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Abstract

Recent research on macroeconomic �uctuations in emerging economies has resulted

in two leading approaches: introducing a stochastic productivity trend, in addition to

the temporary productivity shocks; or allowing for foreign interest rate shocks coupled

with �nancial frictions. This paper compares the two approaches empirically, and also

evaluates a model that encompasses the two approaches, taking advantage of recent

developments in the theory and implementation of Bayesian methods. The encompass-

ing model assigns a substantial role to interest rate shocks and �nancial frictions as

amplifying mechanisms, but not to trend shocks, in generating aggregate �uctuations.

Formal model comparison exercises favor models with �nancial frictions over the sto-

chastic trend model, although this is sensitive to the inclusion of measurement errors.

Our results are inconclusive in terms of which of the �nancial frictions we consider,

working capital versus endogenous spreads, is a superior choice, and both appear to be

required for a reasonable approximation to the data.
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1. Introduction

Recent research on macroeconomic �uctuations in emerging economies has resulted in two

leading approaches, both of which can be seen as extensions of Mendoza�s (1991) basic dy-

namic stochastic model. The �rst approach, due to Aguiar and Gopinath (2007), introduces

a stochastic productivity trend, in addition to the temporary productivity shocks already

present in Mendoza�s model. This seemingly small addition, Aguiar and Gopinath argue,

goes a very long way towards addressing well known empirical failures of the model when

taken to data from emerging market economies, including the strong counter cyclical behav-

ior of the trade surplus and the higher volatility of consumption relative to output�s.

A second approach, exempli�ed by Neumeyer and Perri (2005) and Uribe and Yue (2006),

relies instead on the introduction of foreign interest rate shocks coupled with �nancial fric-

tions. This approach is motivated by the observation that the cost of foreign credit appears

to be countercyclical in emerging economies data. Accordingly, both Neumeyer and Perri

(2005) and Uribe and Yue (2006) develop models in which country risk spreads are stochastic

and interact with �nancial imperfections. Then they argue that those models are consistent

with the empirical regularities of emerging economies.

In this paper, we compare the two approaches empirically, taking advantage of recent

developments in the theory and implementation of Bayesian methods. We build an en-

compassing model that combines both stochastic trends, interest rate shocks and �nancial

frictions. We then estimate the parameters of the exogenous shocks processes, along with

a few other crucial parameters. Our Bayesian estimation procedure has the advantage that

a natural comparison of di¤erent models�predictive performance is given by their marginal

likelihoods. Using this tool we develop restricted versions of the encompassing model in the

form of a stochastic trend model and the random interest rates/�nancial frictions model.

In the latter case, we distinguish between �nancial frictions in the form of working capital

requirements and of endogenous country risk spreads. For each version we also estimate

the parameters of the exogenous shocks processes, and assess their relative performance by

comparing their marginal likelihood as well as the matching of a subset of selected moments

relative to the data.We employ the Mexican dataset of Aguiar and Gopinath (2007), thus
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ensuring that our results can be compared with the �ndings of that paper.

We obtain several results of interest. The highest probability region of the posterior dis-

tribution is characterized by strong �nancial frictions; volatile shocks in interest rates and

transient technology, and modest trend shocks. In fact the random walk component is less

than a �fth of what other studies found where they did not take into account �nancial fric-

tions. Consequently, when we evaluate the relative contribution of temporary productivity

shocks, trend shocks, and interest rate shocks to aggregate �uctuations, we �nd that, while

temporary productivity shocks are responsible for the bulk of the variance of aggregates,

interest rate shocks have a sizeable role as well, generating about ten percent of the variance

of output and consumption, one �fth the variance of investment, and one third the variance

of the trade balance/output ratio. In contrast, the share of those variances due to trend

shocks is ten percent or less. These results are robust along many dimensions such as the

use of uninformative priors and the various parameterization of preferences. In addition,

the �nancial frictions model beats the stochastic trends model in nearly every comparison

based on likelihood or marginal likelihood, although this result is sensitive to the inclusion

of measurement errors.

Overall, our results are supportive of the view that assuming foreign interest rate shocks

in conjunction with �nancial imperfections is a better approach than assuming stochastic

trends if we are to explain �uctuations in emerging economies. In addition to the papers

by Neumeyer-Perri and Uribe-Yue, this has been stressed by the literature on balance sheet

e¤ects (Cespedes, Chang and Velasco 2004) and sudden stops (Calvo 1998, Mendoza 2006).

We agree with Oviedo (2005) in that �nancial frictions can enhance signi�cantly the perfor-

mance of models with stochastic interest rates. On the other hand, our results leave us more

ambivalent than Oviedo as to whether which �nancial friction, working capital requirements

or endogenous spreads, is superior to the other.

Our work is related to at least two other strands of the literature. One is the debate

of whether �uctuations in emerging economies are dominated by domestic shocks or foreign

shocks. Several years ago now, Calvo, Leiderman, and Reinhart (1993) upset the then

conventional wisdom by showing that foreign interest rate shocks were a major source of
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�uctuations in Latin America. Our results are clearly complementary to theirs.

Finally, our paper belongs to a growing group of studies that apply developments in

Bayesian methods to models and questions in open economy macroeconomics. Examples in-

clude Lubik and Schorfheide (2005), Rabanal and Tuesta (2006), and Justiniano and Preston

(2006).

The rest of the paper is organized as follows. Section 2 presents the models under study.

Section 3 discusses the details of our empirical approach. Section 4 presents and discusses

our baseline results. Section 5 presents several robustness exercises. Section 6 concludes.

2. Competing Models

Currently competing views on the sources of shocks to emerging countries can be regarded

as elaborations on the canonical real business cycle model of a small open economy �rst

developed by Mendoza (1991) and discussed by Schmitt-Grohe and Uribe (2003). As stressed

by Mendoza and others, the standard model has notable empirical shortcomings, which have

motivated several extensions and amendments. In this paper we are concerned with two

dominant extensions: one which we will call the stochastic trend model, which features

permanent shocks to technology, as advocated by Aguiar and Gopinath (2007); and another,

the �nancial frictions model, which introduces foreign interest rate shocks that interact

with �nancial imperfections, as discussed by Neumeyer and Perri (2005) and Uribe and Yue

(2006). This section discusses these alternatives and also describes an encompassing model

that embeds both stochastic trends and �nancial frictions.

2.1. The standard small open economy model

The standard model of a small open economy is well known. Time is discrete and indexed

by t = 0; 1; 2; ::: There is only one �nal good in each period, which can be produced with a

technology given by

Yt = atF (Kt;�tht)
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where Yt denotes output, Kt capital available in period t, ht labor input, and F is a neo-

classical production function. We use upper case letters to denote variables that trend in

equilibrium, and lower case letters to denote variables that do not1. Also, at is a shock to

total factor productivity, assumed to follow:

log at = �a log at�1 + "at (2.1)

where j�aj < 1; and "at is an i.i.d. shock with mean zero and variance �
2
a. In the standard

model, the shock "at is the only source of uncertainty. Also, and importantly for our purposes,

total factor productivity is a stationary process.

Finally, �t is a term allowing for labor augmenting productivity growth. In the standard

model, �t is assumed to follow a deterministic path:

�t = ��t�1 (2.2)

Capital accumulation is given by a conventional equation:

Kt+1 = (1� �)Kt + It � � (Kt+1; Kt) (2.3)

where It denotes investment, � the rate of depreciation, and � (Kt+1; Kt) costs of installing

capital.

The economy is inhabited by a representative household with preferences of the form:

E

1X
t=0

�tU(Ct; ht;�t�1) (2.4)

where � is a discount factor between zero and one, Ct denotes consumption, U(:) a period

utility function, and E(:) the expectation operator. (We include �t�1 in the period utility

function U to allow for balanced growth.)

The representative agent has access to a world capital market for noncontingent debt.

1The only exceptions will be the spread, St, and the world and domestic gross interest rates, R�t and Rt,
to be de�ned later, which do not trend in equilibrium.
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Her budget constraint is, therefore,

Wtht + utKt + qtDt+1 = Ct + It +Dt

Wt denotes the wage rate and ut the rental rate of capital, so the �rst two terms in the LHS

are factor receipts in period t: In addition, qt is the price at which the household can sell a

promise to a unit of goods to be delivered at t+1; while Dt+1 is the number of such promises

issued. The LHS describes expenditures in period t, given by consumption, investment, and

debt payments.

Residents of this country face an interest rate on foreign borrowing given by the inverse

of qt; and assumed to take the form:

1=qt = R� + �( ~Dt+1=�t) (2.5)

where R� is the world interest rate, ~Dt+1 denotes the country�s aggregate debt (which is equal

to the household�s debt Dt+1 in equilibrium) and �(:) is an increasing, convex function. We

assume that the interest rate faced by the household is sensitive to the debt to ensure that

there is a well de�ned nonstochastic steady state. As shown by Schmitt Grohe and Uribe

(2003), this device is one of several that can be chosen to have negligible e¤ects on the

business cycle properties of the model.

Note that so far we have assumed that the world interest rate is a constant. In fact,

Mendoza (1991) argued that assuming it to be stochastic makes little di¤erence for the

business cycle properties of the standard model.

The standard model is completed by specifying that factor payments are given by mar-

ginal productivities:

ut = atF1(Kt;�tht)

Wt = atF2(Kt;�tht)�t (2.6)

6



2.2. The Stochastic Trend Model

Aguiar and Gopinath (2007) have recently emphasized that the empirical failures of the

standard model can be remedied, by and large, by allowing labor augmenting growth to be

not constant but random. Formally, the assumption (2.2) is replaced by

�t = gt�t�1 (2.7)

where

ln (gt+1=�) = �g ln (gt=�) + "gt+1 (2.8)

j�gj < 1, "gt is an i.i.d. process with mean zero and variance �2g, and � represents the

mean value of labor productivity growth: A positive realization of "gt implies that the growth

of labor productivity is temporarily above its long run mean. Such a shock, however, is

incorporated in �t and, hence, results in a permanent productivity improvement.

That the addition of permanent productivity shocks has the potential to eliminate the

departures between the model and the data is intuitive and explained by a permanent income

view of consumption. After a favorable realization of "gt , productivity increases permanently.

Accordingly, permanent income, and therefore consumption, can increase more than cur-

rent income; this explains why consumption may be more volatile than income in emerging

economies. The same reasoning implies that the representative household may want to issue

debt in the world market to �nance consumption in excess of current income, leading to a

countercyclical current account.

2.3. Financial frictions models

Neumeyer and Perri (2005) and Uribe and Yue (2006) have argued for a theoretical framework

where business cycles in emerging economies are driven by random world interest rates that

interact with �nancial frictions. An empirical motivation for this view is what Calvo (1998)

has called "sudden stops", de�ned by abrupt and exogenous halts to the �ow of international

credit to the economy, which force a violent turnarounds in the current account.

To develop this view, one can modify the standard model along lines suggested by
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Neumeyer and Perri (2005). First, the price of the household�s debt is assumed to be given

by

1=qt = Rt + �( ~Dt+1=�t) (2.9)

instead of (2.5), where Rt is a country speci�c rate,

Rt = StR
�
t (2.10)

R�t is the world interest rate and St a country speci�c spread. The world interest rate is now

assumed to be random, and �uctuates around its long run value R� according to the process:

ln (R�t =R
�) = �R ln

�
R�t�1=R

��+ "Rt (2.11)

where j�Rj < 1 and "Rt is an i.i.d. innovation with mean zero and variance �2R:

In addition, deviations of the country spread from its long-run level are assumed to

depend on expected future productivity as follows

log(St=S) = ��Et log at+1 (2.12)

Adding shocks to the world interest rate to the basic model has, in fact, been considered in

the literature, with little success (see, for instance, Mendoza 1991 and Aguiar and Gopinath

2008). But random interest rates become a more compelling addition when coupled with

�nancial frictions. So, for example, one can argue that country risk must depend inversely

on expected productivity, as high productivity in the future should reduce the risk of default.

Neumeyer and Perri (2005) advocated (2.12) as a shortcut to capture this idea.

An additional friction, developed by Neumeyer and Perri (2005) and Uribe and Yue

(2006), is to assume that �rms must �nance a fraction of the wage bill in advance. Again,

we follow Neumeyer and Perri�s formulation, the net result of which is that equilibrium in

the labor market requires

Wt [1 + � (Rt�1 � 1)] = atF2(Kt;�tht)�t (2.13)
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instead of (2.6). In words, the typical �rm hires workers to the point at which the marginal

product of labor (the RHS of the previous expression) equals the wage rate inclusive of

�nancing costs (the LHS). Firms are assumed to borrow from households and forced to pay

for a fraction � of the wage bill in advance of production.

As discussed by Oviedo (2005), the working capital assumption (2.13) and the endogenous

spread assumption (2.12) are two separate alternatives, in spite of Neumeyer and Perri�s

imposing both. Indeed, they emphasize di¤erent possibilities for improving the performance

of the basic model. With the working capital assumption, a fall in the world interest rate

reduces the cost of labor, which stimulates output. At the same time, it stimulates demand,

as the cost of borrowing for consumption and investment falls. Hence the trade balance

may in principle deteriorate at the same time as output is expanding, which can explain an

acyclical or countercyclical trade balance.

With an endogenous spread, a favorable productivity shock increases output and, because

the shock is persistent, reduces the interest rate applicable to the representative household�s

debts, thus boosting consumption and investment even beyond the boost to output. A

countercyclical trade balance may then emerge, as with working capital, although it is due

to a di¤erent mechanism.

2.4. An Encompassing Model

While the literature has naturally considered stochastic trends and �nancial frictions sep-

arately, it is relatively straightforward to specify a model in which both extensions of the

standard model are present. In this subsection we indeed describe our preferred version of

such an encompassing model, which will be a focus of our empirical analysis below.

Our encompassing model follows the spirit of Aguiar and Gopinath (2008), which extend

the stochastic trend model to allow for shocks to the consumption and investment Euler

equations that operate through the interest rate. But we di¤er from Aguiar and Gopinath

(2008) in two fundamental dimensions. First, our encompassing model includes both �nancial

frictions, endogenous spreads and working capital requirements, embedded in the parameters

� and �. Aguiar and Gopinath (2008) did consider endogenous spreads but not working
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capital which appears to be a key transmission mechanism and a relevant feature in bringing

theoretical models of emerging market business cycles closer to the data.

Second, while Aguiar and Gopinath (2008) only allowed the spread to be a¤ected by

transient technology shocks, our encompassing model allows for permanent shocks to also

a¤ect the spread. This is more natural, since the logic behind an endogenous spread is often

based on the idea that default risk falls with expected productivity, regardless of whether

shocks to the latter are permanent or transitory. To implement this idea, however, we need

to modify the assumption (2.12) on country risk. So, in our encompassing model the country

spread will be assumed to be given by

log(St=S) = ��1Et log at+1 � �2Et log(�t+1=�)

One particular version of this, which we will examine, assumes that the spread is given

by (2.12), except that the temporary productivity shock at+1 is replaced by total factor

productivity (Solow residual):

log(St=S) = ��Et log(SRt+1=SR)

where SRt = atg
a
t and SR = �� according to the Cobb-Douglas technology speci�ed below:

Our encompassing model is then given by the combination of one of the preceding two as-

sumptions for the spread together with the assumptions of stochastic interest rates (2.9-2.11),

the working capital requirement (2.13), and trend shocks (2.8), in addition to temporary pro-

ductivity shocks (2.1).

With this formulation, one way to evaluate the relative merits of the hypotheses of

stochastic trends and �nancial frictions is to analyze the contribution to di¤erent macro

aggregates of trend shocks versus shocks to the foreign interest rate. A di¤erent but comple-

mentary perspective is to compare directly the stochastic trend model against the �nancial

frictions model. Clearly, each of the two can be seen as suitably restricted versions of the

encompassing model, but none is a special version of the other.
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3. Empirical Approach

3.1. Bayesian Analysis, in a nutshell

We adopt a Bayesian viewpoint because of its conceptual simplicity and because it allows

for a logically coherent comparison between models that are not necessarily nested, as is

the case of the stochastic trend model and the �nancial frictions model. To implement that

viewpoint, we draw on recent theoretical and computational advances, usefully summarized

by DeJong and Dave (2007), Canova (2007), Geweke (2005), and others. For completeness,

this section provides a very succinct description of how we implement the Bayesian approach.

Let X denote a vector of observed data. Each one of the models reviewed in the previous

section implies a probability distribution for the data, say pM(Xj�M); whereM is an index for

each model and �M is a vector of parameters, possibly model speci�c, that we want to learn

about. Given a particular parameter vector, say ��M ; pM(:j��
M
) is a probability distribution

function whose value depends on X: Having observed a realization of X; say �X; pM( �Xj:) can

be seen as a function of the parameter vector �M : This function is the likelihood, usually

denoted by LM(�
M j �X) to emphasize that it is function of �M . The likelihood functions

associated with the models in the previous sections can be computed in a straightforward

fashion: following Sargent (1989), we linearize each model around its nonstochastic steady

state, solve the resulting linear system via standard methods, and map the solution into

a state space representation from which the likelihood can be computed using the Kalman

�lter.

The Bayesian framework is concerned with the way our views about models and their

parameters are revised in light of observed data. Prior beliefs about the parameters of each

model M are given by a prior distribution, which we denote by pM(�
M): After observing

the data �X; Bayes Theorem implies that posterior beliefs about �M ; denoted by pM(�
M j �X);

must respect:

pM(�
M j �X) =

pM( �Xj�M)pM(�M)R
pM( �Xj�M)pM(�M)d�M

=
LM(�

M j �X)pM(�M)
pM( �X)
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where we have de�ned pM( �X); model M 0s marginal likelihood, as:

pM( �X) =

Z
LM(�

M j �X)pM(�M)d�M

If one can compute the posterior distribution pM(�
M j �X) one can also compute, at least in

principle, the posterior distribution of functions of the parameter vector �M : In the context of

the dynamic models we are considering, such functions include impulse response functions,

moments of di¤erent variables, and variance decompositions. In practice, the analytical

derivation of both the posterior distribution pM(�
M j �X) and the posterior distribution of

functions of �M is intractable. However, recent simulation methods allow us to obtain draws

from the posterior distribution pM(�
M j �X). A histogram of the simulated draws (or a chosen

function of them) then provides an approximation of pM(�
M j �X) (or the posterior distribution

of the corresponding function) with a level of accuracy that can be made arbitrarily close by

increasing the number of draws.

Additionally, it is useful for our purposes that the marginal likelihood pM( �X) is the

probability of observing the data �X associated with model M: So one straightforward way

to compare alternative models is to compute their respective marginal likelihoods. This is

particularly appealing if the models to be compared are not nested.

Given this framework, we conduct two complementary exercises. First, we estimate the

encompassing model and focus on the posterior distribution of variance decomposition of

aggregate variables, including output, thus measuring the relative importance of temporary

productivity shocks, trend shocks, and interest rate shocks when all of them are allowed

to play a role in generating �uctuations. Second, we estimate the stochastic trend model

and the �nancial frictions models separately and compare their marginal likelihoods, which

amounts to a direct comparison of the two versions in terms of their predictive power.

3.2. Functional forms, and calibrated versus estimated parameters

We follow the current literature on emerging market business cycles when choosing the

functional forms for preferences and technology. For the most part, we impose a utility
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function of the Greenwood, Hercowitz and Hu¤man (1988) form:

u(Ct; ht;�t�1) =
(Ct � ��t�1h

!
t )
1��

1� �

As discussed by Neumeyer and Perri (2005) and others, GHH preferences have been

shown to help reproducing some emerging economies�business cycles facts by allowing the

labor supply to be independent of consumption levels, which explains their popularity. It

may be noted, however, that Aguiar and Gopinath (2007) focused on their results with Cobb

Douglass preferences instead (in spite of the fact that, in the working paper version, they also

estimated their model with GHH preferences and found very little di¤erence). Accordingly,

in one of our robustness exercises we examine a more �exible preference speci�cation due to

Jaimovich and Rebelo (2008), which embed both GHH and Cobb Douglass as special cases.

The production function is assumed to be Cobb Douglass:

F (Kt; Xtht) = K1��
t (�tht)

�

where � is the labor�s share of income.

The capital adjustment cost function is assumed to be quadratic:

� (Kt+1; Kt) =
�

2

�
Kt+1

Kt

� �

�2

In turn, the function � determining the interest rate elasticity to the country�s debt has

the form:

� (Dt+1=�t) =  

�
exp(

Dt+1

�t
� d)� 1

�
For each model, we estimate some parameters and calibrate the rest. The choice of which

parameters to estimate or calibrate is guided by the objectives of our investigation as well

as some known facts in the existing literature.

Since a main question is the relative importance of sources of �uctuations, in each case

we estimate the parameters of exogenous driving forces. Hence, the parameters of the tran-
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sitory productivity process (2.1), namely the AR coe¢ cient �a and the standard deviation

of the innovations �a; are always estimated. Where shocks to the trend are allowed, we also

estimate the parameters �g and �g of the permanent productivity process (2.8). And if the

world interest rate is allowed to be stochastic, as in the �nancial frictions models and the

encompassing model, we estimate �R and �R in (2.11).

While the addition of the permanent productivity process is the only departure of the

stochastic trend model from the standard, Mendoza-type model, allowing for �nancial fric-

tions models introduce two other parameters: the elasticity of the spread with respect to

expected productivity (�) and the working capital requirement parameter �: Accordingly, we

estimate those parameters in models that allow for �nancial frictions. Finally, in all cases

we estimate is the parameter � governing the capital adjustment function.

We calibrate the remaining parameters of each model. The calibrated parameters are

given in Table 1 and take conventional values: the coe¢ cient of relative risk aversion is set

at 2, and ! and � are set so as to imply, respectively, a labor supply elasticity of 1:6 and

a third of time spent working in the long run. The labor�s share of income, �, is set to

be 68%2. Following Aguiar and Gopinath (2007) we set the long-run levels of the foreign

interest rate and debt-to-GDP ratio to 1:03 and 0:1, respectively, to pin down the steady

state value of debt holdings. The quarterly depreciation rate is assumed to be 5 percent. As

it is common in the literature on closing small open economy models, we set the parameter

 ; determining the interest rate elasticity to debt, to a minimum value that guarantees the

equilibrium solution to be stationary (Schmitt-Grohe and Uribe, 2003). Lastly, we calibrate

the long-run productivity growth, �, equal to 1:006 following the point estimate reported by

Aguiar and Gopinath (2004) and consistent with a yearly growth rate of 2:4 percent.

3.3. Data and Implementation

For comparability, we used the Mexican data from Aguiar and Gopinath (2007) as our

observed data, X. We retrieved their series for aggregate consumption (C), investment (I),

output (Y ), and the trade balance to output ratio (TB=Y ). The data are quarterly for the

2Note that in the model with �nancial frictions, � is not exactly equal to labor share in the Financial
Frictions model but it is rather calibrated as � = LaborShare � [1 + (R� 1) �].

14



period 1980:I to 2003:II.

To implement our empirical procedures requires at least three other decisions: how to

deal with trends; whether and how to include measurement error; and how to draw samples

from the posterior distribution. Our choices are best explained in the context of the state

space formulation of each model, which is needed to apply the Kalman �lter.

As mentioned, once each model is linearized around its nonstochastic steady state, the

system of equations that characterize its solution can be written in the form of a transition

equation:

Zt = PZt�1 +Q�t (3.1)

where Zt is a vector with the model variables, and �t the vector of structural shocks, and P

and Q system matrices that may depend on the model parameters. Using the Kalman �lter

then requires specifying a measurement equation,

Xt = F +GZt + �t (3.2)

mapping a vector of observed data Xt to the elements in Zt by the conformable matrices

[F;G], while �t are exogenous i.i.d. measurement errors.

Given that the data is expressed in levels, and that the solution to our models is cast in

terms of log-deviations from steady states, there is a straightforward way to map a transfor-

mation of the data to the elements in the models. For illustrative purposes, consider that we

have data on aggregate output in levels, Yt. In this case, the observed data can be directly

linked to its theoretical counterpart, yt, as follows:

Yt|{z}
Data

= yt �t�1| {z }
Model

Furthermore, since the solution of the model is given in terms of log-deviations from

steady state, an additional transformation is needed. It follows that if there are shocks to
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the trend, the measurement equation for output is

� ln (Yt)| {z }
Data

= ln�+ (byt � byt�1) + bgt�1| {z }
Model

; (3.3)

where � denotes the �rst di¤erence and a hat "b" denotes log-deviations from steady state

values (i.e. byt = ln (yt=ySS)). Similarly, if there are no trend shocks, the measurement

equation for output is

� ln (Yt)| {z }
Data

= ln�+ (byt � byt�1)| {z }
Model

; (3.4)

Similar observations apply for the measurement equations of aggregate consumption and

investment. The absence of trend in equilibrium in the trade balance share makes the

mapping from the observed data to the model based data independent of which case we are

considering. Moreover, because we take a linear approximation (rather than log-linear) to

the model-based measure of trade balance share, tby, the mapping in terms of �rst di¤erences

is

�(TB=Y )t| {z }
Data

= ctbyt � ctbyt�1| {z }
Model

;

We choose a mapping in �rst di¤erences of TB=Y , instead of levels, because typically

small open economy models counterfactually deliver a quasi-random walk process in the

trade balance level, inherited by the nature of the endowment process (see Garcia-Cicco,

et.al., 2008).

The second issue is the treatment of the measurement errors �t: First, note that neither

the encompassing model nor any of its restrictions exhibit more structural shocks than

the number of time series we observe. To overcome the well-known stochastic singularity

problem that arises in cases like these two options are available to the applied researcher:

one can either base estimation on as many observed variables as there are shocks; or one can

arti�cially augment the space of shocks by adding measurement error shocks, completing

the probability space of each model so as to render the theoretical covariance matrix of the

variables in Xt no longer singular3. Within the context of our investigation each alternative

3A third option, known in the literature as the multiple-shock approach, is to include additional structural
shocks. This option, however, would take us further away from the scope of this paper so we discard it.

16



o¤ers advantages and disadvantages. While the addition of measurement errors may be

warranted given the well-known measurement issues surrounding macroeconomic data from

emerging economies, it is still an arbitrary decision which variables will have errors and which

will not. On the other hand, given that one of the central goals is to compare the performance

of two restricted versions of the encompassing model, one would also like to know how this

comparison looks like when each version is directly mapped to the data without any arti�cial

statistical errors. Of course, the latter alternative brings the tougher question of which of the

four time series considered should be used when estimating the models without measurement

errors. In light of this trade-o¤ we choose to combine both methods. We estimate both the

encompassing model and the two restricted versions using all four time series vectors and

adding measurement errors to all four. In addition, when conducting the model comparison

between the stochastic trend and �nancial frictions models we also report the results when

no measurement errors are added. In this latter case, we explore the implications of using

di¤erent pairs of observable vector time series, given that the two models exhibit only two

structural shocks.

The third issue is how to sample from the posterior distribution. We follow, for the

most part, the Random Walk Metropolis algorithm presented in An and Schorfheide (2007)

to generate draws from the posterior distribution pM(�
M jX). The algorithm constructs a

Gaussian approximation around the posterior mode, which we �rst �nd via a numerical

optimization of lnLM(�
M jX) + ln pM(�M), and uses a scaled version of the inverse of the

Hessian computed at the posterior mode to e¢ ciently explore the posterior distribution

in the neighborhood of the mode. It proved useful to repeat the maximization algorithm

using random starting values for the parameters drawn from their prior support in order to

gauge the possible presence of many modes in the posterior distribution4. Once this step is

completed, the algorithm is used to make 150; 000 draws from the posterior distribution of

each case. The initial 50; 000 draws are burned.

A key part in this step is to use a properly scaled version of the covariance matrix for

the proposal distribution in order to allow for an e¢ cient exploration of the mode(s) in the

4The MATLAB codes that solve all the model�s extensions as well as the ones that carry out the estimation
are available upon request.
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posterior distribution (see An and Schorfheide for details). In addition, to overcome the

high serial correlation of the draws, we use every 100th draw and posterior distributions are

generated with the resulting 1000 draws. Convergence of the Markov chains was mainly

veri�ed informally through graphical methods, although we also computed the Geweke and

Chib (1998)�s separated mean test.

4. Results

This section presents our baseline results. We �rst summarize our prior beliefs and present

the parameters�posterior distributions and the distribution of other key moments. We esti-

mate the encompassing model as well as its two restricted versions of interest, the stochastic

trend model and the �nancial frictions model. For the most part we report results obtained

with and without measurement errors. We conclude the section with an assessment of the

relative �t of the two competing approaches to business cycles in emerging economies.

4.1. Priors

Our prior beliefs over the estimated parameters are described in Table 2 and were based, to

the extent possible, upon earlier studies on emerging market business cycles.

Key parameters are the ones governing the temporary and permanent technology processes:

�a; �g; �a; �g. Unfortunately, estimates available from other studies on the relative impor-

tance of each of these parameters are ambiguous. While Aguiar and Gopinath (2004)5

estimate a ratio �a=�g = 0:41=1:09 = 0:4 for Mexico, Garcia-Cicco et.al. (2009) �nd for

Argentina the much higher ratio �a=�g = 3:3=0:71 = 4:6. Given this, we chose our prior

beliefs to have a mean of 0:74 for both �a and �g. The mean value of 0:74 mimics the average

between the two point estimates found by Aguiar and Gopinath (2004). We did so using a

5The reader should note that we use the working paper version of Aguiar and Gopinath�s work (Aguiar
and Gopinath, 2004) when forming our priors, instead of the published version (Aguiar and Gopinath, 2007).
This is because only in the working paper version the estimation is done using the same GHH preferences we
use in our work whereas in the published version the authors use Cobb-Douglas preferences instead. While
they show that the business cycles implications of using the two preferences are similar, the point estimates
of the key parameters they estimate do di¤er substantially. In the next sections we explore the robustness
of our results to other set of preferences.
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Gamma function with parameters (2:06; 0:0036).

Our prior for �a, the autoregressive coe¢ cient of the temporary productivity shock, was a

Beta function with parameters (356; 19), implying a mean of 0:95 and a standard deviation

of 1:1 percent. The mean is close to the point estimate found by Aguiar and Gopinath

(2004), and was the same calibrated value used by Neumeyer and Perri (2005). The prior for

the autoregressive coe¢ cient of permanent productivity shocks, �g; was also formed using a

Beta function with parameters (285; 111), yielding a mean of 0:72, and a standard deviation

of 2:3 percent. This follows the point estimate found by Aguiar and Gopinath (2004).

Similarly, we based our priors over parameters governing the world interest rate process

and the degrees of �nancial frictions (�R; �R; �; �) upon earlier studies. Our prior for �R, was

a Beta function with parameters (44:3; 9:06), consistent with beliefs that the mean value

was 0:83, the point estimate found by Uribe and Yue (2006), and a standard deviation of 5:1

percent. For �R we speci�ed a prior centered at 0:72 percent, the value reported by Uribe

and Yue, with and a standard deviation of 0:31 percent, formed using a Gamma function

with parameters (5:6; 0:0013).

Previous studies provide little statistical information on the size of the elasticity of the

spread to the country�s fundamentals, �, and the fraction of the wage bill held as working

capital, �. We use a prior with mean of 1:0 and a standard deviation of 10 percent for �, close

to the value calibrated by Neumeyer and Perri (2005) to match the volatility of the interest

rate faced by Argentina�s residents in international capital markets. As for �; we decided to

specify a fairly di¤use prior, with the only restriction that it must lie between zero and one.

For this purpose we used a Beta(2; 2) function with mean 0:5; and a considerable standard

deviation of 22:4 percent to re�ect the little information we have a priori on this parameter.

Lastly, our prior on � was a Gamma function with parameters (3; 2). This is a con-

siderably di¤use prior, as given by the large 90 percent con�dence interval, re�ecting that

previous studies have found di¤erent values for this parameter when trying to mimic the

investment volatility.
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4.2. Posteriors

We estimated various scenarios. On one hand, we estimated the encompassing model as well

as the two restricted versions of it - the stochastic trend version and the �nancial frictions

version- under a �exible framework allowing for measurement errors in the four time series

observed. On the other hand, under a more restricted framework, the stochastic trend and

�nancial frictions models were separately estimated without any measurement errors using

several alternative pairs of observable time series.

The posterior distribution results for the estimations allowing for measurement errors are

reported in Table 3. While the third and fourth column report posterior modes and means of

the parameters of the encompassing model, the next two columns report the posterior modes

for the two restricted models. As a benchmark, the last column reports the GMM estimates

in Aguiar and Gopinath (2005). In addition, Table 4 reports the variance decomposition

experiments undertaken with the encompassing model.

Several results deserve attention:

� The data are fairly informative in all cases, in particular with respect to the volatilities

of the shocks, in the sense that the estimated posteriors appear much more precise than

the priors, as measured by the size of the 90 percent highest posterior density intervals.

Perhaps the only exception is the standard deviation of the permanent shock, a subject

that will be looked in further detail bellow.

� Interestingly, in the encompassing model, the role of permanent shocks does not appear

to be as important as our prior beliefs suggested. The estimated posterior mode ratio

of volatilities is �a=�g = 0:54=0:25 = 2:2, which is clearly at odds with Aguiar and

Gopinath�s (2007) �nding that volatility of innovations appears to be much stronger in

the permanent technology process than in the transient one. While this ratio suggests

a minor role of trend shocks in the Mexican business cycle, the overall assessment as to

whether emerging markets�business cycles are characterized by a volatile trend is based

upon the relative importance of the random walk component of the Solow residual, a

nonlinear function of the ratio �a=�g and the ratio �a=�g which, following Aguiar and
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Gopinath (2007), is de�ned as follows:

RWC =
�2�2g=

�
1� �g

�2�
2= (1 + �z)

2��2a + ��2�2g= �1� �2g
��

The mode and mean of the posterior distribution of the RWC for the encompassing

model is given at the bottom of Table 3. It is immediate to see that, given that the

posterior of the ratio �a=�g is left pretty much unchanged relative to the prior, while

the ratio �a=�g increases signi�cantly, the posterior of the random walk component is

largely reduced relative to the prior. Indeed, we obtain a RWC whose posterior mode

is close to unity, 1:05; this is far below the value recovered by Aguiar and Gopinath of

5:3. Therefore, a full-information method that incorporates the entire information in

the data does not assign such a relevant role to trend shocks as a method that only

looks at a selected subset of moments.

� To a large extent, the minor role of trend shocks is explained by the relevance of

interest rate shocks as well as by the �nancial frictions amplifying them. We �nd that

the posterior distributions of the parameters � and � governing the degree of �nancial

frictions are far away from zero. The posterior mode for � is 0:77; signaling that close

to three quarters of the wage bill is kept as working-capital needs. The tight posterior

mode for �, with its mean centered around 0:79; reveals a signi�cant elasticity of the

spread to expected movements in the country fundamentals, embedded in the Solow

residual. While this is lower than our prior beliefs, which were centered around the

value of 1:0 calibrated by Neumeyer and Perri (2005), it is still remarkable to obtain

a high value given that Neumeyer and Perri�s calibration was based on the observed

process of the country interest rate, which we do not observe here. It is also remarkable

to see how the relative importance of trend shocks increases when the stochastic trend

model is estimated, that is, when we shut down both interest rate shocks and �nancial

frictions.

� To assess the relative role of each structural shock in explaining macroeconomic �uctu-

ations, we computed the posterior distribution of the variance decompositions implied
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by the encompassing model. The results over a time horizon of 40 quarters are re-

ported in the top panel of Table 4. The most remarkable result is the small role played

by trend shocks when accounting for the variance of the observed macroeconomic ag-

gregates. The largest share of permanent shocks is only 10%, when explaining the

variance of output and it shrinks further when looking at the other three variables.

On the other hand, world interest rate shocks play a nontrivial role, particularly when

explaining the variance in the trade balance-to-GDP ratio (35%), investment (21%),

and to a lesser extent in consumption (9%). Their role accounting for the variance

of output (8%) falls within the estimates from other studies. For example, Neumeyer

and Perri (2005) �nd that the percentage standard deviation of Argentina�s GDP in a

model with �nancial frictions but no shocks to international rates is 3% smaller than

the one in a model with interest rate shocks; and Uribe and Yue (2006) �nd that US

interest rate shocks explain about 20% of movements in aggregate activity in a pool of

emerging market economies. The largest share of the variance in all four aggregates is

however largely explained by transient shocks to the technology process.

� The lower panel in Table 4 presents the counterfactual experiment of shutting down the

amplifying mechanism of technology shocks through movements in the spread, � = 0.

The results of this experiment suggest that the large role of transient technology shocks

in accounting for �uctuations in investment and the trade balance, and to a lesser extent

in consumption, is driven by their impact on spreads. Still, surprisingly, output�s

variability continues to be explained by "pure" technology shocks, independent of the

e¤ect that fundamentals may have over the spread.

� We mainly considered convergence diagnostics for the MCMC from the Metropolis-

Hastings algorithm based upon informal graphical methods6. Following An and Schorfheide

(2007) we compared draws and recursively computed means from multiple chains. For

this purpose we chose six vectors of initial parameters by randomly drawing from their

prior support; each vector was used to run six independent Markov chains. The results

6Convergence of the Markov chains was also veri�ed in each case by running the Geweke and Chib (1998)�s
separated mean test. Results can be provided upon request.

22



of these experiments are reported in Figure 1 for the estimation of the encompassing

model. Despite di¤erent initializations, the parameters�means converge in the long-

run with two notable exceptions for the parameters governing the standard deviation

of the two technology shocks, �a and �g. In two of the six chains the means appear to

converge to a second (lower) mode where the ratio �a/�g is lower. We digged deeper

into this issue by exploring the posterior along the dimensions in these two parameters.

We set the other eleven parameters equal to their posterior mode levels and examined

the posterior along the support for the two parameters. The results of this experiment

are reported in Figure 2. While the posterior mode lies at a high value of the ratio

�a/�g, it is clear that there is another region with high posterior value where the ratio

is low. This explains why two of the chains in Figure 1 deviated to this region. Im-

portantly, however, the Metropolis-Hastings algorithm was tuned so that this region

was also explored in the estimation. This explains the fact that the posterior means

somewhat di¤er from the modes for both parameters (Table 3). In light of these �nd-

ings, an important robustness check that we conduct in the next section, is to assess

the extent to which our priors are driving these results. In particular, we check the

extent to which the posterior mode with a high ratio �a/�g is sensitive to the shape of

our priors, and whether or not the region of the posterior with a lower ratio becomes

more important as less informative priors are used.

� Another noteworthy result in Table 3 is that measurement errors appear to be quanti-

tatively signi�cant. This is robust across the three cases in Table 3 and signals that a

large fraction of the volatility in the main macro aggregates, particularly consumption

and investment, is left unexplained by all three models. Nonetheless, one could ask how

the posterior results would di¤er for the two restricted models if we estimated them

without any measurement error. The results of this experiment, using three separate

pairs of observables, are given in Table 5. What we observe across the three pairs of

results is that the size of the shocks increases in order to account for the volatility that

was soaked up before by the measurement errors. In two of the three cases considered

for the stochastic trend model, the RWC increases with respect to the benchmark case

23



with measurement errors. In the case of the �nancial frictions model, however, most

of the volatility is now soaked up by increasing the size of the parameter governing the

capital adjustment cost. This may signal another explanation as to why our results dif-

fer from Aguiar and Gopinath (2007), given that they did not consider the possibility

of measurement errors.

4.3. Model Comparison

4.3.1. Marginal Data Densities

We turn next to formal model comparisons of the models considered above; the results are

reported in Table 6. For each case considered, we report the values of the likelihood and

posterior (in logs) computed at the posterior mode, (lnLM(�
M jX) and pM(�M jX) in terms

of our previous discussion) and the values of the marginal data density ( ln pM(X)).

Before turning to the results it should be noted that, following An and Schorfheide (2008)

the log-marginal likelihood can be rewritten as

ln pM(X) =
TX
t=1

ln pM
�
xtjX t�1�

=
TX
t=1

ln

�Z
pM
�
xtjX t�1; �M

�
pM
�
�M jX t�1� d�M�

thereby implying that model comparisons based on marginal data densities capture the

relative one-step-ahead predictive performance of each model considered.

Overall, the results, reported in Table 6 are ambiguous as to which model dominates from

a one-step-ahead forecasting performance. While a more �exible framework that allows for

measurement errors points to a superiority of the stochastic trend model, we get the opposite

ranking when there are no measurement errors. Indeed, in all three cases when only pairs

of time series are used in estimation, the extension of the small open economy-RBC model

that features a stochastic interest rate coupled with �nancial frictions appears to have a

better relative �t than the stochastic trend model. This obtains both in terms of achieving

a higher log-likelihood value and, more markedly, in terms of marginal data densities and,

hence, predictive performance. Indeed, the posterior odds of the �nancial frictions model
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against the stochastic trend model (the ratios of their respective marginal likelihoods) are in

the order of 1 : exp(10) or higher, well above the thresholds considered as "decisive evidence"

in favor of the �nancial frictions model (see DeJong and Dave, 2007).

Note that the two restricted models, the stochastic trend and �nancial frictions models,

exhibit higher likelihood and marginal likelihood levels than the encompassing model. This

result can be explained by the di¤erent priors used implicitly when estimating the two

restricted models. As an illustration, consider the case of �R, the AR(1) parameter in the

process of R�. When estimating the encompassing model, the 90 percent prior distribution

over this parameter lies in the interval [0:74; 0:91], so values close to zero are highly penalized

by the prior. Yet, when estimating the stochastic trend model as a restricted version of the

encompassing model this parameter is set to zero, or, more precisely, a unit mass prior is

de�ned over zero. A similar case occurs with all the other parameters that are set equal

to zero in the restricted models, {�R; �; �} for the case of the stochastic trend model and

{�g; �g} for the case of the �nancial frictions model. These di¤erences in the priors imply

that areas of the posterior distribution that were not explored before in the estimation of

the encompassing model are now explored in the two restricted models. This analysis make

it more urgent to further explore the role of the priors, as we do in the next section.

For comparison purposes, we report in Table 6 the log-likelihood value for the stochastic

trend model evaluated at the point GMM estimates of the parameters reported by Aguiar

and Gopinath (2004)7. The log-likelihood value implied by the GMM-estimated parameters

is far below the levels obtained when using a full-information method that takes the model

to be a statistical representation of the data. This gives further quantitative evidence that,

within the context of the models analyzed here, a full-information method that incorporates

the entire information in the data can deviate substantially from an estimation method like

GMM that only looks at a selected subset of moments. And from the evidence discussed

above, we know this deviation takes mainly the form of a signi�cantly higher variance of the

transient technology shock.

7The parameters are reported in Table 3. When computing the log-likelihood value at this vector, we use
the posterior mode of the four measurement errors.
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4.3.2. Selected Moments

It could be argued that for macroeconomists, predictive performance may not be the only

relevant metric to evaluate the relative merits of alternative models. As mentioned above,

the literature on emerging market business cycle has emphasized some key moments when

evaluating the performance of models of the business cycle. Two moments have drawn

much attention: the high countercyclicality of the trade balance compared to the data from

developed countries as well as the higher volatility of consumption and investment relative

to output. In this section we compare the performance of the models under analysis along a

particular subset of moments, including the two just mentioned. In doing so we are implicitly

conducting a more stringent test of each model�s extension as the estimation was not designed

to match this particular set of moments. We continue to distinguish our results between the

cases where measurement errors are included and those when they are not.

The results of these experiments are gathered in Tables 7.1 and 7.2, where the �ltered

sample moments of the Mexican quarterly data, in terms of standard deviations, correlations

with output and the trade balance, and serial correlations are compared to the theoretical

moments from the encompassing model as well as the two restricted models. Consistent with

the measurement equations used in the above section, we �lter the data using simple log-

di¤erences for income, consumption and investment; and �rst di¤erences for the trade balance

share. Model-based moments are computed using posterior mode estimates8. For comparison

purposes, the moments obtained in Aguiar and Gopinath (2004)�s GMM estimation are

reported in the last column of Table 7.19.

The main �ndings are as follows:

� The encompassing model delivers a reasonably close match to the facts emphasized in

the literature: it delivers a more volatile path for consumption with respect to output

and reproduces the strong countercyclicality of the trade balance share observed in

the data. Recall that this is obtained without resorting to high values of trend shocks.

8Standard errors are omitted for brevity but are available upon request.
9To be precise, Aguiar and Gopinath (2004) conduct the GMM estimation based upon 11 moments of

which only two, the standard deviation and serial correlations of gY , are reported in Table 7.1. The other
9 moments used by them refer to Hodrick-Prescott �ltered moments which we don�t present here given that
we don�t use this �ltering technique.
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This is further con�rmed when looking at the moments of the �nancial frictions model,

which are quite similar to those obtained for the encompassing model. This indicates

the presence of �nancial frictions may amplify the e¤ects of interest rate shocks to the

point of causing a response of consumption that exceeds the response in output leading

to countercyclical net exports. This result was obtained previously by Neumeyer and

Perri (2005) for Argentina. Our results clearly con�rm that their �ndings extend to

Mexico and show that this particularity of emerging market business cycles can be

reproduced without the need to resort to the presence of permanent shocks to trend.

� A salient failure of the stochastic trend model in matching some of the key moments

lies in the model�s inability to reproduce a more volatile consumption with respect to

output. This failure occurs consistently both when measurement errors are added and

when they are not. In addition, when measurement errors are not included the model

counterfactually reproduces a high variance of the main macro aggregates exhibited,

notably gY and gC.

� A comparison between the model-based moments from the estimated stochastic trend

model and the ones replicated using the GMM point estimates reveals some clues

as to why the full-information estimation di¤ers from the GMM results. While the

GMM approach, by construction, assigns more weight to the standard deviations, the

full-information method assigns weights also the correlations among the four observed

variables and thus attains a better match in that dimension. Obviously, other dimen-

sions, di¤erent than the ones presented in Tables 7.1 and 7.2, will be better matched

too in a full-information approach.

5. Robustness Checks

In this section we assess the robustness of our baseline results presented in the previous

section along four dimensions. First, we gauge the robustness of the results when using

less informative priors. Second, we investigate the role played by each of the two �nancial
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frictions considered by shutting each one of them separately. Third, we assess the extent to

which our results are the product of assuming GHH preferences. And, fourth, we estimate

long-run productivity growth.

5.1. Robustness Case 1: Uninformative Priors

It was documented in Figure 2 how the estimated posterior exhibits a region of relatively

similar (although slightly lower) probability with predominance of trend shocks, as given

by a low ratio �a/�g: It is therefore of interest to document how the shape of the posterior

distribution is in�uenced by the shape of the prior, and whether or not the region of the

posterior with a low �a/�g ratio becomes more important if less informative priors are

assumed.

Our robustness check is reported in the �rst �ve columns of Table 8. For almost all

parameters we choose �at priors given by uniform distributions. In the other cases, the

AR(1) coe¢ cients for the driving forces�processes, we choose a quasi �at prior depicted by a

Beta function with parameters (2,2), implying a mean of 0:5 and a large standard deviation

of 22:4 percent.

The �rst result of interest is the presence of two local modes in the posterior distribution,

where each mode favors one of the two approaches to business cycles in emerging economies.

Contour plots around the two modes are given in Figure 3. On one hand, the higher mode,

with a likelihood and posterior values of 961 and 973 respectively, is characterized by the

virtual disappearance of trend shocks - the posterior mode for �g is 0:01-, while the transitory

technology and interest rate shocks exhibit values larger than the ones obtained under the

initial priors. As a consequence of this, the value of the random walk component is negligible.

On the other hand, a lower posterior mode, with a likelihood and posterior values of 959 and

970 respectively, is characterized by the predominance of trend shocks: its technology shocks

ratio is �a/�g = 0:43/1:10, and the parameters governing the degree of �nancial frictions, �

and �, exhibit lower values than those observed in the high mode.

A challenge for the Bayesian estimation is therefore to �ne tune the Metropolis-Hasting

algorithm so as to properly sample from each of the two modes. As we report in the �fth
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column of Table 8, we were able to make the Markov chain cross over the two modes with

enough regularity as to obtain mean values in between the two modes. The Markov chain

explored more the posterior around the high mode, and hence the mean values are closer to

those of the high posterior mode. Interestingly, the mean posteriors are fairly close to the

results reported for the encompassing model under the initial priors. This explains why the

results from the variance decomposition exercise under the less informative priors, reported in

the upper panel of Table 9, are quantitatively similar to the ones presented before. Indeed, we

continue to observe a small role played by trend shocks as opposed to transitory technology

shocks when accounting for the variance of the observed macroeconomic aggregates. We view

these results as evidence that our baseline results are robust to assuming less informative

priors.

5.2. Robustness Case 2: Shutting Down One Financial Friction at a Time

The results presented thus far indicate that the estimation of a structural model encom-

passing the two approaches to modeling business cycles in emerging economies favors one in

which �nancial frictions amplify shifts in market fundamentals through endogenous spreads

and, through the presence of working-capital needs, have supply side e¤ects following exoge-

nous interest rate perturbations. It is therefore of interest to investigate the extent to which

each of the two �nancial frictions considered is responsible for these results. We address this

question by sequentially shutting down one of the two frictions at a time.

We start by estimating the encompassing model without the assumption of working cap-

ital needs by the �rms, � = 0, but still allowing for the possibility of the spread to be

endogenously determined by expected changes in the Solow residual and estimating the pa-

rameter � governing the elasticity of the spread. Next, we run the estimation by considering

the opposite: we shut down the assumption of an endogenous spread, � = 0, while we allow

for the possibility of working capital needs, estimating the parameter �. Last, we consider

the case where none of the two �nancial frictions is present, � = � = 0.

The results of these experiments, in terms of the new posterior distributions, are reported

in Table 10; and the results in terms of variance decompositions and selected second moments
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are presented in Tables 11 and 12. Two results are worth mentioning. First, when shutting

down either of the two �nancial frictions the exploration of the posterior focuses more on

the mode that favors the presence of stochastic trend shocks as leading driving forces. In

fact, when the endogenous spread is shut down, the posterior exploration focuses entirely

on that mode. This is further emphasized by the variance decomposition, where in both

experiments the role of growth shocks accounts now for the lion�s share of output: 60% in

the case where � = 0 and 76% when � = 0. Second, the moments presented in Table 12

show that if working capital needs are the only �nancial friction in place, the model fails

to generate a consumption path more volatile than output�s, and this in turn prevents the

model from generating a strong countercyclical trade balance-to-GDP ratio. This result is in

line with Oviedo (2005) who argues that the presence of an endogenous spread is a necessary

ingredient when building models that aim at replicating emerging market business cycles.

Taken together, these two results are indicative that both �nancial frictions are rather

complementary to each other and should both be considered when building business cycles

models for emerging economies.

5.3. Robustness Case 3: Jaimovich-Rebelo preferences

The parameterization for preferences used in the analysis so far has been of the one �rst

suggested by Greenwood, Hercowitz and Hu¤man (1988). Many authors have noted that

GHH preferences improve the ability of business cycles models to reproduce some of the

stylized facts both in advanced open economies as in Mendoza (1991) and Correia et.al.

(1995) and developing market economies as in Neumeyer and Perri (2005) and Garcia-Cicco

et.al. (2009).

A well documented reason for the empirical success of GHH preferences is the fact that

they allow for labor supply to be independent of consumption levels. This leads to high

substitutability between leisure and consumption, low income e¤ect on labor supply, and

large responses of consumption and labor to productivity shocks. In contrast, in the case

of Cobb-Douglas preferences, the income e¤ect mitigates labor�s response to productivity

shocks because labor supply is no longer independent of consumption levels. Compared to
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the case of GHH preferences, leisure and consumption are not easily substituted because

the income e¤ect is strong. As a consequence, there is an incentive to smooth consumption

excessively over the business cycle by saving, in response to a positive shock. As shown in

Aguiar and Gopinath (2004), however, the main result concerning the relative importance

of trend shocks is robust to these two alternative parameterizations of preferences.

The robustness to alternative preference speci�cations has also been investigated within

business cycle models driven by interest rate shocks and �nancial frictions. Neumeyer and

Perri (2005) show that, under GHH preferences, a positive shock to interest rates that

reduces consumption and shifts down the labor demand curve will not generate a shift

of the labor supply curve because labor supply is independent of consumption levels. As

a result, in equilibrium, employment will fall together with output, hence delivering the

signi�cantly high and negative correlation between interest rates and output observed in

developing economies. In the case of Cobb-Douglas preferences, a rise in the interest rate

induces an outward shift in the labor supply curve that may potentially o¤set the initial

drop in labor demand leading to a counterfactual increase in employment (and output)

following interest rate increases. Neumeyer and Perri (2005) document how the only way

possible to make the results following an interest rate shock qualitatively robust across the

two types of preferences is to assume a low intertemporal elasticity of substitution, 1=�,

that can dampen the labor supply response. In fact, Neumeyer and Perri (2005) �nd that

only implausible values for � equal or higher than 50 are su¢ cient enough to reduce the

elasticity of substitution so as to dampen the labor supply response. Hence, it appears that,

given plausible values of intertemporal substitution, GHH preferences are a key ingredient

for business cycles models driven by interest rate shocks coupled with �nancial frictions.

In light of these �ndings by previous studies, it is of interest to investigate the robustness

of our results to more �exible preference speci�cations. To address this question, we repeated

our estimations with preferences introduced by Jaimovich and Rebelo (2008), which embed

both GHH and Cobb Douglass as special cases:

u(Ct; ht) =
(Ct � �h!t Xt)

1��

1� �
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where the representative household internalizes in her maximization problem the dynamics

of Xt given by:

Xt = Ct X
1�
t�1 , 0 �  � 1

The presence of Xt makes preferences non-time-separable in consumption and hours

worked. As shown in Jaimovich and Rebelo (2008), these preferences nest as special cases

the two classes of utility functions mentioned above. When  = 1 we obtain preferences of

the Cobb-Douglas type. Conversely, when  = 0 we obtain GHH preferences. Therefore,

lower values of  will render the income e¤ect of technology and interest rate shocks milder,

producing short-run responses to shocks that are similar to those obtained under GHH

preferences. Conversely, higher values of  will have the opposite e¤ect, as shifts in the labor

supply will likely o¤set changes in labor demand. In the latter case, and according to the

�ndings in Aguiar and Gopinath (2004), it is more likely that business cycles will be driven

by trend shocks, and interest rate shocks coupled with �nancial frictions will play a minor

role.

The experiment that we conduct in this section consist in re-estimating the encompassing

model under Jaimovich-Rebelo-type of preferences. A key parameter to be estimated in this

experiment will be . Our approach was agnostic in that we did not impose strong prior

beliefs on the shape of the distribution of this parameter. To this end we use a uniform

distribution over the support  2 (0; 1]. Note that, by excluding the case  = 0, hours

worked are stationary so we don�t need to introduce the trend in the utility function.

The results of this experiment are reported in the second-to-last column in Table 8.

It is immediate to see that, unambiguously, the estimation favors very low levels of ; as

the posterior is tightly concentrated toward zero with a mean of 0:07. Moreover, the role of

permanent shocks is even less important relative to our baseline results: before the estimated

posterior mode ratio of volatilities was �a=�g = 0:54=0:25 = 2:2, while now it increases to

�a=�g = 0:75=0:08 = 9:4 and the posterior mean for the random walk component falls from

1:5 to 0:1. In addition the role of trend shocks when recomputing the variance decomposition

of the main macro aggregates is now negligible, as trend shocks do not account more than 3

percent of the overall variance (middle panel in Table 9).

32



Taken together these results are indicative that our baseline results, favoring a model

with �nancial frictions and interest rate shocks do not hinge on the assumption of GHH

preferences. Instead, what they show is that the data is indeed consistent with GHH-type

preferences where the wealth elasticity of labor supply is near zero and where transitory

technology and interest rate shocks coupled with �nancial frictions are the main driving

forces of the business cycles. To our knowledge Schmitt-Grohe and Uribe (2009) is the only

work that has previously implemented an estimation of  within a fully-�edged DSGE model

for open and developed economies and their �ndings point to even lower posterior means for

. Our results clearly extend theirs for developing economies.

5.4. Robustness Case 4: Estimating Long-Run Growth

A key parameter in the hypothesis that business cycles in emerging economies are driven by

stochastic productivity shocks is the long-run productivity growth, �, because it is around

this value that the random shocks drive the productivity process. In the baseline encom-

passing model we calibrated the value of this parameter to match a yearly net growth rate of

2:4 percent, or � = 1:006, using the GMM-point estimate reported by Aguiar and Gopinath

(2004). However, it is clear from the evidence presented so far that GMM estimates may

di¤er from the values obtained by full-information methods. Thus, it is important to assess

whether the results found so far in terms of the minor role of trend shocks in driving business

cycles in Mexico are sensitive to this value.

To this end, we reestimated the encompassing model including net yearly growth, �; as one

of the estimated parameters. We speci�ed a di¤use prior over that parameter, with a Gamma

function with parameters (25; 0:1) in accordance with our beliefs that long-run yearly net

growth has a mean equal to 2:5 percent but allowing for substantial uncertainty, a standard

deviation of 50 percent 10. The results are reported in the last column of Table 8 and indicate

a slightly higher posterior mean of 2:7 percent, although with substantial uncertainty as 90

percent of the distribution lies between 1:96 and 3:53. Importantly, however, the baseline

results from the encompassing model appear to be robust. Notably, the posterior ratio

among volatilities is now �a=�g = 0:5=0:27 = 1:9, and the random walk component posterior

10The link between the gross quarterly growth rate, �, and � is thus: � = 100 �
�
�4 � 1

�
:

33



mean is 1:43, both quite close to the baseline results. Likewise, the variance decomposition

presented in the bottom panel of Table 9 still assign a minor role of trend shocks.

6. Concluding Remarks

By and large, the empirical results here favor �nancial frictions models relative to stochastic

trends ones. One could ask, in particular, how our results can be reconciled with those of

Aguiar and Gopinath (2007), who reported strong support for the stochastic trend model.

The short answer, in our view, is that Aguiar and Gopinath�s GMM procedure targeted only

a few moments of the joint process of the aggregates observed, while our Bayesian procedure

considers all moments of the process. One could, then, argue that Aguiar and Gopinath�s

estimates of the importance of the random walk component would be superior in terms of

criterion functions that emphasize those moments targeted by their GMM procedure. But

then one would also have to justify why those moments and not many others are the only

ones that we may care about.

While our emphasis has been on the �nancial frictions/stochastic trend dichotomy, there

is plenty of associated research to be done. One could, for example, compare the performance

of the �nancial frictions model against atheoretical VARs. While the predictive performance

of the latter is likely to be superior, recent work suggests that re�ned versions of stochastic

dynamic models can be built that compete with VARs in terms of predictive power.

In terms of policy, our results lend support to the idea that attempts to ameliorate

�nancial imperfections may result in less aggregate volatility. They are likely too to lead to

increases in welfare, although this is a question about which our estimation exercises have

nothing to say.
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TABLES AND FIGURES 

 

 

Table 1. Calibrated Parameters 

 
Variable Description Value 

σ  
Intertemporal Elasticity of Substitution 

��σ� �� �  
2.000 

ω  Labor Supply Elasticity 
�

�ω

� �
� �−� �

 1.600 

α  Labor Share of Income 0.680 

��  Gross Foreign Interest Rate 1.032 

µ  Long-run Productivity Growth 1.006 

τ  Labor Parameter so that � ����� =  Varies 

ψ  Debt Elastic Interest Rate Parameter 0.001 

β  Discount Factor Varies 

�  
Long-run Gross Country Interest Rate 

Premium Varies 

δ  Depreciation Rate of Capital 0.050 

�  Debt-to-GDP Ratio (D/Y) 0.100 
 

Note: A period is taken to be a quarter in the calibration. Most values taken from Aguiar and 

Gopinath (2007). In the encompassing and financial friction models, the discount factor is assumed 

to be 0.93 as in Neumeyer and Perri (2005), consistent with a gross spread of 1.054. Note also that 

α is not exactly equal to labor share in the Financial Frictions model but it is rather 

( )� � � �� ����� �α θ� �= + −� � . In contrast, in the Stochastic Trend model we follow Aguiar and 

Gopinath (2007) and set ���	β =  and �� = . 

 



 

Table 2. Prior Distributions 

 
Parameter Range Density Mean S.D (%) 90% Conf. Interval 

Parameters Common to Both Models 

�ρ  
AR(1) Coeff. Transitory 

Tech. Process. 
[0,1) Beta      [ 356.2 ; 18.753] 0.95 1.12 [ 0.92 ; 0.97] 

�σ  
S.D. of Transitory Tech. 

Shock (%) 
R

+ 
Gamma [ 2.060 ; 0.0036] 0,74 0.56 [ 0.12 ; 1.67] 

φ  
Capital Adjustment Cost 

Fct. Parameter 
R

+
 Gamma [ 3.000 ; 2.0000] 6.00 346 [ 1.62 ; 12.6] 

�σ  
S.D. (%) of Measurement 

Error in X = Y,C,I,TB/Y 
R

+
 Gamma [ 4.000 ; 0.0050] 2.00 1.00 [ 0.67 ; 3.86] 

Parameters Specific to the Stochastic Trend Model 

	ρ  
AR(1) Coeff. Permanent 

Tech. Process. 
[0,1) Beta      [ 285.1 ; 110.88] 0.72 2.25 [ 0.68 ; 0.76] 

	σ  
S.D. of Permanent Tech. 

Shock (%) 
R

+ 
Gamma [ 2.060 ; 0.0036] 0,74 0.56 [ 0.12 ; 1.67] 

Parameters Specific to the Financial Frictions Model 

�ρ  
AR(1) Coeff. Foreign 

Interest Rate Process. 
[0,1) Beta      [ 44.26 ; 9.0655] 0.83 5.10 [ 0.74 ; 0.91] 

�σ  
S.D. of Foreign Interest 

Rate Shock (%) 
R

+ 
Gamma [ 5.552 ; 0.0013] 0,72 0.31 [ 0.30 ; 1.29] 

θ  Working Capital Parameter [0,1] Beta      [ 2.000 ; 2.0000] 0.50 22.4 [ 0.13 ; 0.87] 

η  Spread Elasticity  R
+
 Gamma [ 99.22 ; 0.0101] 1.00 10.1 [ 0.84 ; 1.17] 

 

 



Table 3. Posterior Distributions. Encompassing 

and Separate Models 

 
Encompassing Model 

Separate Models: Posterior 

Modes 
Parameter Prior 

Mode Mean 
Stochastic 

Trend M. 
Fin. Frictions M 

AG-GMM 

Estimates 

�ρ  
0.95    

[0.92, 0.97] 
0.91 0.92    

[0.89, 0.94] 
0.95 0.91 0.94 

��� �σ  
0.74    

[0.12, 1.67] 
0.54 0.52    

[0.36, 0.69] 
0.61 0.58 0.41 

φ  
6.00    

[1.62, 12.6] 
10.47 10.49    

[8.40, 13.16] 
4.45 10.59 3.79 

��� 
σ  
2.00    

[0.67, 3.86] 
0.77 0.77    

[0.51, 0.98] 
0.54 0.75  

��� �σ  
2.00    

[0.67, 3.86] 
1.23 1.24    

[1.07, 1.43] 
1.17 1.23  

��� �σ  
2.00    

[0.67, 3.86] 
2.43 2.48    

[1.71, 3.24] 
3.01 2.42  

�
��� � 
σ

 

2.00    
[0.67, 3.86] 

0.90 0.91    
[0.74, 1.08] 

0.98 0.90  

	ρ
 

0.72    
[0.68, 0.76] 

0.71 0.71    
[0.67, 0.75] 

0.73  0.72 

��� 	σ  
0.74    

[0.12, 1.67] 
0.25 0.29    

[0.03, 0.69] 
0.88  1.09 

�ρ  
0.83    

[0.74, 0.91] 
0.80 0.81    

[0.71, 0.89] 
 0.78  

��� �σ  
0.72    

[0.30, 1.29] 
0.39 0.38    

[0.22, 0.55] 
 0.41  

θ  
0.50    

[0.13, 0.87] 
0.77 0.76    

[0.43, 0.98] 
 0.73  

η  
1.00    

[0.84, 1.17] 
0.80 0.79    

[0.65, 0.92] 
 0.80  

RWC 3.15    
[0.18, 6.37] 

1.05 1.52    
[0.01, 4.19] 

4.21 0.00 5.33 

Note: Estimates obtained using four observables, {gY, gC, gI, dTB/Y} from the Mexican Data, 1980.1-2003.2. For the separate 

models standard errors are omitted for brevity but are available upon request. All estimations were done using measurement 

errors in all four variables. AG-GMM Estimates refer to the generalized method of moment estimates reported by Aguiar and 

Gopinath (2004) which we present here as benchmark. RWC refers to the random walk component, see text for details. 

 



 

Table 4. Forecast Error Variance Decompositions 

in the Encompassing Model 
Structural 

Shock 
gY gC gI dTB/Y 

�ε  
82,32 83,93 73,84 62,16 

	ε  
10,09 7,12 5,11 3,09 

��ε  
7,60 8,96 21,05 34,75 

Counterfactual, No Endogenous Spread: �η =  

�ε  
81,95 64,38 12,59 5,20 

	ε  
9,89 12,27 6,88 0,92 

��ε  
8,17 23,35 80,52 93,88 

Note: gX denotes log-differences, dX denotes first differences. Variance decompositions computed from the estimation using 

four observables and measurement errors in all variables. Numbers reported using posterior means estimates. Standard 

Errors are omitted for brevity but are available upon request. In the variance decomposition computations only the role of the 

structural shocks was taken into account. In the counterfactual exercise, all parameters are set equal to their posterior mode 

levels except  for �η = . A time horizon of 40 quarters was used when computing the variance decomposition. 



 

Table 5. Posterior Distributions. Estimations 

Without Measurement Errors 

 
Observables:{g

Y
, dTB/Y} Observables:{g

Y
, g

I
} Observables:{g

Y
, g

C
} 

Parameter Stochastic 

Trend M. 

Financial 

Frictions M. 
Stochastic 

Trend M. 

Financial 

Frictions M. 
Stochastic 

Trend M. 

Financial 

Frictions M. 

�ρ  0.91 0.91 0.92 0.95 0.92 0.89 

��� �σ  1.12 0.75 1.19 0.83 1.16 0.88 

φ  
8.86 24.32 3.63 24.33 10.97 15.74 

	ρ
 0.75  0.77  0.82  

��� 	σ  1.59  1.13  1.42  

�ρ   0.89  0.92  0.90 

��� �σ   0.68  0.85  0.85 

θ   0.80  0.21  0.38 

η   0.79  0.91  0.73 

RWC 4.83 0.00 3.85 0.00 6.66 0.00 
Note: Estimates obtained using pairs of observables, from the Mexican Data, 1980.1-2003.2 and no measurement errors. 

Numbers reported are posterior modes, which are very similar to the posterior means. Standard errors are omitted for brevity 

but are available upon request.  
 



 

Table 6. Bayesian Model Comparison 

 

Models 
Log-

Likelihood 
Log-Posterior Marginal Log-Likelihood 

Observables: {gY, gC, gI, dTB/Y}; Measurement Errors in all Variables 

Encompassing Model 951,33 978,90 927,70 

Stochastic Trend Model 955,84 981,54 941,01 

Financial Frictions Model 955,18 974,54 931,25 

AG - GMM 41.70   

Observables: {gY, dTB/Y}; No Measurement Errors 

Stochastic Trend Model 371,15 366,93 352,41 

Financial Frictions Model 517,74 518,34 497,52 
Observables: {gY, gI}; No Measurement Errors 

Stochastic Trend Model 371,75 377,44 358,71 

Financial Frictions Model 412,17 417,33 395,97 
Observables: {gY, gC}; No Measurement Errors 

Stochastic Trend Model 480,22 475,93 459,02 

Financial Frictions Model 494,10 491,84 472,61 
Note: Log-Likelihood levels computed in the posterior mode. Results on marginal data densities are approximated by 

Geweke's harmonic mean estimator with truncation parameter 0.5. Except for the cases with no measurement errors and 

measurement errors in all 4 variables, results are computed observing the time series for output, consumption, investment and 

the trade balance-to-GDP ratio, and i.i.d. measurement errors were added to the observation of all variables. AG-GMM 

stands for the log-likelihood value evaluated using the estimated parameters in Aguiar and Gopinath (2004).  



 

Table 7.1. Second Moments. Encompassing and 

Separate Models 

 

Variable Mexican Data 
Encompassing 

Model 

Stochastic 

Trend Model 

Financial 

Frictions 

Model 

Aguiar-

Gopinath 

GMM 

Standard Deviations (%) 
gY 1,53 1,13 1,56 1,13 1,58 

gC 1,94 1,64 1,58 1,65 1,71 

gI 5,66 5,32 4,54 5,32 5,52 

dTB/Y 1,38 1,13 0,86 1,13 1,12 

S.D. (X) / S.D. (gY) 

gC 1,27 1,45 1,01 1,45 1,08 

gI 3,71 4,72 2,90 4,70 3,49 

dTB/Y 0,91 1,00 0,55 1,00 0,71 

Correlation with gY 
gC 0,76 0,94 0,98 0,94 0,98 

gI 0,75 0,76 0,89 0,77 0,88 

dTB/Y -0,44 -0,62 -0,62 -0,64 -0,71 

Correlation with dTB/Y 

gC -0,50 -0,85 -0,76 -0,86 -0,82 

gI -0,67 -0,98 -0,90 -0,98 -0,95 

Serial Correlation 
gY 0,27 0,28 0,19 0,25 0,27 

gC 0,20 0,20 0,15 0,18 0,19 

gI 0,44 -0,05 -0,01 -0,06 -0,01 

dTB/Y 0,33 -0,05 -0,02 -0,05 -0,02 
Note: gX denotes log-differences, dX denotes first differences. Model-based moments using observables {gY, gC, gI, dTB/Y} 

from the Mexican Data, 1980.1-2003.2. Moments are computed using posterior mode estimates. Standard Errors are omitted 

for brevity but are available upon request. All estimations were done using measurement errors in all four variables. Aguiar 

and Gopinath (2004) conduct the GMM estimation based upon 11 moments of which only two, the standard deviation and 

serial correlations of gY, are reported in Table 7.1. The other 9 moments used by them refer to Hodrick-Prescott filtered 

moments which we don't present here given that we don't use this filtering technique. 



 

Table 7.2. Second Moments. Estimations Without 

Measurement Errors 
 

Observables:{gY, dTB/Y} Observables:{gY, gI} Observables:{gY, gC} 

Variable 
Mexican 

Data Stochastic 

Trend 

Financial 

Frictions 

Stochastic 

Trend 

Financial 

Frictions 

Stochastic 

Trend 

Financial 

Frictions 

Standard Deviations (%) 
gY 1,53 2,86 1,49 2,61 1,51 2,87 1,64 

gC 1,94 2,91 2,38 2,44 3,14 3,08 2,49 

gI 5,66 5,77 4,10 7,65 5,84 5,71 6,64 

dTB/Y 1,38 1,32 1,51 1,53 2,42 1,61 2,03 

S.D. (X) / S.D. (gY) 
gC 1,27 1,02 1,59 0,93 2,07 1,07 1,52 

gI 3,71 2,02 2,74 2,93 3,86 1,99 4,05 

dTB/Y 0,91 0,46 1,01 0,59 1,60 0,56 1,24 

Correlation with gY 
gC 0,76 0,96 0,88 0,96 0,82 0,94 0,81 

gI 0,75 0,85 0,65 0,84 0,73 0,80 0,59 

dTB/Y -0,44 -0,30 -0,44 -0,41 -0,53 -0,24 -0,30 

Correlation with dTB/Y 
gC -0,50 -0,54 -0,81 -0,63 -0,92 -0,55 -0,80 

gI -0,67 -0,75 -0,95 -0,83 -0,95 -0,78 -0,94 

Serial Correlation 
gY 0,27 0,16 0,21 0,16 0,16 0,22 0,12 

gC 0,20 0,14 0,21 0,14 0,04 0,16 0,09 

gI 0,44 0,01 -0,04 -0,02 -0,02 0,03 -0,04 

dTB/Y 0,33 -0,02 -0,02 -0,03 -0,01 -0,03 -0,03 
Note: gX denotes log-differences, dX denotes first differences. Model-based moments using different pairs of observables and 

no measurement errors from the Mexican Data, 1980.1-2003.2. Moments are computed using posterior mode estimates. 

Standard Errors are omitted for brevity but are available upon request.  

 



Table 8. Posterior Distributions. 

Robustness Cases 1-3-4 
Robustness 1: Uninformative Priors Robustness 3 and 4 

Parameter 
Prior 

Distribution 

Prior 

Mean 

High 

Posterior 

Mode 

Low 

Posterior 

Mode 

Posterior 

Mean 

Prior 

Distribution 

Robustness 

3: Posterior 

Mean 

Robustness 4: 

Posterior 

Mean 

�ρ  Beta (2,2) 0.50 0.87 0.90 0.90    
[0.85, 0.96] 

0.95      
[0.92, 0.97] 

0.90      
[0.88, 0.92] 

0.92        
[0.90, 0.94] 

��� �σ  
Uniform 

(0.01,10) 
5.00 0.77 0.43 0.75    

[0.51, 0.92] 
0.74      

[0.12, 1.67] 
0.75      

[0.57, 0.93] 
0.50        

[0.35, 0.66] 

φ  

Uniform 

(0.0,40) 
20.0 8.76 7.15 8.17    

[5.65, 10.84] 
6.00      

[1.62, 12.6] 
10.49      

[8.38, 12.74] 
10.27        

[8.17, 12.51] 

��� 
σ  

Uniform 

(0.01,10) 
5.00 0.32 0.01 0.17    

[0.01, 0.52] 
2.00      

[0.67, 3.86] 
0.63      

[0.34, 0.87] 
0.81        

[0.61, 1.01] 

��� �σ  

Uniform 

(0.01,10) 
5.00 1.23 1.24 1.26    

[1.10, 1.44] 
2.00      

[0.67, 3.86] 
1.27      

[1.09, 1.47] 
1.24        

[1.06, 1.45] 

��� �σ  

Uniform 

(0.01,10) 
5.00 2.33 2.42 2.36    

[1.62, 3.04] 
2.00      

[0.67, 3.86] 
2.43      

[1.68, 3.13] 
2.50        

[1.72, 3.21] 

�
��� � 
σ

 

Uniform 

(0.01,10) 
5.00 0.93 0.96 0.95    

[0.79, 1.11] 
2.00      

[0.67, 3.86] 
0.86      

[0.68, 1.04] 
0.89        

[0.74, 1.05] 

	ρ
 

Beta (2,2) 0.50 0.58 0.57 0.53    
[0.16, 0.81] 

0.72      
[0.68, 0.76] 

0.72      
[0.69, 0.76] 

0.71        
[0.67, 0.75] 

��� 	σ  
Uniform 

(0.01,10) 
5.00 0.01 1.10 0.28    

[0.01, 0.90] 
0.74      

[0.12, 1.67] 
0.08      

[0.01, 0.20] 
0.27        

[0.02, 0.67] 

�ρ  Beta (2,2) 0.50 0.72 0.74 0.76    
[0.57, 0.94] 

0.83      
[0.74, 0.91] 

0.77      
[0.68, 0.88] 

0.80        
[0.72, 0.89] 

��� �σ  
Uniform 

(0.01,10) 
5.00 0.47 0.39 0.38    

[0.19, 0.61] 
0.72      

[0.30, 1.29] 
0.40      

[0.25, 0.55] 
0.37        

[0.21, 0.53] 

θ  Beta (2,2) 0.50 0.49 0.39 0.45    
[0.07, 0.89] 

0.50      
[0.13, 0.87] 

0.63      
[0.28, 0.94] 

0.77        
[0.42, 0.98] 

η  
Uniform 

(0.0,5.0) 
2.50 0.51 0.36 0.40    

[0.09, 0.78] 
1.00      

[0.84, 1.17] 
0.74      

[0.62, 0.87] 
0.81        

[0.68, 0.96] 

γ  
Uniform 

(0.001,1.0) 
    0.50      

[0.05, 0.95] 
0.07      

[0.01, 0.14] 
 

ξ  
Gamma 

(25,0.1) 
    2.50      

[1.72, 3.35] 
 2.71        

[1.96, 3.53] 

RWC  1.01 0.00 2.95 0.44    
[0.00, 1.98] 

 0.11      
[0.00, 0.42] 

1.43        
[0.01, 4.10] 

Log-Posterior at Mode  972.8 969.9   976.3 978.9 

Log-Likelihood at Posterior 

Mode 
 961.4 958.8   954.5 952.0 

Note: All robustness cases were estimated using observables {gY, gC, gI, dTB/Y} from the Mexican Data, 1980.1-2003.2  using measurement errors in 

all four variables. 



 

Table 9. Forecast Error Variance Decompositions. 

Robustness Cases 1-3-4 
 

 

Structural 

Shock 
gY gC gI dTB/Y 

Robustness 1: Uninformative Priors 

�ε  
85,18 85,01 66,72 35,14 

	ε  
12,14 8,58 4,73 1,95 

��ε  
2,69 6,41 28,55 62,91 

Robustness 3: Jaimovich-Rebelo Preferences 

�ε  
88,58 92,87 82,15 62,32 

	ε  
2,35 2,07 1,42 2,74 

��ε  
9,07 5,07 16,43 34,94 

Robustness 4: Estimating Long-Run Growth 

�ε  
75,54 79,16 71,44 63,20 

	ε  
16,87 12,09 8,84 5,08 

��ε  
7,60 8,76 19,72 31,72 

Note: gX denotes log-differences, dX denotes first differences. Model-based moments using different pairs of observables and 

no measurement errors from the Mexican Data, 1980.1-2003.2. Moments are computed using posterior means. Standard 

Errors are omitted for brevity but are available upon request.  

 



  

Table 10. Posterior Distributions. Robustness 

Case 2 

 
No Working Capital �θ =  

No Endogenous 

Spread �η =  

No Financial 

Frictions �θ η= =  

Parameter Prior Low 

Posterior 

Mode 

High 

Posterior 

Mode 

Mean 
Posterior 

Mode 
Mean 

Posterior 

Mode 
Mean 

�ρ  
0.95    

[0.92, 0.97] 
0,94 0,90 0.93    

[0.89, 0.96] 
0.95 0.95    

[0.94, 0.97] 
0.95 0.95    

[0.94, 0.97] 

��� �σ  
0.74    

[0.12, 1.67] 
0,30 0,68 0.35    

[0.08, 0.77] 
0.42 0.34    

[0.05, 0.71] 
0.48 0.39    

[0.04, 0.81] 

φ  
6.00    

[1.62, 12.6] 
11,69 11,49 11.37    

[9.43, 13.5] 
6.16 6.41    

[4.73, 8.29] 
6.09 6.39    

[4.49, 8.60] 

��� 
σ  
2.00    

[0.67, 3.86] 
0,68 0,72 0.64    

[0.27, 0.97] 
0,43 0.42    

[0.17, 0.67] 
0,42 0.40    

[0.18, 0.64] 

��� �σ  
2.00    

[0.67, 3.86] 
1,19 1,24 1.22    

[1.02, 1.42] 
1,22 1.24    

[1.07, 1.43] 
1,23 1.25    

[1.08, 1.42] 

��� �σ  
2.00    

[0.67, 3.86] 
2,87 2,56 2.71    

[1.92, 3.36] 
2,02 2.05    

[1.30, 2.82] 
2,11 2.18    

[1.36, 2.94] 

�
��� � 
σ

 
2.00    

[0.67, 3.86] 
0,89 0,94 0.91    

[0.73, 1.08] 
0,96 0.97    

[0.83, 1.13] 
0,97 0.98    

[0.83, 1.14] 

	ρ  
0.72    

[0.68, 0.76] 
0,68 0,72 0.69    

[0.64, 0.74] 
0.71 0.71    

[0.68, 0.75] 
0.71 0.71    

[0.68, 0.75] 

��� 	σ  
0.74    

[0.12, 1.67] 
0,98 0,25 0.78    

[0.11, 1.30] 
1.00 1.00    

[0.67, 1.26] 
1.01 1.01    

[0.51, 1.33] 

�ρ  
0.83    

[0.74, 0.91] 
0,84 0,81 0.85    

[0.73, 0.93] 
0.81 0.83    

[0.73, 0.91] 
0.82 0.83    

[0.74, 0.90] 

��� �σ  
0.72    

[0.30, 1.29] 
0,38 0,38 0.37    

[0.24, 0.51] 
0.31 0.31    

[0.21, 0.42] 
0.30 0.30    

[0.20, 0.44] 

θ  
0.50    

[0.13, 0.87] 
   0.28 0.35    

[0.02, 0.85] 
  

η  
1.00    

[0.84, 1.17] 
0,85 0,77 0.81    

[0.67, 0.95] 
    

RWC 3.15    
[0.18, 6.37] 

4,67 0,67 3.37    
[0.13, 5.38] 

5.02 5.04    
[2.92, 6.32] 

4.75 4.70    
[1.78, 6.32] 

 



 

Table 11. Forecast Error Variance 

Decompositions. Robustness Case 2 
 

 

Structural 

Shock 
gY gC gI dTB/Y 

No Working Capital Needs: �θ =  

�ε  
39,07 40,70 37,25 33,27 

	ε  
59,95 52,37 40,49 22,43 

��ε  
0,98 6,93 22,26 44,30 

No Endogenous Spread: �η =  

�ε  
21,61 18,41 7,90 0,88 

	ε  
76,47 75,96 55,34 26,23 

��ε  
1,93 5,63 36,77 72,89 

No Financial Frictions: �θ η= =  

�ε  
27,28 23,79 11,26 1,60 

	ε  
71,86 71,85 54,12 27,34 

��ε  
0,86 4,36 34,63 71,06 

Note: gX denotes log-differences, dX denotes first differences. Variance decompositions computed from the estimation using 

four observables and measurement errors in all variables. Numbers reported using posterior means estimates. Standard 

Errors are omitted for brevity but are available upon request. In the variance decomposition computations only the role of the 

structural shocks was taken into account. 
 



 

Table 12. Second Moments. Robustness Case 2 

 

Variable Mexican Data 
No Working 

Capital �θ =  

No 

Endogenous 

Spread �η =  

No Financial 

Frictions 
�θ η= =  

Standard Deviations (%) 
gY 1,53 1,16 1,47 1,46 

gC 1,94 1,60 1,53 1,50 

gI 5,66 4,81 5,05 4,88 

dTB/Y 1,38 1,11 0,84 0,82 

S.D. (X) / S.D. (gY) 

gC 1,27 1,38 1,04 1,03 

gI 3,71 4,16 3,43 3,35 

dTB/Y 0,91 0,96 0,57 0,56 

Correlation with gY 
gC 0,76 0,92 0,96 0,96 

gI 0,75 0,78 0,71 0,73 

dTB/Y -0,44 -0,55 -0,31 -0,32 

Correlation with dTB/Y 

gC -0,50 -0,83 -0,55 -0,56 

gI -0,67 -0,95 -0,89 -0,88 

Serial Correlation 
gY 0,27 0,20 0,23 0,22 

gC 0,20 0,03 0,19 0,17 
gI 0,44 -0,06 -0,03 -0,03 

dTB/Y 0,33 -0,05 -0,04 -0,04 
Note: gX denotes log-differences, dX denotes first differences. Model-based moments using observables {gY, gC, gI, dTB/Y} 

from the Mexican Data, 1980.1-2003.2. Moments are computed using posterior mode estimates. Standard Errors are omitted 

for brevity but are available upon request. All estimations were done using measurement errors in all four variables. 

 

 





Figure 1. Convergence Analysis 
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Note: Each line corresponds to recursive means for the 13 parameters as a function of the number of draws, computed from 6 independent MCMC chains using 

random starting values. 



 

Figure 2. Posterior. Encompassing Model 
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Note: Posterior mesh and contours as a function of the volatility of the two technology shocks. The other 11 

parameters were fixed at their posterior mode values.  



Figure 3. Posterior, Robustness Case 1 
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Note: Posterior contours as a function of the volatility of the transitory technology and foreign interest rate shocks. The other 11 parameters were fixed at their 

high posterior mode values. 
 

 
 

 

 


