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Are Default Rate Time Series Stationary? 
A Practical Approach for Banking Experts*

Gábor Szigel  – Boldizsár István Gyűrűs  

As the IFRS 9 accounting standard requires banks to recognise impairments 
based on a  forward-looking expected loss concept, banks must estimate the 
quantitative relationship between default rates and macroeconomic indicators 
(GDP, unemployment, etc.). In such models, the stationarity of the (usually short) 
default rate time series is often the most critical issue. In this article, we provide 
practical advice for banking experts on how (under which circumstances) they can 
still use short default rate time series in OLS regressions even if those fail regular 
stationarity tests. We argue that if margin of conservativism is requested for the 
underlying default rate projections, then applying (seemingly) non-stationary default 
rate time series in OLS models might not necessarily be problematic.
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1. Introduction

It is not obvious why anyone should care about analysing the stationarity of default 
rate time series1 in general. After all, if someone wants to use a specific default 
rate time series in a regression model, they can check the stationarity of it and act 
accordingly: for example, if they find that the given time series is non-stationary, 
then they will not use it as a target variable of an OLS regression and if they do not 
find other alternative modelling approaches, then they can look for other data or 
simply abandon their publication ambitions in the given topic.
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This type of freedom is often not available to banking experts. The IFRS 9 accounting 
standard and the obligatory supervisory stress testing exercises “force” banks 
to estimate a  quantitative relationship between bank-level risk parameters, 
e.g. probability of default (PD), or loss given default (LGD), and macroeconomic 
indicators to calculate the forward-looking adjustment of the former. To meet these 
external expectations, banks often must be satisfied with less ideal circumstances, 
such as default rate time series spanning only 10-15 years or (not independently 
of the aforementioned) contradictory or inconsistent stationarity test results that 
might change with each annual update.

In this paper, we provide some practical advice to banking experts who are required 
to work with default rate time series for IFRS 9 or stress testing purposes, where 
there is no obvious evidence that the series are stationary (or non-stationary).

Our approach is not without precedent as there has been much discussion in the 
literature on the stationarity of frequently used macroeconomic indicators, such 
as the GDP time series (examples: Christiano – Eichenbaum 1990; Rapach 2002; 
Ozturk – Kalyoncu 2007). To our knowledge, however, no similar analysis of the 
general stationarity of default rate time series has been conducted so far.

The article proceeds as follows: Section Two provides some context on the 
modelling exercises banks face in relation to default rates. Section Three summarises 
the concept of stationarity. In Section Four, we assess the circumstances under 
which default rate time series can be regarded as stationary, based on theoretical 
considerations. In Section Five, we use Monte Carlo simulations to illustrate that 
short, default rate like stationary time series tend to fail in the most common 
stationarity (unit root) tests. In Section Six, we show that alternative modelling 
techniques which can also be used for non-stationary time series often provide less 
conservative projections. Finally, we present our conclusions.

2. Modelling exercises with default rate time series in banking practice

Banks use quantitative models on the loan portfolio’s default rate time series 
mostly for forecasting purposes. The approach goes usually as follows: first, they 
quantify the relationship between default rates and other external variables 
(mostly macroeconomic indicators, such as GDP, unemployment, etc.) based on 
historical observations and then they create (or take over) future scenarios for 
macroeconomic variables. Finally, they calculate projections for default rates from 
those scenarios based on the quantified relationship between them.
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Banks prepare such default rate projections under different scenarios for at least 
four purposes:

• �for internal purposes: to support business decisions of the management;

• �to estimate expected loss-based impairments under IFRS 9;

• �to conduct stress tests to meet supervisory expectations; and

• �to estimate long-term (through-the-cycle, or TTC) probability of defaults (PD) (i.e. 
to calculate their capital requirements according to the IRB2 approach).

When using the default rate projections for internal purposes, the only expectation 
of them is that they “work”, i.e. they do not mislead the decisionmakers.

However, in the rest of the cases, external stakeholders such as auditors and 
supervisors also evaluate those models. These stakeholders have their own 
expectations: they request banks to find a statistically robust relationship between 
default rates and macro variables that can be properly documented. For example, 
during the regular stress testing exercise of the European Banking Authority (EBA), 
banks are requested to quantify their forecasts for loan losses conditional to very 
specific macroeconomic scenarios that the European Systemic Risk Board (ESRB) 
provides (ESRB 2023). Under IFRS, banks must estimate expected losses (along with 
the most important composite: probability of default) using quantitative models3 
for several different macroeconomic scenarios (for the relevant requirements of 
IFRS 9 models, see also: Háda (2019), for IRB models, see: Nagy – Bíró (2018)).

Although it is clear that there is some relationship between the default rates of 
banks’ loan portfolios and the main indicators describing the general state of 
the economy, this relationship is usually not robust in time and not independent 
of the underlying structures; in fact, in this regard one should apply the “Lucas 
critique”,4 as was pointed out by Simons and Rolwes (2009). This was highlighted by 
the Covid-19 crisis as well: although Hungary suffered an economic contraction in 

2 �Internal Ratings-Based
3 �It should be noted though that the IFRS 9 standard and its implementation in EU legislation does not explicitly 

require the application of quantitative models to calculate forward-looking expected losses. However, in 
actual practice, auditors and financial supervisory authorities tend to expect the development of such 
models. Interpreting IFRS 9 literally, an approach in which forward-looking PDs are set to the last observed 
default rate if no economic recession is expected and are otherwise set to 150 per cent of the previous 
observation would fulfil the general requirement of using forward-looking indicators, but in reality, auditors 
and supervisors expect banks to have much more sophisticated models in place.

4 �The Lucas critique – as formulated by Robert Lucas (1976) – originally states that impacts of changes in 
economic policy cannot be assessed purely based on dependencies between variables observed in the 
past and measured by econometric models. The reason is that the underlying structures influencing the 
decisions of the actors are not constant, and therefore the impacts of policy changes are unpredictable and 
cannot be reliably prognosticated by models in the long run. Lucas allows that econometric models might 
provide good forecasts in the short run, but only in cases when the structures and incentives of actors do 
not change abruptly.
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2020 comparable to the Great Recession from 2008, the default rates of banks’ loan 
portfolios remained low and very far away from the high levels of the post-Lehman 
episode, due to the different characteristics and government responses to this crisis.

Nevertheless, the expectations of auditors and financial supervisors force banks to 
model the correlations between default rates and macroeconomic indicators based 
on historical time series and apply those in their forecasts. Although the weaknesses 
of such models can be adjusted by (expert-based) “overlays”, the application of 
some kind of quantitative model is inevitable. These are mostly simple, OLS-based 
regression models (although there are alternative approaches, as we show in 
Subsection 3.5.).

3. The concept of stationarity and its role in OLS regressions

In this section, we briefly summarise the concept of stationarity and its necessity 
in the case of time series applied in OLS models. As there are numerous textbooks 
on econometrics (e.g. Békés – Kézdi 2019) that cover this topic abundantly, we will 
keep this as short as possible.

3.1. The concept of stationarity
A time series – or to be more precise, the process generating it – is considered 
stationary if the characteristics of its distribution do not change over time. In banking 
practice, this definition is often simplified, and a process is considered stationary 
if its mean and standard deviation are constant over time (“weak stationarity”).5 
Time series generated by stationary processes show random fluctuations around 
a constant mean, from which observations may deviate over the short run, but 
which they return to sooner or later (“mean reversion”).

3.2. What makes processes non-stationary?
Processes and the generated time series can be non-stationary for several reasons:

• �Deterministic trend: the process follows a  time-dependent trend, e.g. it has 
a  constant tendency to increase or decrease. Such processes do not have 
a constant mean. For example, stock exchange indices are non-stationary, because 
they tend to increase over the long run.

5 �Note that this is not the exact definition of weak stationarity. More precisely we would require that the 
mean of the process as well as the autocovariance of any two elements (of any distance away) are constant. 
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• �Stochastic trend (random walk): a  process follows a  random walk with an 
autoregressive coefficient between the adjacent observations larger than or equal 
to 1. For example, individual stock prices can be characterised by random walk, as 
today’s share prices will be always close to yesterday’s ones, but it is unpredictable 
where the prices will be in the long run. Such processes do not have a constant 
standard deviation (it increases in time) and their mean is not independent of 
previous realisations of the process,

• �Seasonality: the mean of the process depends on a seasonal time factor. For 
example, ice cream sales are seasonal, as people tend to consume more ice cream 
during the warm summer months.

• �Structural break: a structural break causes a permanent change of either the 
mean or other characteristics of the distribution of the process, and therefore 
they will not be constant over time. For example, sales of candles before and after 
the invention of electric lighting.

3.3. Stationarity and cyclical variables
We take a closer look at cyclical variables as our subject, as default rate time series 
are usually also cyclical. At first glance, cyclicality seems to be similar to seasonality: 
in both cases, there are alternating periods in which our variable takes values 
characteristic for the given period (winter/summer, crisis/non-crisis). However, there 
is a big difference: cyclicality – as opposed to seasonality – is not predictable,6 as 
the length of the cycles is not constant or known in advance. Therefore, cyclical 
variables (such as GDP growth) can have constant mean and standard deviation if 
we look forward over a sufficiently long period. Moreover, the essence of cyclicality 
is that the process reverts to its mean after swings (“mean reversion”), which is 
one of the central assumptions of stationarity. Hence, cyclicality does not, per se, 
imply that a certain process is non-stationary.

3.4. Problems with non-stationary variables in OLS regressions: spurious 
correlations
The stationarity properties of a process are not interesting in isolation, but rather 
only when the time series generated by the process is used in a regression model. 
Using non-stationary time series in OLS regressions leads to “spurious correlation”, 
as is well known since at least the 1970s from the article by Granger and Newbold 
(1974).

6 �Although in the past the economic literature raised the possibility that the economic cycles obey some kind 
of “laws of nature” and occur with more or less regular frequency (“the Kondratiev wave”), this idea is not 
accepted by most economists.
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We speak of spurious correlations if variables seem to correlate in the observation 
period without a real reason,7 i.e. only due to coincidence. This occurs most likely 
in the following circumstances:

• �when both variables follow a  deterministic trend (both are permanently 
increasing): these are the best-known examples of spurious correlations (e.g. 
the average temperature of Earth and the GDP of Hungary in the last 30 years);

• �when both variables follow a stochastic trend, e.g. both are random walks. This 
is less intuitive, but the article of Granger and Newbold (1974) referenced above 
showed that spurious correlations can be easily found between random walks 
as the random shifts might make them change persistently and seemingly in the 
same direction;

• �when both variables are seasonal (e.g. ice cream sales, number of drownings);

• �when both variables have structural breaks or persistent changes (e.g. volume of 
candle sales and number of work horses in the last 100–150 years: both decreased 
due to the development of technology).

Spurious correlations (regressions) cannot be used properly for forecasting, because 
the relationship between the variables that they capture does not exist in reality 
and therefore will probably also not prevail over the forecast horizon. Typically, 
such spurious correlations in OLS regressions can be identified by very high R2 and 
strongly correlated error terms (with Durbin-Watson statistics far below 1). The 
mathematical consequence of the autocorrelated error terms is that the t-statistics 
of regression coefficients (betas) will be overestimated and p-value becomes 
unreliable. Thus, the statistics based upon which we should decide whether the 
given explanatory variables have a  statistically significant impact on the target 
variable are useless.

It is important to emphasise though that the decision as to whether our regression 
is spurious should not be based purely on statistical parameters. Theoretical 
considerations also need to be taken into account: can a direct causal relationship 
between the variables be explained, or are they driven by the same root cause, 
etc.? Only if they are, can one expect the relationship between the variables to be 
true based on such theoretical arguments.8

7 �I.e. without any direct or indirect causal relationship, or at least without a stable general root cause.
8 �Even though the correlation between the variables might be still much weaker in such cases than it is 

implied by our regression. 
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3.5. Alternative modelling approaches for non-stationary time series

There are modelling techniques that can capture the relationship between 
probability of default and macroeconomic variables and yet do not require the 
stationarity of portfolio-level default rate time series. For example, borrower-level 
estimation of PD including both borrower characteristics and macroeconomic 
variables by a  logistic regression does not require the use of such time series, 
and this means there is also no issue with stationarity (as the estimator in such 
regressions is not OLS). Furthermore, non-stationary variables can also be estimated 
by OLS if they are co-integrated.

The authors are aware of the existence of such alternative approaches. 
However, these solutions usually require significantly more data and/or different 
circumstances that might not be available in the given environment. Therefore, 
the stationarity of portfolio-level default rate time series remains a relevant topic 
(at least for a while yet).

4. Stationarity of default rates based on theoretical considerations

4.1. Stationary characteristics of default rate time series

Portfolio-level default rate time series, or to be more precise, the portfolio-level 
probability of default process generating such, have a  number of stationarity 
properties based on economic theory:

• �Constant mean in the long term: according to banking practice and the basic 
concept of the IFRS 9 accounting standard, banks’ portfolio-level probability of 
default fluctuates around a long-term, through-the-cycle average, the so-called 
TTC PD (Figure 1). This would imply that the mean of the process is constant, 
that is, if the structural characteristics of the underlying loan portfolio (lending 
standards, composition, external regulation, etc.) are also constant. This is an 
important limitation which we will return to in Subsection 4.3.

• �Mean reversion: after the high values of a crisis period, default rates tend to 
revert to lower values as the economic environment improves, thus coming back 
to a long-term average.
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• �Time independency: as deviations from the TTC PD are driven usually by the 
economic cycle, in which shocks often result from external and random events 
(such as the Covid-19 pandemic or the Russian-Ukrainian war), forward-looking 
realisations of PD do not depend on the actual default rates. Therefore, the 
cyclicality of PD is not as regular as, for example, a sinus curve (even though it is 
often depicted like that). On the contrary, it is much more common that “long, 
calm” periods are followed by a short crisis period (Figure 1). Therefore, this 
cyclicality is not deterministic as opposed to seasonal variables. Although annual 
default rates are usually autocorrelated (the default rate this year is similar to 
the one last year), this autocorrelation is not constant and not independent of 
the actual position of the cycle. It is also important to emphasise that even if 
there is a strong correlation between adjacent observations of the default rate 
time series, this does not imply non-stationarity as long as the autocorrelation 
coefficient is smaller than 1.

All in all, default rate time series are cyclical time series with mean reversion and – 
under the premises of constant portfolio composition and regulatory environment 
– a constant mean in the long run. These are stationary characteristics.

Figure 1
Illustration of the TTC and PiT PD

PiT PD

Share of defaulted borrowers

Time

TTC PD

Note: PiT = Point-in-Time (actual), TTC = Through-the-Cycle (long-term average).
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Furthermore, there are some general non-stationary characteristics (as presented 
in Subsection 3.2) that can obviously be ruled out in case of portfolio-level PD:

• �as PD has a limited value set (between 0–19), it cannot follow a deterministic 
trend;

• �this limited value set also rules out the presence of a stochastic trend;

• �PDs are clearly non-seasonal: the Basel regulation defines PD as the probability 
of default over a  1-year period, and therefore PD cannot exhibit intra-year 
seasonality.

4.2. Cyclicality and stationarity of default rate time series
Default rate time series are cyclical, but as we pointed out in Subsection 3.3 
cyclicality does not imply non-stationarity. However, another problem can be 
raised: if we try to regress default rates on other cyclical indicators, we might 
find relationships that are not causal, but only a consequence of the cyclicality. 
In banking practice, this problem is usually not relevant, as banks use the “root 
cause” indicators which represent the economic cycle the best (GDP growth, 
unemployment, etc.) for modelling purposes (as presented in Section 2).10

4.3. Stationarity and structural breaks in default rate time series
There is one factor that can endanger the stationarity of a portfolio-level default 
rate time series: possible structural breaks. These can be caused specifically by the 
following phenomena: 

• �Changes in definitions or changes in the data collecting process: these are the 
most obvious examples of structural breaks, such as the change in the EBA’s 
definition11 of default in 2017. Although these can be corrected by statistical 
methods, they inevitably increase modelling uncertainties.

• �Changes in lending conditions: a bank can change its business strategy voluntarily 
or as a result of regulatory pressure and enter or withdraw from more risky client 
segments, which will necessarily change the portfolio’s TTC PD (the mean of the 
process). 

9 �In reality, PDs fluctuate usually in an even smaller range: e.g. mortgage loans typically have PDs between 
0–5 per cent. 

10 �However, the utmost caution is necessary here as there are many macroeconomic indicators that are 
cyclical, but do not represent the economic cycle the best. Certain components of GDP or their proportion 
to GDP – despite being often cyclical – might not capture the actual state of the economy the best. For 
example, exports/GDP might show cyclical patterns, but this indicator is clearly not a good representative 
for the state of the economy: it can deteriorate both when GDP is increasing or decreasing. Using such 
indicators to forecast default rates might be very misleading.

11 �Guideline EBA/GL/2016/07 introduced a new default definition in 2017 that caused a level shift in the 
default time series of European banks which were not able to implement the new definition retroactively.
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• �Changes in the external environment: there may be other factors independent 
of banks’ own actions which can have an impact on the TTC PD of loan portfolios 
such as government incentives (increase or decrease in moral hazard that may 
incentivise borrowers’ willingness to pay, such as rescue programmes), changes 
in the legal environment (e.g. introduction or suspension of the “right of walk 
away” or bans on evictions, impacts of court decisions) or other cultural factors 
(e.g. the education process of borrowers).

If such changes are frequent, random and of limited impact, then they will not 
change a portfolio’s TTC PD significantly in the long run, and thus they do not 
ruin the stationarity of the process. However, if there are only a  few, but large 
structural breaks in the default rate time series, then the underlying process cannot 
be regarded as having a constant mean and being stationary.

Overall, default rate time series can be considered stationary based on purely 
theoretical arguments if the presence of significant structural breaks in its historical 
data can be ruled out with great certainty (or we can at least filter out their effects 
reliably).

5. Reliability of testing for stationarity in the case of default rate time 
series

Although, as shown above, it can often be decided based on theoretical-economic 
arguments whether a  specific default rate time series can be assumed to be 
stationary, formal stationarity tests must be also performed, both due to practical 
and documentational reasons. The most widespread formal approaches to test 
stationarity tests are unit root tests such as the Augmented Dickey-Fuller (ADF) 
test and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, as well as some others. 
However, as highlighted in the following sections by a  short literature review 
and by our own Monte Carlo simulations, these tests are not reliable on short 
time series and can often lead to a false identification of stationary processes as  
non-stationary.

This is a problem, because default rate time series – especially in the Central Eastern 
European region – tend to be short. As banks only started to collect default data 
from about the mid-2000s in line with the introduction of Basel II, the data collected 
by the 2020s ranges back 15 years at best. Additionally, this time span covers only 
one whole economic cycle (the post-Lehman crisis episode and the subsequent 
recovery, as data from the Covid-19 pandemic cannot be used for modelling due 
to the special circumstances of that period).
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5.1. Challenges with testing on short time series
It is well-known in the literature that stationarity tests (in reality: unit root tests) 
are unreliable on short time series. Arltová and Fedorová (2016) showed via their 
Monte Carlo simulations that most stationarity tests provide misleading results 
with a sample size less of than 50 observations and show stationary processes to 
be non-stationary. The KPSS test, which – in contrast to other stationarity tests – 
operates with a null hypothesis that the process is stationary, provided the most 
precise results.12 Autocorrelation in the underlying process makes the situation even 
worse: an autocorrelation of above 0.5 drastically reduces the reliability of all but 
the KPSS test, while an autocorrelation of above 0.7 will make even the KPSS test 
unreliable. This poses a problem for our particular case, as empirical experience – to 
which we will come back in Section 5 and 6 – suggests that default rate time series 
(on annual frequency) tend to be highly autocorrelated (on a magnitude of 0.5–0.7).

There are alternative solutions to test stationarity on small samples: some authors 
provide alternative critical values for short time series, e.g. Jönsson (2006) for the 
KPSS test, and Otero and Smith (2003) and Cheung and Lai (1995) for the ADF test. 
Using these decreases the probability that the test will falsely identify a stationary 
process as non-stationary; in return, however, it increases the probability of the 
other type of error (identifying a non-stationary process as stationary). Furthermore, 
application of these alternative critical values has not become widespread. Cochrane 
(1991) also points out that highly autocorrelated processes – such as probability 
of defaults generating the default rates – might always be misrecognised by the 
tests on finite samples. All in all, the “philosophers’ stone” of stationarity testing 
for small samples could not be found, and this is not surprising given that the basic 
challenge results from the fact that there are just simply not enough observations 
in small samples to see whether the underlying process has a constant mean and 
other stable distribution characteristics. 

The way the length of the time series impacts the results of stationarity tests is 
illustrated by Figure 2: here, we see the default rates of the Moody’s Ba13 corporate 
rating class as observed each year between 1920 and 2006,14 and the relevant 
t-statistics of the ADF test for each year calculated from the beginning of the time 

12 �While most stationarity tests (e.g. the ADF test) use the null-hypothesis that the time series has a unit root 
and thus the alternative hypothesis is that the data are stationary, the null-hypothesis of the KPSS test is 
the opposite, namely that the time series is stationary.

13 �We selected the Ba rating class because, in contrast to better rating classes, there have been enough default 
rate observations differing from zero over the years. Such default rates are much more similar to those of 
banks’ loan portfolios, that include also more vulnerable borrowers than the AAA type of corporations.

14 �Moody’s (2007:20–21): Exhibit 21 – Annual Issuer-Weighted Corporate Default Rates by Letter Rating, 
1920–2006.
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series up to the given year.15 If the t-statistic is below the critical value of –2.6, the 
ADF test identifies the process as stationary at a confidence level of 10 per cent. 
As can be seen, for the first 20 observations/years, the t-statistic is larger than the 
critical value, implying that the process is non-stationary. This judgement of the test 
could also be confirmed by visual inspection to some extent: one can easily see an 
increasing trend in the default rates up to the 1930s. Over the long run, however, 
the ADF test clearly identifies the Moody’s default rates to be stationary at the 10 
per cent confidence level (moreover, from the 1970s at the 1 per cent confidence 
level as well). This example underlines how much the length of the observation 
period impacts the results of the test.

15 �Calculated with constant. When choosing the appropriate lag order, we did the following: using the full-
length time series, we assessed which lags were significant at a confidence level of 10 per cent and we 
omitted insignificant lags from the regression of the ADF test. As no lags were significant in the case of this 
particular time series, we did not include any of them – thus running a simple Dickey–Fuller test instead of 
the ADF. We note that including more lags would not change the decreasing trend of the t-statistic, though 
it would cause a shift in its value upwards. The ADF test would identify the Ba default rates as stationary 
up to 6 lags on the full length of the data up to 2006.

Figure 2
Default rate time series of Moody’s Ba corporate rating class between 1920 and 2006, 
and the corresponding t-statistics and critical values of the ADF test

Per cent

Moody's Ba rating class default rate
ADF t-statistics, RHS
ADF critical value, RHS

0

2

4

6

8

10

12

–6

–3

–2

0

2

4

6

19
20

19
23

19
26

19
29

19
32

19
35

19
38

19
41

19
44

19
47

19
50

19
53

19
56

19
59

19
62

19
65

19
68

19
71

19
74

19
77

19
80

19
83

19
86

19
89

19
92

19
95

19
98

20
01

20
04

Note: t-statistic at time t shows what the t statistic of the ADF test would be if we calculated it for a time 
span from 1920 to time t. For more information on the number of lags applied in the test: see Footnote 
15. Critical values are calculated without trend, but with constant for T=25 at the 10 per cent confidence 
level. Although critical values change slightly as the number of observations change, the difference is so 
small that it would not have an impact.
Source: Moody’s (2007) and own calculations
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5.2. Results of our Monte Carlo simulations
The unreliability of stationarity tests on small samples is well-known from the 
literature, but the relevant research does not focus on default rate like processes, 
but rather on ones based on normal distribution. Default rate time series tend to 
have special types of distributions: their value set is limited (portfolio-level default 
rates cannot be outside of the 0–100 per cent range) and they are cyclical (crisis/
non-crisis episodes following each other). Therefore, portfolio-level default rates 
cannot follow normal distributions.

This motivated us to assess the reliability of the ADF and KPSS tests for default rate 
like processes with the use of Monte Carlo simulations. We introduce two novelties 
compared to other authors such as Arltová and Fedorová (2016): 

• �We use the ADF and KPSS tests at the same time for the generated time series 
to assess whether this would increase the overall reliability of the tests (“at least 
one would recognise stationary processes correctly”). We pick these two tests 
because they are the most widespread ones in banking practice, and, even more 
importantly, they have an opposite null hypothesis and can thus complement 
each other (see also: Footnote 12).

• �We test explicitly default rate like processes – ones with limited value sets and 
cyclical properties. 

We assess the stationarity of eight processes, altogether: four non default rate like 
and four default rate like. 

The non default rate like processes – which we test as a “control group” and to 
replicate the results of the literature – are the following:

Process No. 1: Stationary, non-autocorrelated, following normal distribution;

Process No. 2: Random walk (non-stationary);

Process No. 3: Stationary, highly autocorrelated ((𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

 = 0.7);

Process No. 4: Stationary, very highly autocorrelated ((𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

 = 0.9).

The following four are the default rate like processes. These processes were created 
in a way that they are all stationary:

Process No. 5: Limited value set, non-autocorrelated, cyclical: a  variable with 
a randomly changing crisis and non-crisis mode (with two constant means, one for 
crisis, one for non-crisis), limited to the 0–1 value set;
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Process No. 6: Limited value set, autocorrelated, mean-reverting cyclical: 
autoregressive process with random crisis shocks and with an additional error 
correction, that pulls back the process to its long-term average based on how high 
the deviation from this average was during the previous realisation. Limited to the 
0–1 value set;

Process No. 7: Generated from corporate bankruptcy rates in Hungary by 
bootstrapping, non-autocorrelated: we chose randomly from the realised corporate 
bankruptcy rates in Hungary as presented in Subsection 6.1 in more detail. The 
results will be default rate like, non-autocorrelated cyclical time series ranging 
between 0–1;

Process No. 8: Generated by fixed-length sections of the Moody’s Ba rating class’s 
historical default rate, autocorrelated: we chose fixed-length sections of the real 
Moody’s Ba default rate time series from randomly selected starting date. The 
benefit of this approach is that the (𝜌𝜌 = 0) 

 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

 = 0.5 autocorrelation of the Moody’s default 
rates will be kept in the simulated time series.

The exact definition of the above processes can be found in the Appendix. We 
generated 100,000 simulations for each process (except for Process No. 8, because 
the length of the original Moody’s time series limited our possibilities; for further 
details, see the Appendix). The length of the generated time series varied between 
10 and 60 observations (10, 20, 30, 40, 45, 50, 60). After this the relevant test 
statistics of the ADF and KPSS test were calculated using an embedded Python 
package (called “statsmodels.tsa.stattools”) and compared to the critical values at 
the 10 per cent confidence level from Dickey – Fuller (1979) and Kwiatkowski et 
al. (1992). Finally, the generated time series were categorised based on their test 
results:

• �stationary according to only the ADF,

• �stationary according to only the KPSS,

• �stationary according to both,

• �non-stationary according to both.

The simulation results for the non default rate like processes are summarised by 
Figure 3. These are in line with the literature: the ADF test often provides “false 
negative” results (recognising stationary time processes as non-stationary) for short 
samples consisting of 10–20 observations. Although the KPSS test mostly identifies 
the stationary processes correctly (i.e. as stationary) it fails to correctly categorise 
the non-stationary random walk process (Process No. 2), and therefore it is also 
unreliable. Both tests tend to accept their null hypothesis for the very short samples 
irrespective of the real characteristics of the underlying process. In the case of 
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strongly autocorrelated stationary processes (Process No. 3–4), the performance 
of both tests deteriorates further for the very short samples compared to how they 
behaved for the non-autocorrelated processes. In the case of lower autocorrelation, 
the precision of the tests improves with the sample size, but in the case of very high 
autocorrelation ((𝜌𝜌 = 0) 

 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

 = 0.9) even increasing the sample size does not help.

Figure 3
Results of the ADF and KPSS tests for the non default rate like processes for different 
time series length
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Note: The figure shows what percentage of the simulated time series of different length (10, 20, 30, 40, 
45, 50, 60) “passes” the stationarity tests (are recognised as stationary by the tests). The labels are the 
following: “ADF” = stationary only according to ADF, “ADF&KPSS” = stationary according to both tests, 
“KPSS” = stationary only according to KPSS, “None” = non-stationary according to both tests.

Process No. 1: Stationary,  
non-autocorrelated

Process No. 3: Stationary, highly  
(ρ=0.7) autocorrelated

Process No. 2:  
Random walk

Process No. 4: Stationary, very highly  
(ρ=0.9) autocorrelated
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Figure 4 shows similar results for the default rate like (known to be stationary) 
processes as for the non default rate like stationary processes. Results for the 
non-autocorrelated processes (Process No. 5 and 7) are very much similar to the 
ones for the non-autocorrelated normal distribution process (Process No. 1): ADF 
often provides a “false negative” assessment for 10–20 observations and then its 
precision improves with an increase in sample size. For the autocorrelated processes  

Figure 4
Results of the ADF and KPSS tests for the default rate like processes for different time 
series length
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(No. 6 and 8), ADF performs even worse on very small samples (T=10 or 20), and its 
reliability improves only gradually with more observations (it often misrecognises 
the stationary processes even with a sample size of 30 or 40). Although the KPSS 
test identifies the default rate like processes correctly as stationary with a high 
probability, the merits of this result are limited due to the known weakness of the 
test to misrecognise non-stationary time series as stationary. Even worse, KPSS fails 
to accept the stationarity of the autocorrelated Process No. 6 and 8. in a relatively 
high proportion of the cases.

All in all, the ADF test is not appropriate for correctly identifying stationary processes 
on very small samples (10–20 observations) and the same can be said for the KPSS 
test: even though the latter can recognise a stationary process as stationary if it is 
not highly autocorrelated, it will do so with non-stationary processes as well and 
furthermore it fails to correctly identify stationarity if the underlying process – as 
default rate time series are – is highly autocorrelated.

Therefore, if a  time series consisting of only 10–20 observations fails these 
stationarity tests, that still does not mean it is certain that the underlying process 
is indeed non-stationary.

5.3. Increasing the sample by using a higher frequency of observations
The previous section also showed that the reliability of stationarity tests – especially 
that of the ADF test – improves as the sample size increases. In banking practice, it 
is a widespread approach to “enlarge” the sample sizes of default rate time series 
by increasing the observation frequency from annual to quarterly, i.e. by taking 
default rates for Q1 2007, Q2 2007, etc. instead of for 2007, 2008, etc. (whereby 
the default rate still reflects the share of defaulting borrowers within 12 months, 
only the frequency of starting points increases). With this approach, modellers 
can significantly increase the length of time series, as we have, for instance, 52 
observations from the period between 2007–2019 at quarterly frequency as 
opposed to just 13 observations on an annual basis.

Nonetheless, increasing data frequency is not a “silver bullet” to solve stationarity 
issues with short time series: Pierse – Snell (1995) argue16 that it is less effective 
than increasing the length of the sampling period. Additionally, there is a special 
challenge with increased frequency in the case of default rate time series: as 
the default ratio must be measured for a  12-month observation period (and 

16 �The underlying argument is that “mean reversion” prevails only with the increase of the length of the 
observation period, but not with the increase of frequency. The same article also shows that in the case 
of a sufficiently long time series, data frequency does not have an impact on the results of stationarity 
(unit root) tests.
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measurement for a shorter period is practically not feasible17), adjacent default rate 
observations at quarterly frequency will overlap by 75 per cent and will therefore 
be even more autocorrelated. This is a problem, because – as shown in Subsection 
5.2 – the more autocorrelated the time series are, the less reliably the stationarity 
tests will work on them (especially KPSS).

Empirical experience shows that default rates on an annual frequency are highly 
autocorrelated in themselves. Autocorrelation increases further with the switch 
to quarterly frequency due to the overlap: for example, the corporate bankruptcy 
rates presented in Section 6 show an autocorrelation of 0.76 at annual frequency, 
but that jumps to 0.98 at quarterly frequency! Practical experience of the authors 
suggests that the autocorrelation of default rates of banks’ different portfolios 
ranges between 0.6–0.8 at annual frequency, but 0.9–0.99 at quarterly frequency. 
If a process is so highly autocorrelated as given by the latter range, then even 
a sample size of 50–60 is not sufficiently large for the stationarity tests (especially 
for KPSS) to work reliably.

All in all, if we have annual default rate data from only 15–20 years, then 
transforming them into quarterly frequency will not solve the reliability problems 
of the stationarity tests: what we gain from the increase in the sample size, we 
might easily loose through the additional autocorrelation we cause.

6. Challenges with alternative modelling approaches

The false identification of stationary default rate time series as non-stationary takes 
a toll if it pushes banks to choose alternative modelling approaches that might 
generate worse forecasts for loan portfolios’ PD than model types that require 
stationarity. What banking modellers often do to be able to use OLS estimations 
(which requires stationarity) is the following: they difference the (seemingly) non-
stationary default rate time series and, as the differences of the adjacent default 
rate observations tend to constitute a stationary time series, they then enter those 
as the target variable into the OLS regressions. This practice is very widespread with 
many examples in the literature (Balatoni – Pitz 2012; Gál 2019), and it is often 
completely justified and correct. 

17 �A series of challenges can be raised: intra-year seasonality of defaults, or the fact, that the default trigger 
of the 90+ days arrears can often simply not occur within a quarter in case of newly originated loans.
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However, differencing the variables may also be unjustified as the models for the 
differenced target variable provide unreasonable results. In such cases, we can 
speak of over-differencing. Cochrane (2018) describes the underlying mechanism: 
the model with the differenced variable can often show only a  much weaker 
relationship between the target and the explanatory variables, because such models 
do not only try to quantify the correlation (and causal relationship, ideally) between 
the variables, but implicitly also the timely co-movement between them (or in other 
words: the impulse response of the target variable on the explanatory variable). 

Translating this for our default rate case: PD models applied on the differences of 
the portfolio-level default rates will show a much weaker relationship between 
those and the macroeconomic variables, ultimately leading to forecasts in which 
the predicted default rates are completely insensitive to the state of the external 
environment. This is especially a problem, if estimates are expected by third parties 
(supervisors, auditors) to be conservative – similarly to the case of stress testing. In 
the following subsection, we illustrate a case of over-differencing with an example. 

6.1. Example of the challenges of over-differencing
In our example, we regress the 12-month bankruptcy rate of Hungarian companies 
– which is a publicly available default rate like variable – on the 12-month GDP 
growth rate of Hungary, at a quarterly frequency. In order to simulate the data 
availability that is typical in Hungarian banks, the bankruptcy rate time series used 
is limited to the period between Q1 2008 and Q4 2019 (this is the time span for 
which Hungarian banks usually have default rate data to model with).18 Overall, we 
have data from only one complete economic cycle. Figure 5 provides an overview 
of the two time series we are using.

18 �In reality, corporate bankruptcy rates are available for the period between Q1 1996 – Q4 2022. We omitted 
the data between 2020 and 2022, i.e. the Covid-19 period from our modelling exercises, because that was 
a very special crisis period: GDP dropped abruptly and significantly, and then rebounded in a similar way, 
while bankruptcy and default ratios hardly increased, due to government and regulatory interventions 
(e.g. payment moratorium on loans). Treating this period appropriately still poses a challenge in banks’ PD 
modelling exercises as well.
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Looking at the figure above, even without conducting any stationarity test one can 
immediately suspect that the bankruptcy rate will be stationary, because it shows 
a downward trend. It also seems likely in advance that an OLS regression will find 
a relationship between the bankruptcy rate and GDP growth as the former takes 
high values during the 2008–2013 crisis episode and low values during the recovery, 
while the latter has values the other way around. However, this relationship will be 
dominated by the experiences from the post-2008 crisis episode which will limit 
its usefulness for forecasting purposes – as the next crisis might not be like that of 
the previous one (the Covid-19 crisis was in fact not similar).

Conducting the ADF test on the bankruptcy rate finds it indeed non-stationary 
(t-statistic: –1.04, presence of a unit root can be rejected at a probability of 73 per 
cent). The first difference of the bankruptcy rate is clearly stationary by the test 
though (t-statistic: –2.03, presence of a unit root can be rejected at a probability 
of 96 per cent).19 (We also note that GDP growth appears to be clearly stationary 
by the ADF test even for the period between 2008–2019, and for the full length of 
the time series).

19 �For both tests, the maximum number of lags was 7.

Figure 5
Corporate bankruptcy rate and real GDP growth in Hungary between 2008–2019

Per cent Per cent

Bankruptcy rate
GDP growth, RHS

1.5

2.5

3.5

4.5

5.5

–4,0

0,0

–8,0

4,0

8,0

20
08

Q
1

20
08

Q
3

20
09

Q
1

20
09

Q
3

20
10

Q
1

20
10

Q
3

20
11

Q
1

20
11

Q
3

20
12

Q
1

20
12

Q
3

20
13

Q
1

20
13

Q
3

20
14

Q
1

20
14

Q
3

20
15

Q
1

20
15

Q
3

20
16

Q
1

20
16

Q
3

20
17

Q
1

20
17

Q
3

20
18

Q
1

20
18

Q
3

20
19

Q
1

20
19

Q
3

Source: MNB, Macroprudential indicators



127

Are Default Rate Time Series Stationary? A Practical Approach for Banking Experts

Then, we prepare two different models: we regress both the level and the difference 
of the bankruptcy rate20 on GDP growth. The results are shown in Table 1. GDP 
is a significant explanatory variable in both models (at a 10 per cent confidence 
level), but the coefficients – expressing the strength of the relationship – differ by 
a magnitude: the β is 0.2 in the model on the level-variable, but is only 0.02 in the 
case of the model on the difference. Of course, none of the models is particularly 
good (R2 is low, although the F-statistic is significant, but the Durbin-Watson 
statistics are very low, especially in the model on the level variable). However, our 
motivation here was not to find the best possible model, but rather to illustrate the 
consequences of treating non-stationarity problems by differencing. Moreover, in 
banking practice, similar situations regarding the availability of data and the quality 
of the models are common.

Table 1
Results of the two OLS regressions

Number 
of 

model

Target 
variable Explanatory variables Constant β (of GDP 

growth) R2

1 Bankruptcy 
rate (level) Constant, GDP growth 0.04*** –0.21*** 0.27

2
Bankruptcy 

rate 
(difference)

Constant, GDP growth Not significant –0.02* 0.06

Note: We also tried to use the difference of GDP growth as an explanatory variable in the models, but it 
turned out to be insignificant. Asterisks next to the coefficients have the usual meanings: *** significant 
at 1 per cent, * significant at 10 per cent.

In model-technical terms, the model on differences seems to be the correct one, 
as the OLS estimations are run on a  stationary target variable. However, this 
model shows hardly any relationship between GDP growth and the bankruptcy 
rates: according to this, an economic contraction of –1 per cent would lead to an 
increase of barely 0.02 percentage point in the bankruptcy rate in a quarter (+0.08 
percentage points in a year).

20 �We note that it would be more appropriate to use some kind of logistically transformed version of the 
target variables in both models so that forecasts based on these models cannot fall outside the reasonable 
value set of default rates between 0 and 1. However, this would render the interpretation of the model 
coefficients more complicated, and therefore we follow this simplified approach for the purposes of 
illustration.
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The insensitivity of the model on difference is reflected if we use the two models 
to predict bankruptcy rates during the Covid-19 crisis and compare those forecasts 
to what actually happened. To do so, we assume “perfect foresight”, i.e. that the 
modellers would have known the realised GDP trajectories in advance. The results 
of this comparison are shown in Table 2. As we can see, none of the models would 
have been particularly successful in predicting bankruptcies: the model on levels 
would have provided strongly fluctuating forecasts for the first two years of the 
Covid-19 pandemic and would have overestimated the actual bankruptcy rates by 
far (even for the year of the economic rebound). It would have hit the bankruptcy 
rate in 2022 though. The model on differences would have predicted a relatively 
flat bankruptcy rate despite the big economic ups and downs and would have 
underestimated the rates over the whole forecast horizon, but especially in 2022. 
It is true that the model on differences would have been closer to reality – but 
only because bankruptcy rates proved to be just as insensitive to the deterioration 
of the economic circumstances in the first year of the pandemic as the model on 
differences.

Table 2
Predictions of the two models and reality

Quarter

Bankruptcy rate as predicted by the models  
one year in advance  

(%)

Bankruptcy 
rate in 
reality  

(%)

GDP 
growth  

(%) 
Model on levels Model on differences

2019Q4 – – 1.7 4.9

2020Q4 4.9 1.7 1.4 –4.5

2021Q4 2.4 1.3 1.7 7.2

2022Q4 3.0 1.1 2.9 4.6

Note: In case of the model on difference, the forecast is prepared on the basis of the actual bankruptcy 
rate each year, to which we added the change of PD based on the forecasted GDP growth as predicted 
by the model assuming “perfect foresight”.

However, we can assess the performance of the two models not only based on 
their precision in forecasting reality, but also based on their ability to meet the 
expectations of banks’ external stakeholder – such as supervisors or auditors – 
with a preference for conservative approaches. For example, at the onset of the 
pandemic, when expected GDP growth was –4.5 per cent under perfect foresight, 
the model on differences would have predicted a flat bankruptcy rate, whereas 
the model on level would have anticipated a substantial rise in the number of 
bankruptcies similar to the levels experienced after the Lehman collapse. We have 
good reasons to assume that stakeholders targeting conservative, “prepare-for-the-
bad-times” approaches (supervisors, auditors) would have hesitated to accept the 
results of the model on differences and would have preferred the model on levels 
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(even though reality would have proven them wrong). It is also hard to imagine 
that European banks could submit projected default rate trajectories like those 
coming from the model on differences, for example during an EBA stress testing 
exercise (which uses assumptions on GDP growth similarly severe to the first year 
of the Covid-19 crisis). 

All in all, it would have been a mistake to dismiss the model on levels only because 
the level of bankruptcy rates fails on stationarity tests, because:

• �it would have been probable that the test is wrong on the stationarity of the 
process generating the data because of the small sample size, and that bankruptcy 
rates are stationary in reality (although we did not assess the possibility of 
a structural break here);

• �economic theory suggests that there is a causal relationship between economic 
growth and bankruptcy rates; and

• �the alternative of the model on levels would have resulted forecasts that are 
completely insensitive to the change in the economic environment.

At the same time, it is also important to emphasise that the model on levels could 
have been used for predictions only if its limitations were presented transparently 
during the interpretation of results: namely, that it exclusively reflects the 
experience of the Great Recession after 2008, which might not be relevant for the 
actual economic environment (as it proved not to be relevant, in fact).

7. Conclusions and practical advice

In this paper, we analysed whether loan portfolios’ default rate time series, or to 
be more precise the underlying processes generating them, can be considered 
stationary based on theoretical-economic arguments and whether the relevant unit 
root tests are appropriate to identify them in practice, with due consideration of the 
usually short length of these time series (observations often only from 15–20 years).

We found that default rate time series can be assumed to be stationary if there are 
no structural breaks in them, i.e. the underlying default definition, data gathering 
process, lending standards, legal environment and other borrower incentives, etc. 
did not cause a level-shift in the expected value of probability of default.

While to some extent these assumptions hold in many cases, default rate time 
series that are collected from an observation period with a relatively short time 
span often fail the regular stationarity tests (unit root tests). This is not surprising, 
as stationarity tests are unreliable for short samples (less than 30 observations), 
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especially if the assessed time series (and the underlying data generating process) 
are highly autocorrelated. As default rate time series tend to have these properties, 
it is probable that stationarity tests identify them falsely as non-stationary, especially 
if the number of observations is less than 30.

Using non-stationary variables in an OLS regression is not advisable as it can lead 
to “spurious correlations”. Accordingly, modellers choose alternative modelling 
approaches such as differencing of the target variable if it is thought to be non-
stationary. However, this is often a bad choice for banks’ default rates, at least for 
purposes which require conservativism (such as stress testing or IFRS 9 forward-
looking expected loss models): although models on differences usually have better 
properties in econometric terms, they tend to quantify weak relationships between 
default rates of loan portfolios and the macroeconomic environment. Predictions 
based on such models will often be unsensitive to the expected deterioration of 
economic circumstances and hence not conservative enough.

As a conclusion of our analysis, we provide the following advice to banking experts:

• �Take extra care when assessing the stationarity of default rate time series if the 
data is of less than 20-30 years (be careful in general, of course).

• �As stationarity (unit root) tests with opposite null hypotheses (such as ADF and 
KPSS) tend to accept their own null hypothesis on small samples, it is a good rule 
of thumb to accept their results if those are consistent (meaning that at least one 
of the tests with opposing hypotheses rejected its null).

• �Short default rate time series should not be assessed as non-stationary solely 
based on the results of stationarity tests, especially if they fail only one of 
the tests. Expert judgement should be used to consider theoretical-economic 
arguments that might justify the stationarity of the default rate time series.

• �When undertaking the above, special attention should be paid to the presence 
of structural breaks: if these are absent, then short default rate time series can 
be assumed to be stationary even if they fail stationarity tests or if different tests 
provide inconsistent results.

• �If the purpose of default rate modelling requires conservative predictions (e.g. in 
the case of stress testing), then it is not necessarily incorrect to use the level of 
default rates as target variables in OLS regressions, even if they fail stationarity 
tests. Especially if the only alternative is a model on differences that is insensitive 
to the explanatory variables (to the change of the external environment)

• �However, when interpreting model results, it should be presented transparently 
in what way the above model-technical choices might distort the predictions, and 
when (under what circumstances) they might work well and when they cannot.
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Are Default Rate Time Series Stationary? A Practical Approach for Banking Experts

Appendix: Formal definition of the processes used in the Monte Carlo 
simulations

We used the following processes in our Monte Carlo simulation exercise:

1. Stationary non-autocorrelated (𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

 process(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

2. Random walk, non-stationary unit root 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

 process

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
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1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 
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𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 
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𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 
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𝒩𝒩() 
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𝜇𝜇 
𝜎𝜎 
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𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
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𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

3–4. Stationary, strongly-correlated 

3-4. pontjában: 
 
(𝜌𝜌 = 0.7	and	𝜌𝜌 = 0.9	) 
 
5. pontjában:  
 

𝑦𝑦! = .𝒩𝒩
(𝜇𝜇 ∗ 0.8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2.4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
6. pontban:  
 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = .0, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = .				3 ∗ 	𝑦𝑦!"# + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8) 3⁄ , 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# = 	1
					𝑦𝑦!"# 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8)	/3, 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# ≠ 	1 

 

3-4. pontjában: 
 
(𝜌𝜌 = 0.7	and	𝜌𝜌 = 0.9	) 
 
5. pontjában:  
 

𝑦𝑦! = .𝒩𝒩
(𝜇𝜇 ∗ 0.8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2.4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
6. pontban:  
 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = .0, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = .				3 ∗ 	𝑦𝑦!"# + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8) 3⁄ , 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# = 	1
					𝑦𝑦!"# 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8)	/3, 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# ≠ 	1 

 

 processes 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

where 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

 stands for the normal distribution.

5. Bounded, non-autocorrelated, cyclic stationary process 

	  

3-4. pontjában: 
 
(𝜌𝜌 = 0.7	and	𝜌𝜌 = 0.9	) 
 
5. pontjában:  
 

𝑦𝑦! = .𝒩𝒩
(𝜇𝜇 ∗ 0.8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2.4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
6. pontban:  
 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = .0, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = .				3 ∗ 	𝑦𝑦!"# + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8) 3⁄ , 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# = 	1
					𝑦𝑦!"# 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8)	/3, 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# ≠ 	1 

 

 ,

where the generated values are bounded to the 0.003–1 region,

	

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

,

where 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

 stands for the normal distribution, 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

 is a random value between 
0 and 1 corresponding to time t, and p is the probability of crisis shock (chosen to 
be 12.5 per cent). There are two states in this process: the crisis phase, when the 
generated values fluctuate around a “crisis mean value” and the non-crisis phase, 
when the generated values fluctuate around a “non-crisis mean value”. The crisis and 
non-crisis mean values and the value for the probability of crisis shock was chosen 
in such a way that the overall mean of the process is 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

, while the variance is 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

.  
5 per cent was selected for the value of 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

 (which is not an unrealistic estimate for 
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the default rate of a loan portfolio), and thus the boundary associated with the 
0.003–1 interval rarely applied. Note that the choice of the minimum (0.3%) is set 
to be non-zero, because of the non-zero PD in the Basel regulation. 

6. Bounded, autocorrelated, mean-reverting stationary 

	  

3-4. pontjában: 
 
(𝜌𝜌 = 0.7	and	𝜌𝜌 = 0.9	) 
 
5. pontjában:  
 

𝑦𝑦! = .𝒩𝒩
(𝜇𝜇 ∗ 0.8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2.4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
6. pontban:  
 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = .0, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = .				3 ∗ 	𝑦𝑦!"# + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8) 3⁄ , 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# = 	1
					𝑦𝑦!"# 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8)	/3, 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# ≠ 	1 

 

3-4. pontjában: 
 
(𝜌𝜌 = 0.7	and	𝜌𝜌 = 0.9	) 
 
5. pontjában:  
 

𝑦𝑦! = .𝒩𝒩
(𝜇𝜇 ∗ 0.8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2.4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
6. pontban:  
 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = .0, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = .				3 ∗ 	𝑦𝑦!"# + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8) 3⁄ , 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# = 	1
					𝑦𝑦!"# 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8)	/3, 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# ≠ 	1 

 

 

3-4. pontjában: 
 
(𝜌𝜌 = 0.7	and	𝜌𝜌 = 0.9	) 
 
5. pontjában:  
 

𝑦𝑦! = .𝒩𝒩
(𝜇𝜇 ∗ 0.8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2.4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
6. pontban:  
 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = .0, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = .				3 ∗ 	𝑦𝑦!"# + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8) 3⁄ , 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# = 	1
					𝑦𝑦!"# 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8)	/3, 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# ≠ 	1 

 

,

	

3-4. pontjában: 
 
(𝜌𝜌 = 0.7	and	𝜌𝜌 = 0.9	) 
 
5. pontjában:  
 

𝑦𝑦! = .𝒩𝒩
(𝜇𝜇 ∗ 0.8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2.4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
6. pontban:  
 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = .0, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = .				3 ∗ 	𝑦𝑦!"# + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8) 3⁄ , 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# = 	1
					𝑦𝑦!"# 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8)	/3, 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# ≠ 	1 

 

3-4. pontjában: 
 
(𝜌𝜌 = 0.7	and	𝜌𝜌 = 0.9	) 
 
5. pontjában:  
 

𝑦𝑦! = .𝒩𝒩
(𝜇𝜇 ∗ 0.8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2.4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
6. pontban:  
 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = .0, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = .				3 ∗ 	𝑦𝑦!"# + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8) 3⁄ , 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# = 	1
					𝑦𝑦!"# 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8)	/3, 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# ≠ 	1 

 

3-4. pontjában: 
 
(𝜌𝜌 = 0.7	and	𝜌𝜌 = 0.9	) 
 
5. pontjában:  
 

𝑦𝑦! = .𝒩𝒩
(𝜇𝜇 ∗ 0.8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2.4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
6. pontban:  
 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = .0, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = .				3 ∗ 	𝑦𝑦!"# + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8) 3⁄ , 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# = 	1
					𝑦𝑦!"# 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8)	/3, 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# ≠ 	1 

 

3-4. pontjában: 
 
(𝜌𝜌 = 0.7	and	𝜌𝜌 = 0.9	) 
 
5. pontjában:  
 

𝑦𝑦! = .𝒩𝒩
(𝜇𝜇 ∗ 0.8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2.4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
6. pontban:  
 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = .0, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = .				3 ∗ 	𝑦𝑦!"# + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8) 3⁄ , 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# = 	1
					𝑦𝑦!"# 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8)	/3, 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# ≠ 	1 

 

3-4. pontjában: 
 
(𝜌𝜌 = 0.7	and	𝜌𝜌 = 0.9	) 
 
5. pontjában:  
 

𝑦𝑦! = .𝒩𝒩
(𝜇𝜇 ∗ 0.8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2.4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
6. pontban:  
 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = .0, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = .				3 ∗ 	𝑦𝑦!"# + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8) 3⁄ , 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# = 	1
					𝑦𝑦!"# 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!"# − 	𝜇𝜇 ∗ 	0.8)	/3, 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!"# ≠ 	1 

 

,

wehere Shock_d denotes a shock dummy and the generated values are limited to 
the 0.003–1 region.

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

,

where 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

 stands for the normal distribution, 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

 is a random value between 
0 and 1 corresponding to time t, and p is the probability of crisis shock (chosen to 
be 12.5 per cent). The effects of the crisis shock are somewhat different compared 
to those in the previous processes. If a  crisis shock occurs in a  non-crisis year 
the following datapoint will be three times that of the previous one. If the crisis 
shock occurs in a crisis year, the process will simply take the value of the previous 
observation as a basis. These values are then supplemented by a normal error 
term and a mean reversion term, the latter of which is responsible for pulling the 
value back the current value of the series to the average. This reversion becomes 
stronger as the values start to diverge. 5 per cent was selected for the value of 

(𝜌𝜌 = 0) 
 
𝑦𝑦! ∼ 𝒩𝒩(𝜇𝜇;	𝜎𝜎") 
 
2. pontjában: 
(𝜌𝜌 = 1) 
 
𝑦𝑦! = 𝑦𝑦!#$ + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 𝜎𝜎") 
 
𝜀𝜀! ∼ 𝒩𝒩(0;	𝜎𝜎") 
 
3-4. pontjában: 
 
(𝜌𝜌 = 0,7	é𝑠𝑠	𝜌𝜌 = 0,9	) 
 
𝑦𝑦!&$ = 𝜌𝜌𝑦𝑦! + 𝜀𝜀! 
 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎) 
 

𝜀𝜀! ∼ 𝒩𝒩 5(1 − 𝜌𝜌)𝜇𝜇;71 − 𝜌𝜌"𝜎𝜎8 

 
𝒩𝒩() 
 
5. pontjában: 
 

𝑦𝑦! = 9𝒩𝒩
(𝜇𝜇 ∗ 0,8; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝

𝒩𝒩(𝜇𝜇 ∗ 2,4; 	𝜎𝜎), 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 
𝜇𝜇 
𝜎𝜎 
 
6. pontban: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! = 90, 𝑅𝑅𝑅𝑅𝑅𝑅! > 	𝑝𝑝
1, 𝑅𝑅𝑅𝑅𝑅𝑅! ≤ 	𝑝𝑝 

 

𝑦𝑦! = 9				3 ∗ 	𝑦𝑦!#$ + 	𝒩𝒩(0; 	𝜎𝜎) + (	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8) 3⁄ , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ = 	1
					𝑦𝑦!#$ 	+ 	𝒩𝒩(0; 	𝜎𝜎) +	(	𝑦𝑦!#$ − 	𝜇𝜇 ∗ 	0,8)	/3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑! −	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑!#$ ≠ 	1 

 
𝑦𝑦% ∼ 𝒩𝒩(𝜇𝜇; 	𝜎𝜎), 
 
𝒩𝒩() 
 
𝑅𝑅𝑅𝑅𝑅𝑅! 
 

𝜇𝜇 

 
and thus the boundary associated with the 0.003–1 interval rarely had to apply. 
Note that the choice of the minimum (0.3%) is set to be non-zero, because of the 
PD floor in the Basel regulation. 

Although it might seem like this process is non-stationary, after careful numerical 
analysis (e.g. Monte Carlo simulation), one can quickly deduce that the mean and 
the variance are independent of time.
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7. Generated from corporate bankruptcy rates in Hungary by bootstrapping, non-
autocorrelated process21

Table 3 summarises the corporate bankruptcy rates in Hungary between 1996 and 
2022 (i.e. 27 observations). During this process, selecting the data points is done 
by randomly selecting values from this table, allowing for repetition.

Table 3
Corporate bankruptcy rates in Hungary between 1996–2022

Year Bankruptcy 
rate (%)

Year Bankruptcy 
rate (%)

Year Bankruptcy 
rate (%)

1996 2.9 2005 2.8 2014 4.9

1997 2.5 2006 3.1 2015 2.8

1998 2.3 2007 3.0 2016 2.4

1999 2.2 2008 3.3 2017 2.1

2000 2.5 2009 4.2 2018 1.9

2001 2.7 2010 4.8 2019 1.7

2002 2.6 2011 4.9 2020 1.4

2003 3.0 2012 5.2 2021 1.7

2004 2.8 2013 3.8 2022 2.9

Source: MNB (2023) Report on Financial Stability, May 2023, Macroprudential indicators, Chart M11. 
(https://www.mnb.hu/letoltes/melleklet-abrai-2023-majus.xlsx) 

8. Generated by fixed-length sections of the Moody’s Ba rating class’s historical 
default rate, autocorrelated

One takes the Moody’s Ba rating class’s historic default rate (shown in Figure 2) 
and selects fixed sized sections of it (10, 20, 30, 40, 50, 60 observations) using 
every starting point. As the longest interval is 60 observations long, there are only 
27 possible starting points in the 87-datapoint long dataset. To preserve statistical 
consistency, it was decided to use 27 randomly selected sections for all the other 
lengths (10, 20, 30, 40, 50) as well.

21 �Note that a slightly different version of this process was also examined, in which the technique of 
bootstrapping was used on the Moody’s Ba rating class’s historical default rate instead of the Hungarian 
corporate bankruptcy rates. The results of this version were almost identical, and so it is not presented here.

https://www.mnb.hu/letoltes/melleklet-abrai-2023-majus.xlsx

