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Abstract

We propose new methods for analyzing the relative performance of two competing, misspec-

i�ed models in the presence of possible data instability. The main idea is to develop a measure

of the relative �local performance�for the two models, and to investigate its stability over time

by means of statistical tests. The models�performance can be evaluated using either in-sample

or out-of-sample criteria. In the former case, we suggest using the local Kullback-Leibler infor-

mation criterion, whereas in the latter, we consider the local out-of-sample forecast loss, for a

general loss function. We propose two tests: a ��uctuation test�for analyzing the evolution of

the model�s relative performance over historical samples and a �sequential test�, that monitors

the models�relative performance in real time. Compared to previous approaches to model selec-

tion and forecast comparison, which are based on measures of �global performance�(e.g., Vuong

(1989) and West (1996)), our focus on the entire time path of the models�relative performance

may contain useful information that is lost when looking for a globally best model. Our methods

can be applied to nonlinear, dynamic, multivariate models estimated by a variety of techniques.

An empirical application provides insights into the time variation in the performance of Smets

and Wouters�(2003) DSGE model of the European economy relative to that of VARs.
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1 Introduction

This paper proposes new techniques for comparing the performance of competing models in the

presence of model misspeci�cation and structural instability. This is a realistic and relevant envi-

ronment for applied macroeconomists, forecasters and policy makers for two reasons. First, policy

makers and economic forecasters often face the problem of choosing the best performing model out

a number of competing models, which can only be approximations of the truth. Second, the empiri-

cal importance of structural instabilities or �breaks�has been widely recognized for macroeconomic

data. For example, Stock and Watson (2003) show that instabilities a¤ect most macroeconomic

time series; McConnell and Perez-Quiroz (2000) report evidence in favor of a break in the volatil-

ity of U.S. GDP and Fernald (2005) and Francis and Ramey (2005) investigate the implications

of breaks in hours worked for the debate on the e¤ects of technology shocks. As a consequence,

prominent macroeconomists are now recognizing the importance of instabilities and incorporating

them in their theoretical models. For example, Cogley and Sargent (2005) consider models with

time-varying parameters, Clarida et al. (2000) introduce structural breaks in monetary policy; Jus-

tiniano and Primiceri (2007) and Fernandez-Villaverde and Rubio-Ramirez (2005, 2006) consider

dynamic stochastic general equilibrium (DSGE) models with time-varying parameters.

The main insight of this paper is that, in unstable environments, it is plausible that the relative

performance of competing models may itself change over time. This possibility is supported by

recent empirical evidence reported in the forecasting literature (e.g., Stock and Watson, 2003),

which shows that, even though some models outperform naive benchmarks in certain periods, this

is not necessarily true when considering di¤erent periods.

As we discuss below, the existing techniques for model selection and forecast comparison appear

inadequate in an environment characterized by instability and model misspeci�cation, because they

do not account for the possibility that the performance of the models may be changing. This paper

�lls the gap in the literature by proposing convenient techniques for analyzing the evolution over

time in the performance of competing, misspeci�ed models.

We propose two approaches, which address di¤erent evaluation objectives. The �rst can be

used by empirical macroeconomists and forecasters interested in analyzing the evolution in the

performance of two competing models over historical samples. The main idea is to develop a

measure of the relative �local performance� of the models, and to test its stability over time

by means of a ��uctuation test�. The test is easily implemented by plotting the (appropriately

normalized) sample path of the estimated measure of local performance, together with boundary

lines which, if crossed, signal instability. The performance can be evaluated using either in-sample

or out-of-sample criteria. In the former case, we introduce a measure that can be interpreted as a

�local Kullback-Leibler information criterion (KLIC)�, whereas in the latter, we consider what we
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call the �local out-of-sample forecast loss�, for a general, user-de�ned loss function. The �uctuation

test, although convenient to obtain, does now however have optimality properties. We thus further

provide a test for the null hypothesis of equal performance of the two models at each point in time

that is optimal against the alternative hypothesis that there is a one-time break in the relative

performance, and propose a method for estimating the timing of the break. We call this the

�optimal test�.

The second evaluation objective that we address is when a researcher is interested in monitoring

the relative performance of two competing models in real time, in order to detect any deviation

from the relative performance that was observed over the historical sample. To this end, we propose

a �sequential test�.

To better understand why existing econometric techniques are inadequate in conducting model

selection and forecast evaluation in an environment characterized by instability and misspeci�ca-

tion, it might be useful to divide the literature into two groups. The �rst group proposes techniques

for model selection and forecast comparison that allow for misspeci�cation, but the approach in

this literature is to select the model with the best �global performance�, which in practice amounts

to selecting the model that performs best on average. The performance can be measured either in

terms of in-sample �t (e.g., Vuong (1989); Rivers and Vuong (2002); see Fernandez-Villaverde and

Rubio-Ramirez (2006) for an application to the selection between competing macro models), or

out-of-sample forecast loss (e.g., Diebold and Mariano (1995); West (1996); McCracken (2000)). In

the realistic presence of structural instability, however, the relative performance of the two models

may itself be time-varying, and thus averaging this evolution over time may result in a loss of

information. For example, a forecaster or policymaker may select the model that performed best

on average over a particular historical sample, ignoring the fact that the competing model may

be a more accurate description of the recent data or that it may produce more accurate forecasts

when considering only the recent past. Such wrong choices would lead to poor forecasts and unsuc-

cessful policymaking. The second strand of the literature is concerned with parameter instability

tests. This literature focuses on one speci�c model, and tests for instability in its parameters under

the assumption that the model is correctly speci�ed (e.g., Andrews (1993), Bai and Perron (1998),

Hansen (2000), Elliott and Muller (2005)), or for instability in its forecast performance, allowing for

misspeci�cation (Giacomini and Rossi (2005)). The example in Section 2 illustrates the relationship

between parameter instability and instability in relative performance. The example, inspired by our

empirical application, considers the comparison between a linearized Dynamic Stochastic General

Equilibrium (DSGE) model and a VAR. The two competing models can be viewed as imposing

di¤erent sets of misspeci�ed restrictions on the parameters of an ARMA data-generating process

(DGP), which are possibly time-varying. We show that the local relative KLIC in this case captures

the relative degrees of misspeci�cation of the two models at each point in time, by measuring how
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far each misspeci�ed restriction is from the true restriction. Since the true restriction is a function

of the DGP parameters, whether the relative performance of the models changes or not depends

on whether the parameters vary in a way that makes the true restriction also change. For instance,

the parameters may vary but in a way that leaves the true restriction, and thus the relative per-

formance of the models, unchanged. This suggests that a test for instability in the parameters in

the DSGE and/or VAR would not necessarily shed light onto the stability in their relative perfor-

mance. The possibility of a non-constant relative performance between two forecasting models is

considered by Giacomini and White (2006), who argue that the relative forecast performance may

di¤er in di¤erent states of the economy. They take however a di¤erent approach, which involves

assessing whether one can relate the out-of-sample relative losses to observable economic variables.

In the context of in-sample model selection tests, Rossi (2005) proposes tests to select between two

models in the presence of possible parameter instability. She only focuses however on the case of

nested and correctly speci�ed models, whereas this paper considers a more general environment.

Our methods have many useful applications, and we show an example in our empirical analy-

sis. Recent developments in empirical macroeconomics (Smets and Wouters, 2003, Del Negro and

Schorfheide, 2004) have shown that it is possible to estimate DSGE models whose performance is

comparable to that of VARs. However, the measures of relative performance used in these papers

are average measures over historical samples, which may hide important changes in the relative

performance of the models over time. We select one such representative DSGE model � Smets

and Wouters�(2003) DSGE model for the European area �and o¤er some insight into the time

variation in the performance of their model relative to that of VARs.

The rest of the paper is organized as follows. The �rst section discusses a motivating example

inspired by our empirical application, namely the comparison of a DSGE model�s performance

with that of a VAR. There we show interesting cases in which existing tests fail to recognize the

time variation in the relative performance of the two models and therefore may induce the applied

researcher to select the �wrong�model. The second section describes our methods in detail. In the

third section we apply our techniques to analyze the performance of Smets and Wouters�(2003)

DSGE model of the European economy relative to the performance of VARs. Interestingly, our

techniques show evidence of time variation in the relative performance of the DSGE model versus

the VAR over the last decades.
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2 Motivating example

The following simple example illustrates the main issues associated with testing for model selection

and forecast comparison in the presence of misspeci�cation and structural instability, and motivates

our approach.

Suppose that we observe a sample of size T (the �historical�sample) for a variable yt with true

conditional density htruet :

htruet : N(�txt + tzt; 1); where (1)

xt � N(0; �2xt); zt � N(0; �
2
zt) independent,

and that two competing models assume the following misspeci�ed conditional densities ft and gt

for yt:

ft : N(�txt; 1) and gt : N(tzt; 1): (2)

2.1 In-sample �uctuation test

The goal of the in-sample �uctuation test is to analyze the relative in-sample performance of the

two models over historical samples. In this case, the measure of relative performance for the two

models at time t is the di¤erence in the KLIC, which measures the relative distance of ft and gt

from htruet :

�KLIC = E
�
log htruet � log gt

�
� E

�
log htruet � log ft

�
= E [log ft � log gt] ; t = 1; :::; T (3)

where the expectation is with respect to htrue: If �KLIC > 0; we conclude that ft performs

better than gt: Note that selecting the model that is closer to the data-generating process (DGP)

is equivalent to selecting the model with the largest expected loglikelihood. It is easy to show that

the �KLIC in our example is

�KLIC = :5(�2t�
2
xt � 

2
t�
2
zt); t = 1:::; T: (4)

Intuitively, in this example the �KLIC captures the relative degrees of misspeci�cation of the

two models. To see why, note that the term tzt is the component of the error for model f that is

due to misspeci�cation, and thus f performs better than g if the contribution of its misspeci�cation

term to the variance of the error is smaller than the corresponding quantity for model g. Concerning

the possibility of time variation in the relative performance, which is our focus in this paper, note

that (4) implies that the relative performance in this example can vary over time because the two

models are a¤ected by time variation in the DGP parameters and/or in the unconditional variance

of the regressors in di¤erent ways (both of which result in time variation in the relative degree of
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misspeci�cation for the two models). It can also happen that the two terms in (4) are equal for

each t, which shows that the models can have the same performance at each point in time, even

though the underlying DGP is unstable.

To illustrate the type of time variation in the relative performance of two misspeci�ed models

that could arise in economic applications, the solid line in Figure 1a shows the sample path of the

�KLIC (4) in two scenarios: in the �rst, the variance of the regressors is constant but one of the

DGP parameters evolves as a random walk (left panel);1 in the second, the DGP parameters are

constant but the variance of one regressor has a break in the middle of the sample (right panel).2

FIGURE 1 HERE

One di¢ culty that arises when attempting to estimate the �KLIC at time t is that one needs

to obtain consistent estimates of �t and t; which are unknown. Our solution to this problem is

to conduct inference about a �smoothed�version of the �KLIC, obtained by computing moving

averages of the measure of relative performance over windows of size m. Let
P
j =

Pt+m=2
j=t�m=2+1;

where, without loss of generality, m is chosen to be an even number. We will de�ne:

Smoothed �KLIC : E

24m�1
X
j

�
log fj(�

�
t;m)� log gj

�
�t;m

��35 ; t = m=2 + 1; :::; T �m=2; (5)

where ��t;m and �t;m are the pseudo-true parameters for the models estimated over the window of

size m, e.g., ��t;m = max� E
h
m�1P

j log fj(�)
i
. Unlike the �KLIC; the smoothed �KLIC can be

consistently estimated by substituting ��t;m with the maximum likelihood estimates of the model�s

parameters computed over each moving window. Note that the smoothing implies that one loses

the �rst and last m=2 data points, and is thus left with a series of length n = T �m.
In the example, we have ��t;m =

P
j �j�

2
xj=

P
j �

2
xj (and thus - when the variance of the regressor

is constant - ��t;m is the average of the true parameters over the moving window), and the smoothed

�KLIC is:

Smoothed �KLIC = :5

0@��2t;mm�1
X
j

�2xj � 
�2
t;mm

�1
X
j

�2zj

1A ; t = m=2 + 1; :::; T �m=2: (6)

If there is no time variation in the DGP parameters and in the unconditional variance of the

regressors, the smoothed �KLIC (6) coincides with the �KLIC (4). The smoothed �KLIC is

thus a better approximation of the �KLIC the smaller the variation within the moving window.

The dotted line in Figure 1a shows the time plot of the smoothed �KLIC, obtained using a

window of size 1/5 of the sample size. This time path, viewed as an approximation of the true

1Speci�cally, we let �t = �t�1 + "t; �1 = 0; "t � i:i:d:N(0; :1);  = :5; �2x = �2z = 1:
2Speci�cally, we let � =  = :5; �2z = 1; �

2
xt = 1:25 for t < 100; �

2
xt = :75 for 100 � t � 200:
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�KLIC that contains information about the relative performance of the models over time, is the

object of interest of our analysis. This is in contrast to previous approaches (e.g., Vuong, 1989 and

Rivers and Vuong, 2002), whose focus is on the average �KLIC, computed over the full sample.

Note that in the two scenarios considered in Figure 1a, the average full-sample �KLIC (marked by

the dot) is close to zero, indicating that the two models perform equally well, whereas the smoothed

�KLIC correctly reveals the presence of time variation in the models�relative performance.

Concerning the implementation of our test, the basic intuition is to consider the sample analog

of the smoothed �KLIC (6), and normalize it to obtain the �uctuation statistic:

F ISt;m = �̂
�1m�1=2

X
j

�
log fj(b�t;m)� log gj �bt;m�� ; t = m=2 + 1; :::; T �m=2; (7)

where �̂2 is a suitable estimator of the asymptotic variance and b�t;m and bt;m are the maximum

likelihood estimates of the models� parameters computed over the moving window. Under the

assumption that a Functional Central Limit Theorem holds for the partial sums of log ft � log gt;
one can characterize the behavior of the sample path of F ISt;m under the null hypothesis that the

smoothed �KLIC (5) equals zero at each point in time. In practice, we will provide boundary

lines that are crossed by the limiting process with small probability under the null hypothesis,

so that rejection occurs if the sample path of the �uctuation statistics crosses such boundaries.

For illustration, Figure 1b plots the �uctuation statistics together with boundary lines for the

data-generating processes considered in Figure 1a. We see that the sample path of the �uctuation

statistics mimics that of the smoothed �KLIC, revealing in both scenarios that the �rst model

performs better in the �rst part of the sample and that the second model performs better in the

second part of the sample.

We will show that the fact that the �uctuation statistics (7) depend on estimated parameters

whereas the null hypothesis is expressed in terms of pseudo-true parameters does not a¤ect the

asymptotic distribution of the test statistics. As in Vuong (1989) and Rivers and Vuong (1989),

however, the competing models must be non-nested, in order for the asymptotic distribution to be

non-degenerate.

2.2 Out-of-sample �uctuation test

If the goal is to analyze the relative out-of-sample performance of the two models over historical

samples, one would use the out-of-sample �uctuation test. This consists of �rst choosing a forecast

horizon (h) and an in-sample size (R), and then estimating the models recursively, using only

the in-sample observations, to derive a sequence of h-step ahead out-of-sample forecasts for times

t = R+h; :::; T , for a total of P � T�(R+ h)+1 forecasts. The measure of relative performance in
this case is the di¤erence of the expected forecast losses computed over the out-of-sample portion.
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The analysis is similar to that for the in-sample case, the main di¤erence being that one must now

take into account that the forecast losses depend on parameters estimated over a di¤erent sample.

This issue is handled di¤erently in the asymptotic framework of West (1996) (henceforth W) or

that of Giacomini and White (2006) (henceforth GW). We present results for both. To �x ideas,

assume a quadratic loss. The measure of relative performance in the two cases is:

(GW ) E
h
(yt � bt�h;Rzt)2 � (yt � b�t�h;Rxt)2i ; t = R+ h; :::; T: (8)

(W ) E
�
(yt � �t�h;Rzt)2 � (yt � ��t�h;Rxt)2

�
; t = R+ h; :::; T (9)

When the expressions in (8) or (9) are positive, we conclude that model f performs better

than model g: In the W framework, ��t�h;R and 
�
t�h;R are the pseudo-true parameters for the in-

sample estimation window (using either a �xed, rolling or expanding estimation window scheme,

see de�nitions below). In the GW framework, the losses depend on the actual in-sample parameter

estimates b�t�h;R; bt�h;R (using only a �xed or rolling estimation window scheme). Similarly to the
in-sample analysis, we estimate the time path of the models�relative performance by considering

a sequence of statistics computed over moving windows of size m :

FOOSt;m = �̂�1m�1=2
X
j

�Lj(b�t�h;R; bt�h;R); t = R+ h; :::; T; (10)

where now
P
j denotes

Pt
j=t�m+1, �Lj(b�t�h;R; bt�h;R) = (yj � b�t�h;Rxj)2 � (yj � bt�h;Rzj)2:

Note that for the out-of-sample we use a non-centered moving window that only �lters past

information, instead of the centered moving window considered in the in-sample analysis, which

depends on both past and future information. The reason is that, in evaluating the forecasting

ability of a model, the researcher is typically interested in assessing ex-ante forecast performance,

which is a measure that is not contaminated by future information.

The di¤erence between the W and the GW framework is in the expression for �̂; which in W

contains terms that capture the e¤ect of estimation uncertainty, whereas in GW it has a simpler

form. Moreover, the W framework rules out comparisons between nested models, whereas the GW

framework is applicable to both nested and non-nested models. Similarly to the in-sample case, our

approach consists of characterizing the sample path of FOOSt;m and deriving boundary lines under

the null hypothesis that the measures of relative performance (8) or (9) are equal to zero at each

point in time.

2.3 Sequential test

The goal of the sequential test is to provide a tool for monitoring the relative performance of the

two models over the post-historical sample T + 1; T + 2 etc., to assess whether previous model

selection decisions are reversed by the arrival of new information.

8



Suppose that the two models performed equally well, on average, in the historical sample. One

would like to know whether this continues to be true as new data become available, for example by

comparing the models�relative performance on a sample that includes the new observations. The

problem with implementing a sequence of tests of equal performance with a �xed signi�cance level

is that it would result in size distortions for the overall procedure. The idea behind our approach

is to conduct a sequence of full-sample tests, but utilizing modi�ed critical values that control the

overall size.

The procedure is implemented as follows. At every point in time t = T + 1; T + 2; ::: the

researcher evaluates the measure of relative performance up to that time, that is the sample analog

of the rescaled �KLIC at time t:

Jt = �̂
�1
t t

�1=2
tX
j=1

�Lj(b�t; bt): (11)

where �̂2t is given below in (21). The critical values for the Jt statistic at time t are c� =p
r2� + ln(t=T ); where ra depends on the size of the test, �. Typical values of (�; r�) are (0:05; 2:7955)

and (0:10; 2:5003) : The null hypothesis is rejected when jJtj > c�: The sign of Jt identi�es which
models is best (for example, if Jt > 0 the �rst model is better).

3 Econometric methodology

3.1 Notation

We �rst introduce the notation and discuss the assumptions about the data, the models and the

estimation procedures. We are interested in selecting a model for yt; which we assume for simplicity

to be a scalar (for the in-sample test, the extension to the multivariate case is straightforward),

using a collection of variables zt; possibly containing lags of yt. We let xt = (y0t; z
0
t)
0:

For the in-sample analysis, we assume that two competing possibly nonlinear dynamic models

for yt specify di¤erent (misspeci�ed) conditional densities ft and gt, which depend on parameters

� 2 � and  2 � that are estimated by Maximum Likelihood (ML). The implementation of the

�uctuation test involves estimating the models recursively over moving windows of size m < T : LetP
j =

Pt+m=2
j=t�m=2+1 : At time t, the sample is (xt�m=2+1; :::; xt+m=2) and the parameter estimate for f

(the de�nitions for g are analogous) is b�t;m = argmax�2�m�1P
j log fj(xj ; �); with corresponding

pseudo-true parameter ��t;m = argmax�2�m
�1P

j E [log fj(xj ; �)]. For the in-sample �uctuation

test, we thus have �Lj
�b�t;m; bt;m� = log fj(b�t;m)� log gj �bt;m� :

For the out-of-sample analysis, we assume that the researcher has divided the sample into an

in-sample portion of size R and an out-of-sample portion of size P and obtained two compet-

ing sequences of h�step ahead out-of-sample forecasts by estimating the models using either a
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�xed or rolling estimation window. For a general loss function L; we thus have sequences of P

out-of-sample forecast loss di¤erences,
n
Lf (yt;b�t�h;R)� Lg(yt; bt�h;R)oT

t=R+h
, which depend on

the realizations of the variable and on the in-sample parameter estimates for each model b�t�h;R
and bt�h;R. Unlike for the in-sample case, for which we restrict attention to maximum likelihood

estimation, for the out-of-sample �uctuation test any estimation procedure is allowed. The pa-

rameters are estimated recursively, over a sample including data indexed 1; :::; R (�xed scheme)

or t � h � m + 1; :::; t � h (rolling scheme). For the in-sample �uctuation test, we thus have

�Lj

�b�j�h;R; bj�h;R� = Lf (yj ;b�j�h;R)� Lg(yj ; bj�h;R):
3.2 The �uctuation test

3.2.1 In-sample analysis

We make the following assumptions for the in-sample �uctuation test.

Assumption IS: Let � be s.t. t = [�T ] and � 2 [0; 1] : (a)
n
T�1=2

P[�T ]
j=1 �Lj (�; )

o
obeys a Func-

tional Central Limit Theorem (FCLT) for all � 2 �;  2 �; (b) b�t;m satis�es a Strong Uniform Law
of Large Numbers: b�t;m !

as
��t;m uniformly over � (and similarly for bt;m); (c) rfj (�) ;rgj () sat-

isfy a Uniform Law of Large Numbers; (d) �2 =limm!1E(m�1=2Pt+m=2
j=t�m=2+1�Lj(�

�
t;m; 

�
t;m))

2 >

0 (e) m=T ! � 2 (0;1) as m!1; T !1; (f) �;� are compact :
Assumption (d) imposes global covariance stationarity for the sequence of loss di¤erences, and it

thus limits the amount of heterogeneity permitted under the null hypothesis. This assumption is in

principle stronger than necessary, but it facilitates the statement of the FCLT (see Wooldridge and

White, 1988 for a general FCLT for heterogeneous mixing sequences). Note that global covariance

stationarity allows the variance to change over time, but in a way that ensures that, as the sample

size grows, the sequence of variances converges to a �nite and positive limit.

The following Proposition provides a justi�cation for the in-sample �uctuation test.

Proposition 1 (In-sample �uctuation test) Suppose Assumption IS holds. Let

F ISt;m = �̂
�1m�1=2Pt+m=2

j=t�m=2+1

�
log fj(b�t;m)� log gj �bt;m�� ; t = m=2 + 1; :::; T �m=2; where �̂2 is

a HAC estimator of the global asymptotic variance �2, for example

�̂2 =

q(m)�1X
i=�q(m)+1

(1� ji=q(m)j)m�1
t+m=2X

j=t�m=2+1
�Lj

�b�t;m; bt;m��Lj�i �b�t;m; bt;m� ; (12)

with q(m) a bandwidth that grows with m (e.g., Newey and West, 1987). Under the null hypothesis

H0 : E
h
m�1P

j �Lj(�
�
t;m; 

�
t;m)

i
= 0 for all t = m=2 + 1; :::; T �m=2,

F ISt;m =) [B (� + �=2)� B (� � �=2)] =p�; (13)
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where t = [�T ] ; m = [�T ] and B (�) is a standard univariate Brownian motion. The boundary lines
for a signi�cance level � are � k�where k� solves

P

�
sup
�
j[B (� + �=2)� B (� � �=2)] =p�j > k�

�
= �: (14)

Simulated values of (�; k�) for various choices of � are reported in Table 1. The null hypothesis is

rejected when maxm=2+1�t�T�m=2 jF ISt;mj > k�:

3.2.2 Out-of-sample analysis

We make the following assumptions for the out-of-sample �uctuation test.

Assumption OOS: Let � be s.t. t = [�P ] and � 2 [0; 1] : (a)
n
P�1=2

P[�P ]
j=R+h�Lj(

b�j�h;R; bj�h;R)o
obeys a FCLT; (b) �2 =limm!1E(m�1=2Pt+m=2

j=t�m=2+1�Lj(
b�j�h;R; bj�h;R))2 > 0 (c) m=P ! � 2

(0;1) as m!1; P !1.
Note that, unlike the in-sample test, which requires the parameters of the two models to be

estimated by ML, the out-of-sample test does not impose restrictions on the estimation method

used to produce the forecasts for the two models. This is because we use the same asymptotic

framework as in Giacomini and White (2006). Giacomini and White (2006) also provide primitive

conditions for assumption OOS(a), which allow the data to be mixing and heterogeneous and

essentially require the use of a �rolling� or ��xed� estimation window scheme in producing the

out-of-sample forecasts.

The procedure for deriving the out-of-sample �uctuation test is analogous to that for the in-

sample case. The only di¤erence is that the time variation of the relative forecast performance is

only analyzed over the out-of-sample portion of size P; rather than over the full sample of size T:

Proposition 1 is thus modi�ed as follows.

Proposition 2 (Out-of-sample �uctuation test) Suppose Assumption OOS holds. Let FOOSt;m =

�̂�1m�1=2Pt+m=2
j=t�m=2+1�Lj(

b�j�h;R; bj�h;R); t = R+ h+m=2; :::; T �m=2; where �̂2 is a HAC es-
timator of �2; for example

�̂2 =

q(m)�1X
i=�q(m)+1

(1� ji=q(m)j)m�1
t+m=2X

j=t�m=2+1
�Lj

�b�j�h;R; bj�h;R��Lj�i �b�j�i�h;R; bj�i�h;R� ;
(15)

q(m) is a bandwidth that grows with m (Newey and West, 1987). Under the null hypothesis

H0 : E
h
�Lt

�b�t�h;R; bt�h;R�i = 0 for all t = R+ h; :::; T;
FOOSt;m =) [B (� + �=2)� B (� � �=2)] =p�; (16)
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where t = [�P ] ; m = [�P ] and B (�) is a standard univariate Brownian motion. The boundary lines
for a signi�cance level � are � k�where k� solves

P

�
sup
�
j[B (� + �=2)� B (� � �=2)] =p�j > k�

�
= �: (17)

Simulated values of (�; k�) for various choices of � are reported in Table 1.

3.3 The optimal test

The assumptions that guarantee validity of the optimal test are the same as those for the in-sample

�uctuation test.3 The following proposition gives the justi�cation for the optimal test.

Proposition 3 (Optimal test against a one-time break) Suppose Assumption IS holds. Let

QLRT = supt�T (t) ; t 2 f[0:15T ] ; ::: [0:85T ]g ; �T (t) = LM1 + LM2 (t) ; where

LM1 = �̂�2T�1

24 TX
j=1

�
log fj(b�T )� log gj (bT )�

352

LM2 (t) = �̂�2T�1 (t=T )�1 (1� t=T )�1 [
tX
j=1

�
log fj(b�1;t)� log gj �b1;t��

� (t=T )
TX
j=1

�
log fj(b�T )� log gj (bT )� ]2;

b�2 a HAC estimators of the asymptotic variance �2 = var �T�1PT
j=1 (log fj(�

�
T )� log gj (�T ))

�
;

for example

�̂2 =

q(T )�1X
i=�q(T )+1

(1�ji=q(T )j)T�1
TX
j=1

�
log fj(b�T )� log gj (bT )��log fj�i(b�T )� log gj�i (bT )� : (18)

Consider the null hypothesis

H0 : E

24t�1=2 tX
j=1

�
log fj(�

�
1;t)� log gj

�
�1;t

��
� (T � t)�1=2

TX
j=t+1

�
log fj(�

�
2;t)� log gj

�
�2;t

��35 = 0;
for every t = 1; 2; :::; T; where ��1;t is the pseudo-true parameter for the sample indexed 1; :::; t

and ��2;t is the pseudo-true parameter for the sample indexed t + 1; :::; T (similar de�nitions hold

for �1;t and 
�
2;t): We have QLRT =) sup

�

h
BB(�)0BB(�)
�(1��) + B (1)0 B (1)

i
; where t = [�T ], and B (�)

and BB (�) are, respectively, a standard univariate Brownian motion and a Brownian bridge. The
null hypothesis is thus rejected when QLRT > k�: The critical values (�; k�) are: (0:05; 9:8257) ;

(0:10; 8:1379), (0:01; 13:4811) :
3We let t = [�T ] in this section, so Assumption IS(e) should read: t=T ! � 2 (0;1) as t!1; T !1.It

is intended that Assumptions IS(a,b,c) hold for both the full sample and the partial sample sums and

estimators.
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Among the advantages of this approach, we have that: (i) when the null hypothesis is rejected,

it is possible to evaluate whether the rejection is due to instabilities in the relative performance or

to a model being constantly better than its competitor; (ii) if such instability is found, it is possible

to estimate the time of the switch in the relative performance; (iii) the test is optimal against one

time breaks in the relative performance. This is achieved by using the following procedure for a

test with overall signi�cance level �:

(i) test the hypothesis of equal performance at each time by using the statistic QLR�T from

Proposition (3) at � signi�cance level;

(ii) if the null is rejected, compare LM1 and supt LM2 (t) ; t 2 f[0:15T ] ; ::: [0:85T ]g ; with the
following critical values: (3:84; 8:85) for � = 0:05; (2:71; 7:17) for � = 0:10, and (6:63; 12:35) for

a = 0:01: If only LM1 rejects then there is evidence in favor of the hypothesis that one model is

constantly better than its competitor. If only LM2 rejects, then there is evidence that there are

instabilities in the relative performance of the two models but neither is constantly better over the

full sample. If both reject then it is not possible to attribute the rejection to a unique source.4

(iii) estimate the time of the break by t� = argmaxt2f0:15T;:::;0:85Tg LM2 (t).

(iv) to extract information on which model to choose, we suggest to plot the time path of the

underlying relative performance as:8<:
1
t�
Pt�

j=1

�
log fj(b�1;t�)� log gj �b1;t��� for t � t�

1
(T�t�)

PT
j=t�+1

�
log fj(b�2;t�)� log gj �b2;t��� for t > t�

This approach can be easily generalized to multiple changes in relative performance by following,

for example, the sequential procedure suggested by Bai and Perron (1998).

The �uctuation and the optimal tests have trade-o¤s. If the researcher is willing to specify

the alternative of interest (in this case, a one-time break in the relative performance), then the

latter test can be implemented and it will have optimality properties. Furthermore, it allows the

researcher to estimate the time of the break. The �uctuation test, on the other hand, does not

require the researcher to specify an alternative, and therefore might be preferable for researchers

who do not have one.

3.4 The sequential test

Suppose that the two models were equally good in the historical sample of data up to time T;

based on the fact that they yielded statistically indistinguishable in-sample performance, i.e., that

4This procedure is justi�ed by the fact that the two components LM1 and LM2 are asymptotically independent

� see Rossi (2005). Performing two separate tests does not result in an optimal test, but it is nevertheless useful

to heuristically disentangle the causes of rejection of equal performance. The critical values for LM1 are from a �21
whereas those for LM2 are from Andrews (1993).
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E
h
T�1

PT
j=1�Lj(�

�
T ; 

�
T )
i
= 0. We test the null hypothesis that the two models perform equally

well for all subsequent periods in the post-historical sample:

H0 : E

24t�1 tX
j=1

�Lj(�
�
t ; 

�
t )

35 = 0 for t = T + 1; T + 2; :::; (19)

against the alternative H1 : E
h
t�1

Pt
j=1�Lj(�

�
t ; 

�
t )
i
6= 0 at some point t � T:

We make the following assumptions:

Assumption SEQ: Let � be s.t. t = [�T ] and � 2 [1; n] ; (a) for every integer n > 1,n
T�1=2

P[�T ]
j=1 �Lj (�; )

o
obeys a FCLT for all � 2 �;  2 �; (b) b�t is consistent for ��t uniformly

over � and in � ; (c) for every integer n > 1, t�1
Pt
j=1�Lj(�

�; �) = E[t�1
Pt
j=1�Lj(�

�; �)] +

op(1); t
�1Pt

j=1rfj(�) and t�1
Pt
j=1rgj(�) satisfy a Uniform Law of Large Numbers �uniform

in the parameter space and in � ; (d) �2 = limt!1E(t�1=2
Pt
j=1�Lj(�

�
t ; 

�
t ))

2 > 0; (e) �;� are

compact.

Assumption (b) requires consistency of the parameter estimates for the two models (see Inoue

and Rossi (2005) for more primitive conditions that ensure this); (c) ensures uniform convergence

for � 2 [1; n].
We test this hypothesis sequentially, that is, by considering a sequence of test statistics, together

with appropriate critical values that control the overall size of the procedure, which are given in

the following proposition.

Proposition 4 (Sequential test) The test statistic for testing the null hypothesis

E
h
T�1

PT
j=1�Lj(�

�
T ; 

�
T )
i
= 0 against the alternative H1 : E

h
t�1

Pt
j=1�Lj(�

�
t ; 

�
t )
i
6= 0 at some

t � T is:

Jt = �̂
�1t�1=2

tX
j=1

�Lj(b�t; bt); t = T + 1; T + 2; :::; (20)

where �̂2 is a HAC estimator of �; e.g.,

�̂2t =

q(t)�1X
i=�q(t)+1

(1� ji=q(t)j)t�1
tX
j=1

�Lj

�b�t; bt��Lj�i �b�t; bt� ; (21)

with q(m) a bandwidth that grows with m (cf. Newey and West, 1987). The critical value at time

t for a level � test is c� =
p
r2� + ln(t=T ); where the exact expression for r� is given in the proof.

Typical values of (�; r�) are (0:05; 2:7955) and (0:10; 2:5003) : The null hypothesis is rejected when

jJtj > c�:
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4 Empirical application: time-variation in the performance of

DSGE vs. BVAR models

In a highly in�uential paper, Smets and Wouters (2003) (henceforth SW) show that a DSGE

model of the European economy - estimated using Bayesian techniques over the period 1970:2-

1999:4 - �ts the data as well as atheoretical Bayesian VARs (BVARs). Furthermore, they �nd

that the parameter estimates from the DSGE model have the expected sign. Perhaps for these

reasons, this new generation of DSGE models has attracted a lot of interest from forecasters and

central banks. SW�s model features include sticky prices and wages, habit formation, adjustment

costs in capital accumulation and variable capacity utilization, and the model is estimated using

seven variables: GDP, consumption, investment, prices, real wages, employment, and the nominal

interest rate. Their conclusion that the DSGE �ts the data as well as BVARs is based on the

fact that the marginal data densities for the two models are of comparable magnitudes over the

full sample. However, given the changes that have characterized the European economy over the

sample analyzed by SW - for example, the creation of the European Union in 1993, changes in

productivity and in the labor market, to name a few - it is plausible that the relative performance

of theoretical and atheoretical models may itself have varied over time. In this section, we apply the

techniques proposed in this paper to assess whether the relative performance of the DSGE model

and of BVARs was stable over time. We extend the sample considered by SW to include data up

to 2004:4, for a total sample of size T = 145:

In order to compute the local measure of relative performance, (the local �KLIC); we estimate

both models recursively over a moving window of size m = 70 using Bayesian methods: As in SW,

the �rst 40 data points in each sample are used to initialize the estimates of the DSGE model and as

training samples for the BVAR priors. We consider a BVAR(1) and a BVAR(2), both of which use

a variant of the Minnesota prior, as suggested by Sims (2003).5 We present results for two di¤erent

transformations of the data. The �rst applies the same detrending of the data used by SW, which

is based on a linear trend �tted on the whole sample (we refer to this as �full-sample detrending�).

As cautioned by Sims (2003), this type of pre-processing of the data may unduly favour the DSGE,

and thus we further consider a second transformation of the data, where detrending is performed

on each rolling estimation window (�rolling-sample detrending�).

Figure 2 displays the evolution of the posterior mode of some representative parameters. Figure

2a shows parameters that describe the evolution of the persistence of some representative shocks

(productivity, investment, government spending, and labor supply); Figure 2b shows the estimates

5The BVAR�s were estimated using software provided by Chris Sims at www.princeton.edu/~sims. As in Sims

(2003), for the Minnesota prior we set the decay parameter to 1 and the overall tightness to .3. We also included

sum-of-coe¢ cients (with weight � = 1) and co-persistence (with weight � = 5) prior components:
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of the standard deviation of the same shocks; and Figure 2c plots monetary policy parameters.

Overall, Figure 2 reveals evidence of parameter variation. In particular, the �gures show some

decrease in the persistence of the productivity shock, whereas both the persistence and the standard

deviation of the investment shock seem to increase over time. The monetary policy parameters

appear to be overall stable over time.

FIGURE 2 HERE

We then apply our in-sample �uctuation test to test the hypothesis that the DSGE model and

the BVAR have equal performance at every point in time over the historical sample.

Figure 3 shows the implementation of the �uctuation test for the DSGE vs. a BVAR(1) and

BVAR(2), using full-sample detrending of the data. The estimate of the local relative KLIC is

evaluated at the posterior modes b�t;m and bt;m of the models�parameters, using the fact that b�t;m
and bt;m are consistent estimates of the pseudo-true parameters ��t;m and �t;m (see, e.g., Fernandez-
Villaverde and Rubio-Ramirez, 2004).

FIGURE 3 HERE

Figure 3 suggests that the DSGE has comparable performance to both a BVAR(1) and BVAR(2)

up until the early 1990s, at which point the performance of the DSGE dramatically improves relative

to that of the reduced-form models.

To assess whether this result is sensitive to the data �ltering, we implement the �uctuation test

for the DSGE vs. a BVAR(1) and BVAR(2), this time using rolling-window detrended data.

FIGURE 4 HERE

The results con�rm the suspicion expressed by Sims (2003) that the pre-processing of the data

utilized by SW penalizes the reduced-form models in favour of the DSGE. As we see from Figure

4, once the detrending is performed on each rolling window, the advantage of the DSGE at the end

of the sample disappears, and the DSGE performs as well as a BVAR(1) on most of the sample,

whereas it is outperformed by a BVAR(2) for all but the last few dates in the sample (when the

two models perform equally well).

5 Conclusions

This paper provides new tests for model selection and forecast comparison in the presence of

possible misspeci�cation and structural instability. We proposed methods for assessing whether

there is time variation in the relative performance of possibly nonlinear dynamic models, where the

relative performance could be assessed either in-sample or out-of-sample.
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For the in-sample case, our techniques are only applicable if the models are non-nested. If the

models of interest are instead nested and misspeci�cation is not a concern, the researcher has the

following options. A possible counterpart for the in-sample �uctuation test would be the joint test

for nested model selection in the presence of underlying parameter instability proposed by Rossi

(2005). The counterpart of the sequential test for nested models is discussed instead in Inoue and

Rossi (2005). Both tests�null hypotheses can be expressed as zero restrictions on the parameters of

the larger model, and they both test jointly this hypothesis as well as the maintained assumption

that the small model is correctly speci�ed.
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6 Appendix A - Proofs

Proof of Proposition 1. Let
P
j �

Pt+m=2
j=t�m=1+1 for t = m=2+1; :::; T �m=2:We �rst show that

��1m�1=2P
j �Lj(

b�t;m; bt;m) = ��1m�1=2P
j �Lj(�

�
t;m; 

�
t;m) + op (1) : Applying a Taylor series

expansion, we have that

��1m�1=2
X
j

�Lj(b�t;m; bt;m) (22)

= ��1m�1=2
X
j

�Lj(�
�
t;m; 

�
t;m)

���1 1
2

8<:E
24m�1

X
j

rfj(
::
�t;m)

35pm�b�t;m � ��t;m�

�E

24m�1
X
j

rgj(
::
t;m)

35pm �bt;m � �t;m�
9=;

= ��1m�1=2
X
j

�Lj(�
�
t;m; 

�
t;m) + op (1) ;

where
::
�t;mis an intermediate point between b�t;m and ��t;m: Assumptions (c) and (b) ensure that

E
h
m�1P

j rfj(
::
�t;m)

i
!
as
0 and Assumption (b) ensures that the second component in the second

to last line is op (1). Now write

��1m�1=2
X
j

�Lj(�
�
t;m; 

�
t;m)

= (m=T )�1=2

0@��1T�1=2 t+m=2X
j=1

�Lj(�
�
t;m; 

�
t;m)� ��1T�1=2

t�m=2X
j=1

�Lj(�
�
t;m; 

�
t;m)

1A :
By Assumptions (a), (d) and (e), we have

��1m�1=2
X
j

�Lj(�
�
t;m; 

�
t;m) =) [B (� + �=2)� B (� � �=2)] =p�;

where t = [�T ] ; m = [�T ] : The statement in the proposition then follows from the fact that, under

H0, b� in (12) is a consistent estimator of � (Andrews, 1991). Values of k� in Table 1 are obtained
by Monte Carlo simulations (based on 8,000 Monte Carlo replications and by approximating the

Brownian Motion with 400 observations).

Proof of Proposition 2. Let
P
j �

Pt+m=2
j=t�m=2+1 for t = R+ h+m=2; :::; T �m=2: We have
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��1m�1=2
X
j

�Lj(b�j�h;R; bj�h;R)
= (m=P )�1=2

0@��1P�1=2 t+m=2X
j=R+h

�Lj(b�j�h;R; bj�h;R)� ��1P�1=2 t�m=2X
j=R+h

�Lj(b�j�h;R; bj�h;R)
1A :

By Assumptions (a), (b) and (c), we have

��1m�1=2
X
j

�Lj(b�j�h;R; bj�h;R) =) [B (� + �=2)� B (� � �=2)] =p�:

The statement in the proposition then follows from the fact that, under H0, b� in (15) is a consistent
estimator of � (Andrews, 1991).

Proof of Proposition 3. First we show that: (I) LM1 = �
�2T�1

hPT
j=1 (log fj(�

�
T )� log gj (�T ))

i2
+

op (1) and (II)

LM2 (t) = ��2 (t=T )�1 (1� t=T )�1

[T�1=2
tX
j=1

�
log fj(�

�
1;t)� log gj

�
�1;t

��
+

� (t=T )T�1=2
TX
j=1

(log fj(�
�
T )� log gj (�T )) ]

2 + op (1)

To prove (I), note that by applying a Taylor expansion:

��2T�1
TX
j=1

�
log fj(b�T )� log gj (bT )�

= ��2T�1
TX
j=1

(log fj(�
�
T )� log gj (�T )) +

1

2
��2T�1

TX
j=1

�
E
h
r log fj(

::
�T )
i �b�T � ��T�� E �r log gj � ::T �� (bT � �T )�

= ��2T�1
TX
j=1

(log fj(�
�
T )� log gj (�T )) + op (1)

where
::
�T is an intermediate point between b�T and ��T (similarly for ::T ). Assumptions (c) and (b)

ensure that E
h
r log fj(

::
�T )
i
!
as
0 and Assumption (b) ensures that the second component in the

second to last line is op (1). A similar argument proves (II).

By assumptions (a), (d) and (e), under the null hypothesis (??):

��1T�1=2
TX
j=1

(log fj(�
�
T )� log gj (�T )) =) B (1) (23)

22



��1 (t=T )�1=2 (1� t=T )�1=2 [T�1=2
tX
j=1

�
log fj(�

�
1;t)� log gj

�
�1;t

��
� (t=T )T�1=2

TX
j=1

(log fj(�
�
T )� log gj (�T )) ]

=) ��1=2 (1� �)�1=2 [B (�)� �B (1) ] = ��1=2 (1� �)�1=2 BB (�) (24)

where (23) and (24) are asymptotically independent. Then:

LM1 + LM2 (t) = ��2T�1

24 TX
j=1

(log fj(�
�
T )� log gj (�T ))

352

+��2
�
t

T

��1�
1� t

T

��1
[T�1=2

tX
j=1

�
log fj(�

�
1;t)� log gj

�
�1;t

��
�
�
t

T

�
T�1=2

TX
j=1

(log fj(�
�
T )� log gj (�T )) ]

2 + op (1)

=) B (1)2 + ��1 (1� �)�1 BB (�)2

and the result follows by the Continuous Mapping Theorem.

Proof of Proposition 4. Suppose that n is a �xed positive integer greater than 1. Using simi-

lar reasonings to those in the Proof of Proposition 1, we �rst show that ��1t�1=2
Pt
j=1�Lj(

b�t; bt) =
��1t�1=2

Pt
j=1�Lj(�

�
t ; 

�
t ) + op (1) : Applying a Taylor series expansion we have that (22) holds.

Assumptions SEQ(b),(c) ensure that E
h
t�1

Pt
j=1rfj(

::
�t)
i
and E

h
t�1

Pt
j=1rgj(

::
t)
i
are bounded

in probability on D [1; n] and (b) ensures that the second component in the second to last line

is op (1) for every t on D [1; n]. Then, by Assumptions SEQ (a), (d), and (e), we have that

��1t�1=2
Pt
j=1�Lj(

b�t; bt)) B (�) =
p
� on D [1; n]. Next, it follows from Thorem 1.6.1 in van der

Vaart and Wellner (1996, p. 43) that these convergence also holds onD [1;1]. The statement in the
proposition then follows from the fact that, under the null hypothesis, b� in (21) is a consistent esti-
mator of � (Andrews, 1991). The critical value is then determined from the hitting probability of the

Brownian Motion, as in Chu et al. (1996, p.1053): P
n
jB (�) j=

p
� �

p
(r2� + ln �), for some � � 1

o
= 2 [1� � (r�) = r�� (r�)], where t = [�T ], and � (:) and � (:) are, respectively, the pdf and cdf of
a standard normal distribution.
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7 Appendix B

Lemma 5 (A bootstrap procedure robust to breaks in variance) In the presence of breaks

in � satisfying Assumption � in Cavaliere and Taylor (2005), the following bootstrap à la Hansen

(2000) provides the correct p-values. Let Lt � m�1
t+m=2

�
j=t�m=2

�Lj and let zt denote an independent

N (0; 1) sequence. At each point in time t the bootstrap sample is de�ned as �L(b)j � �Ljzj ; j =

1; ::;m and the bootstrap statistic is given by ��1b m
�1=2

t+m=2

�
j=t�m=2

�L
(b)
j , where �

2
b = m

�1
t+m=2

�
j=t�m=2

�
�L

(b)
j

�2
:

The critical values of the sample path can be obtained by Monte Carlo simulation.
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8 Tables and Figures

Table 1. Critical values for the

�uctuation test (k�)

�

� 0.05 0.10

0.1 3.393 3.170

0.2 3.179 2.948

0.3 3.012 2.766

0.4 2.890 2.626

0.5 2.779 2.500

0.6 2.634 2.356

0.7 2.560 2.252

0.8 2.433 2.130

0.9 2.248 1.950

Notes to Table 1. The table reports critical values for the in-sample and out-of-sample �uctu-

ation tests F ISt;m and F
OOS
t;m of Propositions 1 and 2.
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Figure 1a. Examples of time variation in relative performance
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Figure 1b. Implementation of the �uctuation test for the examples in Figure 1a
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Notes to Figure 1. Figure 1a shows the sample path for the relative performance of the two models consid-

ered in the example in Section 2 for a DGP with time-varying parameters (left panel) or a DGP with constant

parameters but with a break in the variance of one regressor (right panel). The solid line represents the rela-

tive KLIC at each point in time, the dashed line is the �smoothed��KLIC computed over moving windows

of size 1/5 of the sample size T. The dot represents the full-sample average�KLIC. Figure 1b shows the sam-

ple path of the in-sample �uctuation test statistics of Proposition 1, together with corresponding boundary
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lines.

Figure 2a. Rolling estimates of DSGE parameters (persistence of the shocks).
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Notes to Figure 2(a). The �gure plots rolling estimates of some parameters in Smets and Wouter�s (2002)

model. See Smets and Wouter�s Table 1, p. 1142 for a description.
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Figure 2b. Rolling estimates of DSGE parameters ( standard deviation of the shocks).
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Notes to Figure 2(b). The �gure plots rolling estimates of some parameters in Smets and Wouter�s

(2002) model using full-sample detrended data. See Smets and Wouter�s Table 1, p. 1142 for a description.
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Figure 2c. Rolling estimates of DSGE parameters (monetary policy parameters).
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Notes to Figure 2(c). The �gure plots rolling estimates of the parameters in the monetary policy reaction

function described in Smets and Wouters� (2002) eq. (36), given by: bRt= � bRt�1
+(1� �)

n
�t + r� (b�t�1 � �t) + rY �bYt�1 � bY pt �o+r�� (b�t � b�t�1) +r�Y ��bYt � bY pt �� �bYt�1 � bY pt�1��

+�Rt ; �t = ���t�1 + �
�
t . The �gure plots: in�ation coe¢ cient (r�), d(in�ation) coe¢ cient (r��), lagged

interest rate coe¢ cient (�), output gap coe¢ cient (rY ), d(output gap) coe¢ cient (r�Y ), and standard

deviation of the interest rate shock (
p
var (��t )).
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Figure 3. Fluctuation test DSGE vs. BVARs. Full-sample detrending
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Notes to Figure 3. The �gure plots the �uctuation test statistic for testing equal performance of the

DSGE and BVARs, using a rolling window of size m = 70 (the horizontal axis reports the central point of

each rolling window): The 10% boundary lines are derived under the hypothesis that the local �KLIC

equals zero at each point in time. The data are detrendend by a linear trend computed over the full

sample:The top panel compares the DSGE to a BVAR(1) and the lower panel compares the DSGE to a

BVAR(2).
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Figure 4. Fluctuation test DSGE vs. BVARs. Rolling sample detrending
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Notes to Figure 4. The �gure plots the �uctuation test statistic for testing equal performance of the

DSGE and BVARs, using a rolling window of size m = 70 (the horizontal axis reports the central point of

each rolling window): The 10% boundary lines are derived under the hypothesis that the local �KLIC

equals zero at each point in time. The data are detrendend by a linear trend computed over each rolling
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window:The top panel compares the DSGE to a BVAR(1) and the lower panel compares the DSGE to a

BVAR(2).
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