Fiscal Policy and the Distribution of Consumption Risk

M. Max Croce

Thien T. Nguyen

Lukas Schmid

Given the current debate on fiscal interventions, we ask the following question:

What are the long-term effects of government policies aimed at short-run stabilization?

Given the current debate on fiscal interventions, we ask the following question:

- What are the long-term effects of government policies aimed at short-run stabilization?
 - Budget deficits imply future financing needs
 - · Uncertainty about future fiscal policies and taxation
 - · How does this uncertainty affect long-term growth?

Given the current debate on fiscal interventions, we ask the following question:

- What are the long-term effects of government policies aimed at short-run stabilization?
 - Budget deficits imply future financing needs
 - Uncertainty about future fiscal policies and taxation
 - How does this uncertainty affect long-term growth?

What is the trade-off between short-run stabilization and long-run welfare prospects?

Given the current debate on fiscal interventions, we ask the following question:

- What are the long-term effects of government policies aimed at short-run stabilization?
 - Budget deficits imply future financing needs
 - Uncertainty about future fiscal policies and taxation
 - How does this uncertainty affect long-term growth?
- What is the trade-off between short-run stabilization and long-run welfare prospects?

We address this question in a version of the Lucas and Stokey (1983) economy with 2 twists

Given the current debate on fiscal interventions, we ask the following question:

- What are the long-term effects of government policies aimed at short-run stabilization?
 - Budget deficits imply future financing needs
 - Uncertainty about future fiscal policies and taxation
 - How does this uncertainty affect long-term growth?
- What is the trade-off between short-run stabilization and long-run welfare prospects?

We address this question in a version of the Lucas and Stokey (1983) economy with 2 twists

- Endogenous growth
 - Fiscal policy affects long-term growth prospects
- Recursive Epstein-Zin (EZ) preferences
 - Agents care about long-run uncertainty
- ► Asset market data suggest a high price of long-run uncertainty

Step 1: Model

- Accumulation of product varieties (Romer 1990)
- EZ preferences

Notation and Feasibility

- Y_t : total production
- C_t : aggregate consumption
- G_t : government expenditure

Notation and Feasibility

- Y_t : total production
- C_t : aggregate consumption
- G_t : government expenditure
- S_t : aggregate investment in R&D
- A_t : total mass of intermediate products (.i.e, patents/blueprints)
- X_t : quantity of intermediate good produced

$$GDP_t = Y_t - A_t X_t = C_t + S_t + G_t$$

Government

▶ We assume exogenous government expenditures

$$\frac{G_t}{Y_t} = \frac{1}{1 + e^{-gy_t}} \in (0, 1),$$

where

$$gy_t = (1 - \rho)\overline{gy} + \rho_g gy_{t-1} + \epsilon_{G,t}, \quad \epsilon_{G,t} \sim N(0, \sigma_{gy}).$$

Government

▶ We assume exogenous government expenditures

$$\frac{G_t}{Y_t} = \frac{1}{1 + e^{-gy_t}} \in (0, 1),$$

where

$$gy_t = (1-\rho)\overline{gy} + \rho_g gy_{t-1} + \epsilon_{G,t}, \quad \epsilon_{G,t} \sim N(0,\sigma_{gy}).$$

A government policy finances expenditures G_t using a mix of
 labor income tax

$$T_t = \tau_t W_t L_t$$

 \circ public debt

$$B_t = B_{t-1}(1 + r_{t-1}^f) + G_t - T_t$$

• Agent has Epstein-Zin preferences defined over consumption and leisure:

$$U_t = \left[(1-\beta)u_t^{1-\frac{1}{\psi}} + \beta (\mathbb{E}_t U_{t+1}^{1-\gamma})^{\frac{1-\frac{1}{\psi}}{1-\gamma}} \right]^{\frac{1}{1-1/\psi}}$$
$$u_t = \left[\kappa C_t^{1-1/\nu} + (1-\kappa) [A_t(1-L_t)]^{1-1/\nu} \right]^{\frac{1}{1-1/\nu}}$$

• Agent has Epstein-Zin preferences defined over consumption and leisure:

$$U_t = \left[(1-\beta)u_t^{1-\frac{1}{\psi}} + \beta (\mathbb{E}_t U_{t+1}^{1-\gamma})^{\frac{1-\frac{1}{\psi}}{1-\gamma}} \right]^{\frac{1}{1-1/\psi}}$$

• Ordinally equivalent transformation: $\widetilde{U}_t = \frac{U_t^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}}$

$$\widetilde{U}_{t} \approx \underbrace{(1-\delta)\frac{u_{t}^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}} + \delta E_{t}[\widetilde{U}_{t+1}]}_{\text{CRRA Preferences}} - \underbrace{(\gamma - \frac{1}{\psi})Var_{t}[\widetilde{U}_{t+1}]\kappa_{t}}_{\text{Utility}}_{\text{Variance}}$$

• Agent has Epstein-Zin preferences defined over consumption and leisure:

$$U_t = \left[(1-\beta)u_t^{1-\frac{1}{\psi}} + \beta (\mathbb{E}_t U_{t+1}^{1-\gamma})^{\frac{1-\frac{1}{\psi}}{1-\gamma}} \right]^{\frac{1}{1-1/\psi}}$$

• Ordinally equivalent transformation: $\tilde{U}_t = \frac{U_t^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}}$

$$\widetilde{U}_{t} \approx \underbrace{(1-\delta)\frac{u_{t}^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}} + \delta E_{t}[\widetilde{U}_{t+1}]}_{\text{CRRA Preferences}} - \underbrace{(\gamma - \frac{1}{\psi})Var_{t}[\widetilde{U}_{t+1}]\kappa_{t}}_{\substack{\text{Utility} \\ \text{Variance}}}$$

Stochastic Discount Factor:

$$M_{t+1} = \beta \left(\frac{U_{t+1}^{1-\gamma}}{\mathbb{E}_t[U_{t+1}^{1-\gamma}]} \right)^{\frac{1/\psi-\gamma}{1-\gamma}} \left(\frac{u_{t+1}}{u_t} \right)^{\frac{1}{\nu} - \frac{1}{\psi}} \left(\frac{C_{t+1}}{C_t} \right)^{-\frac{1}{\nu}}$$

• Agent has Epstein-Zin preferences defined over consumption and leisure:

$$U_t = \left[(1-\beta)u_t^{1-\frac{1}{\psi}} + \beta (\mathbb{E}_t U_{t+1}^{1-\gamma})^{\frac{1-\frac{1}{\psi}}{1-\gamma}} \right]^{\frac{1}{1-1/\psi}}$$

▶ Ordinally equivalent transformation: $\tilde{U}_t = \frac{U_t^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}}$

$$\widetilde{U}_{t} \approx \underbrace{(1-\delta)\frac{u_{t}^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}} + \delta E_{t}[\widetilde{U}_{t+1}]}_{\text{CRRA Preferences}} - \underbrace{(\gamma - \frac{1}{\psi})Var_{t}[\widetilde{U}_{t+1}]\kappa_{t}}_{\substack{\text{Utility}\\ \text{Variance}}}$$

Stochastic Discount Factor:

$$M_{t+1} = \beta \left(\frac{U_{t+1}^{1-\gamma}}{\mathbb{E}_t[U_{t+1}^{1-\gamma}]} \right)^{\frac{1/\psi-\gamma}{1-\gamma}} \left(\frac{u_{t+1}}{u_t} \right)^{\frac{1}{\nu} - \frac{1}{\psi}} \left(\frac{C_{t+1}}{C_t} \right)^{-\frac{1}{\nu}}$$

The intratemporal optimality condition on labor

$$MRS_t^{c,L} = \underbrace{(1 - \tau_t)}_{\text{Tax Distortion}} W_t$$

Competitive Final Goods Sector

Firm uses labor and a bundle of intermediate goods as inputs:

$$Y_t = \Omega_t L_t^{1-\alpha} \left[\int_0^{A_t} X_{it}^{\alpha} \, di \right]$$

- Growth comes from increasing measure of intermediate goods A_t .
- Ω_t is the stationary productivity process in this economy:

$$\log(\Omega_t) = \rho \log(\Omega_{t-1}) + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2)$$

Competitive Final Goods Sector

Firm uses labor and a bundle of intermediate goods as inputs:

$$Y_t = \Omega_t L_t^{1-\alpha} \left[\int_0^{A_t} X_{it}^{\alpha} \, di \right]$$

- Growth comes from increasing measure of intermediate goods A_t .
- Ω_t is the stationary productivity process in this economy:

$$\log(\Omega_t) = \rho \log(\Omega_{t-1}) + \epsilon_t, \ \epsilon_t \sim N(0, \sigma^2)$$

▶ Intermediate goods are purchased at price *P*_{it}. Optimality implies:

$$X_{it} = L_t \left(\frac{A_t \alpha}{P_{it}}\right)^{\frac{1}{1-\alpha}}$$
$$W_t = (1-\alpha)\frac{Y_t}{L_t}$$

Intermediate Goods Sector

• The monopolist producing patent $i \in [0, A_t]$ sets prices in order to maximize profits:

$$\Pi_{it} \equiv \max_{P_{it}} \underbrace{P_{it}X_{it}}_{\text{Revenues}} - \underbrace{X_{it}}_{\text{Costs}}$$
$$= \underbrace{(\frac{1}{\alpha} - 1)(\Omega_t \alpha^2)^{\frac{1}{1-\alpha}}L_t}_{\text{Markup}} \equiv \Theta_t L_t$$

Intermediate Goods Sector

• The monopolist producing patent $i \in [0, A_t]$ sets prices in order to maximize profits:

$$\Pi_{it} \equiv \max_{\substack{P_{it} \\ P_{it} \\ Revenues \\ Costs}} - \underbrace{X_{it}}_{Costs}$$
$$= \underbrace{(\frac{1}{\alpha} - 1)(\Omega_t \alpha^2)^{\frac{1}{1-\alpha}} L_t}_{Markup} \equiv \Theta_t L_t$$

 \blacktriangleright Assume in each period intermediate goods become obsolete at rate $\delta.$

The value of a new patent is the PV of future profits

$$V_t = E_t \left[\sum_{j=0}^{\infty} (1-\delta)^j M_{t+j} \Theta_{t+j} \mathbf{L}_{t+j} \right]$$

R&D Sector

Recall S_t denotes R&D investments, the measure of input variety A_t evolves as:

$$A_{t+1} = \vartheta_t S_t + (1 - \delta) A_t$$

• ϑ_t measures R&D productivity: $\vartheta_t = \chi(\frac{S_t}{A_t})^{\eta-1}$

R&D Sector

Recall St denotes R&D investments, the measure of input variety At evolves as:

$$A_{t+1} = \vartheta_t S_t + (1 - \delta) A_t$$

• ϑ_t measures R&D productivity: $\vartheta_t = \chi(\frac{S_t}{A_t})^{\eta-1}$

Free-entry condition:

$$\underbrace{\frac{1}{\vartheta_t}}_{\text{Cost}} = \underbrace{E_t \left[M_{t+1} V_{t+1} \right]}_{\text{Benefit}}$$

Equilibrium Growth

• The equilibrium growth rate is given by

$$\frac{A_{t+1}}{A_t} = 1 - \delta + \chi^{\frac{1}{1-\eta}} E_t \left[M_{t+1} V_{t+1} \right]^{\frac{\eta}{1-\eta}}$$

Equilibrium Growth

The equilibrium growth rate is given by

$$\begin{aligned} \frac{A_{t+1}}{A_t} &= 1 - \delta + \chi^{\frac{1}{1-\eta}} E_t \left[M_{t+1} V_{t+1} \right]^{\frac{\eta}{1-\eta}} \\ M_{t+1} &= \beta \left(\frac{U_{t+1}^{1-\gamma}}{\mathbb{E}_t [U_{t+1}^{1-\gamma}]} \right)^{\frac{1/\psi - \gamma}{1-\gamma}} \left(\frac{u_{t+1}}{u_t} \right)^{2 - \frac{1}{\psi} - \frac{1}{\nu}} \left(\frac{C_{t+1}}{C_t} \right)^{-\frac{1}{\nu}} \end{aligned}$$

- Discount rate channel: Growth rate is negatively related to discount rate and hence risk
 - o With recursive preferences, long-run uncertainty affects growth rate

Equilibrium Growth

The equilibrium growth rate is given by

$$\begin{aligned} \frac{A_{t+1}}{A_t} &= 1 - \delta + \chi^{\frac{1}{1-\eta}} E_t \left[M_{t+1} V_{t+1} \right]^{\frac{\eta}{1-\eta}} \\ &= 1 - \delta + \chi^{\frac{1}{1-\eta}} E_t \left[\sum_{j=1}^{\infty} M_{t+j|t} (1-\delta)^{j-1} \underbrace{\Theta_{t+j} L_{t+j}}_{\text{Profits}} \right]^{\frac{\eta}{1-\eta}} \end{aligned}$$

- Labor channel: Long-term movements in taxes affect future labor supply, and hence profits and growth
 - Short-run tax stabilization may come at the cost of slowdown in growth

Step 2: Exogenous Fiscal Policy

 Goal: quantitatively characterize the trade-off between current vs future taxation distortions risk

Step 2: Exogenous Fiscal Policy

 Goal: quantitatively characterize the trade-off between current vs future taxation distortions risk

 \blacktriangleright Financing policy \rightarrow consumption risk reallocated toward long-run

Step 2: Exogenous Fiscal Policy

 Goal: quantitatively characterize the trade-off between current vs future taxation distortions risk

 \blacktriangleright Financing policy \rightarrow consumption risk reallocated toward long-run

► Preference for early resolution of uncertainty → short-run countercyclical fiscal policies lead to long-run distortions and sizeable welfare losses

Exogenous Policy Rule

Government implements (uncontingent) debt policies of the form

$$\frac{B_t}{Y_t} = \rho_B \frac{B_{t-1}}{Y_{t-1}} + \epsilon_{B,t}$$

$$\epsilon_{B,t} = \phi_1^G \cdot (\log L_{ss} - \log L_t)$$
(1)

• L_{ss} steady state level of labor

•
$$\phi_1^G = 0$$
: Zero deficit policy
• $B_t = 0$ and
• $G_t = T_t$

• $\phi_1^G > 0$: Countercyclical policy (tax smoothing)

Exogenous Policy Rule

Government implements (uncontingent) debt policies of the form

$$\frac{B_t}{Y_t} = \rho_B \frac{B_{t-1}}{Y_{t-1}} + \epsilon_{B,t}$$

$$\epsilon_{B,t} = \phi_1^G \cdot (\log L_{ss} - \log L_t)$$
(1)

• L_{ss} steady state level of labor

•
$$\phi_1^G = 0$$
: Zero deficit policy
• $B_t = 0$ and
• $G_t = T_t$

• $\phi_1^G > 0$: Countercyclical policy (tax smoothing)

Combine (2) with B_t = (1 + r_{f,t-1})B_{t-1} + G_t − T_t to recover the implied tax-rate policy.

Fiscal variables after a negative productivity shock

Calibration

	-	
Description	Symbol	Value
Preference Parameters		
Consumption-Labor Elasticity	ν	0.7
Utility Share of Consumption	κ	0.095
Discount Factor	β	0.996
Intertemporal Elasticity of Substitution	ψ	1.7
Risk Aversion	γ	7
Technology Parameters		
Elasticity of Substitution Between Intermediate Goods	α	0.7
Autocorrelation of Productivity	ρ	0.96
Scale Parameter	χ	0.45
Survival rate of intermediate goods	ϕ	0.97
Elasticity of New Intermediate Goods wrt R&D	η	0.8
Standard of Deviation of Technology Shock	σ	0.006
Government Expenditure Parameters		
Level of Expenditure-Output Ratio (G/Y)	\overline{gy}	-2.2
Autocorrelation of G/Y	ρ_g	0.98
Standard deviation of G/Y shocks	$\sigma_g^{"}$	0.008

Main Statistics

• Quarterly calibration; time aggregated annual statistics.

	Data	Zero deficit	
		$\phi_B = 0$	
$E(\Delta c)$	2.03	2.04	
$\sigma(\Delta c)$	2.34	2.14	
$ACF_1(\Delta c)$	0.44	0.58	
E(L)	33.0	35.63	
$E(\tau)$ (%)	33.5	33.50	
$\sigma(\tau)$ (%)	3.10	1.80	
$\sigma(m)(\%)$		43.24	
$E(r_f)$	0.93	1.48	
$E(r^C - r_f)$		1.89	

▶ We use asset prices to discipline the calibration (Lustig et al 2008).

Welfare costs (WCs)

Benchmark: the zero-deficit consumption process

 $E\left[U(\{C_{zd}\})\right]$

• The welfare costs (benefits) of an alternative consumption process C^* is:

 $\log E[U(\{C^*\})] - \log E[U(\{C_{zd}\})]$

Welfare costs (WCs)

Benchmark: the zero-deficit consumption process

 $E\left[U(\{C_{zd}\})\right]$

 \blacktriangleright The welfare costs (benefits) of an alternative consumption process C^{\ast} is:

$$\log E[U(\{C^*\})] - \log E[U(\{C_{zd}\})]$$

• Welfare reflects the present value of consumption, P_C :

$$U_t = [(1-\delta) \cdot (P_{c,t} + C_t)]^{\frac{1}{1-1/\Psi}}$$

Welfare costs (WCs) and consumption distribution

• P_c/C in the BY(2004) log-linear case:

$$\Delta c_{t+1} = \mu + x_t + \sigma_c \epsilon_{c,t+1}$$
$$x_t = \rho_x x_{t-1} + \sigma_x \epsilon_{x,t}$$

▶ For explanation purposes, we map:

$$\begin{array}{cccc} \mu & \rightarrow & E[\Delta c_t] \\ \sigma_c & \rightarrow & StD_t[\Delta c_{t+1}] \\ StD[x_t] = \frac{\sigma_x}{\sqrt{1-\rho_x^2}} & \rightarrow & StD[E_t[\Delta c_t]] \\ \rho_x & \rightarrow & ACF_1[E_t[\Delta c_t]] \end{array}$$

Welfare costs (WCs) and consumption distribution

• P_c/C in the BY(2004) log-linear case:

$$\Delta c_{t+1} = \mu + x_t + \sigma_c \epsilon_{c,t+1}$$
$$x_t = \rho_x x_{t-1} + \sigma_x \epsilon_{x,t}$$

For explanation purposes, we map:

$$\begin{array}{ccc} \mu & \rightarrow & E[\Delta c_t] \\ \sigma_c & \rightarrow & StD_t[\Delta c_{t+1}] \\ StD[x_t] = \frac{\sigma_x}{\sqrt{1-\rho_x^2}} & \rightarrow & StD[E_t[\Delta c_t]] \\ \rho_x & \rightarrow & ACF_1[E_t[\Delta c_t]] \end{array}$$

Debt policy {φ_B, ρ_B}: a device altering the distribution of consumption risk.

$$\Delta c_{t+1} \approx \mu(\phi_B, \rho_B) + x_t + \sigma_c(\phi_B, \rho_B)\epsilon_{c,t+1}$$
$$x_t \equiv E_t[\Delta c_{t+1}] = \rho_x(\phi_B, \rho_B)x_{t-1} + \sigma_x(\phi_B, \rho_B)\epsilon_{x,t}$$
WCs when 1/IES=RRA=7 (CRRA)

Small welfare benefits of tax smoothing

WCs when 1/IES=RRA=7 (CRRA)

Small welfare benefits of tax smoothing

WCs when 1/IES=RRA=7 (CRRA)

Small welfare benefits of tax smoothing

WCs when IES=1.7 & RRA=7

Substantial welfare costs of tax smoothing

WCs when IES=1.7 & RRA=7

Substantial welfare costs of tax smoothing

WCs when IES=1.7 & RRA=7

Substantial welfare costs of tax smoothing

Patent value (V), profits (π) distribution, and growth $E[A_{t+1}/A_t] = 1 - \delta + \chi^{\frac{1}{1-\eta}} E_t [M_{t+1}V_{t+1}]^{\frac{\eta}{1-\eta}}$

Patent value (V), profits (π) distribution, and growth $E[A_{t+1}/A_t] = 1 - \delta + \chi^{\frac{1}{1-\eta}} E_t [M_{t+1}V_{t+1}]^{\frac{\eta}{1-\eta}}$

Patent value (V), profits (π) distribution, and growth $E[A_{t+1}/A_t] = 1 - \delta + \chi^{\frac{1}{1-\eta}} E_t [M_{t+1}V_{t+1}]^{\frac{\eta}{1-\eta}}$

The Term Structure of Profits Risk

Long-Run Stabilization (I): stabilize V_t .

▶ The government now adopts the following rule:

$$\frac{B_t}{Y_t} = \rho_B \frac{B_{t-1}}{Y_{t-1}} + \epsilon_{B,t}$$

$$\epsilon_{B,t} = \phi_1^G \cdot (\overline{V} - V_t)$$
(2)

 $\circ~\overline{V}$ unconditional average

•
$$\phi_1^G = 0$$
: Zero deficit policy
• $B_t = 0$ and
• $G_t = T_t$

• $\phi_1^G > 0$: long-term oriented tax smoothing

Long-Run Stabilization: Results

Long-Run Stabilization: Results

- Results:
 - Endogenous growth: short-run stabilization can come at the cost of lower long-run stability
 - **EZ preferences:** 'standard' tax smoothing may not be as good as you think

- Results:
 - Endogenous growth: short-run stabilization can come at the cost of lower long-run stability
 - **EZ preferences:** 'standard' tax smoothing may not be as good as you think
- Asset Pricing Perspective:
 - Fiscal policy alters long-run growth risk and wealth

- Results:
 - Endogenous growth: short-run stabilization can come at the cost of lower long-run stability
 - **EZ preferences:** 'standard' tax smoothing may not be as good as you think
- Asset Pricing Perspective:
 - Fiscal policy alters long-run growth risk and wealth
- ► Fiscal Policy Perspective:
 - Financial markets dynamics are essential to design optimal fiscal policy

- Results:
 - Endogenous growth: short-run stabilization can come at the cost of lower long-run stability
 - **EZ preferences:** 'standard' tax smoothing may not be as good as you think
- Asset Pricing Perspective:
 - Fiscal policy alters long-run growth risk and wealth
- ► Fiscal Policy Perspective:
 - Financial markets dynamics are essential to design optimal fiscal policy
- Broader Point:
 - Conveying the need of introducing risk considerations in the current fiscal debate

Step 4: Link to Ramsey's Problem

- Write Ramsey FOCs determining optimal policy
- Goal: *qualitative* analysis of relevance of the intertemporal distribution of tax distortions with EZ
- Optimal policy: Croce-Karantounias-Nguyen-Schmid (2013)

Ramsey Problem

$$\max_{\{C_t, L_t, S_t, A_{t+1}\}_{t=0, h^t}} U_0 = W(u_0, U_1)$$

subject to

$$Y_t = C_t + A_t X_t + S_t + G_t \tag{3}$$

$$\Upsilon_0 = \sum_{t=0} \sum_{h^t} \left(\prod_{j=1}^{t} W_2(u_{j-1}, U_j) \right) W_1(u_t, U_{t+1})[u_{C_t} C_t + u_{L_t} L_t]$$
(4)

where

•
$$\Upsilon_0 = W_1(u_0, U_1)u_{C_0}(Q_0 + \mathcal{D}_0)$$

Ramsey Problem

$$\max_{\{C_t, L_t, S_t, A_{t+1}\}_{t=0, h^t}} U_0 = W(u_0, U_1)$$

subject to

$$Y_t = C_t + A_t X_t + S_t + G_t \tag{3}$$

$$\Upsilon_0 = \sum_{t=0}^{\infty} \sum_{h^t} \left(\prod_{j=1}^t W_2(u_{j-1}, U_j) \right) W_1(u_t, U_{t+1}) [u_{C_t} C_t + u_{L_t} L_t]$$
(4)

where

$$\blacktriangleright \Upsilon_0 = W_1(u_0, U_1)u_{C_0}(Q_0 + \mathcal{D}_0)$$

and subject to

$$A_{t+1} = \vartheta_t S_t + (1-\delta)A_t \tag{5}$$

$$\frac{1}{\vartheta_t} = E_t \left[M_{t+1} V_{t+1} \right] \tag{6}$$

$$U_t = W(u_t, U_{t+1}) \tag{7}$$

Optimal Tax policy (I): FOC C_t

Let:

- $u_{C,t}^{Ram,EZ}$ and $u_{C,t}^{Ram,SL}$ be the multiplier attached to the resource constraint in benchmark model, and Lucas and Stokey (1983)
- ξ and O_t be multipliers on the implementability & free-entry constraints

•
$$\Xi_{C,t} = \frac{\partial M_{t+1}/\partial C_t}{M_{t+1}}$$

$$u_{C_{t}}^{Ram,EZ} = W_{1_{t}}u_{C_{t}}^{Ram,SL} - \underbrace{O_{t}\Xi_{C,t}V_{t}}_{\text{Incentives}} + \underbrace{\xi W_{1_{t}}u_{C_{t}}FD_{t}}_{\text{Distortions}}$$

Optimal Tax policy (I): FOC C_t

Let:

- $u_{C,t}^{Ram, EZ}$ and $u_{C,t}^{Ram, SL}$ be the multiplier attached to the resource constraint in benchmark model, and Lucas and Stokey (1983)
- ξ and O_t be multipliers on the implementability & free-entry constraints

•
$$\Xi_{C,t} = \frac{\partial M_{t+1}/\partial C_t}{M_{t+1}}$$

$$u_{C_{t}}^{Ram,EZ} = W_{1_{t}}u_{C_{t}}^{Ram,SL} - \underbrace{O_{t}\Xi_{C,t}V_{t}}_{\text{Incentives}} + \underbrace{\xi W_{1_{t}}u_{C_{t}}FD_{t}}_{\text{Distortions}}$$

• Endogenous growth: incentives for growth depend on asset prices, V_t

Optimal Tax policy (I): FOC C_t

Let:

- $u_{C,t}^{Ram,EZ}$ and $u_{C,t}^{Ram,SL}$ be the multiplier attached to the resource constraint in benchmark model, and Lucas and Stokey (1983)
- ξ and O_t be multipliers on the implementability & free-entry constraints $\neg \qquad \partial M_{t+1} / \partial C_t$

$$\Xi_{C,t} = \frac{\partial M_{t+1} / \partial C}{M_{t+1}}$$

$$u_{C_{t}}^{Ram,EZ} = W_{1_{t}}u_{C_{t}}^{Ram,SL} - \underbrace{O_{t}\Xi_{C,t}V_{t}}_{\text{Incentives}} + \underbrace{\xi W_{1_{t}}u_{C_{t}}FD_{t}}_{\text{Distortions}}$$

- **Endogenous growth:** incentives for growth depend on asset prices, V_t
- **EZ:** Ramsey cares about future distortions, i.e., U_{t+1} smoothing

$$FD_t = (u_{C_t}C_t + u_{L_t}L_t) \left(\frac{W_{11_t}}{W_{1_t}} + \frac{W_{1_t}W_{22_{t-1}}}{W_{2_{t-1}}}\right)$$

Optimal Tax policy (II): FOC L_t

• Let
$$\Xi_{L,t} = \frac{\partial M_{t+1}/\partial L_t}{M_{t+1}}$$
.

▶ Let *MPL* denote the marginal product of labor:

$$MPL_{t} = MRS_{C_{t},L_{t}}^{Ram,EZ} = \frac{u_{L_{t}}^{Ram,SL} + \xi u_{L_{t}}FD_{t} - O_{C,t}\Xi_{C,t}V_{t}}{u_{C_{t}}^{Ram,SL} + \xi u_{C_{t}}FD_{t} - O_{L,t}\Xi_{L,t}V_{t}}$$

 Intuition: Ramsey planner aims at smoothing consumption and continuation utilities

Optimal Tax policy (II): FOC L_t

• Let
$$\Xi_{L,t} = \frac{\partial M_{t+1}/\partial L_t}{M_{t+1}}$$

▶ Let *MPL* denote the marginal product of labor:

$$MPL_t = MRS_{C_t,L_t}^{Ram,EZ} = \frac{u_{L_t}^{Ram,SL} + \xi u_{L_t}FD_t - O_{C,t}\Xi_{C,t}V_t}{u_{C_t}^{Ram,SL} + \xi u_{C_t}FD_t - O_{L,t}\Xi_{L,t}V_t}$$

 Intuition: Ramsey planner aims at smoothing consumption and continuation utilities

- Continuation utilites reflect future tax distortions (FD)
- Continuation utilites reflect future growth prospects (incentives)
- Intertemporal distribution of consumption reflects policy

$$\begin{aligned} \Delta c_{t+1} &\approx x_t + \sigma_c(\Psi)\epsilon_{c,t+1} \\ x_t &\equiv E_t[\Delta c_{t+1}] = \rho_x(\Psi)x_{t-1} + \sigma_x(\Psi)\epsilon_{x,t} \end{aligned}$$

Optimal Tax policy (III): FOC A_{t+1}

Let:

• V_t^{Ram} denote the shadow value of one extra patent • M_{t+1}^{Ram} be the adjusted SDF embodying $u_{C_t}^{Ram,EZ}$:

$$\begin{split} M_{t+1} &=& \frac{W_{2_t}W_{1_{t+1}}u_{C_{t+1}}}{W_{1_t}u_{C_t}}\\ M_{t+1}^{Ram} &=& \frac{W_{2_t}W_{1_{t+1}}u_{C_{t+1}}^{Ram,EZ}}{W_{1_t}u_{C_t}^{Ram,EZ}} \end{split}$$

• MPA_t be the marginal product of a new patent

Optimal Tax policy (III): FOC A_{t+1}

Let:

• V_t^{Ram} denote the shadow value of one extra patent • M_{t+1}^{Ram} be the adjusted SDF embodying $u_{C_s}^{Ram,EZ}$:

$$\begin{split} M_{t+1} &=& \frac{W_{2_t}W_{1_{t+1}}u_{C_{t+1}}}{W_{1_t}u_{C_t}}\\ M_{t+1}^{Ram} &=& \frac{W_{2_t}W_{1_{t+1}}u_{C_{t+1}}^{Ram,EZ}}{W_{1_t}u_{C_t}^{Ram,EZ}} \end{split}$$

• MPA_t be the marginal product of a new patent

The accumulation of varieties under the optimal tax policy satisfies:

$$V_t^{Ram} = E_t \left[M_{t+1}^{Ram} \left(MPA_{t+1} + (1-\delta)V_{t+1}^{Ram} + (\eta V_{t+1}^{Ram}\vartheta_{t+1} - 1)\frac{S_{t+1}}{A_{t+1}} \right) \right]$$

Price of Long-Run Uncertainty

- Bansal and Yaron (2004): high premia on long-run uncertainty rationalize asset price puzzles
- Alvarez and Jermann (2004) compute marginal costs of fluctuations from asset prices. They find
 - o costs of business cycles (SRR) to be small
 - costs of low-frequency movements in consumption (LRR) to be substantial

We examine fiscal policy design in the presence of high costs of endogenous long-run consumption uncertainty

The Role of IES (I)

The Role of IES (II): IES = 1

Smooth taxes, but not too much...

Utility Mean-Variance Frontier

Impulse responses: $G \uparrow$

Impulse responses: $G \uparrow$ and IES = 1/RRA (CRRA)

Income effects?

Crowding out

$$MRS = (1 - \tau)W$$

$$C = Y - S - AX - G$$

Income effects?

Crowding out

$$MRS = (1 - \tau)W$$

$$C = Y - S - AX - G$$

A possible way to isolate the distortionary effect

$$MRS = (1 - \tau)W$$
$$C = Y - S - AX$$

• Tax is transfered back to household in lump-sum.
WCs and consumption distribution with transfer

Substantial welfare costs even with lump-sum transfer

Where we are coming from:

 Croce, Kung, Nguyen, Schmid (RFS 2012): "Fiscal Policies and Asset Prices" AP implications of corporate tax smoothing in an RBC model with financial leverage.

Where we are coming from:

- Croce, Kung, Nguyen, Schmid (RFS 2012): "Fiscal Policies and Asset Prices" AP implications of corporate tax smoothing in an RBC model with financial leverage.
- Croce, Nguyen, Schmid (JME 2012): "Market Price of Fiscal Uncertainty", robustness concerns about public debt policy with endogenous growth;

Where we are coming from:

- Croce, Kung, Nguyen, Schmid (RFS 2012): "Fiscal Policies and Asset Prices" AP implications of corporate tax smoothing in an RBC model with financial leverage.
- Croce, Nguyen, Schmid (JME 2012): "Market Price of Fiscal Uncertainty", robustness concerns about public debt policy with endogenous growth;

What's next?

 Nguyen (2013) "Bank Capital Requirements: A Quantitative Analysis", financial intermediaries: stabilization versus growth.

Where we are coming from:

- Croce, Kung, Nguyen, Schmid (RFS 2012): "Fiscal Policies and Asset Prices" AP implications of corporate tax smoothing in an RBC model with financial leverage.
- Croce, Nguyen, Schmid (JME 2012): "Market Price of Fiscal Uncertainty", robustness concerns about public debt policy with endogenous growth;

What's next?

- Nguyen (2013) "Bank Capital Requirements: A Quantitative Analysis", financial intermediaries: stabilization versus growth.
- Diercks (2013) "Inflating Debt Away: Trading Off Inflation and Taxation Risk", fiscal policy first order also in neo-keynesian models.

Where we are coming from:

- Croce, Kung, Nguyen, Schmid (RFS 2012): "Fiscal Policies and Asset Prices" AP implications of corporate tax smoothing in an RBC model with financial leverage.
- Croce, Nguyen, Schmid (JME 2012): "Market Price of Fiscal Uncertainty", robustness concerns about public debt policy with endogenous growth;

What's next?

- Nguyen (2013) "Bank Capital Requirements: A Quantitative Analysis", financial intermediaries: stabilization versus growth.
- Diercks (2013) "Inflating Debt Away: Trading Off Inflation and Taxation Risk", fiscal policy first order also in neo-keynesian models.