"Pushing on a String: U.S. Monetary Policy Is Less Powerful in Recessions" by Silvana Tenreyro and Gregory Thwaites (LSE, BoE)

Discussion by

Robert P. Lieli (CEU/MNB)

Overview

- Paper presents evidence that the effect of monetary policy shocks on output, expenditure volumes, inflation, etc., is **regime dependent**: it is more powerful in expansions than in recessions (U.S. data)
- Monetary policy shocks to the federal funds rate are taken from Romer and Romer (2004): "narrative" approach to identification.
- Impulse responses estimated by an extension of the local projection method in Jorda (2005), extended by Auerbach and Gorodnichenko (2011):
 - no need to specify a full-fledged dynamic model (VAR)
 - extension consists of allowing for different impulse responses across two regimes (booms vs. recessions); smooth transition btw regimes
- Alternative explanation based on differential effects of positive and negative shocks examined (and ruled out)
- Array of robustness checks

Is the evidence really "statistically strong"?

- Let β_h^b and β_h^r , h = 0, 1, 2, ..., 20 denote impulse responses in booms vs. recessions
- We are interested in testing $H_0^h: \beta_h^b \beta_h^r = 0, h = 0, 1, 2, \dots, 20$
- The authors consider a sequence of t-stats: \hat{t}_h , $h=0,1,2,\ldots,20$
- Each t-stat is compared with the (asymptotic) 5% critical values ± 1.65
- BUT: this is a **joint** testing problem—individual significance at a given level is misleading

E.g. if the t-stats were mutually independent, then

$$\begin{split} & \mathsf{Prob.}\left[\left| \hat{t}_h \right| > 1.65 \text{ for some } h \left| H_0^0, \dots, H_0^{20} \text{ all true} \right] \\ &= 1 - 0.9^{21} = 0.89 \end{split}$$

Is the evidence really "statistically strong"? (cont'd)

- In this problem the t-stats are correlated—it is not immediately clear how distorted nominal significance levels are
- Still, the fact that the sequence \hat{t}_h , h = 0, 1, 2, ..., 20 crosses ± 1.65 once or twice is not the most convincing evidence against H_0 .
- Jorda (2005) does discuss joint inference for β_h , h = 0, 1, 2, ..., H. Can you generalize to differences across regimes?
- Alternatively, you could try using the White (2000) "reality check" or the Hansen (2005) refinement.

 \Rightarrow Inference based on $\max_h \hat{t}_h$ via block-bootstrap

• (Or don't do anything but acknowledge the issue.)

Interpretation of state dependence

- Interpretation based on asymmetric effect of positive vs. negative shocks ruled out:
 - positive (contractionary) policy shocks found to have larger effects than negative (expansionary) shocks
 - but positive shocks do not appear more common in boom periods (as defined in the paper)
- This type of asymmetry is in line with recent findings by Angrist, Kuersteiner and Jorda (2013); may want to point this out. Second part is a bit surprising.
- Policy implications of results. Is monetary stimulation by cutting the interest rate during recessions doubly doomed?
 - A: trying to do something that doesn't work well in general at a time when it is especially ineffective; or
 - B: only means that negative **surprises** are ineffective during recessions; the anticipated component of a rate cut may still be stimulative

Specification and estimation issues

- Parameters that control the definition of boom vs. bust and the speed of transition are calibrated rather than estimated
 - state variable=centered seven quarter moving average of real GDP growth; 20% of sample designated as recession
- In fairness, these parameters hard to estimate (identification is weak) and the authors perform some robustness checks; is it enough?
- There are examples of Threshold-VAR models where the threshold is estimated by (quasi-)ML:
 - \Rightarrow E.g., Deak and Lenarcic (2013): fiscal multiplier depends on debt-to-GDP ratio
 - \Rightarrow Specification search over empirically most relevant state variable
- (This would however reintroduce the disadvantages of the VAR methodology relative to local projections)

Miscellaneous comments

- Briefly mention possible theoretical explanations of why the effect of monetary policy shocks can be expected to depend on the state of the business cycle
- Clarify role of "control" variables x_t in the projection method. Do we need them if the Romer and Romer shocks are truly exogenous?
 - In Jorda (2005) there is a vector y_t of dependent variables and $x_t = (y_{t-1}, \dots, y_{t-p})$
 - Even if we are interested in the IRF of a single component of y_t only, what other variables to include is still a choice
 - \boldsymbol{p} is still a choice
 - Robustness checks w.r.t. the specification of x_t to see if it matters

Miscellaneous comments (cont'd)

- Extending robustness checks: use SVAR-based monetary policy shocks instead of Romer and Romer.
 - This is already done to a limited extent, but in a very minimalistic VAR
 - You could use one of the benchmark identification schemes in Christiano, Eichenbaum and Evans (1999)
 - (somewhat weird mixture between VAR modeling and local projections)