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Abstract

This paper contributes to the productivity literature by using results from

�rm-level productivity studies to improve forecasts of macro-level produc-

tivity growth. The paper employs current research methods on estimating

�rm-level productivity to build times-series components that capture the

joint dynamics of the �rm-level productivity and size distributions. The

main question of the paper is to assess whether the micro-aggregated compo-

nents of productivity� the so-called productivity decompositions� add use-

ful information to improve the performance of macro-level productivity fore-

casts. The paper explores various speci�cations of decompositions and vari-

ous forecasting experiments. The result from these horse-races is that micro-

aggregated components improve simple aggregate total factor productivity

forecasts. While the results are mixed for richer forecasting speci�cations,

the paper shows, using Bayesian model averaging techniques (BMA), that the

forecasts using micro-level information were always better than the macro al-

ternative.

JEL classi�cation: C14, C23, D24, O12, O47

Keywords: economic growth, production function, total factor productiv-
ity, aggregation, panel data, forecasting



Forecasting productivity using micro data

1 Introduction

This paper contributes to the productivity literature by using results from

�rm-level productivity studies to improve forecasts of macro-level productiv-

ity growth. The paper employs current research methods on estimating �rm-

level productivity to build times-series components that capture the joint

dynamics of the �rm-level productivity and size distributions. The main

question of the paper is to assess whether the micro-aggregated components

of productivity� the so-called productivity decompositions� add useful in-

formation to improve the performance of macro-level productivity forecasts.

To our knowledge, our study is a novel attempt to connect micro and macro

level analysis whereby micro-level productivity estimates and decompositions

of aggregate productivity provide additional information to be used in mak-

ing macro forecasts.

Much of the recent research e¤ort in the �eld of productivity, both at the

micro and macro level, has been aimed at measurement. This research has

achieved some notable results regarding several important issues - accounting

for adjustment costs, variable factor utilization, intangible investments, etc

(e.g. Oliner et al. (2007), Basu and Kimball (1997), Kátay and Wolf (2008));
and issues connected to aggregation (e.g. Petrin and Levinsohn (2008)).
Research into the practical matter of forecasting aggregate productivity has

made much less progress. Forecasting total factor productivity (TFP) can be

quite complicated, much more so than for well-understood primary economic

measures. TFP essentially is computed as the ratio of output to inputs and

measurement errors in either the numerator or the denominator do not cancel

but exacerbate each other. A common �nding of the productivity literature

is that the yearly growth rates of TFP are often unstable or erratic, which

makes forecasting exceedingly di¢ cult.1

Forecasting is futher complicated by the fact that our theoretical un-

derstanding of aggregate productivity movements is less advanced than our

1For this reason, most studies report annual percent changes calculated over several

years depending on the dataset (for example: Corrado et al. (2006) and Oliner et al.

(2007)).
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1 Introduction

understanding of, say, the labor market. Theory is not unambiguous to

the level of analysis at which exogenous factors cause TFP movement to

take place. Are explicit actions at the �rm level the source and does aggre-

gate TFP change owing to within-�rm changes in productivity and between-

�rm movements in market share, or are representative �rms merely able

to pluck the fruits of movements in some exogenous productivity frontier

(as is assumed in the RBC literature)? Macro-level productivity forecasting

uses historical timeseries of aggregate productivity to uncover an underly-

ing macro-level statistical process of TFP movements, essentially assuming

the latter. However, evidence clearly points to the importance of �rm-level

decisions within an evolving market as the source of productivity growth

(Bartelsman and Doms (2000), Bartelsman et al. (2005)). The issue of un-

derstandingand forecasting aggregate productivity movements thus requires

good �rm-level measures and proper theory on �rm-level actions and market

selection. The main contributions on �rm-level TFP measurement are Olley

and Pakes (1996), Levinsohn and Petrin (2003), and a more recent study by

Petrin and Levinsohn (2008). The classical papers on aggregation of TFP are

Domar (1961) and Hulten (1978). However, the aggregation papers either

assume that the �rms operate in a frictionless world or assume that all �rms

are essentially identical �representatve �rms�.

Unfortunately, the theoretical links between �rm-level decisions and the

interactions between �rms and customers in a market have not been well mod-

elled, and the sources of �rm-level heterogeneity and the triggers of resource

reallocation have not yet been explored in a comprehensive manner. Some

early work attempts to provide explanations of how �rm-level productivity

interacts with resource allocation to determine aggregate growth. One exam-

ple is Bartelsman, Haltiwanger and Scarpetta (2008), who model the joint

distribution of size and productivity. Another is Lentz and Mortensen (2005),

who structurally estimate a model of creative destruction. This modelling

does not yet provide a framework for using the full information in �rm-level

data for macro-level forecasting. Nevertheless, they provide the intuition

for using micro-aggregated representations of the underlying relationships
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Forecasting productivity using micro data

among size, productivity, �rms�decisions, market selection and such to aid

in macro forecasting.

The micro-aggregated components of aggregate productivity growth may

help explaining the aggregate for several reasons. First, the �within�com-

ponent or productivity growth among individual �rms, is a simple weighted

average of individual growth rates. It is the sole factor behind aggregate pro-

ductivity dynamics in a neoclassical world. In our view, the within compo-

nent can be expected to have forecasting power because it captures common

behavior over the business cycle (such as factor hoarding), and steady fac-

tors at lower frequencies (such as technology di¤usion). Second, the�between�

component is assumed to represent the underlying forces of reallocation of re-

sources across �rms. It captures market selection mechanisms whereby more

productive �rms gain and less productive �rms lose market share. Based on

the �ndings of earlier work by Baily et al. (2001), Basu and Kimball (1997),

and Basu et al. (1998) we may expect it to explain behave quite di¤erently

over the cycle than the within component, while over time it may re�ect

changes in demand conditions or policy environment. Third, the net entry

component captures the entry and exit at the fringe, as well as the rejuvena-

tion of industries through high-growth startup. If, for instance, the net entry

term is large, it implies that entrants� productivity is larger than that of

exiters, possibly indicating new opportunities arising through technological

breakthroughs.

In our work, we do not attempt to put such structure or meaning on

the contribution of the �rm-level productivity decompositions to the macro

forecasts. The literature on decomposing aggregate productivity growth has

grown extensively over the past few years and indicates that there are many

ways to de�ne or modify the decompositions. Our primary objective is to

improve forecasts of aggregate productivity growth using disaggregated infor-

mation and not to favor one method of decomposition over another. To this

end, we work with two standard decompositions (Olley and Pakes (1996),

Baily et al. (2001)). We also introduce and estimate simple auxiliary equa-

tions, based on theoretical notions from the literature, for both individual

productivity changes and evolution of �rm-level market shares. The objec-
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2 Firm-level TFP measures and productivity decompositions

tive of the auxiliary models is to extract further information from the joint

distribution of productivity and market share.

Our �rm-level dataset, provided by Statistics Netherlands (CBS)2 consists

of a large yearly panel of Dutch manufacturing �rms over 1978-2004. More

details can be found in Appendix 5.1.

The paper is organized as follows. Section 2 lays down the outline of

the method we use to estimate TFP at the �rm-level and describes the pro-

ductivity decompositions used to generate the micro-aggregated productivity

components used in the forecasting excercises. Section 3 discusses the various

forecasting experiments and the metric used to evaluate their performance.

The results of the various excercises are presented and the Bayesian Model

Average outcomes show how the �rm-level information improves the ability

to forecast aggregate productivity. Section 4 concludes.

2 Firm-level TFP measures and productivity

decompositions

In this paper, the empirical work is separated into measurement and aggre-

gation procedures using micro-level panel data, and forecasting excercises

using aggregated time-series. This section describes the work conducted in a

secure computing environment using con�dential �rm-level information. The

output of this section will be a collection of micro-aggregated time-series com-

ponents of productivity that are analysed outside of the secure environment,

together with other macro-level timeseries, in order to forecast aggregate

productivity. The forecasting analysis is described in section 3.

In this section, we provide a brief description of the methods used to

construct �rm-level TFP measures, as well as the methods by which the

�rm-level information is aggregated into micro-aggregated productivity com-

ponents. To generate estimates of TFP at the �rm-level we applied a stan-

dard procedure introduced by Olley and Pakes (1996) (OP) and modi�ed
2The CBS �Centrum voor Beleidsstatistiek�provides remote access facilties to the con-

�dential data, under strict rules for disclosure.
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Forecasting productivity using micro data

by Levinsohn and Petrin (2003) (LP henceforth). The decompositions of

aggregate productivity� i.e. micro-aggregates of �rm-level productivity�

are based on methods available in the literature, Olley and Pakes (1996) and

Baily et al. (2001), and extended to allow a di¤erent dynamic interpretation.

2.1 Firm-level FTP measures

In estimating �rm-level productivity measures, a main issue is controlling for

endogeneity of the primary inputs into production. Consider a Cobb-Douglas

production function (indices i and t were dropped for simpli�cation)

y = �0 + �ll + �kk + � + " (1)

where y is log value-added, k is log capital, l is log labour, � is log produc-

tivity and " is assumed to be an iid disturbance. � is unobservable by the

econometrician but known3 to the �rm. Since � is in the information set

on which the �rm conditions its optimal choices of inputs, there will always

be a nonnegative correlation between input factors and � . This dependence

renders simple OLS parameter estimates to be biased.

One of the key assumptions in the procedure to control for the endogeneity

bias, is that capital is pre-determined, ie its level is chosen before production

takes place. Hence, the orthogonality of k to the innovation in � can be

used to identify �k. To solve the endogeneity problem with respect to freely

variable labor, the method makes use of a proxy. The key assumption is that

the proxy is monotonic in � because then the proxy can be used to invert out

the unobserved productivity shock. The main di¤erence between OP and LP

is that the former uses investment, the latter uses intermediate material use

as a proxy.

There are, of course, caveats to both procedures, ie which proxy one

should use. Ackerberg et al. (2005) lists several arguments and suggests

further modi�cations to better measure the parameters of the production

function. Yet, we chose LP because (i) our forecasting exercises do not

3at least up to its expected value
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2 Firm-level TFP measures and productivity decompositions

concern parameter-measurement in the �rst place, (ii) it is easily tractable

and has strong intuitive arguments for identi�cation, (iii) the data do not

have direct estimates of investment neeeded to produce �rm-level capital

measures. We did not want to introduce more measurement error by applying

another proxy for investment.

2.1.1 Production function parameter estimates

Production function parameter estimates are presented for two concepts of

production, namely value added (table 3) and gross output (table 4). Col-

umn 1 shows the industry codes� table 1 provides the legend� columns 2-4

contain the point estimates for K;L and M , column 5 lists the value of a

�2 test statistic for constant returns to scale, columns 5-6 show standard

errors for b�k and b�l, and the last column shows the number of �rm-year
observations. The parameter estimates and their variation across industries

seem in line with �ndings in the literature. The b�k are found non-signi�cant
more frequently for the gross output production function, which was against

our expectations. Since the output speci�cation requires a more complex IV

technique together with a grid-search algorithm, it is less clear whether the

di¤erence between the two production concepts is explained by the estima-

tion method or measurement issues. While we generated micro-aggregated

TFP components for use in the forecast excercises for both the value added

and gross output concepts, in the remainder of the paper we focus on results

for value added.

2.2 Productivity Decompositions

Starting with the �rm-level measures of productivity, accounting identities

provide the link with aggregate productivity. In general, productivity (growth)

at the aggregate level can be computed as a weighted average of �rm-level

productivity growth, with the weights related to �rm size.4 The account-

ing identities can then be parsed into components that add up to aggregate
4If one wants measures of aggregate productivity growth that are derived in a welfare

theoretic setting, many assumptions need to be made that likely do not hold for �rms or
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productivity and that re�ect movements in the �rm-level productivity and

realloction processes. We start by looking at a simple decomposition Baily

et al. (2001), and continue by building on a decomposition given by Olley and

Pakes (1996). Both of these are augmented with a further re�nement that

models the �push and pull�process by which market shares evolve depending

on a �rm�s position in the �rm-level productivity distribution.

The outputs of this part of the empirical excercise are sets of speci�cations

that are to be used in the forecasting excercise. These speci�cations are based

on binary choices along four dimensions. We start with components based

on value added or gross output measures of �rm-level TFP as described

above.5 Next, the accounting identities require a measure of market share

or �rm size. These may be constructed using the �rm�s share of industry

output (either value added or gross output), or the �rm�s share of industry

inputs (aggregating the factor inputs using the estimated output elasticities

as weights). Next, the productivity components are computed using either

of the two decomposition methods described below in equations 2 and 6.

Finally, auxilliary models (equations 7 and 8 below) are estimated to capture

productivity �push and pull�e¤ects. The models generate �tted values for

individual �rms�market shares and productivity growth. The productivity

components are then based on either the actual or �tted values of these

�rm-level indicators.

industries (see e.g. Hulten (1978), Petrin and Levinsohn (2008))). Aggregated produc-

tivity computed following an accounting identity may therefore not re�ect how aggregate

welfare changes if �rm-level productivity changes and and all resources are reallocated

instantaneuosly to their optimal use. Of course, frictions prevent such instantaneous real-

location and provide the reason that �rm-level information may provide information about

aggregate movements.
5However, we present results based on value-added productivity for reasons outlined at

the end of Section 2.1.1.
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2 Firm-level TFP measures and productivity decompositions

2.2.1 Accounting Identities

The �rst dynamic decomposition, laid out by Baily et al. (2001), is the

following:

�� t =
X
i2C

e�i�� it+X
i2C

��i(e� i�e�)+X
i2E

�it(� it�e�)�X
i2X

�it�1(� it�1�e�); (2)
where � it is the TFP-level of �rm i in period t, �it is the market share of

�rm i in period t, e� = � t+� t�1
2

, � is the di¤erence operator, C is the set of

continuers, E is the set of entrants and X is the set of exiters in time t. The

terms in the previous equation are often called within-, between-, entry-, and

exit-terms, respectively.

In the second decomposition, we combine a static decomposition with

equation 2. The static equation was introduced by Olley and Pakes (1996).

The static decomposition is

� t = � t +
X
Nt

(�it � �t)(� it � � t); (3)

where � t = 1
Nt

P
Nt
� it, and

P
Nt
(�it � �t)(� it � � t) is a covariance mea-

suring the association between productivity and size. This decomposition

informs us about characteristics of ��s cross-section distribution. When the

covariance-term is high, the weighted average is higher than the unweighted

average. It also implies that the change in aggregate productivity is the

sum of the change in the unweighted average productivity and change in the

covariance-term. Di¤erencing 3 yields:

�� t = �� t+
X
Nt

(�it��t)(� it� � t)�
X
Nt�1

(�it�1��t�1)(� it�1� � t�1); (4)

ie. aggregate productivity change is sum of the change in the unweighted

average productivity and change in the covariance term. Entry and exit are

implicity accounted for here as the cross section sums run from i = 1:::Nt

and i = 1:::Nt�1 respectively. Hence, the weights are such that
P

Nt
�it = 1

and
P

Nt�1
�it�1. Now express e� using 3:

e� =
� t + � t�1

2
=
� t + � t�1

2
+
covt(�; �) + covt�1(�; �)

2

= f[� t] + fcov(�; �): (5)
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We expect fcov(�; �) to reveal information about the cross section character-
istics of the distribution. We base our analysis on 2, but we also want to

introduce information about the size and productivity distributions. To this

end, we plug 5 into the between term of 2 to getX
C

��i(e� i � e�) =
X
C

��ie� i �X
C

��ie�
=

X
C

��ie� i �X
C

��i

�f[� t] + fcov(�; �)� ;
so 2 looks like6

�� t = X
C

e�i�� it +X
C

��i(e� i � f[� t])�X
C

��ifcov(�; �)
+
X
E

�it(� it � e�)�X
X

�it�1(� it�1 � e�): (6)

6This manipulation does not a¤ect the validity of the decomposition. Had we rewritten

all the terms in 2, we would have got

�� t =
X
C

e�i�� it +X
C

��i(e� i �g[� t])� fcov(�; �)X
C

��i

+
X
E

�it(� it �g[� t])�X
X

�it�1(� it�1 �g[� t])
�fcov(�; �))"X

E

�it �
X
X

�it�1

#

where

�fcov(�; �)X
C

��i � fcov(�; �))"X
E

�it �
X
X

�it�1

#

= �fcov(�; �)"X
C

(�it � �it�1) +
X
E

�it �
X
X

�it�1

#

= �fcov(�; �)"X
C

�it +
X
E

�it �
X
C

�it�1 �
X
X

�it�1

#

= �fcov(�; �)
24X
Nt

�it �
X
Nt�1

�it�1

35 = 0
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2 Firm-level TFP measures and productivity decompositions

The �it weights were de�ned at the beginning such that
P

Nt
�it = 1, and

hence
P

C ��i is not necessarily zero (it would be zero had we de�nedP
C �it = 1). Therefore the covariance term is not killed by

P
C ��i. How-

ever, the between-term is now di¤erent: it sums up the share-changes weighted

by deviations from the time-average of the simple cross-section average. The

covariance-term is shown separately.

Push and pull e¤ects Equations 2 and 6 show the two main decom-

positions we used in the forecasting exercises. Both are identities separat-

ing aggregate productivity growth into dynamic components. In the case

of 2 we have three components (�within�, �between� and a combined �net-

entry�contribution), and in the case of 6 we have a di¤erent between com-

ponent and an additional �cross-term�. We denote these components as

4� it; i = w; b; ne; b1; b2 for later use. Both of these approaches take the

underlying �rm-level market share indicator and productivivty growth rate

as given. In order to put more structure on the evolution of these variables

we model two e¤ects: a "pull" and a "push" e¤ect. The speci�cation is de-

rived form the literature on frontier productivity, both theoretical (Acemoglu

et al. (2002)) and empirical (Bartelsman et al. (2008)). The approach essen-

tially pins down a �rm�s position relative to the frontier. The pull-equation

says that individual productivity growth depends positively on the distance

from the frontier, in other words, �rms further away are pulled more strongly

towards it as technology spreads out:

�� it = �(�
F
t � � it) + �it; (7)

where �Ft is frontier productivity and �it is an autonomous or noise com-

ponent. A case can be made for both � < 0 and � > 0. In the �rst case

�rms closer to the frontier can be thought to have greater absorption capac-

ity7 (greater human capital, which is unmeasured, and hence it shows up as

higher productivity), so they can take on new technologies and grow faster.

In the � > 0 case - investigated by the studies above - less productive �rms

7cf. with the "second face" of research as called in the R&D literature
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tend to grow faster. For instance, these �rms can be though as being new

entrants with relatively high growth potential.8

Frontier productivity (�Ft ) for each industry was calculated as the average

of the top decile from a truncated distribution. We got rid of the top and

bottom 1% of the observations to kill the possibly erratic e¤ects on aggre-

gates.9 We took a moving average of �mit =
� it+� it�1

2
to further guard against

extreme observations. The resulting truncated distribution was then used to

calculate the average of the top decile.

The push equation is assumed to encapsulate the market selection mech-

anism whereby less e¢ cient �rms are crowded out of the market. Assume

the following speci�cation:

�it = 
0 + 
1(� it � � t) + "it: (8)

This equation reads: higher-than-average productivity �rms end up gain-

ing market share (
1 > 0), and lower-than-average productivity �rms lose

market share.

The use of equations 7 and 8 is that once we estimated parameters �; 
0
and 
1, the �tted values d�� t and c�it from these simple models inform about
the underlying10 catch-up components and shares. If they have explanatory

power in our dataset then d�� t and c�it should add to the forecasting power
of the set of components that are computed using these �tted values rather

than the actual data on �rm-level productivity growth and market share.

Estimation of the auxiliary models The distance variables in both 7

and 8 are endogenous. For 7, the endogeneity problem is immediate. As for

8, a case can be made that a �rm gains market share exactly because its

8The literature calls the � > 0 case - when less productive �rms grow faster - as �-

convergence. The concept was introduced by Robert Barro and Xavier Sala-i-Martin in

their 1991 paper.
9I ignored the top and bottom 1% of the productivity distribution because it turned

out that frontier time-series exhibited unplausibly large time-variation if these observations

were included.
10 in the sense of the simple econometric models 7 and 8.
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2 Firm-level TFP measures and productivity decompositions

productiviy increased in the wake of a postive productivity shock. One way

to get around it is to apply an IV estimator. The sample moment condition

for b� is
E[zi

�
�� i � b�IV (�Ft � � it)�] = 0;

and the simple Anderson-Hsiao-type IV estimator is given by

b�IV =
NX
i=1

TX
t=2

zit�� it

NX
i=1

TX
t=2

zit(�Ft � � it)
with zit = (�Ft�2 � � it�2).

The instruments can also be �zit but that results in the loss of more

observations. As for the push-equation (8), rewriting �it = x

0 + "it where


 = [
0; 
1] and x = [1; � it � � ]. The conventional IV-estimator again is

b
IV =

NX
i=1

z0i�i

NX
i=1

z0ixi

= (Z 0X)
�1
Z 0� with

zi = [(� i1 � � 1); :::; (� iT�1 � �T�1)]0;
�i = [�i2; :::; �iT ]

0 and

Z = [z01:::z
0
N ]
0;� = [�01:::�

0
N ]
0:

The IV-results of equations 7 and 8 were in line with our expectations. �

appeared signi�cantly positive at conventional levels in all twelve industries

when a value-added-based production function was used11. Results were very

similar in the case of gross output, except that � did not appear signi�cant

in the textiles industry.12 The 
�s were signi�cantly positive for value-added-

based productivity measures. The output-based speci�cations showed more

ambiguous associations: 
0 were negative in Nonmetallic mineral products

11The mean and standard deviation of � across the twelve industries was :039 and :014.
12The mean and standard deviation of � across the twelve industries was :032 and :016.
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and Electrical and optical equipment. Estimates were invariant to whether

we measured �rm size by input- or output-side indicators of �rms.13

3 Forecasting

The previous section described the estimation and computation of a set of

micro-aggregated productivity components that are to be used in conjunction

with macro timeseries in order to forecast aggregate productivity. The basic

idea in this section is to assess whether adding the timeseries components

built up from the �rm-level data improves the traditional forecasts that are

made using only published aggregate timeseries. In this section we describe

the experiments used in the assessment. First we argue that the proper metric

is not to compare forecasts to actual annual TFP growth, but to the annual

average trend growth rate. Next, we describe the �horse races�comparing

forecast performance of the macro timeseries to the forecast performance

when a set of productivity components is used as well.

3.1 Methodology

Yearly growth rates of total factor productivity are often found to be volatile.

A common way to cope with the large variation is to analyze changes over a

longer period. As an illustration, �gure 1 shows yearly TFP-changes and ta-

ble 5 shows average yearly changes for �ve-year periods for several countries.

Figure 2 depicts our micro-based and �published�TFP measures for aggre-

gate Dutch manufacturing. Micro-based aggregates are built using �rm-level

productivity estimates, �published�aggregates, built from national accounts

data, come from the EUKLEMS database (O�Mahony et al. (2007)). We

will refer to our �rm-based TFP aggregates as micro-aggregated TFP here-

after. Although the two datasources characterize the same set of �rms, the

published and micro-aggregated TFP measures di¤er for a variety of rea-

13That is, using input shares or value added/gross output shares did not a¤ect point

estimates at 4-digit precision.
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sons related to statistical practice. To trace these di¤erences to underlying

measures of inputs and outputs, �gures 3, 4 graph year-on-year growth rates

for value added, output and labor. Several stylized facts emerge from these

graphs.

First, aggregate yearly growth rates exhibit large variation in all coun-

tries (�gure 1). Second, micro-aggregated measures generally vary more than

published aggregates (�gures 3, 4). Third, micro-aggregated dynamics are

similar on the input and output side of the �rm suggesting that yearly TFP

growth numbers actually make sense despite their variation.14 Finally, micro-

aggregated TFP-growth series - although more volatile - captures the dynam-

ics of the published aggregate reasonably well (�gure 2).

The most prominent of all the above observations is that yearly aggregate

productivity growth exhibits large variation. Instead of focusing on yearly

forecasts, we evaluate our estimates in 3-year forecast windows. We do not

calculate MSE-type values but simply compare average growth rates implied

by extrapolated yearly values. The relatively long time-span of the sample

allowed us to evaluate results in four rolling forecast windows: 1998-2000,

1999-2001, 2000-2001, 2001-2003. These forecast windows are useful for at

least two reasons. First, they allow us to investigate the e¤ect of adding more

data to our models. Second, they give insight about the predictive content

of components 4� it over di¤erent phases of the business cycle15.
We make use of the two decompositions developed in 2.2, to reveal com-

ponents that facilitate interpreting the dynamics of aggregate productivity.

Both decompositions consist of three or four building blocks that aggregate

to overall productivity growth. First, the within component shows the e¤ects

of �rm-level productivity change. Second, the between component shows how
14The same conclusion emerges from industry-by-industry analysis, not shown here.

Micro-macro discrepancies are all the more obvious looking at level charts.
15Dutch manufacturing exhibited fast growth over the �rst forecast window (1998-2000).

These were the last years of a high-growth-period, which started in the �rst half of the

nineties. The second forecasting window (1999-2001) contains the turning point in the

cycle with negative growth in 2001 but still strong activity over the entire three-year

horizon. The remaining two windows were periods of downturns. See �gure 3 for an

illustration of these periods.

15



Forecasting productivity using micro data

the reallocation of resources among �rms contributes to aggregate produc-

tivity growth. The third component encapsulates the e¤ects of �rm entry

and exit. In decomposition 6 a cross-term component also is included.

The idea of the �horse races�was to compare forecast performance of the

aggregate timeseries to the forecast performance when a set of productivity

components was used as well. The performance metric we chose was the

average growth of the Hodrick-Prescott-trend of the aggregate, thus, for any

two competing speci�cations we calculated the following:

c4�Agt+s �4�HPt+s vs c4�Mi

t+s �4�
HP

t+s ; (9)

where c4�Agt+s denotes the forecast of the aggregate, c4�Mi

t+s denotes the forecast

of microcomponents, and 4�HPt+s denotes the average growth of the Hodrick-
Prescott-trend of the aggregate, and s denotes the particular forecast window

in which the forecast is evaluated.

We now describe the forecasting experiments. Experiment 1 was designed

to investigate whether separate forecasts of microcomponents could improve

forecast the aggregate. Microcomponents forecasts are implied by decompo-

sitions 2 and 6, which specify micro-aggregated productivity growth as

4�Agt = 4�wt +4� bt +4�net =
X
dc1

4� it and

4�Agt = 4�wt +4� b1t �4� b2t +4�net =
X
dc2

4� it. (10)

In technical terms, we estimated univariate autoregressive speci�cations of or-

der 1 or 2 separately (AR(1) or AR(2) hereafter) for c4� it+s; i = w; b; ne; b1; b2
and aggregated the forecasts from these disaggregate speci�cations such that

c4�Mi

t+s =

( P
dc1
c4� it+sP

dc2
c4� it+s (11)

The aggregate forecast was generated by

c4�Agt+s � AR(1) or AR(2). (12)
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3 Forecasting

A relevant question is whether micro-aggregated productivity components

could provide more accurate forecasts than other disaggregates. We in-

vestigated this issue using conventional statistical industry components as

disaggregates instead of the productivity decompositions. We started with

forming four groups within manufacturing: consumer goods, intermediate

goods, electrical machinery and other investment goods industries, following

EUKLEMS-practice.16 Then, just like above, we forecaste aggregate produc-

tivity growth by summing up disaggregate forecasts. The di¤erence is that

disaggregate information was encapsulated by these four industry compo-

nents. In short, our c4�Mi

t+s are now implied by

c4�Mi

t+s =

4X
i=1

c4� it+s (13)

where i�s represent component industries and the c4� it+s are all generated
by separate univariate AR(1) or AR(2) speci�cations. c4�Agt+s is the same as
above in equation 12.

The set of speci�cations we investigated was spanned by two dimensions.

We had two values along the �rst dimension, which were given by the two

decompositions shown in equations 2 and 6. The second dimension speci�ed

whether we used measured or �tted values of �� t and �it giving four possibil-

ities. Hence, the two dimensions each yielded 8 speci�cations for the micro-

components and the aggregate forecasts. The industry components forecasts

were evaluated for 4 speci�cations as now we have only one decomposition.

Experiment 2 was intended to investigate whether microcomponents could

improve aggregate forecasts in a multivariate framework. This experiment

shed light on two issues. First, it is of interest to see how results are a¤ected

in a more common multivariate forecast model. Second, it is also important

to know how results are a¤ected by combining micro-aggregated information

with published aggregate information. To this end, we estimated vector au-

toregressions using log di¤erences of value added, capital, labor and microag-

gregated TFP as the regressand: yt = (4vat; 4kt; 4lt; 4�Agt ).17 Regressors
16See Table 1 for classi�cation details.
17The components of yt are suggested by the production function.
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included some of yt�s own lags together with lagged microcomponents. We

denote the latter as 4� it�q; i = w; b; ne; b1; b2. Data for 4vat; 4kt; 4lt came
from the published EUKLEMS database, while 4�Agt and 4� it�q were con-
structed from �rm-level data using equations 2 and 6. In short, and using the

generic notation V AR(p; q) for a VAR with p endogenous lags and q lags of

microcomponents 4� it, we estimated V AR(1; 2); V AR(2; 1) and V AR(1; 1)
using least squares. Correspondingly, the set of speci�cations described under

the experiment 1 were extended by the order of the VARs.

We asked a similar question in experiment 3. The di¤erence with exper-

iment 2 is that we are now interested in whether microcomponents improve

published aggregate forecasts in a multivariate framework. This amounted

to replacing 4�Agt by 4�EUKLEMS
t in yt above. The purpose here was to in-

vestigate the relationship between the published aggregate 4�EUKLEMS
t and

the microcomponents 4� it and see whether lagged microcomponents have
marginal forecasting power over the lagged published aggregate.

3.2 Forecast results

Our evaluation method amounts to comparing the performance of the mi-

crocomponents speci�cations and their aggregate alternatives by calculating

the deviations given by 9.

In experiment 1, forecasts are speci�ed by equations 11 (and 13) and 12.

Tables 6 and 7 show forecast performance in the �rst and the last forecast

window.18 The �rst column of each table identi�es whether direct measures

or �tted values were used for �� it and �it in the speci�cations. Columns

2 and 3 contain the microcomponents forecasts in decompositions 2 and 6

for value-added-based productivity. Column 4 shows the same for industry

components. Columns 5 and 6 show aggregate forecasts of manufacturing

productivity growth. The �rst entry in column 2 of table 6 says that the

microcomponents forecast (using measured [not �tted] productivity and ob-

served [not �tted] shares) is 2.4% lower than the HP-trend over 1998-2000.

18We do not present results for all the windows to save on space. Full results are available

upon request.
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All the other entries are to read analogously. The corresponding aggregate

forecast, the �rst entry in column 5, is �3:2%. These two numbers imply
that the aggregate alternative to microcomponents is 0.8 percentage point

farther away from the observed HP-trend. If we compare numbers in the pre-

vious manner we can conclude that aggregate forecasts would have missed

to detect the productivity acceleration of the late nineties whereas several

of our speci�cations would have not. It is also clear that all microcompo-

nents forecasts beat the aggregate forecasts. This conclusion carried over to

all remaining forecast windows, Table 7 shows it for the last one.

As for industry components (column 4 in tables 6 and 7), we found that

their forecasts were closer to aggregate ones. More importantly, industry

components could not beat the micro-aggregated components forecasts in

any of the four forecast windows. This is an interesting result and suggests

that the decompositions of aggregate productivity among incumbents and

entrants, and among within and between contributions are more informative

about aggregate productivity dynamics than the productivity dynamics of

industry subgoups.

These results are remarkable for several reasons. First, they suggest that

microcomponents�predictive power is strong not only in particular periods

but over all phases of the business cycle (see footnote 15 in Section 3.1

for details). This is in contrast with Hendry and Hubrich (2006)�s results,

who found that disaggregate forecasts based on subaggregates of the con-

sumer price index performed worse than aggregate forecasts.19 We also found

that decomposition 6 produced more precise forecasts than decomposition 2,

suggesting that introducing information about the cross section distribution

proved to be useful.

Experiment 2 was designed to reveal the predictive power of microcom-

ponents over aggregate productivity growth in a VAR-framework. c4�Agt+s was
generated from VARs where no lagged microcomponents were present in the

set of explanatory variables and c4�Mi

t+s was generated from VARs with micro-

19Upon re�ection, this was to be expected. Micro-level pricing behavior depends in an

important way on (expected) aggregate prices and the individual di¤erences may cancel.

Feedback from the aggregate to individual productivity behavior likely is small.
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components. We note the main conclusions here without presenting detailed

results.20 First, the superiority of microcomponent-VARs were not obvious.

They performed better in some speci�cations and forecast windows, while

in others they did not. Second, the issue of model selection proved to be

critical. An obvious criterion to choose from a set of VARs is the Bayesian

Information Criterion (BIC). We found that using BIC to choose between

a microcomponent-VAR and an aggregate VAR may lead to serious errors.

For instance, choosing a microcomponent-VAR based on BIC could lead to

errors up to 1 � 2 absolute percentage points as measured by our metric in
equation 9. On the other hand, not choosing a microcomponent-VAR based

on BIC could lead to errors up to 1 absolute percentage points by our metric.

Furthermore, we always found a microcomponent-VAR in our speci�cation-

set, which performed better21 than the aggregate-VAR. The overall message

of experiment 2 is that (i) we can always �nd a microcomponent-VAR per-

forming better than the aggregate-VAR, even in our restricted speci�cation

set; (ii) model selection is critical but ambiguous; (iii) selecting a particular

VAR based on BIC may lead to large errors.

To explore the practical question whether microcomponents can better

predict the published aggregate we replaced4�Agt by4�EUKLEMS
t in experi-

ment 3. As above, we only note the main conclusions here. Results resemble

those in experiment 2 in that BIC and our performance measure did not

yield the same rank in our speci�cation-set. For instance, BIC favored a

VAR featuring input shares in the �rst forecast window with a 1:2 percent-

age deviation, however, measured shares led to only :08 percentage point

deviation (not shown here). We also found that we could always do better

than the aggregate-VAR with at least one microcomponent-VAR speci�ca-

tion. However, just like in experiment 2, we did not �nd clear superiority of

microcomponents.

20Numbers are available upon request.
21 in terms of our performance measure in 9
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3.3 Bayesian analysis

This section outlines the Bayesian forecasting approach to experiment 3. It

has at least three advantages over the Frequentist exercise. First, it is easy

to compare and test di¤erent speci�cations even if they are not nested. This

is an important advantage because we saw that model selection is a critical

issue when microcomponents are combined with macro-information in a mul-

tivariate framework. Second, combining forecasts is simple and intuitive in a

Bayesian framework. Third, the Frequentist analysis does not fully account

for uncertainty. We could calculate con�dence bands around the forecasts but

those would only re�ect forecast uncertainty. A Bayesian extension re�ects

both parameter uncertainty and the inherent randomness of forecasting.

This section outlines the Bayesian approach assuming we retrieved a pos-

terior distribution for the coe¢ cients and error covariance matrix of a VAR.

Denote them by � and V , respectively. A technical description of the esti-

mation and forecasting can be found in Appendix 5.2.

The main object of interest is the predictive density

p(yT+1jyT ;M) =
Z 1

0

Z 1

�1
p(yT+1jV; �;M)p(V; �jyT ;M)d�dV; (14)

where ys is observed data up to time s, V is the covariance matrix of

shocks and � is the parameter matrix in the VAR, andM denotes the model

we are using. The predictive density coherently integrates (i) the uncer-

tainty about �, V and (ii) the intrinsic uncertainty about the future yT+1,

conditional on the history yT of observed data and model M . p(V; �jyT ; M)
and p(yT+1jV; �;M) are retrieved from a customized Gibbs-sampler (MCMC
posterior simulator see, e.g. Koop (2003)). An illustrative example of the

descriptives of p(yT+sjV; �;M); s = 1; 2; 3 in our case is shown by �gure 5

and tables 8 and 9. These performance measures for value added/output,

capital, labor and productivity are similar in nature to the ones in experi-

ments 2 and 3. In the sequel we report performance measures only for TFP.

Deviations from average HP-trend growth were computed using the means

of the distributions of individual growth trajectories, not the means of the

yearly distributions.
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We estimated and forecasted several VARs with various lag-order in the

four forecast windows. As an example, we present detailed results for the

�rst window (1998-2000) in Table 10. All numbers are to read as explained

in Section 3.2. For instance, the �rst entry of column 2 of Table 10 says

that measured output-side shares in a V AR(1; 2) yielded :3 percentage point

higher productivity growth forecasts than the average HP-trend.

What is di¤erent is that Table 10 gives a Bayesian Model Average (BMA)

forecast. The average is taken over decompositions and structures and is

weighted by the the model�s Predictive Bayes Factor (PBF). The logic of

averaging is the following. The predictive likelihood p(yT+sjyT ;Mi) can be

calculated in time T + s; s = 1. It is a real number given by evaluating

p(�jyT ;Mi) at the observed yT+s (Geweke and Amisano (2008), van Dijk

et al. (2007)). The idea is to calculate the probabilities that the observed

yt+s was generated by model i. We evaluated them using the posterior sim-

ulator deployed to estimate � and V . That is, we computed the real number

R�1
PR

r=1 p(yT+sjyT ;M; �
(r)), where �(r) = (�(r); V (r)) and r = 1:::R are the

indices of the elements of the chain after convergence. Given these values, we

constructed model weights using PBFs. We assumed the same model-priors,

so the weights were given by the predictive likelihoods22.

The �rst four rows of Table 10 already show that some of the micro-

components give more accurate forecasts than the aggregate alternative, and

some do not. However, their PBF-weighted average is more accurate. It is

remarkable that, in every forecast window and every V AR speci�cation - not

shown here -, the PBF-weighted (over decompositions and structures) aver-

age forecast always proved to be more accurate than the aggregate alternative

even if some speci�cations performed worse.

We extended this way of model averaging over the entire set of speci-

�cations we have investigated so far. That is, the two decompositions and

four structures and the three lag-order speci�cations (V AR(2; 1), V AR(1; 2),

V AR(1; 1)) yielded 24 microcomponent-VARs and three aggregate-VARs in

each forecast window.

22after appropriate transformation.
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Table 11 summarizes the result of model-averaging over the entire set

of speci�cations. Several interesting conclusions emerge from these results.

First, individual performance measures of VARs showed that forecasts were

much more similar than in the frequentist exercise23. Second, BMA-forecasts

were always better than the macro-alternative, whether averaging over only

structures and decompositions or over the entire set of speci�cations. It

holds true even if individual speci�cations performed less well. This is an

interesting result and may be explained by the BMA-logic: every model is

as good as its forecasts. Since we weighted forecasts by their predictive

likelihoods, speci�cations with less explanatory power were assigned smaller

weights whereas speci�cations with more explanatory power were assigned

larger weights.

4 Conclusion

The aim of this paper was to build aggregate productivity forecasts using in-

formation on �rm-level productivity and market share evolution. We �t into

the productivity literature in that we build micro-level productivity measures

but our question was not how to measure productivity at the �rm level but

rather how to apply these estimates in forecasting. To our knowledge, our

study is a novel attempt to connect micro and macro level analysis whereby

micro-level productivity estimates are used to build aggregates and forecasts.

We carried out several forecasting experiments for di¤erent speci�cations

and models. Although there are some remaining questions about measure-

ment error, results of our frequentist exercise suggest that dynamic compo-

nents from productivity decompositions improve aggregate TFP forecasts.

This result is corroborated by our Bayesian analysis where we found that

BMA-forecasts were always better than the macro alternative.

23This has probably to do with our strong prior on the variance of the shocks. We

speci�ed a restricted-variance shock-distribution for reasons explained in Appendix 5.2.

As a result, the estimated means of simulated distributions di¤er less than in the frequentist

exercise. Di¤erences, or improvements should be evaluated in light of this.
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5 Appendix

5.1 The data

5.1.1 CBS data

General description The microlevel database consists of a large panel of

Dutch manufacturing �rms. The database is under close surveillance by the

Centrum voor Beleidsstatistiek24. The time dimension of the panel spans

between 1978 and 2004.

To compile our working data, we �rst established longitudnial links in

the database because the CvB changed �rm identi�ers as of 1993. We used

correspondences between �rm identi�ers included in the underlying data�les.

There was no documentation about such aspects of �rm dynamics as mergers,

acquisitions and split-ups so we could not control for these transformations.

The industry classi�cation system also changed in 1993. Since both the

1974-based (�old�) and the 1993-based (�new�) industry codes were available

in 1990-1992, we generated a correspondence between the two industry clas-

si�cations. We could then use this correspondence to generate de�ators that

originated from the EUKLEMS dataset, which in turn is based on the new

industry classi�cation.

Table 1 explains names of industry codes. In order not to lose observations

and maintain a reasonable size, we merged industries 23 and 24.

Table 2 describes how many �rms were used in the decompositions, the

last columns of tables 3 and 4 show the how many observations were used in

TFP-estimation. The last columns in tables 3 and 4 show �rm-year observa-

tions whereas table 2 treats each �rm as a single observation.

24Dutch Statistics O¢ ce
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Variables The dataset did not have observed capital so we used depre-

ciation as a proxy for the capital stock. We de�ated nominal depreciation

using an industry-speci�c implicit capital de�ator that was calculated from

EUKLEMS data. The other �rm-speci�c micro-variables were: number of

employees, output, value added, input materials, energy and payroll.

Outliers We �ltered outliers using the interquartile-range method. This

method is a standard way of dealing with skewed distributions. For TFP-

estimation, we considered an observation to be outlier if either of the following

was true:

xo < q25� 1:5 � IQR
xo > q75 + 1:5 � IQR;

where xo � fK=Y ;M=Y ;WEXP=Lg and K denotes capital, M denotes

input material purchases, WEXP denotes wage expenditures, Y denotes

either value added or output depending on which model we used. q25 and

q75 stand for the lower and upper quartiles of the distribution of the variables

in the set xo, and IQR � q75� q25:
For aggregation, we used slightly di¤erent �ltering. Since depreciation is

not observed in the �rst six years of the panel, we had to backcast individ-

ual productivity growth rates in 1978-1983. The backcasting procedure was

based on the (geometric) average of nonoutlier valueadded/revenue labor-

productivity growth. Using these "imputed" productivity numbers we car-

ried out a secondary outlier �ltering in order to get rid of implausibly large

or small productivity-observations. The logic of this secondary �ltering was

the same as above with the exception that we deployed energy instead of

depreciation.

5.1.2 The EUKLEMS data

History and general description The EUKLEMS "... project aims to

create a database on measures of economic growth, productivity, employment

creation, capital formation and technological change at the industry level for
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all European Union member states from 1970 onwards. This work will pro-

vide an important input to policy evaluation, in particular for the assess-

ment of the goals concerning competitiveness and economic growth poten-

tial as established by the Lisbon and Barcelona summit goals. The database

should facilitate the sustainable production of high quality statistics using

the methodologies of national accounts and input-output analysis. The input

measures will include various categories of capital, labour, energy, material

and service inputs. Productivity measures will be developed, in particular with

growth accounting techniques. Several measures on knowledge creation will

also be constructed. Substantial methodological and data research on these

measures will be carried out to improve international comparability. There

will be ample attention for the development of a �exible database structure,

and for the progressive implementation of the database in o¢ cial statistics

over the course of the project. The database will be used for analytical and

policy-related purposes, in particular by studying the relationship between skill

formation, technological progress and innovation on the one hand, and pro-

ductivity, on the other. To facilitate this type of analysis a link will also be

sought with existing micro (�rm level) databases. The balance in academic,

statistical and policy input in this project is realised by the participation of

15 organisations from across the EU, representing a mix of academic insti-

tutions and national economic policy research institutes and with the support

from various statistical o¢ ces and the OECD."25

Structure There have been two EUKLEMS releases so far. We used the

one that was published in March 2008. The �les contain 62 variables, includ-

ing basic data and growth accounting variables. The data�les are structured

to follow an industry classi�cation list which corresponds with the NACE26

list.

Variables For a detailed description of the variables, see O�Mahony et al.

(2007). This project used growth accounting variables in forecasting exercises

25http://www.euklems.net
26NACE �Classi�cation of Economic Activities in the European Community.
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and de�ators in the nonparametric identi�cation procedure. To be more

speci�c, the following variables were used in forecasting experiments.

GO_QI: Gross output, volume indices, 1995 = 100,

VA_QI: Gross value added, volume indices, 1995 = 100,

LAB_QI: Labour services, volume indices, 1995 = 100,

CAP_QI: Capital services, volume indices, 1995 = 100,

TFPva_I: TFP (value added based), 1995=100,

TFPgo_I: TFP (gross output based) growth, 1995=100,

GO: Gross output at current basic prices (in millions of local currency),

VA: Gross value added at current basic prices (in millions of local

currency).

The following were used for �rm-level calculations at the �rst stage of the

project:

GO_P: Gross output, price indices, 1995 = 100,

VA_P: Gross value added, price indices, 1995 = 100,

II_P: Intermediate inputs, price indices, 1995 = 100,

CAP: Capital services (in millions of local currency),

CAP_QI: Capital services, volume indices, 1995 = 100,

the last two were used to calculate implicit capital de�ators for every industry.

5.2 Bayesian analysis

5.2.1 Notation

Consider the following unrestricted VAR (1) speci�cation

y1t = �11y1t�1+ � � � +�1pynt�p +"1t

y2t = �21y1t�1+ � � � +�2pynt�p +"2t
...

...
...

...
...

ynt = �n1y1t�1+ � � � +�npynt�p +"nt

in a matrix representation as

yt = �yt�1 + "t
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where yt is an n � 1 vector containing the variables of the VAR, � is

a n � p matrix re�ecting the dynamic structure of the VAR and "t is an

iid mean-zero normal random vector with covariance matrix V . This last

assumption says there is no autocorrelation left in the error term but the

errors of di¤erent equations at time t can be correlated.

A more convenient representation of the above VAR is the following. Let

yt = (y1t:::ynt)
0 be the t-th observation vector of dimension (n � 1) in the

sample, xt = (y1t�1:::ynt�p)0 be the n� p-vector containing the p lags of the
n variables. Collect the � coe¢ cents equation-by-equation in the (n � p)-
vectors �1; :::; �n:The error vector stays the same "t = ("1t:::"nt)

0. Then the

above system can be written as

yt = Xt� + "t

Xt = In 
 xt =

0BBBB@
xt 0 � � � 0

0 xt � � � 0
...

...
. . . 0

0 � � � � � � xt

1CCCCA

� =

0BB@
�1
...

�n

1CCA ; 8t = 1:::T
This implies that yt 2 Rn�1; � 2 R(n

2�p)�1, Xt 2 Rn
2�p and "t 2 Rn�1.

5.2.2 Bayesian representation

The �nal objective of the forecasting exercise is to describe our beliefs about

the joint evolution of future observations and parameters based on our sample

up to time T . In other words, we want to characterize the posterior predictive

density. We can write this as

p(yT+1:::yT+H ; V; �jyT ); (15)

ie the joint posterior density of future observations and parameters con-

ditional on observed data. Using standard laws and the direct consequence
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of Bayes�theorem we deconvolve (15) as

p(yT+1:::yT+H ; V; �jyT ) = p(yT+1:::yT+H jV; �; yT ) p(V; �jyT ): (16)

The �rst term of the right hand side represents the beliefs about the

future realizations of the VAR, the second term is the posterior density of

the parameters. Rewriting 16 gives an operational representation of yT+1�s

posterior predictive density:

p(yT+1jyT ) =
Z 1

0

Z 1

�1
p(yT+1jV; �)p(V; �jyT )d�dV (17)

such that we integrate out the VAR-parameters � and the covariance matrix

of the error vector "t.

5.2.3 Prior elicitation

To understand we �rst characterize the posterior p(�; V jyT ) in 17. In the
usual manner, this posterior can be written as

p(�; V jyT ) / p(yT j�; V )p(�; V ): (18)

The �rst term on the right hand side of 18 is the Gaussian likelihood. The

second term is the joint prior. We choose a natural conjugate joint prior

speci�cation because - when combined with a Gaussian likelihood - it yields

full conditional posterior distributions of the same family27. The most obvi-

ous natural conjugate prior for V is the Inverse Wishart (IW ) distribution.

In short, this prior elicitation is a matrix-generalization of the Gamma-prior

in the univariate case. Similarly, choosing a normal prior for � results in a

normal full conditional posterior. To sum up the priors, we write

V � IW
�
V ; df

�
(19)

� � N(�;Q)

where the positive de�nite V matrix plays the role of the scaling parameter

and df is degrees of freedom. The probability density function of the IW -

distributed n� n matrix V looks like this:
27See, for instance, Koop (2003).
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p(V ) =
jV jdf=2jV j�(df+n+1)=2e�trace(V V �1)=2

2df�n=2�n(df=2)

where �n(df=2) is the multivariate gamma function.

Using 19, we can write out the joint prior as

p(�; V ) / N(�;Q)IW
�
V ; df

�
; (20)

and the joint posterior in 18 as

p(yT j�; V )N(�;Q)IW
�
V ; df

�
: (21)

Prior parameters �;Q; V and df A frequently used prior for macro VARs

is the so called Litterman-Minnesota prior. Our priors are similar to but

slightly di¤erent from this well-known prior. In the Litterman-Minnesota

case a VAR is written in levels and the prior on the coe¢ cient matrix is such

that the �rst lag has a prior mean of 1, the other lags have prior mean zero.

This prior assumes that there are n random walks in the system.

Our endogenous variables value added/output, capital, labor and pro-

ductivity are implied by the production function speci�cations. Our decom-

positions characterize aggregate productivity growth that we think can be

described by the �rst di¤erence of a random walk. Correspondingly, we take

zero prior means, ie � = 0 2 Rn�1 for the individual coe¢ cients. We also
assume that individual parameters are independent so that Q is diagonal.

Our data approximate yearly growth rates by log-di¤erences. A 0.3 log

point change around zero is approximately equivalent to a growth rate of 0.26,

a -0.3 log point change corresponds to a growth rate of -0.36. Moreover, if

we move further away from zero along the real line, the log di¤erences are

even poorer approximations of the real growth rates. In terms of aggregate

productivity and the other endogenous variables, these relatively small log-

changes imply already so large shifts on the original scale of the variables

that we expect it to happen very rarely. So it seemed reasonable to restrict

prior variances of the shocks and the coe¢ cients.
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Therefore, the diagonal elements of the error variance-covariance ma-

trix V were set to 10�2. The nondiagonal elements of V were set to zero

because we did not have a strong prior on the contermporary covariance

structure of the errors. In terms of a scalar zero-mean normal distribution,

this corresponds with 99% of the probability mass falling into the interval

[�0:258;+0:258]. On the one hand, this is the range where there is a small
chance of atypical shocks. On the other, with this prior variance setting, the

majority of the support corresponds to the interval [�0:2;+0:2], where the log
approximation works reasonably well and where we would expect the princi-

pal part of the typical aggregate growth rates. The same argument holds for

parameter variances Q. Roughly speaking, nontypical �-draws would blow

up/shrink already implausible values for yt in the next period, which may

result in forecasts of log-shifts changes that would imply implausibly large

changes in our endogenous variables.

df was also set to zero as this corresponds to the noninformative prior on

the degrees-of-freedom parameter.

5.2.4 Posterior distributions, estimation and forecasting

Using the joint posterior we can develop a Gibbs-sampler based on the full

conditional posterior distributions of � and V (see Koop (2003) for more

details).

Full conditional distributions: p(�jV; yT ) and p(V j�; yT ) The full con-

ditional distribution of the parameter vector � is proportional to a multi-

variate normal distribution. It is so because if V and yT are nonrandom, the

only thing that is random in the joint posterior (21) is �. p(�jV; yT ) can be
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written as

�jV; yT � N(�;Q)

� = Q

 
Q�1� +

TX
t=1

X 0
tV

�1yt

!

Q =

 
Q�1 +

TX
t=1

X 0
tV

�1Xt

!�1
.

The full conditional distribution of the error covariance matrix is proportional

to the product of the Gaussian likelihood and the IW (V ; df) prior about V .28

We use the fact that this product is also proportional to an IW
�
V �11 ; df1

�
-

density with a new scale matrix 
�11 and degrees of freedom parameter df1:

V j�; yT � IW
�
V ; df

�
,

where the updated scale and the degrees-of-freedom parameters V and df

are calculated as

V =

 
V �1 +

TX
t=1

(yt �Xt�) (yt �Xt�)
0

!�1
df = T + df .

The Gibbs-sampler amounts to iterating the following algorithm until

convergence:

1. Give starting values to �0 = (�
(0); V (0)):

2. Simulate �(m+1) from p(�jV (m); yT ) and then
simulate V (m+1) from p(V j�(m+1); yT ).

3. Set m = m+ 1 and go to step 2.

Forecasting After the Markov-Chain has converged we can consider the

elements of the chain (after discarding the burn-in observations and thinning

the chain) as sample from the joint posterior. Now we turn to the �rst

28Again, based on the joint posterior distribution given by (21).
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term of the right hand side of (16): p(yT+1:::yT+H ; V; �jyT ). Conditional on
y = (y1; :::; yT ); � and V , " is distributed normally along the future path of

the VAR, ie, yT+k is also conditionally normally distributed. So in order to

obtain draws from the forecast distribution of yt we have to the simulate

future paths of yt+i i = 1:::k. To this end, we take each element, indexed

by (m), of the Markov-chain after the burn-in value (m = R) and thinning.
A trajectory at time T can be constructed at the (m)-th element of the

Markov-chain as:

1. Draw the random vectors "(m)t+1; "
(m)
t+2; :::; "

(m)
t+k � N(0; V (m))

2. Calculate

y
(m)
t+1 = �

(m)yt + "
(m)
t+1

y
(m)
t+2 = �

(m)y
(m)
t+1 + "

(m)
t+2

...

y
(m)
t+k = �

(m)y
(m)
t+k�1 + "

(m)
t+k

3. Go to the (m+ 1)-th element of the Markov-chain.

4. Calculate the appropriate moments of the forecast distribution from

y
(m)
t+i i = 1:::k, m = R:

In this manner, we have a simulated trajectory for each element of the

Markov-chain so we can calculate moments of the forecast distribution. The

forecast distribution approximated this way fully re�ects parameter uncer-

tainty.29

Tables and �gures

29If we forecast the system at the mean or median of the posterior error covariance

matrix V (parameter vector �), the forecast distributions miss the uncertainty in the

coe¢ cient vector � (error covariances V ).
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Figure 1: Tfp-growth in overall manufacturing in di¤erent countries.
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Figure 2: Tfp growth by micro-based and EUKLEMS-based aggregate; over-

all manufacturing.
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Figure 3: Value added growth by micro-based and EUKLEMS-based aggre-

gates; overall manufacturing (solid lines: micro-based aggregate; dashed line:

EUKLEMS aggregate).
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Figure 4: Output growh by micro-based and EUKLEMS-based aggregates;

overall manufacturing (solid lines: micro-based aggregate; dashed line: EU-

KLEMS aggregate).
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Figure 5: Forecast distributions of yearly tfp growth rates on a three-year

horizon (1998-2000).
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Table 1: Key to industry codes

industry code
Consumer manufacturing

15t16      Food products, beverages and tobacco
17t19      Textiles, textile products, leather and footwear
36t37      Manufacturing nec; recycling

Intermediate manufacturing
20      Wood and products of wood and cork

21t22      Pulp, paper, paper products, printing and publishing
23      Coke, refined petroleum products and nuclear fuel
24      Chemicals and chemical products
25      Rubber and plastics products
26      Other non­metallic mineral products

27t28      Basic metals and fabricated metal products
Investment goods, excluding hightech

29      Machinery, nec
34t35      Transport equipment

Electrical machinery and communication services
30t33      Electrical and optical equipment

Manufacturing classification
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Table 2: Number of �rms in the analysis
industry code original va model output model

15t16 5994 4284 4421
17t19 3823 2503 2429

20 1321 1040 1038
21t22 5908 4064 4224

24 1585 1088 1132
25 1713 1307 1321
26 2076 1395 1472

27t28 7617 5117 5246
29 4804 3358 3367

30t33 3296 2140 2197
34t35 2291 1504 1534
36t37 3743 2205 2265
overall

manufacturing 44171 30005 30646

Table 3: Estimation results - Value added model
industry code L K M ctrs seL seK nobs

15t16 0.52 0.22 . 581.607 0.007 0.014 19745
17t19 0.54 0.23 . 390.991 0.008 0.011 9457

20 0.58 0.12 . 431.116 0.017 0.015 4624
21t22 0.60 0.13 . 660.952 0.009 0.006 20196

24 0.44 0.23 . 101.387 0.016 0.023 6390
25 0.53 0.24 . 84.735 0.019 0.015 6800
26 0.52 0.21 . 191.860 0.013 0.016 7094

27t28 0.65 0.12 . 1056.116 0.008 0.008 24428
29 0.62 0.12 . 458.341 0.012 0.010 18231

30t33 0.65 0.16 . 211.017 0.013 0.010 8008
34t35 0.72 0.06 . 183.449 0.014 0.010 6861
36t37 0.59 0.13 . 322.399 0.013 0.012 9033
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Table 4: Estimation results - Output model
industry code L K M ctrs seL seK nobs

15t16 0.25 0.12 0.65 2.6439 0.013 0.019 19745
17t19 0.40 0.16 0.42 2.9865 0.019 0.022 9457

20 0.31 0.01 0.66 0.0296 0.012 0.007 4624
21t22 0.36 0.07 0.56 0.0657 0.008 0.033 20196

24 0.23 0.13 0.59 2.0937 0.017 0.153 6390
25 0.33 0.02 0.59 1.8747 0.011 0.047 6800
26 0.34 0.02 0.69 0.0368 0.010 0.152 7094

27t28 0.45 0.01 0.54 0.0002 0.008 0.003 24428
29 0.42 0.06 0.53 0.4290 0.007 0.018 18231

30t33 0.47 0.05 0.63 2.8980 0.013 0.036 8008
34t35 0.44 0.01 0.55 0.0194 0.015 0.000 6861
36t37 0.38 0.1 0.37 6.7575 0.013 0.020 9033

Table 5: Tfp-growth in overall manufacturing in di¤erent countries (average

percent per annum rates over period indicated in �rst column)

USA UK GER FRA IRL NED

1977­1982 ­0.010 0.002 0.005 #N/A #N/A 0.004

1983­1987 0.025 0.026 0.005 0.002 #N/A 0.014

1988­1993 0.007 0.026 0.013 0.007 #N/A 0.006

1994­1999 0.022 ­0.010 0.008 0.029 0.044 0.016

2000­2005 0.035 0.026 0.015 0.015 ­0.006 0.016

Table 6: Out-of-sample forecast performance, percentage point deviation

from HP-trend of aggregate manufacturing productivity growth, estimation

sample: 1978-1997, forecast period: 1998-2000

structure industry comp.

dc1 dc2 dc1 dc2
va/q shares ­2.4 ­1.6 ­3.5 ­3.2 ­2.8
input shares ­0.9 ­0.9 ­2.8 ­3.1 ­2.6
fitted va/q shares & tau ­1.7 ­0.8 ­4.7 ­4.6 ­4.2
fitted input shares & tau ­1.2 ­0.9 ­3.3 ­3.3 ­3.4

microcomp. aggregate

dc1: equation 2; dc2: equation 6; microcomp. forecast is implied

by equation 11; industry comp. is implied by equation 13;

aggregate forecast is implied by equation 12.
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Table 7: Out-of-sample forecast performance, percentage point deviation

from HP-trend of aggregate manufacturing productivity growth, estimation

sample: 1978-2000, forecast period: 2001-2003

structure industry comp.

dc1 dc2 dc1 dc2
va/q shares ­2.9 ­0.3 ­2.9 ­3.2 ­3.0
input shares ­2.1 ­2.3 ­3.0 ­3.0 ­2.2
fitted va/q shares & tau ­5.0 ­4.2 ­8.5 ­8.8 ­7.0
fitted input shares & tau ­3.3 ­3.5 ­5.5 ­5.7 ­5.0

microcomp. aggregate

dc1: equation 2; dc2: equation 6; microcomp. forecast is implied

by equation 11; industry comp. is implied by equation 13;

aggregate forecast is implied by equation 12.
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Table 8: Predictive distribution statistics over forecast horizon 1998-2000,

macro VAR on growth rates
Variable Mean Stdev NSE Median

t+1

va/q -0.0088 0.0803 0.0025 -0.0093

cap -0.005 0.0655 0.0021 -0.0048

lab -0.0008 0.0527 0.0017 0.0003

tfp 0.0037 0.0651 0.0021 0.006

t+2

va/q 0.0208 0.1774 0.0056 0.0137

cap 0.0214 0.1302 0.0041 0.0136

lab -0.0021 0.119 0.0038 -0.0047

tfp 0.0072 0.1408 0.0045 0.0011

t+3

va/q -0.0531 0.4408 0.0139 -0.006

cap -0.0604 0.3486 0.011 -0.0105

lab 0.0054 0.25 0.0079 0.0011

tfp -0.0353 0.3568 0.0113 -0.0061

Average

va/q -0.0137 0.2328 0.0074 -0.0005

cap -0.0147 0.1814 0.0057 -0.0006

lab 0.0008 0.1406 0.0044 -0.0011

tfp -0.0081 0.1876 0.0059 0.0004

Gibbs-iterations:10000; burn-in:5000; thin-value:10; MC-elements:500.

Growth rates are approximated by logarithmic di¤erences

Table 9: Descriptives of overall trajectory distributions over forecast horizon

1998-2000, macro-VAR on growth rates

Variable Mean Stdev NSE Median

va/q -0.0071 0.11 0.0035 -0.0012

cap -0.0091 0.101 0.0032 -0.0039

lab 0.0036 0.0751 0.0024 -0.002

tfp -0.0031 0.0969 0.0031 -0.0017
G=10000; burn=5000; thin=10; MC-elements:500.
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Table 10: Bayesian forecast results: average value added tfp-growth rates

for overall EUKLEMS manufacturing (percentage point deviation from HP-

trend, estimation sample: 1978-1997, forecast period: 1998-2000)
structure

VAR ­ micro & macro dc1 dc2 dc1 dc2

va/q shares 0.3 1.5 1.0 6.0

input shares ­0.9 2.3 ­1.2 0.4

fitted va/q shares & tau 0.4 ­1.5 ­0.9 2.4

fitted input shares & tau 0.6 0.0 ­0.1 4.7

PBF­weighted average of fcasts:
VAR ­ macro

VAR(1,2)* VAR(2,1)**

0.3 0.3

­2.3 ­2.3

* VAR(1,2): 1st lag of endogenous variables (growth rates of aggregate capital services, labor sevices, tfp, value added), 1st and
2nd lags of exogenous variables. Exogenous variables are lagged values of components in the micro­based decompositions (ie.

**VAR(2,1): 1st and 2nd lags of endogenous variables (growth rates of aggregate capital services, labor sevices, tfp, value
added), 1st lag of exogenous variables. Exogenous variables are lagged values of components in the decompositions (ie. X(t­1)).

Table 11: Bayesian Model Averages of forecast results: value added tfp-

growth rates for overall manufacturing, percentage point deviations from

HP-trend. Averages are calculated using all models used in a forecast window

Forecast horizon VAR­microcomponents VAR­aggregate

1998­2000 ­0.7 ­1.8
1999­2001 ­1.1 ­1.9
2000­2002 ­1.4 ­1.9
2001­2003 ­1.5 ­2.1
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