
e¤ects of policy.

12



4.3 Price Stability as a Policy Objective

The ine¢ ciently high nominal and real variability resulting from discretionary
policy in the previous section is the result of ine¢ ciently high volatility of the full
information price p� that emerges ex-post when treating the degree of coordina-
tion of private sector expectations as given. This suggests that a discretionary
policymaker might endogenize the coordination e¤ects generated by policy, if
assigned also a price stabilization objective. This motivates consideration of the
following policy problem

max�E
�
(y � yn)2 + !p2

�
(25)

s:t:

p = k

�
q � yn +

1

�
"+ �

�
(26)

y � yn = (1� k) q � (1� k)yn �
k

�
"� k�

�2� given

where ! � 0 is the weight attached to price stability in the objective function.
Note that the policymaker continues to act under discretion, i.e., treats the
variance of the processing error as exogenous. The lemma below summarizes
the main results.

Lemma 4 Consider discretionary monetary policy with weight ! � 0 on stabi-
lizing prices. The variance of the output gap and prices is decreasing in ! for
0 � ! < 1�k

k . For ! = 1�k
k discretionary monetary policy is identical to the

policy under commitment.

The model thus predicts that, independently of the precise model parame-
terization, increased focus on price stability reduces aggregate price and output
gap volatility under discretionary policymaking. Moreover, for a su¢ ciently
high weight on price stability, discretionary monetary policy becomes identical
to optimal policy under policy commitment. The latter suggests that a policy
regime shift from discretionary maximization of social welfare towards discre-
tionary maximization of an optimally weighted sum of social welfare and price
stability can result in a large reduction of aggregate nominal and real volatil-
ity, i.e., give rise to a policy-induced �Great Moderation�e¤ect. It follows from
propositions 2 and 3 that the volatility reduction associated with such a shift is
particularly pronounced if �rms can process information very well and becomes
arbitrarily large as �rms�processing capacity k ! 1.

5 Robustness

This section relaxes the assumption that the central bank can process informa-
tion about mark-up and natural rate shocks perfectly. In addition, it studies the
e¤ects of endogenizing �rms�choice of processing capacity and of introducing
idiosyncratic elements in �rms�processing errors.
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5.1 Central Bank Processing Limitations

This section considers a central bank facing information processing limitations
of the same kind as previously introduced for �rms. In particular, the cen-
tral bank�s choice for nominal demand q is now assumed to be subject to an
information �ow constraint

H(q�)�H(q�jq) < KCB

where KCB � 0 denotes the central bank�s capacity to process information
(expressed in bits per unit of time) and

q� = a"t + byn;t (27)

the optimal decision under perfect central bank information. The coe¢ cients a
and b remain to be determined. As with �rms, the central bank�s optimal choice
of information structure is a signal of the form

sCB = q� + �CB

where �CB � N(0; �2�;CB) is a processing error limiting the information about
q� contained in sCB . The processing noise �CB is independent of all other
random variables and has (in�mum) variance

�2�;CB =
1� kCB
kCB

V ar(q�) (28)

where kCB = 1 � e�2KCB 2 [0; 1] denotes the central bank�s processing index.
To describe central bank behavior I consider linear policies of the form

q = E
�
q�jsCB

�
= kCBsCB (29)

Since policy can freely choose the reaction coe¢ cients a and b in equation (27),
choosing the reaction coe¢ cient with respect to the signal sCB in equation (29)
is without loss of generality.14

Firms� behavior remains described by the equations derived in section 4,
which allows to express the central bank�s maximization problem under com-
mitment as

max
a;b

�E[(y � yn)2] (30)

s:t: :

y � yn = (1� k) q � (1� k)yn �
k

�
"� k�

�2� =
1� k
k

V ar (p�)

p� = q � yn +
1

�
"

q = kCB
�
a"+ byn + �

CB
�

�2�;CB =
1� kCB
kCB

V ar(a"+ byn)

14The optimality of a linear reaction function follows from the linear quadratic nature of
the policy problem, see problem (30) below.
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Substituting the constraints into the objective function and taking �rst order
conditions delivers that optimal policy is given by

a = 0

b = 1

This together with equation (27) shows that optimal policy displays certainty
equivalence. The implied volatility of the output gap and the price level are

E[(y � yn)2] =
k

�2
�2" + (1� k) (1� kCB)�2yn

E
�
p2
�
=
k

�2
�2" + k(1� kCB)�2yn

Unlike in the case with perfect central bank information, variations in potential
output yn now have an e¤ect on the output gap to the extent these variations
are neither observed by the central bank nor the private sector. Moreover,
variations in the output gap perceived by �rms but not by the central bank now
lead to movements in the price level, as �rms try to respond to variations in the
natural rate of output that the central bank fails to nominally accommodate
due to processing limitations.

With discretionary policy, the policy problem is identical to (30), except
that the policymaker treats �2� as independent of policy decisions. Discretionary
optimal policy is to set

a =
k

1� k
1

�

b = 1

and displays again certainty equivalence. The implied variance of the output
gap and in�ation are

E[(y � yn)2] =
�
1� k(1� kCB)

�
1� k

k

�2
�2" + (1� k)(1� kCB)�2yn

E
�
p2
�
=

�
kCB + (1� kCB)(1� k)2

�
(1� k)2

k

�2
�2" + k(1� kCB)�2yn

and highlight that, as before, the volatility increase due to discretionary policy
is again particularly pronounced when �rms can process information almost
perfectly.

5.2 Endogenizing Firms�Capacity Choice

This section shows that with discretionary policy increased focus on price stabil-
ity continues to imply lower price and output gap volatility, even if �rms choose
their information processing capacity optimally.

To model �rms� choice of processing capacity, a game with the following
sequence of events is considered. First, monetary policy is assigned the weight
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! � 0 on price stabilization in its objective function (25). Second, �rms simul-
taneously choose their processing index ki (i 2 [0; 1]) taking as given the choice
of other �rms. The costs of acquiring capacity ki are thereby described by a cost
function c(ki) with strictly positive �rst and second derivatives. Third shocks
realize, thereafter the policymaker (discretionarily) determines and implements
monetary policy. Fourth, �rms process information about shocks and policy
decisions and set their prices. Finally production and consumption takes place.

I am interested in the e¤ects of increased emphasis on price stabilization by
the central bank (larger !) on aggregate volatility. The following proposition
summarizes the main result.

Proposition 5 Suppose �rms�capacity choice problem has an interior solution
and for each policy weight ! there exists a unique symmetric Nash equilibrium
k�(!) for �rms�capacity choice. A marginal increase in ! then results in a new
symmetric Nash equilibrium with lower output gap and lower price volatility, for
all ! su¢ ciently small.

As is the case with exogenous processing capacity, increased focus on price
stabilization initially lowers aggregate nominal and real volatility. The assump-
tions stated at the beginning of the proposition thereby simply insure that mean-
ingful comparative statics are associated with a change in the policy weight !.
The proof is provided in Appendix A.2. The crucial step in the proof consists
of showing that �rms�equilibrium choice for processing capacity is decreasing
in the policy weight !, i.e., that �rms choose to observe mark-up shocks less
precisely, if the policymaker focuses more on price stability. Reduced process-
ing capacity dampens �rms� price response to (their imperfect signal about)
mark-up shocks and this contributes further to reducing price and output gap
volatility. The reduction in aggregate volatility is thus even larger once one
allows �rms to optimally choose their information processing capacity.

5.3 Idiosyncratic Processing Errors

This section relaxes the common knowledge assumption, i.e, the assumption
that the information processing errors in equation (11) are identical across �rms.
While it appears reasonable to assume that there is some common component
in �rms�processing errors, e.g., because �rms all read the same (noisy) news-
paper reports, it is equally reasonable to postulate the presence of idiosyncratic
processing errors. This section shows that the previous analysis readily extends
to a setting with such idiosyncratic information sets.

Suppose that equation (11) is replaced by

si = p� + �c + �i

where �c denotes a processing error common to all �rms, while �i is �rm i�s
idiosyncratic processing error that is assumed independent of �c and p�. Let a
share � 2 [0; 1] of the total noise be common to all �rms with the remaining
share being idiosyncratic, i.e.,

�2�c = ��
2
�

�2�i = (1� �)�2�
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where the total observation noise �2� is given by (12). For � = 1 one recovers
the common knowledge setup studied thus far in the paper, while for � = 0 one
obtains a setting with purely idiosyncratic noise. The latter has been studied
in Adam (2007) where it is shown that a �rm�s optimal price in the presence of
idiosyncratic information noise is given by15

p(i) = �E

" 1X
m=0

(1� �)m
�
p�(m)

�
jsi
#

(31)

with p�(m) denoting the so-called m-th order expectation of the optimal price
p�, which can be de�ned recursively as

p�(0) = p�

p�(m) =

Z
i2[0;1]

E
h
p�(m�1)jsi

i
di

As shown in appendix A.3 the higher-order expectations are given by

Ei
h
p�(m)

i
= k (k(1� �) + �)m si

so that equation (31) implies the aggregate price level to be given by

p =

Z
i2[0;1]

p(i)di

=
�k

1� (1� �) (k(1� �) + �)

�
q � yn +

1

�
"+ �c

�
(32)

For � = 1 this expression simpli�es to the price level expression derived for the
common knowledge setting studied thus far, see for example equation (26). For
� > 0 it di¤ers from the common knowledge expression only by a proportionality
factor and the fact that �c instead of � enters as the noise term. Since the
variance of �c is proportional to the variance of �, the qualitative behavior
of the aggregate price level does not change when introducing idiosyncratic
processing errors. In particular, overly activist discretionary policy will still
lead to excessive (real and nominal) aggregate volatility, with the volatility
increasing without bound as k ! 1.

6 In�nite Horizon Economy

This section extends the static setting considered thus far to an in�nite hori-
zon economy with persistent shocks, showing how the previous �ndings natu-
rally extend to an intertemporal setup. A major objective of this section is to
demonstrate that the dynamic model is consistent with a number of stylized
facts about aggregate volatility that have been documented in the empirical
literature on the Great Moderation. This literature seems to largely agree on
the following set of facts:

15This follows from equation (24) in Adam (2007), which is valid independently of the
assumed information structure.
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Fact 1: Aggregate real and nominal volatility pre 1984 was signi�cantly
higher than thereafter. This is the case for the United States but also for a
number of other industrialized economies (McConnell and Quiros (2000), Blan-
chard and Simon (2001)).
Fact 2: VAR evidence for the pre and post 1984 periods indicates that the

di¤erent levels of volatility are mainly the result of larger VAR residuals and
only to a minor extent the result of a change in the autoregressive coe¢ cients
of the VAR (Sims and Zha (2006), Primiceri (2005)).16

Fact 3: When exchanging the monetary policy equation of VAR estimates in
the pre and post 1984 period while keeping unchanged the remaining equations
of the VAR equations as well as the VAR residuals, then this leads to virtually
unchanged economic outcomes (Canova and Gambetti (2005), Primiceri (2005)).
Fact 4: It appears that only a negligible share of the variance reduction

following 1984 is due to reduced variance of monetary policy shocks (Sims and
Zha (2006)).

The next section introduces the dynamic model and derives optimal policy
under discretion and commitment. Section 6.2 shows that the dynamic model
predicts all four facts mentioned above to be consistent with an improvement
in monetary policy, i.e., with a monetary policy regime shift away from purely
discretionary conduct of policy (some way) towards the commitment solution.

6.1 Dynamic Model

This section introduce the in�nite horizon economy and derives optimal mon-
etary policy. As in most of the earlier setup, I abstract from monetary policy
shocks, i.e., monetary policy information processing errors. This implies that
the model is consistent from the outset with Fact 4 mentioned in the previous
section.

In�nite Horizon Economy Consider an in�nite horizon economy with-
out capital in which the �rm side is identical to the one described in section 2.
The representative consumer now maximizes

E0

" 1X
t=0

�t (U(Yt)� �tV (Lt) + �tD(Mt=Pt))

#
(33)

s:t:

PtYt +Bt +Mt =WtLt +�t � Tt +Rt�1Bt�1 +Mt�1

where Mt denotes nominal money balances, Bt nominal bonds, Rt the nominal
interest rate, and �t a money demand shock with E [�t] = �. Previously used
variables retain their de�nition from section 2. To simplify the analysis I will
consider a �cashless�limit economy (� ! 0), which allows to abstract from the
utility implications of monetary policy that operate through level of real cash
balances.
The government �ow budget constraints is

Bt +Mt =Mt�1 +Bt�1Rt�1 � Tt + �Yt
16Cogley and Sargent (2005) argue that changes in the autoregressive coe¢ cients may be

also relevant but are statistically harder to detect.
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The government chooses an e¢ cient output subsidy � to eliminate the steady
state distortions from monopolistic competition. In addition, it chooses a se-
quence of conditional debt and lump sum tax plans (Bt; Tt), which are assumed
to give rise to a bounded path for the real value of outstanding government
claims. The latter implies that Ricardian equivalence holds so that the �scal
choices for (Bt; Tt) do not a¤ect the equilibrium outcome. One can thus abstract
from �scal policy when analyzing the conduct of monetary policy.

LQ-Approximation of the Monetary Policy Problem I now derive
a linear-quadratic approximation to the monetary policy problem for the dy-
namic economy. As in the static model, monetary policy maximizes social wel-
fare, where the policy choices are subject to a number of implementability con-
straints. The constraints consist of �rms�price setting equation and the laws
governing �rms�beliefs under optimal information processing. I continue to as-
sume that the monetary policy �instrument�is nominal demand rather than the
nominal interest rate or some monetary aggregate. This is motivated by analyt-
ical convenience and to increase comparability with the �ndings from the static
model. The equilibrium outcomes remain una¤ected by this assumption.17

A quadratic approximation of the utility of the representative household (33)
is given by

�E0[
1X
t=0

�t(yt � yn;t)2]

where yn;t denotes again the e¢ cient output level.18 For simplicity, I consider
the limiting case � ! 1, which allows to express household utility and thus the
monetary policy objective as

�E
�
(yt � yn;t)2

�
(34)

where E[�] denotes the unconditional expectations operator.
For a given information set, the linear approximation to pro�t maximizing

price setting behavior by �rms continues to be described by equations (7) and
(8), i.e.:

pt = E

�
qt � yn;t +

1

�
"tjIt

�
(35)

where It denotes �rms�information set at time t. The stochastic disturbances
x0t = ("t; yn;t)

0 thereby evolve according to19

xt = �xt�1 + vt (36)

17This is so because the paper e¤ectively considers Ramsey allocation problems with and
without commitment and does not address issues of equilibrium implementation. As can be
easily shown, the equilibrium path for prices, output gap and nominal demand derived below
imply a corresponding path for the nominal interest rate and money demand. The choice of
policy instrument can matter, however, for implementing a desirable allocation as the unique
equilibrium outcome. This issue is beyond the scope of this paper.
18See equation (55) in appendix A.1 for the de�nition of yn.
19At the cost of additional notational complexity one could easily allow for shocks with

di¤erent persistence.
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where � 2 (�1; 1) and vt � iiN(0;�v) with

�v =

�
�2v1 0
0 �2v2

�
:

At the time when monetary policy is implemented, the economy is charac-
terized by the state variables xt and xtjt�1 where the latter denote �rms�t� 1
expectations of xt, see the timeline in �gure 1. In general, optimal policy should
condition its choices on xt as well as on xtjt�1. Yet, nominal demand variations
that depend on private sector beliefs are fully perceived by �rms, therefore do
not generate real e¤ects and can be safely ignored. This allows considering
policy of the form

q = a � "t + b � yn;t (37)

as in the static setup. Given policy of this form, �rms�optimal signal (11) can
be written as

st = H
0xt + �t (38)

where
H 0 = (

1

�
+ a; b� 1)

The state equations (36) and the observation equation (38) together de�ne �rms�
Kalman �ltering problem. Letting xtjt denote agents�time t estimate of xt, ap-
pendix A.5 shows that the Kalman �lter updating equations imply the following
evolution of �rms�beliefs under optimal information processing:

H 0xtjt = (1� k)H 0xtjt�1 + kst

= �(1� k)H 0xt�1jt�1 + kst (39)

This �ltering problem has two non-standard features. First, the observation
equation H depends on the policy parameters a and b. This is due to �rms
being able to choose which variables to observe through the information chan-
nel. Firms�choice thereby depends on the policy pursued by the central bank.
Second, the variance of the observation noise �t in equation (38) is endogenous
since the information �ow generated by the signal st is constrained by �rms�
information processing capacity.20

De�ning the state of the economy as �t =
�
x0t;H

0xtjt
�
and using the previous

results, one can write the evolution of the state as

�t = A � �t�1 +B!t (40)

where the state innovation vector

!0t = (v1t; v2t; �t)
0 (41)

consists of the innovations to fundamentals (price mark-up, natural output level)
and of innovations to �rms information sets (�t) that are the result of processing
errors.21 The latter will be crucial for interpreting the �ndings that follow.
Explicit expressions for the matrices A and B are given in appendix A.4.

20 In particular, V AR(�t) = 1�k
k
H0Ptjt�1H where Ptjt�1 denotes agents�uncertainty about

xt prior to observing st.
21For the moment, I abstract from the money demand shocks �t in the state vector, as

these do not a¤ect the equilibrium dynamics of the variables under consideration.
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The equilibrium price, the output gap, and monetary policy are functions of
the state vector 0@ pt

yt � yn;t
qt

1A = C � �t (42)

where the explicit expression for C can be found in appendix A.4.
The linear quadratic policy problem now consists of choosing the policy reac-

tion coe¢ cients (a; b) so as to maximize objective (34) subject to the equations
(40) and (42), which summarize optimal price setting behavior and optimal in-
formation processing by �rms. Under commitment, the policymaker thereby
recognizes that the variance of the observation error �t entering the state inno-
vation vector !t in equation (40) is a function of its policy. Under discretionary
policy, the policymaker treats the variance of observation errors as given, as was
the case in the static model.

Optimal Policy The following proposition shows that the results from
the static model carry over in a natural way to the in�nite horizon setting.
In particular, discretionary monetary policy suboptimally accommodates mark-
up shocks with the degree of accommodation increasing in �rms� processing
capacity and becoming unbounded in the limit as �rms process information
perfectly:

Proposition 6 Optimal policy under commitment sets a = 0 and b = 1. Under
discretion the policymaker chooses a = k

�(1�k)(1��2(1�k)) > 0 and b = 1.

The proof is given in appendix A.5.

6.2 Model Implied VAR Dynamics

This section shows that the dynamics of prices, output gap, and monetary policy
follow a �rst-order vector-autoregression (VAR). Moreover, following improve-
ments in monetary policy, as de�ned below, the changes in the VAR dynamics
are shown to reproduce Facts 1-3 mentioned at the beginning of section 6.22

Throughout this section, monetary policy in the VAR is identi�ed with nom-
inal demand to keep in line with the previous convention. Section 6.3 shows that
the main conclusions extend to a VAR involving interest rates instead of nominal
demand and to an augmented VAR involving also a monetary aggregate.

The following proposition summarizes the model implications for the dy-
namics of prices, output gap and monetary policy:

Proposition 7 Suppose a 6= 0 and let z0t = (pt; yt � yn;t; qt)
0. Then

zt = Dzt�1 + ut (43)

with

D =

0B@
(bk+a�)�

�a
(b+a�)k�

�a
(1�b)k�
�a

��kb
�a � (bk�a�+ak�)�

�a
(b�1)k�
�a

0 0 �

1CA
22As discussed at the beginning of section 6.1, Fact 4 is also replicated because the model

abstracts from monetary policy shocks.
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and
ut = CB!t

with !t 2 R3 denoting the vector of fundamental shocks de�ned in (41).

Proof. If a 6= 0, one can invert the matrix C in equation (42) and use it to
substitute �t and �t�1 in (40), which delivers the stated result.

The expression for the autoregressive matrix D in proposition 7 shows that
a change in the monetary policy reaction coe¢ cients (a; b) does not a¤ect the
last row of this matrix. Therefore, monetary policy a¤ects only the impact
matrix CB pre-multiplying the structural economic shocks and the rows in the
autoregressive matrixD governing the evolution of prices and output-gaps. This
implies that any in change monetary policy is consistent with Fact 3 mentioned
at the beginning of section 6. Speci�cally, if a researcher estimates VARs for
two di¤erent policy regimes and exchanges the VAR�s �policy equation�across
regimes (while leaving untouched the residuals of each regime), the conclusion
will be that such a change makes no di¤erence for economic outcomes.

Note that the variables zt entering the VAR in equation (43) fully reveal the
state vector �t, provided a 6= 0. This implies that the previous and subsequent
results cannot be overturned by adding additional information (observables) to
the VAR: observing the variables entering zt is already the best situation an
econometrician might hope for.

I now turn consideration to the e¤ects of a marginal improvement in mone-
tary policy on the variance of prices, output gap and monetary policy, and on
the variance of the VAR residuals ut. As suggested by proposition 6, I de�ne an
improvement in monetary policy over the discretionary outcome as a reduction
in the policy reaction coe¢ cient a towards zero, i.e., as a policy change resulting
in less accommodation of mark-up shocks. The following lemma summarizes a
�rst �nding. The proof is in appendix A.6.

Lemma 8 Suppose a > 0 and b = 1. The variance of all VAR residuals is
strictly increasing in a.

The lemma shows that the innovation variances of the VAR in equation
(43) are all decreasing as monetary policy shifts from the discretionary solution
towards the commitment outcome. Improvements in monetary policy around
the 1980�s are thus consistent with the empirical �nding that around the same
time VAR residuals start to display smaller variances (Fact 2).
The next lemma establishes that improvements in monetary policy also re-

duce the overall variance of prices, output gap and monetary policy, i.e., the
dynamic model delivers Fact 1. This is not immediate from the previous lemma
because changes in a also a¤ect the autoregressive matrix D in equation (43),
with some of the autoregressive coe¢ cients possibly strongly increasing as a
falls to levels close to zero.

Lemma 9 Suppose a > 0 and b = 1. The unconditional variance of prices,
output gap, and monetary policy are strictly increasing in a.

22



The proof can be found in appendix A.7. As in the static model, the variance
reduction resulting from less activist monetary policy is due to reduced private
sector observation errors. The next result shows that arbitrarily large variance
reductions can result from improvements in monetary policy:

Lemma 10 Consider a regime shift from discretionary optimal policy towards
fully optimal policy, see proposition 6. This generates an arbitrarily large (rel-
ative and absolute) reduction in the volatility of prices and the output gap, pro-
vided �rms can process information su¢ ciently well (k su¢ ciently close to 1).

The proof is given in appendix A.8. As in the static case, the volatility
reduction can be arbitrarily large because the volatility generated by discre-
tionary policy increases without bound as �rms start to process information
almost perfectly (k ! 1).
Finally, the subsequent lemma shows that, consistent with Fact 2 mentioned

at the beginning of section 6, the model implies policy improvements to mainly
operate through the VAR residuals and only to a lesser extend through changes
in the VAR�s autoregressive coe¢ cients:

Lemma 11 Consider discretionary conduct of monetary policy and a marginal
change in the policy response to mark-up shocks a. For k close to 1

@D

@a
� 0 (44)

@diag(V AR(ut))

@a
> 0 (45)

The proof is found in A.9.

Provided �rms can process information su¢ ciently well (k su¢ ciently close
to 1), the results of Lemma 8 - 11 show that the model reproduces all empirical
facts listed at the beginning of section 6 following an improvement in the conduct
of monetary policy.

6.3 VAR with Interest Rates and Monetary Aggregates

The previous section identi�ed monetary policy in the VAR using nominal de-
mand. Clearly, this is at odds with much of the empirical literature that -
following the monetary policy practice of recent decades - uses nominal inter-
est rates instead. This section discusses how the previous results extend when
monetary policy in the VAR is identi�ed using nominal interest rates instead of
nominal demand. Moreover, it shows that all previous results remain una¤ected
when augmenting the VAR with a monetary aggregate.

Linearizing the consumption Euler equation implied by the �rst order con-
ditions of (33) delivers

it = �
�
U 00Y

U 0

�
(Etyt+1 � yt) + Etpt+1 � pt

= (Etqt+1 � qt)�
�
U 00Y

U 0
+ 1

�
(Etyt+1 � yt) (46)
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Assuming log utility in consumption, the short-term interest rate consistent
with the path for nominal demand implied by equation (43) is given by

it = (�� 1)qt
With log consumption utility all previous results, therefore, fully extend to a
VAR including short-term nominal interest rates instead of nominal demand. If
consumption utility deviates from the log case, then current and expected future
output a¤ect nominal interest rates, see equation (46). Since the evolution
of output depends on the policy coe¢ cients a and b, see equation (43), the
autoregressive coe¢ cients of the VAR for the interest rate equation will generally
not be independent of policy anymore. This may potentially cause a policy shift
to show up in the autoregressive coe¢ cients. This could cause the model to be
at odds with Fact 3 mentioned in section 6. To what extend the AR coe¢ cients
of the interest rate equation do indeed change depends on the degree to which
consumption utility deviates from log utility. It also appears that the empirical
literature is not at odds with the notion that these coe¢ cients have indeed
changed somewhat, although not by a statistically signi�cant amount.

Finally, I discuss the e¤ects of including monetary aggregates into the VAR.
The �rst order conditions of problem (33) deliver a money demand equation of
the form

D0
t =

1

�t

(Rt � 1)
Rt

U 0t

Linearizing this equation and using (46) to substitute nominal interest rates,
delivers a linearized money demand equation of the form

mt = �0qt + �1pt + �2�t (47)

where mt denotes nominal balances23 , �t = (�t � �)=� money demand shocks,
and �i linearization coe¢ cients (i = 0; 1; 2). One can can easily augment the
VAR in equation (43) with the evolution of monetary aggregates implied by
equation (47). Since the dynamics of output gap, prices, and policy instrument
remain una¤ected, all previously derived results carry over to such an augmented
VAR.

7 Conclusions

Taking into account the endogeneity of decision makers�information structures
appears to have important implications for the conduct of monetary policy and
stabilization policy more generally. In particular, discretionary policy decisions
tend to be overly activist and this may considerably complicate the informa-
tion processing problems faced by private agents. As a result, private agents�
decisions may become contaminated by large and unpredictable elements (infor-
mation processing errors), potentially causing a signi�cant increase in aggregate
volatility. Overall, it appears that information processing constraints have the
potential to vindicate Milton Friedman�s conviction that overly ambitious use
of monetary policy for stabilization purposes may simply end up amplifying
economic �uctuations.

23Expressed in percent deviation form its deterministic level.
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A Appendix

A.1 Price setting equation and welfare objective

I �rst derive the linearized price setting equation (5). The product demand
functions associated with the Dixit-Stiglitz aggregator (2) are

Y i(P i) =
�
P i=P

���
Y (48)

where

P =

�Z �
P j
�1��

dj

� 1
1��

(49)

Using (48) the �rst order condition of the �rms�pro�t maximization problem
(3) delivers

P i = E

�
1

1 + �

�

� � 1W jI
�

(50)

In a symmetric equilibrium P i = P . Equation (48) then implies Y j = Y and
the household�s �rst order condition can be written as

W =
�V 0(Y )

U 0(Y )
P (51)

Combining (50) and (51) delivers

P i = E

�
1

1 + �

�

� � 1
�V 0(Y )

U 0(Y )
P jI
�

(52)

In the symmetric deterministic steady state P i = P = P , Y i = Y = Y , � = �,
and � = 1 where Y solves

1

1 + �

�

� � 1
V 0(Y )

U 0(Y )
= 1 (53)

and P is any value chosen by the central bank. Steady state output Y is �rst
best for

� =
1

� � 1
which implies

V 0(Y ) = U 0(Y ) (54)

For a given the labor supply shock �, the �rst best output level Yn solves

�V 0(Yn)

U 0(Yn)
= 1

Linearizing this equation around the steady state delivers

� � 1 = �V
00(Y )U 0(Y )� V 0(Y )U 00(Y )�

U 0(Y )
�2 Y

�
Yn � Y
Y

�
(55)
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Linearizing (52) around the deterministic steady state and using (55) delivers
(5) where:

"t = �
1

� � 1
(� � �)
�

� =
V 00(Y )U 0(Y )� V 0(Y )U 00(Y )�

U 0(Y )
�2 Y

=
V 00(Y )Y

V 0(Y )
� U

00(Y )Y

U 0(Y )

Next, I derive the welfare approximation (4). Consider a symmetric equilib-
rium where P i = P and Y i = Y . A second order approximation of the utility

 of the representative agent around the steady state level 
 is then given by


� 
 = U 0(Y )(Y � Y )� V 0(Y )(Y � Y )

+
1

2
U 00(Y )(Y � Y )2 � 1

2
V 00(Y )(Y � Y )2

� V 0(Y )(Y � Y )(� � 1) +O(2) + t:i:p (56)

where t:i:p: denotes (�rst and higher order) terms that are independent of pol-
icy and O(2) summarizes endogenous terms of order larger than two. Using

equations (54) and (55) and adding 1
2

�
U 00(Y )� V 00(Y )

� �
Y n � Y

�2
, which is a

term independent of policy, the welfare approximation (56) can be written as


� 
 = 1

2

�
U 00(Y )� V 00(Y )

�
Y
2
�
(Y � Y )
Y

� (Y
n � Y )
Y

�2
+O(2) + t:i:p (57)

which is of the form postulated in (4).

A.2 Proof of proposition 5

Firm i chooses its capacity index ki so as to

max
ki
�(ki; k�i; !)� c(ki)

where �(ki; k�i; !) denotes the �rm�s expected pro�ts from selling goods and
c(ki) the costs of acquiring processing capacity. The �rm takes as given the
policy weight ! placed on price stabilization as well as the capacity choice k�i
of other �rms. Under the maintained assumptions, the �rm�s optimal capacity
choice k�i solves

�ki(k
�
i ; k�i; !)� cki(ki) = 0 (58)

and there is a unique symmetric Nash equilibrium k� solving

�ki(k
�; k�; !)� cki(k�) = 0 (59)
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The price and output gap variances implied by an (arbitrary) capacity choice k
and a policy weight ! are

V ar(p) =
(1� k)2 k�

(1� k)2 + !k2
�2
�2
�2"

V ar (y � yn) =
�
3k2 � 3k � k3 + k3!2 + 1

��
(1� k)2 + !k2

�2 k

�2
�2"

The marginal e¤ects of ! on the Nash equilibrium are thus

dV ar(p)

d!
=
@V ar(p)

@!
+
@V ar(p)

@k

@k�

@!
dV ar(y � yn)

d!
=
@V ar(y � yn)

@!
+
@V ar(y � yn)

@k

@k�

@!

As is easily veri�ed @V ar(p)=@! < 0, @V ar(y � yn)=@! < 0, @V ar(p)=@k > 0,
and @V ar(y�yn)=@k > 0 for ! su¢ ciently small. One thus has dV ar(p)=d! < 0
and dV ar(y�yn)=d! < 0, provided @k�

@! < 0. From the implicit function theorem
and (59)

@k�

@!
= � @ (�ki(k

�; k�; !)� cki(k�)) =@!
@ (�ki(k

�; k�; !)� cki(k�)) =@ki

= � �ki!(k
�; k�; !)

�kiki(k
�; k�; !)� ckiki

We know ckiki > 0 and below we show that�kiki(k
�; k�; !) = 0 and�ki!(k

�; k�; !) <
0. This together establishes @k

�

@! < 0. The sign of the derivatives �kiki and �ki!
can be determined using the second order approximation to �rms�pro�ts (9):

E
h
�E

h�
pi � p�

�2 jIii = �E h�kisi � p��2i
= �E

h
(kip

� + ki� � p�)2
i

= �(1� ki)2E
h
(p�)

2
i
� (ki)2E

h�
�i
�2i

Optimal discretionary policy for given ! and k is

q =

�
(1� k)k � !k2

��
(1� k)2 + !k2

� 1
�
"+ yn

and implies

E[(p�)
2
] =

0@ (1� k)�
(1� k)2 + !k2

� 1
�

1A2

�2"

and

E
h�
�i
�2i

=
1� ki
ki

E[(p�)
2
]
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The quadratic approximation of �rms�pro�ts is thus

E
h
�E

h�
pi � p�

�2 jsiii = (ki � 1) (k � 1)2�
(1� k)2 + k2!

�2
�2
�2"

and implies

�kiki(k
�; k�; !) = 0

�ki!(k
�; k�; !) = �2 (1� k�)2 (k�)2�

(1� k�)2 + (k�)2 !
�3
�2
�2" < 0

which establishes the claim.�

A.3 Higher-Order Expectations

We know that

�2� =
1� k
k

V ar(p�)

var(si) =
1

k
V ar(p�)

cov(p�; si) = var(p�)

cov(p� + �c; si) =
�(1� k) + k

k
V ar(p�)

Using the updating formulae for the conditional mean of jointly normally dis-
tributed random variables one gets

E
�
p�jsi

�
= ksi

and

p�(1) =

Z
i2[0;1]

E
�
p�jsi

�
= k (p� + �c)

Furthermore,

E
h
p�(1)jsi

i
= kE

�
(p� + �c) jsi

�
= k

�
cov(p� + �c; si)

var(si)
si
�

= k (k(1� �) + �) si

so that
p�(2) = k (k(1� �) + �) (p� + �c)

and

E
h
p�(2)jsi

i
= k (k(1� �) + �)E

�
(p� + �c) jsi

�
= k (k(1� �) + �)2 si

Repeatedly integrating over i and taking the expectations E
�
�jsi
�
delivers:

E
h
p�(m)jsi

i
= k (k(1� �) + �)m si
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A.4 Details on the State Dynamics

The matrices in equation (40) are de�ned as follows:

A =

0B@ � 0 0
0 � 0

k�
�
a+ 1

�

�
k� (b� 1) �(1� k)

1CA
B =

0B@ 1 0 0
0 1 0

k
�
a+ 1

�

�
k (b� 1) k

1CA
The matrix in equation (42) is given by

C =

0@ 0 0 1
a (b� 1) �1
a b 0

1A
A.5 Optimal Policy in the Dynamic Economy

We start by deriving the commitment solution. Using (42) the policy objective
can be expressed as

�E
�
(y � yn;t)2

�
= �E

h�
a"t + (b� 1)yn;t �H 0xtjt

�2i
= �

�
a2�2" + (b� 1)2�2y + E

�
(H 0xtjt)

2
�

�2a � cov("t;H 0xtjt)� 2(b� 1) � cov(yn;t;H 0xtjt)
�

(60)

I �rst derive an explicit expression for H 0xtjt that allows to compute the vari-
ance and the covariance terms appearing in (60). The Kalman �lter updating
equations are

xtjt = xtjt�1 + Ptjt�1H(H
0Ptjt�1H + �2�)

�1(st �H 0xtjt�1) (61)

Ptjt = Ptjt�1 � Ptjt�1H(H 0Ptjt�1H + �2�)
�1H 0Ptjt�1 (62)

where xtjt is the posterior mean of xt and xtjt�1 the prior mean. Likewise, Ptjt
denotes the posterior covariance matrix of xt and Ptjt�1 the prior covariance
matrix. Equation (12) implies that the variance of the channel noise is given by

�2� =
1� k
k

H 0Ptjt�1H (63)

From equations (62) and (63)

H 0PtjtH = (1� k)H 0Ptjt�1H

= (1� k)H 0 ��2Pt�1jt�1 +�v�H (64)

Equation (64) implies that in steady state

P =
1� k

1� (1� k)�2�v (65)
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Using equations (40) and (63) equation (61) implies

H 0xtjt = (1� k)H 0xtjt�1 + kst

= �(1� k)H 0xt�1jt�1 + kst

and since j�(1� k)j < 1

H 0xtjt =
1X
j=0

((1� k)�)j k(H 0xt�j + �t�j) (66)

Equation (66) implies that

cov("t;H
0xtjt) =

k

1� (1� k)�2

�
a+

1

�

�
�2" (67)

cov(yn;t;H
0xtjt) =

k

1� (1� k)�2 (b� 1)�
2
y (68)

Equation (66) also implies that

var(H 0xtjt) = k
2

0B@E
264
0@ 1X
j=0

((1� k)�)j H 0xt�j

1A2
375+ " 1

1� ((1� k)�)2
�2�

#1CA
(69)

Some tedious but straightforward calculations show that

E

264
0@ 1X
j=0

((1� k)�)j H 0xt�j

1A2
375 = 1�

1� ((1� k)�)2
� � 2

(1� (1� k)�2) � 1
�
H 0V ar(xt)H

Furthermore, from equation (63)

1

1� ((1� k)�)2
�2� =

1

1� ((1� k)�)2
1� k
k

H 0Ptjt�1H

=
1

1� ((1� k)�)2
1� k
k

H 0(�2Pt�1jt�1 +�v)H (70)

Using the steady state expression (65) the steady state version of equation (70)
is

1

1� ((1� k)�)2
�2� =

1

1� ((1� k)�)2
1

1� (1� k)�2
1� k
k

H 0�vH

=
(1� �2)

1� ((1� k)�)2
1

1� (1� k)�2
1� k
k

H 0V ar(xt)H (71)

Combining equations (69), (70), and (71) and simplifying delivers

E
�
(H 0xtjt)

2
�
=

k

1� (1� k)�2H
0V ar(xt)H (72)
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Substituting (67), (68), and (72) into (60) delivers

�E
�
(y � yn;t)2

�
= �a2�2" � (b� 1)2�2y

� k

1� (1� k)�2

 �
a+

1

�

�2
�2" + (b� 1)2�2y

!

+ 2a
k

1� (1� k)�2

�
a+

1

�

�
�2"

+ 2
k

1� (1� k)�2 (b� 1)
2
�2y (73)

The �rst order conditions for maximizing (73) with respect to a and b deliver
result in the proposition for the commitment case.

Under discretion, the policymaker takes the observation noise �2� in equation
(69) as exogenous. Under discretion the policy objective (73) thus has to be
modi�ed to:24

�E
�
(y � yn;t)2

�
= �a2�2" � (b� 1)2�2y

� k2�
1� ((1� k)�)2

� � 2

(1� (1� k)�2) � 1
� �

a+
1

�

�2
�2" + (b� 1)2�2y

!

� k2
"

1

1� ((1� k)�)2
�2�

#

+ 2a
k

1� (1� k)�2

�
a+

1

�

�
�2"

+ 2
k

1� (1� k)�2 (b� 1)
2
�2y (74)

The �rst order conditions with respect to a and b deliver the result stated in
the proposition for the case without commitment.

A.6 Proof of lemma 8

From proposition 7 we have ut = CB!t. For b = 1 we get (see appendix A.4):

CB =

0BB@
�
a+ 1

�

�
k 0 k

(1� k)
�
a� k

(1�k)
1
�

�
0 �k

a 1 0

1CCA
From equation (63) follows that the variance of the observation noise is

�2� =
1� k
k

1

1� (1� k)�2

�
1

�
+ a

�2
�21 (75)

Therefore, letting ut0 = (u1t ; u
2
t ; u

3
t )
0, the variances of the VAR residuals are

24Note that the covariance terms (67) and (68) remain una¤ected by treating �2� as exoge-
nous.
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V ar(u1t ) =

�
k2 + k(1� k) 1

1� (1� k)�2

��
a+

1

�

�2
�2v1

V ar(u2t ) =

 
(1� k)2

�
a� k

(1� k)
1

�

�2
+ (1� k) 1

1� (1� k)�2

�
1

�
+ a

�2!
�2v1

V ar(u3t ) = a
2�2v1 + �

2
v2

From the previous expressions it is obvious that @V ar(u1t )
@a > 0, @V ar(u

3
t )

@a > 0,

and straightforward to establish @V ar(u2t )
@a > 0, provided a > 0.

A.7 Proof of lemma 9

Given the policy rule (37), the result is immediate for the variance of the policy
instrument. From proposition 7 we have

zt = Dzt�1 + CB!t

Taking variances on both sides and applying the columnwise vectorization op-
erator vec(�) one gets

vec (var(zt)) = (I9x9 �D 
D)�1vec(CB�C 0B0)
where � = var(!t) and I9x9 is a 9-dimensional identity matrix. Deriving the
explicit expressions for vec (var(zt)) and computing the derivatives shows that
@�2p
@a > 0 and

@�2y�yn
@a > 0, provided a > 0.

A.8 Proof of lemma 10

From the proof of lemma 9 in appendix A.7 one obtains explicit expression for
the variance of prices and output gap. Evaluating these at discretionary and at
fully optimal policy shows that

�2p;d
�2p;c

=
(1� �(1� k))2 (1 + �(1� k))2

(1� �2(1� k))2
1

(1� k)2

�2y�yn;d
�2y�yn;c

=

�
1 + �4 � 2�2 + 3k�2 � 3k�4 � 2k2�2 + 3k2�4 � k3�4

�
(1� �2(1� k))2

1

(1� k)

where �2p;d and �
2
p;c denote the variance of prices under discretionary and com-

mitment policy, respectively, and �2y�yn;d and �
2
y�yn;c the corresponding vari-

ances of the output gap. As is easily seen from the previous equations, the
variance ratios become unbounded as k ! 1.

A.9 Proof of lemma 11

Evaluating @D
@a at the discretionary monetary policy solution delivers

@D

@a
=

0@ � 1
k �� (�k + 1)

2 � 1
k �� (�k + 1)

2
0

1
k �� (�k + 1)

2 1
k �� (�k + 1)

2
0

0 0 0

1A
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and shows that for k � 1 one obtains (44). Moreover, taking the derivative of

diag(V ar(ut)) = diag(V ar(CB!t))

with respect to a delivers

@diag(V ar(ut))

@a
=

0BB@ 2
(k2�2�k�2+1)(a�+1)�21

(k�2��2+1)� k

2
(a��2�k�2�a��2ak��2+k2�2+ak2��2)

(k�2��2+1)� (k � 1)�21
2�21a

1CCA
Evaluating at the discretionary monetary policy solution and taking the limit
k !1 delivers (45).
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