
Sales and Monetary Policy∗

Bernardo Guimaraes Kevin D. Sheedy†

London School of Economics

First draft: 8th December 2007

This draft: 29th July 2009

Abstract

A striking fact about pricing is the prevalence of “sales”: large temporary price cuts followed

by prices returning exactly to their former levels. This paper builds a macroeconomic model

with a rationale for sales based on firms facing customers with different price sensitivities. Even

if firms can adjust sales without cost, monetary policy has large real effects owing to sales being

strategic substitutes: a firm’s incentive to have a sale is decreasing in the number of other firms

having sales. Thus the flexibility seen in individual prices due to sales does not translate into

flexibility of the aggregate price level.
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1 Introduction

A striking fact about pricing is that many price changes are “sales”: large temporary cuts followed

by prices returning exactly to their former levels. Figure 1 shows a typical price path for a six-pack

of Corona beer at an outlet of Dominick’s Finer Foods, a U.S. supermarket. Sales are frequent; other

types of price change are rare. This pattern is an archetype of retail pricing.1

Figure 1: Example price path

Corona beer: $ per six-pack
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Notes: Weekly price observations from Dominick’s Finer Foods, Oak Lawn, Illinois, U.S.A.
Source: James M. Kilts Center, GSB, University of Chicago (http://research.chicagogsb.edu/
marketing/databases/dominicks).

Monetary policy’s real effects on the economy depend crucially on the stickiness of prices. So

Figure 1 poses a conundrum: viewed from different perspectives, the price path exhibits great flexib-

ility on the one hand, but substantial stickiness on the other. While changes between some “normal”

price and a temporary “sale” price are frequent, the “normal” price itself changes far less often.2

Consequently, empirical estimates of price stickiness widely diverge when sales are treated differently.

Bils and Klenow (2004) count sales as price changes and find that the median duration of a price

spell across the whole consumer price index is around 4 months; by disregarding sales, Nakamura and

Steinsson (2008) find a median duration of around 9 months.3 Quantitative models deliver radically

different estimates of the real effects of monetary policy depending on which of these two numbers

is used. Hence an understanding of sales is needed to answer the question of how large those real

effects should be.

In the IO and marketing literatures, the most prominent theories of sales are based on customer

heterogeneity together with incomplete information. Leading examples include Salop and Stiglitz

1See Hosken and Reiffen (2004), Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008), Kehoe and Midrigan
(2008), Goldberg and Hellerstein (2007) and Eichenbaum, Jaimovich and Rebelo (2008) for recent studies.

2It is harder to make generalizations about sale prices. Some products feature a relatively constant sale discount;
others display sizeable variation over time.

3Comparisons across euro-area countries also reveal that the treatment of sales has a significant bearing on the
measured frequency of price adjustment, as discussed in Dhyne, Álvarez, Le Bihan, Veronese, Dias, Hoffmann, Jonker,
Lünnemann, Rumler and Vilmunen (2006).
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(1977, 1982), Varian (1980), Sobel (1984) and Narasimhan (1988). This paper builds a general-

equilibrium macroeconomic model with sales that draws upon the rationale proposed in these liter-

atures. Despite substantial heterogeneity at the microeconomic level, the model is easily aggregated

to study macroeconomic questions.

The model assumes households have different preferences over goods, and for each good, some

households are more price sensitive than others. There are two types: loyal customers with low price

elasticities, and bargain hunters with high elasticities. Firms do not know the type of any individual

customer, so they cannot practise price discrimination.

One key finding of the paper is that when the difference between the price elasticities of loyal

customers and bargain hunters is sufficiently large, and there is a sufficient mixture of the two types,

then in the unique equilibrium of the model, firms prefer to sell their good at a high price at some

moments and at a low sale price at other moments. The choice of different prices at different moments

is a profit-maximizing strategy even in an entirely deterministic environment. Firms would like to

price discriminate, but as this is impossible, their best alternative strategy is holding periodic sales

in order to target the two types of customers at different moments.

The existence of consumers with different price elasticities leads to sales being strategic substitutes:

the more others have sales, the less any individual firm wants to have a sale. This is because the

difficulty faced by a given firm in trying to win the custom of the more price-sensitive consumers

is greatly increasing in the extent to which other firms are holding sales; in contrast, a firm can

rely more on its loyal customers, whose purchases are much less sensitive to other firms’ pricing

decisions. Owing to sales being strategic substitutes, the resulting market equilibrium features a

balance between the fractions of time a firm spends targeting the two groups of consumers.

Given the pattern of price adjustment documented in Figure 1, changes in the aggregate price

level can come from three sources: changes in the “normal” price, changes in the size of the sale

discount, and changes in the proportion of goods on sale. Having built a model of sales, the key

question to be answered is: for the purposes of monetary policy analysis, does it matter that the

normal price is sticky amidst all the flexibility due to sales seen in Figure 1?

To tackle this question, the paper embeds the model of sales into a fully-fledged DSGE framework.

Firms’ normal prices are reoptimized at staggered intervals, but sales decisions are completely flexible

and subject to no adjustment costs. Individual price paths generated by this model are similar to

real-world examples such as that in Figure 1, even though no idiosyncratic shocks are assumed. This

dynamic model with sticky normal prices but flexible sales is tractable, and an expression for the

resulting Phillips curve is derived analytically. It is shown that flexible sales will never mimic fully

flexible prices in equilibrium.

The model is then calibrated to match some simple facts about sales and hence assess quantit-

atively the real effects of monetary policy. The results are compared to those from the same DSGE

model without sales incorporating a standard New Keynesian Phillips curve instead. The real effects

of monetary policy in a model with a sticky normal price and fully flexible sales are similar to those

found in a standard model with a single sticky price and no sales. The cumulated response of output

in the model with fully flexible sales is 89% of the cumulated response in the standard model. The
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flexibility due to sales seen at the level of individual prices imparts little flexibility to the aggregate

price level. These numerical results are not particularly sensitive to the calibration of the model.

The strong real effects of monetary policy follow from sales being strategic substitutes. After an

expansionary monetary policy shock, an individual firm has a direct incentive to hold fewer and less

generous sales, thus increasing the price it sells at on average. However, as the shock is common

to all firms, if all other firms were to follow this course of action then any one firm would have a

tempting opportunity to boost its market share among the bargain hunters by holding a sale —

bargain hunters are much easier to attract if neglected by others. This leads firms in equilibrium not

to adjust sales by much in response to a monetary shock. Thus the aggregate price level adjusts by

little, so monetary policy shocks have large real effects.

This analysis all assumes that sales are uniformly distributed across the whole economy. However,

the evidence demonstrates this is not the case: sales are rare in some sectors and very frequent in

others. A tractable two-sector version of the model is built to take account of this. Pricing behaviour

in one sector features sales for the reasons described earlier. The other sector features standard

pricing behaviour with no sales. Analytically, the two-sector model always implies larger real effects

of monetary policy than the one-sector model of sales when the overall extent of sales is the same.

Quantitatively, the model is recalibrated to account for the concentration of sales in some sectors.

The cumulated response of output to a monetary shock is now 96% of the response in a standard

model without sales. Taking this as the more realistic representation of sales in the economy, it is

fair to conclude that sales are essentially irrelevant for monetary policy analysis.

Even though the recent empirical literature on price adjustment has highlighted the importance

of sales, macroeconomic models have largely side-stepped the issue. The one exception is Kehoe and

Midrigan (2008). In their model, firms face different menu costs depending on whether they make

permanent or temporary price changes. Coupled with large but transitory idiosyncratic shocks, this

mechanism gives rise to sales in equilibrium.

The plan of the paper is as follows. The model of sales is introduced in section 2, and the

equilibrium of the model is characterized in section 3. Section 4 embeds sales into a DSGE model

and analyses the real effects of monetary policy. Section 5 presents the two-sector extension of the

model. Section 6 draws some conclusions.

2 The model

2.1 Households

There is a measure-one continuum of households (indexed by ı) with lifetime utility function

Ut(ı) =
∞∑
`=0

β`Et [υ(Ct+`(ı))− ν(Ht+`(ı))] , [2.1]

where C(ı) is consumption of household ı’s specific basket of goods (defined below), H(ı) is hours of

labour supplied, and β is the subjective discount factor (0 < β < 1). The function υ(C) is strictly
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increasing and strictly concave in C; ν(H) is strictly increasing and convex in H.

Household ı’s budget constraint in time period t is

Pt(ı)Ct(ı) +Mt(ı) + Et
[
At+1|tAt+1(ı)

]
= WtHt(ı) + Dt + Tt +Mt−1(ı) +At(ı), [2.2a]

where P (ı) is the money price of one unit of household ı’s consumption basket, W is the money wage,

M(ı) is household ı’s end-of-period money balances, D is dividends received from firms, T is the net

monetary transfer received by each household from the government, A is the asset-pricing kernel (in

money terms), and A(ı) is household ı’s portfolio of money-denominated Arrow-Debreu securities.4

All households have equal initial financial wealth and the same expected lifetime income. Household

ı is also faces a cash-in-advance constraint on consumption purchases:

Pt(ı)Ct(ı) ≤Mt−1(ı) + Tt. [2.2b]

Maximizing lifetime utility [2.1] subject to the sequence of budget constraints [2.2a] implies the

following first-order conditions for consumption C(ı) and hours H(ı):

β
υc(Ct+1(ı))

υc(Ct(ı))
= At+1|t

Pt+1(ı)

Pt(ı)
, and

νh(Ht(ı))

υc(Ct(ı))
=

Wt

Pt(ı)
. [2.3]

There are no arbitrage opportunities in financial markets, so the interest rate it on a one-period

risk-free nominal bond satisfies:

1 + it =
(
EtAt+1|t

)−1
. [2.4]

The net transfer Tt is equal to the change in the money supply ∆Mt ≡ Mt −Mt−1. The cash-in-

advance constraint [2.2b] binds when the nominal interest rate it is positive.

2.2 Composite goods

Household ı’s consumption C(ı) is a composite good comprising a large number of individual products.

Individual goods are categorized as brands of particular product types. There is a measure-one

continuum T of product types. For each product type τ ∈ T , there is a measure-one continuum B

of brands, with individual brands indexed by b ∈ B. For example, product types could include beer

or dessert, and brands could be Corona beer or Ben & Jerry’s ice cream.

Households have different preferences over this range of goods. Taking a given household, there

is a set of product types Λ ⊂ T for which that household is loyal to a particular brand of each

product type τ ∈ Λ in the set. For product type τ ∈ Λ, the brand receiving the household’s loyalty

is denoted by B(τ). Loyalty means the household gets no utility from consuming any other brands

of that product type. When the household is not loyal to a particular brand of a product type τ,

that is, τ ∈ T \Λ, the household is said to be a bargain hunter for product type τ. This means the

household gets utility from consuming any of the brands of that product type.

4These assumptions on asset markets are standard and play no important role in the model.
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The composite consumption good C for a given household is defined first in terms of a Dixit-

Stiglitz aggregator over product types with elasticity of substitution ε. For a product type where the

household is a bargain hunter, there is an additional Dixit-Stiglitz aggregator defined over brands of

that product type with elasticity of substitution η. The overall aggregator is

C ≡
(∫

Λ

c(τ,B(τ))
ε−1

ε dτ+

∫
T \Λ

(∫
B

c(τ, b)
η−1

η db

)η(ε−1)
ε(η−1)

dτ

) ε
ε−1

, [2.5]

where c(τ, b) is the household’s consumption of brand b of product type τ.5 It is assumed that η > ε,

so bargain hunters are more willing to substitute between different brands of a specific product type

than households are to substitute between different product types. Households have a zero elasticity

of substitution between brands of a product type for which they are loyal to a brand.

The elasticities ε and η are common all households, as is the form of the consumption aggregator

[2.5]. Furthermore, the measure of the set Λ of product types for which a household is loyal to a brand

is the same for all households. This measure is denoted by λ, which satisfies 0 < λ < 1. Hence, each

household’s preferences feature some mixture of loyal and bargain-hunting behaviour over different

product types. The particular product types for which a household is loyal, and the particular brands

receiving its loyalty, are randomly and independently assigned once and for all with equal probability.

For example, one household may be loyal to Corona beer and a bargain hunter for desserts, while

another may be loyal to Ben & Jerry’s ice cream but a bargain hunter for beer. After aggregation,

the idiosyncrasies of households’ preferences are irrelevant; all that matters is households’ common

distribution of loyal and bargain-hunting behaviour over the whole set of goods.

Each discrete time period t contains a measure-one continuum of shopping moments when goods

are purchased and consumed. A household does all its shopping at a randomly and independently

chosen moment. As shown later, all households are indifferent in equilibrium between all shopping

moments in the same time period.

Let p(τ, b) be the price of brand b of product type τ prevailing at a given household’s shopping

moment. The minimum expenditure required to purchase one unit of the composite good [2.5] is

P =

(∫
Λ

p(τ,B(τ))1−εdτ+

∫
T \Λ

(∫
B

p(τ, b)1−ηdb

) 1−ε
1−η

dτ

) 1
1−ε

. [2.6]

The expenditure-minimizing demand functions are

c(τ, b) =


(
p(τ,b)
pB(τ)

)−η (
pB(τ)
P

)−ε
C if τ ∈ T \Λ, where pB(τ) ≡

(∫
B
p(τ, b)1−ηdb

) 1
1−η ,(

p(τ,b)
P

)−ε
C if τ ∈ Λ and b = B(τ),

0 if τ ∈ Λ and b 6= B(τ),

[2.7]

5This formulation captures the idea that different brands of a product type are not perfect substitutes even to
bargain hunters. The assumption that bargain hunters have a Dixit-Stiglitz aggregator over brands, rather than
making a discrete choice of brand, is inessential to the results. An earlier version of this paper experimented with a
discrete choice of brand, but found qualitatively and very similar results.
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where C is the amount of the composite good consumed, and P is the price level given in [2.6].6 The

term pB(τ) is an index of prices for all brands of product type τ, as is relevant to those households

who are bargain hunters for that product type. Total expenditure on all goods is PC. It is assumed

that ε > 1 to ensure households’ demand functions are always price elastic.

As shown later, a firm will not charge the same price for its good at all shopping moments in a given

time period. At each moment, it will randomly draw a price from some desired price distribution.

When this distribution is common to all firms then the price index for bargain hunters is the same

for all product types and at all shopping moments, that is, PB = pB(τ), and all households’ price

levels are the same and equal across all shopping moments, that is, P (ı) = P . This is in spite of

households’ consumption baskets differing.7

Given that households share a common price level, have the same preferences [2.1] over their

composite goods and hours, and have the same initial wealth and expected lifetime income, all

households choose the same levels of composite consumption and hours, hence C(ı) = C andH(ı) = H

for all ı. Since consumption is the only source of demand in the economy, goods market equilibrium

requires C = Y , where Y is aggregate output.

2.3 Firms

Each brand b of each product type τ is produced by a single firm. All firms have the same production

function

Q = F(H), [2.8]

where F(·) is a strictly increasing function with F(0) = 0. Generally, F(·) is assumed to be strictly

concave, though the milder assumption of weak concavity is used at some points in the paper. The

minimum total money cost C (Q;W ) of producing output Q for a given money wage W is

C (Q;W ) = WF−1(Q). [2.9]

The cost function C (Q;W ) is strictly increasing and generally strictly convex in Q, and satisfies

C (0;W ) = 0.

Production takes place at the beginning of each discrete time period. Firms hold inventories

during the period and sell some output at every shopping moment, but not necessarily at the same

price at all moments. This captures the fact that firms can sell a batch of output at multiple prices.8

At a particular shopping moment, the quantity sold by the producer of good (τ, b) at price p is

6When the household is loyal, the demand function should be interpreted as a density over a one-dimensional set,
as with standard Dixit-Stiglitz preferences. When the household is a bargain hunter, the demand function should be
interpreted as a density over a two-dimensional set.

7The price indices are the same across product types, shopping moments and households under the much weaker
condition that the distribution of firms’ price distributions is the same across product types and shopping moments.
This condition will be satisfied at all points in the paper.

8It is assumed for simplicity that firms can only hold inventories within a time period.
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obtained by aggregating customers’ demand functions from [2.7]:∫
c(τ, b)dı =

(
λp−ε + (1− λ)P η−εB p−η

)
P εC.

The first term corresponds to demand from loyal customers and the second term to demand from

bargain hunters for the same product type as the firm’s own brand.9

It is helpful to state a firm’s demand function at a shopping moment in terms of factors that shift

it proportionately and factors that have differential effects depending on the price being charged by

the firm at that particular moment:

D(p;PB, E) = (λ+ (1− λ)v(p;PB)) p−εE , where v(p;PB) ≡
(
p

PB

)−(η−ε)
and E ≡ P εC. [2.10]

The aggregate component of the individual demand function is E . The function v(p;PB), referred to

as the purchase multiplier, is defined as the ratio of the amounts sold at the same price to a given

measure of bargain hunters relative to the same measure of loyal customers. In a model with standard

Dixit-Stiglitz preferences, the actions of other firms are subsumed exclusively into E , and this term

proportionately scales demand; here, there is an additional channel through PB, and one that affects

demand from loyal customers and bargain hunters differently. Consequently, PB does not have a

uniform effect on demand at all prices.

The demand function D(p;PB, E) is used to calculate the revenue R(q;PB, E) received from selling

quantity of output q at a particular shopping moment with PB and E given:

R(q;PB, E) ≡ qD−1(q;PB, E), with price p = D−1(q;PB, E), [2.11]

where D−1(q;PB, E) is the inverse demand function corresponding to [2.10].

The profit-maximization problem for a firm consists of choosing the distribution of prices used

across shopping moments. Let F (p) be a general distribution function for prices. This distribution

function is chosen to maximize profits

P =

∫
p

R (D(p;PB, E);PB, E) dF (p)− C

(∫
p

D(p;PB, E)dF (p);W

)
, [2.12]

where the first integral aggregates revenue R(q;PB, E) from [2.11] over all shopping moments, and

second term is the total cost C (Q;W ) from [2.9] of producing the whole batch of output Q, which is

equal to demand aggregated over all moments.

Consider a discrete distribution of prices {pi} with weights {ωi}.10 The first-order conditions for

9There is a continuum of bargain hunters, so both terms in the demand function are densities over a one-dimensional
set.

10It is shown later that restricting attention to discrete distributions is without loss of generality.
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maximizing profits [2.12] with respect to prices pi and weights ωi are

R ′ (D(pi;PB, E);PB, E) = C ′
(∑

j

ωjD(pj;PB, E);W

)
and [2.13a]

R (D(pi;PB, E);PB, E) = ℵ+ D(pi;PB, E)C ′
(∑

j

ωjD(pj;PB, E);W

)
if ωi > 0; and [2.13b]

R (D(pi;PB, E);PB, E) ≤ ℵ+ D(pi;PB, E)C ′
(∑

j

ωjD(pj;PB, E);W

)
if ωi = 0, [2.13c]

where ℵ is the Lagrangian multiplier attached to the constraint
∑

j ωj = 1. Equation [2.13a] is the

usual marginal revenue equals marginal cost condition, which must hold for any price that receives

positive weight. As discussed later, [2.13b] requires a firm to be indifferent between any prices

receiving positive weight, and [2.13c] requires any price not used to be weakly dominated by some

price receiving positive weight.

Observe that the first-order conditions are the same for all firms, therefore a price distribution

over shopping moments that maximizes profits for one firm equally well maximizes profits for any

other firm. Moreover, having chosen a price distribution, given that the demand function is the

same at all shopping moments, random draws of prices from this distribution at each moment are

consistent with profit maximization. Finally, note that randomization by firms makes all households

indifferent between all shopping moments, as was claimed earlier.

3 Equilibrium with flexible prices

There are two steps to characterizing the equilibrium. The first is the profit-maximizing pricing policy

of an individual firm conditional on the behaviour of others. The second is the strategic interaction

among firms. The latter turns out to be essential for the results.

3.1 Profit-maximizing price distributions

Firms choose a price distribution across shopping moments. If consumers had standard Dixit-Stiglitz

preferences, which imply a constant price elasticity of demand, then the marginal revenue function

would be strictly decreasing in quantity sold and the profit function would be strictly concave in

price. Thus choosing a single price for all shopping moments would be strictly preferable to any price

distribution.

However, in the model presented here, firms may prefer to randomize across shopping moments,

that is, choose a non-degenerate price distribution. The reason is that the model features a price

elasticity that decreases with price, leading potentially to marginal revenue being non-monotonic, in

which case the profit function ceases to be globally concave. This can be seen from the following
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identity:

Marginal revenue ≡
(

1− 1

Price elasticity

)
× Price.

With price elasticity decreasing in price, the two terms on the right-hand side move in opposite

directions.

As demand comes from two different sources, loyal customers and bargain hunters, and these

groups have different price sensitivities, the price elasticity of demand changes with the composition

of a firm’s customers. High prices mean that most bargain hunters have deserted its brand, and the

residual mass of loyal customers has a low price elasticity. Low prices put the firm in contention to

win over the bargain hunters, but fierce competition among brands for these customers means the

price elasticity is high.11

The price elasticity ζ(p;PB) implied by the demand function D(p;PB, E) in [2.10] is

ζ(p;PB) =
λε+ (1− λ)ηv(p;PB)

λ+ (1− λ)v(p;PB)
. [3.1]

This price elasticity is a weighted average of ε and η, with the weight on the larger elasticity η

increasing with the purchase multiplier v(p;PB), as defined in [2.10]. The higher is the price p, the

lower is the purchase multiplier, and the smaller is the price elasticity.12

Marginal revenue is non-monotonic when η is sufficiently large relative to ε. This case is depicted

in Figure 2. For very low prices, the price elasticity is approximately constant and equal to η because

the bargain hunters are preponderant; for very high prices, it is approximately constant and equal

to ε because only loyal customers remain. In an intermediate region there is a smooth transition

between ε and η, and this increase in price elasticity can be large enough to make marginal revenue

positively sloped, although it has the usual negative slope outside this intermediate range.

For some parameters ε, η and λ, firms find it optimal to choose a distribution with two prices: a

normal high price, and a low sale price. Denote these two prices respectively by pN and pS, and let

qN = D(pN ;PB, E) and qS = D(pS;PB; E) be the quantities demanded at a single shopping moment

at these prices. The frequency of sales (the fraction of shopping moments when a firm’s good is on

sale) is denoted by s. If 0 < s < 1 then both prices must satisfy first-order conditions [2.13a]–[2.13b].

By eliminating the Lagrangian multiplier ℵ from [2.13b], profit maximization requires:

R ′(qN ;PB, E) = R ′(qS;PB, E) =
R(qS;PB, E)−R(qN ;PB, E)

qS − qN
= C ′ (sqS + (1− s)qN ;W ) . [3.2]

There are three requirements for the optimality of this price distribution and these are represented

graphically in Figure 2. First, marginal revenue must be equalized at both normal and sale prices.13

11This change in price elasticity along the demand function is a less extreme version of a “kinked” demand curve.
The difference between the demand function in this paper and the “smoothed-kink” of Kimball (1995) is that there, the
elasticity increases with price, whereas here it decreases with price. Furthermore, the behaviour of the price elasticity
here is a consequence of aggregation, not a direct assumption.

12More generally, it can be shown that the price elasticity of demand is everywhere decreasing in price when demand
is aggregated from any distribution of constant-elasticity individual demand functions.

13There is a third point between qN and qS also associated with the same marginal revenue, but including this point
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Figure 2: Demand function and non-monotonic marginal revenue function

qSqN q

pN

pS

MC

p

D−1(q; PB, E)

R ′(q; PB, E)

Notes: Schematic representation of demand function D(p;PB , E) from [2.10] and marginal revenue
function R′(p;PB , E) from [2.11] when η is sufficiently large relative to ε.

Second, the extra revenue generated by having a sale at a particular shopping moment per extra unit

sold must be equal to the common marginal revenue. This is represented in the figure by the equality

of the two shaded areas bounded between the marginal revenue function and the horizontal line MC,

and between the quantities qN and qS. Finally, marginal revenue and average extra revenue must

both be equal to the marginal cost of producing total output Q = sqS + (1− s)qN (for simplicity, the

marginal cost function is not shown in the figure).

Firms have a choice at which shopping moment they sell each unit of their output, so switching

a unit from one moment to another must not increase total revenue, thus marginal revenue must be

equalized at all prices used at some shopping moment. Furthermore, firms must be indifferent between

holding a sale or not at one particular moment. This requires that the extra revenue generated by

the sale per extra unit sold must equal marginal cost.

The full set of first-order conditions in [3.2] is depicted using the revenue and total cost functions

in Figure 3. As firms can charge different prices at different shopping moments, the set of achievable

total revenues is convexified. This raises attainable revenue in the range between qN and qS. The

first two conditions for profit maximization in [3.2] require that the revenue function has a common

tangent line at both quantities qN and qS, which is equivalent to the slope of the chord being the

same as that of the common tangent itself. This slope is then used to determine a total quantity

sold where marginal cost equal the common value of marginal revenue, thus determining the sale

frequency s.

in a firm’s price distribution would violate the second-order conditions for profit maximization.
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Figure 3: Revenue and total cost functions with first-order conditions

C (q; W )

R(q; PB, E)

qqSqN Q

C (Q; W ) + C ′(Q; W )(q −Q)

R(qN ; PB, E) + R ′(qN ; PB, E)(q − qN)

Notes: Schematic representation of the revenue function R(q;PB , E) from [2.11] and total cost function
C (Q;W ) from [2.9], when η is sufficiently large relative to ε.

3.2 Strategic interaction

The figures depicting the first-order conditions for the choice of two prices may leave the impression

that this is an unlikely case because it is necessary that both prices pN and pS simultaneously

maximize profits. In particular, in the case of constant marginal cost, the first-order conditions

in Figure 3 require the constant slope of total cost exactly to equal the slope of the tangent line to

revenue, which may appear to hold only for a measure-zero set of parameters. However, this reasoning

completely neglects the impact of other firms’ actions, and the resulting strategic interaction among

firms.

The effects of this strategic interaction are best illustrated in Figure 4. The figure plots the profits

of a given firm as a function of its price in the simple case of constant marginal cost. Take the prices

pS and pN that maximize profits from Figure 3. The bold curve in Figure 4 depicts the case where

both prices simultaneously maximize profits, with both local maxima being of the same height. Let

s denote the sales frequency of other firms. As s increases, profits at the sale price fall relative to

profits at the higher normal price, which leads any individual firm strictly to prefer selling all its

output at the normal price. Likewise, a lower s induces firms to sell only at the sale price. It is this

strategic effect that guarantees a unique equilibrium in two prices for a wide range of parameters. In

relation to Figure 3, the decisions of other firms about sales change the slope of the tangent line to

the revenue function, bringing it into line with marginal cost in equilibrium.14

The reason why the balance between profits at the two prices is affected by others’ decisions in

14The argument here is based on the case of constant marginal cost, but similar reasoning applies in the general
case.
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Figure 4: Impact of other firms’ sales frequencies on profits of an individual firm

Increase in other’ss

p

profit

pS pN

Notes: Profits of a firm for different choices of s by other firms.

the way shown in Figure 4 is apparent from looking at the demand function in [2.10]. For high prices,

the first term in λ corresponding to demand from loyal customers is dominant, while for low prices,

the second term (1 − λ)v(p;PB) corresponding to demand from bargain hunters dominates. This is

because the purchase multiplier v(p;PB) is decreasing in price p, as demand from bargain hunters

is much more sensitive to price. The strategic dimension of this equation comes from the presence

of PB. As other firms increase s, PB falls, which has a negative impact on v(p;PB) and demand

from bargain hunters, but no effect on demand from loyal customers.15 Therefore, other firms’ sales

decisions have a strong effect on profits from selling at low prices, but only a weak effect on profits

at high prices.

The argument only requires a sufficient mixture of the two types of customer (a value of λ not very

close to zero or one). If there were very few of one type of customer then the maximum attainable

profits from a price aimed at the other type might always be larger irrespective of other firms’ pricing

strategies, because the value of λ affects the relative height of the two local maxima of profits.

This logic implies that sales are strategic substitutes. The problem of choosing the profit-

maximizing frequency of sales is essentially one of a firm deciding how much to target its loyal

customers versus the bargain hunters for its product type. Because competition for bargain hunters

is more intense than for loyal customers, the incentive to target the bargain hunters is much more

sensitive to the extent that other firms are targeting them as well. Thus, a firm’s desire to target the

bargain hunters with sales is decreasing in the extent to which others are doing the same.

The varying composition of demand at different prices that gives rise to an equilibrium with sales

15Changing s also affects P , but this has a proportional effect on both groups’ demand.
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also leads to strategic substitutability in sales decisions. This central feature of the model turns out

to have important implications for monetary policy analysis.

3.3 Discussion

Although temporary sales have only recently caught the attention of macroeconomists, researchers in

marketing have devoted a great deal of attention to them. This substantial literature is summarized

by Neslin (2002). Most of the explanations for temporary sales rely on heterogeneity in the response of

customers to price changes, for example, loyal customers versus bargain hunters (Narasimhan, 1988),

or informed versus uninformed shoppers (Varian, 1980). Other explanations are based on behavioural

aspects of consumer choice (Thaler, 1985) or habits (Nakamura and Steinsson, 2009). In Kehoe and

Midrigan (2008), sales arise because temporary price changes are cheaper than changes to a product’s

regular price in an environment where firms are subject to large and transitory idiosyncratic shocks.

However, to the best of our knowledge, this proposed explanation for sales has not been entertained

in the marketing literature.

In a recent study using a large retail-price dataset, Nakamura (2008) finds that most price variation

is idiosyncratic, in that it is not common to stores in the same geographical area. This is particularly

true of products for which there are frequent temporary sales. This evidence is consistent with

randomization in the timing of sales as in the model here, but not with idiosyncratic shocks to costs

or demand at the product level. The fact that many price changes are common to retailers of the

same chain reinforces this point, as it is difficult to conceive of shocks specific to a product that affect

only one chain, but all across the country.

Considering the conventionally assumed price elasticities in macroeconomics and the magnitude of

sale discounts, it is unlikely that temporary sales would be a sensible strategy to react to idiosyncratic

shocks that drive up inventories. Using a standard price elasticity of around 6, a discount of 25%

would imply a fivefold increase in quantity sold. For a lower elasticity of 3, this discount still implies

an increase in quantity sold of 137%. Idiosyncratic shocks would have to be huge to generate so much

surplus inventory in a short space of time.

This paper captures the motivation for sales based on customer heterogeneity, but in a simple

and tractable general equilibrium model suitable for addressing macroeconomic questions. While

the ability of customer heterogeneity to explain temporary sales has been widely recognized, its

implications for macroeconomics had not been analysed before.

By not making a distinction between producers and retailers, the model here shows that the total

profits available to firms along the chain from producer to retailer are maximized using a pricing

strategy involving temporary sales. The model abstracts from the division of these profits between

producers and retailers. Empirical studies reveal that some sales are initiated by retailers, others by

producers.

In addition to temporary sales, the phenomenon of clearance sales has also been analysed. Un-

derstanding the implications of clearance sales requires developing a different model (perhaps along

the lines of Lazear (1986)). But the typical price pattern found in Figure 1, which is responsible for

the bulk of the divergence between the estimated duration of a price spell in Bils and Klenow (2004)
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and Nakamura and Steinsson (2008), reflects temporary sales rather than clearance sales.

3.4 Characterizing the equilibrium

The following theorem gives existence and uniqueness results for the equilibrium of the model in

a stationary environment where preferences, technology and the money supply are constant. All

macroeconomic aggregates (though not individual prices) are constant, so time subscripts are dropped

here.

Theorem 1 Suppose firms choose distributions of prices to maximize profits P in [2.12], and η >

ε > 1.

(i) Marginal revenue R ′(q;PB, E) is non-monotonic (initially decreasing, then increasing on an

interval, and then subsequently decreasing) if and only if 0 < λ < 1 and

η > (3ε− 1) + 2
√

2ε(ε− 1) [3.3]

hold, and everywhere decreasing otherwise.

(ii) If elasticities ε and η are such that the above non-monotonicity condition holds, then there

exist λ(ε,η) and λ(ε,η) such that 0 < λ(ε,η) < λ(ε,η) < 1, and if λ ∈ (λ(ε,η), λ(ε,η)) then

there exists a two-price equilibrium, and no other equilibria exist.

(iii) If either of conditions (i) or (ii) fails then there exists a one-price equilibrium, and no other

equilibria exist.

Proof See appendix A.3 �

Necessary and sufficient conditions for a two-price equilibrium are that η is sufficiently large

relative to ε, and that there is a sufficient mixture of loyal customers and bargain hunters. The

intuition for both of these conditions has already been discussed. Note that whether the cost function

is strictly convex or not (and its curvature if so) plays no role in determining whether a two-price

equilibrium prevails.

There are two types of customers in the model but including more types would not necessar-

ily generate more prices in equilibrium. Having more prices chosen in equilibrium requires more

undulations in the marginal revenue function, which is possible, but does not necessarily follow on

augmenting the model with extra customer types (even with a continuum of types) — for the same

reason that with two types of consumers, the unique equilibrium might be in one price.

Now the two-price equilibrium is characterized. The total physical quantity of output sold by

firms is Q = sqS +(1−s)qN and the corresponding marginal cost is denoted by X ≡ C ′(Q;W ). Each

of the markups associated with the two prices must satisfy the usual optimality condition in terms

of the price elasticity of demand. What is new here is that two markups can satisfy this condition

simultaneously. The optimal markup at price p is µ(p;PB) = ζ(p;PB)/(ζ(p;PB)−1). Using the price
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elasticity ζ(p;PB) from [3.1], the first-order conditions for pS and pN are

pS = µ(pS;PB)X, and pN = µ(pN ;PB)X, with µ(p;PB) =
λε+ (1− λ)ηv(p;PB)

λ(ε− 1) + (1− λ)(η− 1)v(p;PB)
.

[3.4]

The desired markup function µ(p;PB) depends on the parameters ε, η and λ, and the purchase mul-

tiplier v(p;PB) from [2.10]. Let vS ≡ v(pS;PB) and vN ≡ v(pN ;PB) denote the purchase multipliers

at the two prices, and µS ≡ µ(pS;PB) and µN ≡ µ(pN ;PB) the associated desired markups:

µS =
λε+ (1− λ)ηvS

λ(ε− 1) + (1− λ)(η− 1)vS
, and µN =

λε+ (1− λ)ηvN
λ(ε− 1) + (1− λ)(η− 1)vN

. [3.5]

The first-order condition for the sale frequency s is

(µS − 1)qS = (µN − 1)qN . [3.6]

Given that a fraction s of all prices are at pS and the remaining 1 − s are at pN at any shopping

moment, equation [2.7] implies the bargain hunters’ price index PB is

PB =
(
sp1−η

S + (1− s)p1−η
N

) 1
1−η , [3.7]

which is used to calculate the purchase multipliers and determine the desired markups µS and µN .

In finding the stationary equilibrium, the model has a convenient block-recursive structure, that

is, the microeconomic aspects of the equilibrium can be characterized independently of the macroe-

conomic equilibrium, which is then determined afterwards. The key micro variables are the sales

frequency s, the markups µS and µN , the markup ratio µ ≡ µS/µN , and the ratio of the quantities

sold at the sale and normal prices, denoted by χ ≡ qS/qN .

Proposition 1 Suppose parameters ε, η and λ are such that there is a unique two-price equilibrium.

(i) The first-order conditions in [3.5] and [3.6] are necessary and sufficient to characterize the

equilibrium price distribution.

(ii) The equilibrium values of µ, χ, µS and µN are functions only of the parameters ε and η.

(iii) The equilibrium values of s, vS and vN are functions only of the parameters ε, η and λ.

(iv) Let λ(ε,η) and λ(ε,η) be as defined in Theorem 1. Then:

∂s

∂λ
< 0, lim

λ→λ(ε,η)+
s = 1, and lim

λ→λ(ε,η)−
s = 0..

Proof See appendix A.4. �

The first part of the proposition shows that even though firms’ optimization problems are non-

concave, the first-order conditions are necessary and sufficient. The second and third parts establish
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the separation of the equilibrium for the microeconomic variables from the broader macroeconomic

equilibrium, that is, the parameters ε, η and λ alone determine µ, χ and s. The final part shows that

the equilibrium sales frequency s is strictly decreasing in λ and varies from one to zero as λ spans

its interval of values consistent with a two-price equilibrium. A solution method for µ, χ and s is

described in section A.1.

Proposition 1 also establishes that the purchase multipliers vS and vN and the markups µS and µN

are determined by parameters ε, η and λ, hence finding the macroeconomic equilibrium is straight-

forward. The aggregate price level P is obtained by combining [2.6] and demand function [2.7], and

making use of the definition of the purchase multiplier v(p;PB) from [2.10]:

P =
(
s(λ+ (1− λ)vS)p1−ε

S + (1− s)(λ+ (1− λ)vN)p1−ε
N

) 1
1−ε .

This allows the level of real marginal cost x ≡ X/P to be deduced as follows:

x =
(
s(λ+ (1− λ)vS)µ1−ε

S + (1− s)(λ+ (1− λ)vN)µ1−ε
N

) 1
ε−1 . [3.8]

With real marginal cost and the desired markups, relative prices %S ≡ pS/P and %N ≡ pN/P are

determined. These yield the amounts sold at the two prices relative to aggregate output:

qS = (λ+ (1− λ)vS) %−εS Y, and qN = (λ+ (1− λ)vN) %−εN Y. [3.9]

Given that total physical output is Q = sqS + (1− s)qN , the ratio of Y to Q, denoted by ∆, is

∆ ≡ 1

s(λ+ (1− λ)vS)%−εS + (1− s)(λ+ (1− λ)vN)%−εN
, [3.10]

which satisfies 0 < ∆ < 1. The production function [2.8], cost function [2.9], and labour supply

function [2.3] imply a positive relationship between real marginal cost x and aggregate output Y :

x =
νh (F−1(Y/∆))

υc(Y )F ′ (F−1(Y/∆))
. [3.11]

As the equilibrium real marginal cost x is already known from [3.8], the equation above uniquely

determines output Y . Since the cash-in-advance constraint [2.2b] binds, the aggregate price level P

is then given by P = M/Y . Finally, the interest rate is i = (1− β)/β.

4 Flexible sales with sticky normal prices

4.1 Staggered adjustment of normal prices

The model now developed allows firms costlessly to vary their sales frequencies and sale discounts, but

adjustment times of their normal prices are staggered, as in the Calvo (1983) pricing model. These

assumptions are consistent with the stylized facts from micro price data. If there are in practice costs
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of adjusting sales through either frequency or discount size, this exercise will provide an upper bound

for price flexibility in the aggregate.

The assumption of Calvo adjustment times for normal prices is made for simplicity. Of course, the

choice of an alternative model of price adjustment, for example, state-dependent adjustment times,

would affect the results in its own right. But there is no obvious reason to believe that the interaction

of different models with firms’ optimal sales decisions would significantly affect the results obtained

below.

In every time period, each firm has a probability 1−φp of receiving an opportunity to adjust its

normal price. Consider a firm that receives such an opportunity at time t. The new normal price it

selects is referred to as its reset price, and is denoted by RN,t. All firms that choose new normal prices

at the same time choose the same reset price. In any time period, each firm’s optimal sales decisions

will in principle depend on its current normal price, and so on its last adjustment time. Denote by s`,t

and pS,`,t the optimal sales frequency and sale price for a firm at time t that last changed its normal

price ` periods ago (referred to as a vintage-` firm). The reset price RN,t is chosen to maximize the

present value of a resetting firm calculated using the profit function [2.12] and stochastic discount

factor At+`|t:

max
RN,t

∞∑
`=0

φ`pEt

At+`|t

 s`,t+`pS,`,t+`D(pS,`,t+`;PB,t+`, Et+`) + (1− s`,t+`)RN,tD(RN,t;PB,t+`, Et+`)
−C

(
s`,t+`D(pS,`,t+`;PB,t+`, Et+`) + (1− s`,t+`)D(RN,t;PB,t+`, Et+`);Wt+`

)
 .

[4.1]

Using the demand function [2.10], the total quantity Q`,t sold by a vintage-` firm at time t is

Q`,t ≡ s`,tqS,`,t + (1− s`,t)qN,`,t, where qS,`,t = D(pS,`,t;PB,t, Et) and qN,`,t = D(RN,t−`;PB,t, Et).

The nominal marginal cost of such a firm is X`,t ≡ C ′(Q`,t;Wt).

The first-order condition for the reset price RN,t maximizing the firm value [4.1] is

∞∑
`=0

φ`pEt

[
(1− s`,t+`)Vt+`|t

{
RN,t

Pt+`
− µ(RN,t;PB,t+`)

X`,t+`

Pt+`

}]
= 0, [4.2]

where Vt+`|t ≡
(ζ(RN,t;PB,t+`)− 1)D(RN,t;PB,t+`, Et+`)Pt+`At+`|t

Pt
.

This condition weights the sequence of one-period optimality conditions for the normal price over the

expected lifetime of the price using a discount factor Vt+`|t. The profit-maximizing sales frequencies

s`,t and sale prices pS,`,t are chosen to maximize profits [4.1] at all times, yielding first-order conditions

pS,`,tqS,`,t −RN,t−`qN,`,t
qS,`,t − qN,`,t

= X`,t, and pS,`,t = µ(pS,`,t;PB,t)X`,t. [4.3]

Firms’ pricing behaviour is aggregated as follows. Using equations [2.6], [2.7] and [2.10], an
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expression for the aggregate price level is

Pt =

(
(1− φp)

∞∑
`=0

φ`p

{
s`,t(λ+ (1− λ)v(pS,`,t, PB,t))p

1−ε
S,`,t

+ (1− s`,t)(λ+ (1− λ)v(RN,t−`, PB,t))R
1−ε
N,t−`

}) 1
1−ε

, [4.4]

and the bargain hunters’ price index from [2.7] is given by

PB,t =

(
(1− φp)

∞∑
`=0

φ`p
{
s`,tp

1−η
S,`,t + (1− s`,t)R1−η

N,t−`
}) 1

1−η

. [4.5]

Total labour demand from all firms is

Ht =
∞∑
`=0

(1− φp)φ`pH`,t, [4.6]

where H`,t = F−1(Q`,t) is the amount of labour employed by a vintage-` firm.

4.2 A Phillips curve with sales

Monetary shocks are analysed by log linearizing the model around the flexible-price stationary equilib-

rium characterized in section 3. Denote log deviations of variables from their flexible-price stationary

equilibrium value using the corresponding sans serif letters.

To study the dynamic implications of the sales model, it is helpful to derive a Phillips curve

for aggregate inflation that can be compared to the New Keynesian Phillips curve resulting from

a standard model with Calvo pricing. It turns out that the model with sales also yields a simple

Phillips curve.16

Theorem 2 Consider parameter values ε, η and λ for which the economy has a two-price equilibrium.

Let πt ≡ Pt/Pt−1 be the inflation rate for the aggregate price level [4.4].

(i) The first-order conditions for the sale discount and the sale frequency imply

pS,`,t = X`,t, and X`,t = PB,t, [4.7]

which yield X`,t = Xt, pS,`,t = PS,t, and thus Q`,t = Qt. The first-order condition for the reset

price implies

RN,t = (1− βφp)
∞∑
`=0

(βφp)
`EtXt+`.

16All the log deviations of the special features of the sales equilibrium (sale discount, sales frequency, quantity ratio,
price distortions) are proportional in equilibrium to the log deviation of real marginal cost. This feature makes the
model particularly tractable. More details on the decomposition of aggregate inflation movements are provided by
Lemma 4 in the appendix.
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(ii) The Phillips curve linking inflation πt and real marginal cost xt is

πt = βEtπt+1 +
1

1−ψ (κxt +ψ (∆xt − βEt∆xt+1)) , [4.8]

where the coefficient ψ is a function only of ε, η, and λ, and κ ≡ ((1− φp)(1− βφp)) /φp. By

solving forwards, inflation can also be expressed as

πt =
κ

1−ψ
∞∑
`=0

β`Etxt+` +
ψ

1−ψ∆xt. [4.9]

(iii) The coefficient ψ satisfies 0 ≤ ψ ≤ 1, but ψ = 1 can only occur if the sale discount is zero

[µ = 1], or goods are never off sale [s = 1], or the GDP share transacted at the normal price is

zero [(1− s)pNqN/(spSqN + (1− s)pNqN) = 0]. The value of ψ is strictly decreasing in λ.

Proof See appendix A.5. �

The first part of the theorem reflects the fact that sales are strategic substitutes. As other firms

cut back on sales either by reducing s or increasing pS, the bargain hunters’ price index PB in [4.5]

increases. This leads a given firm optimally to increase its total quantity sold to the point where

marginal cost X has risen one-for-one in percentage terms with PB.

The condition linking the bargain hunters’ price index PB and marginal cost X is novel. As has

been discussed in section 3.2, a rise in PB disproportionately benefits a firm selling at its sale price

relative to one selling at its normal price. On the other hand, a rise in costs disproportionately hurts

firms selling at low prices where demand is higher. No other variables (including the aggregate price

level P ) have this asymmetric effect, and since both PB and X are nominal variables, the relationship

between them must be one-to-one.17

The optimal sale price features a constant markup on marginal cost, at least locally, and the

equation determining the optimal reset price is the same as in any standard application of Calvo

pricing. The optimal adjustment of sales has the consequence that all firms produce the same total

quantity, and thus have the same level of marginal cost.

The Phillips curve with sales [4.8] would reduce to the standard New Keynesian Phillips curve

πt = βEtπt+1 + κxt in the case that ψ = 0. On the other hand, the case of full price flexibility is

equivalent to ψ = 1. With parameters consistent with sales in equilibrium, ψ always lies strictly

between these extremes. While varying sale frequencies and discounts can always generate the same

average price change as a given adjustment of a normal price, in equilibrium, firms never find these

to be perfect substitutes.

The effect of a positive value of ψ is to increase the response of inflation to real marginal cost when

compared to the New Keynesian Phillips curve. This is best seen by looking at the solved-forwards

version of the Phillips curve with sales in [4.9], where there are two distinct differences relative to the

solved-forwards version of the standard New Keynesian Phillips curve: πt = κ
∑∞

`=0 β
`EtXt+`. The

first is a scaling of the coefficient multiplying expected real marginal costs, which is isomorphic to an

17The individual sale and normal prices themselves only have second-order effects by the envelope theorem.
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increase in the probability of price adjustment. The second is the presence of a term in the growth

rate of real marginal cost ∆xt. The growth rate appears in addition to the level because of the extra

margin of price adjustment through temporary sales.

The analysis here is based on assumptions congruent with the micro pricing evidence (sticky

normal prices, flexible sales), but are there good reasons for firms to set prices in this way? In the

model, deviations of the sale and normal prices from their profit-maximizing levels would not be

equally costly to firms. Both the price elasticity of demand and the quantity sold at a given shopping

moment are higher at the sale price than at the normal price. This implies that for a given percentage

deviation from their profit-maximizing levels, the benefits from reoptimizing the sale price would be

higher than for the normal price.18

4.3 A DSGE model with sales

This section embeds sales into a dynamic stochastic general equilibrium model with staggered ad-

justment of normal prices and wages.

As in Erceg, Henderson and Levin (2000), firms hire differentiated labour inputs. So hours H in

the production function [2.8] is now the composite labour input

H ≡
(∫

H(ı)
ς−1

ς dı

) ς
ς−1

,

where H(ı) is hours supplied by household ı to a given firm, and ς is the elasticity of substitution

between labour types. It is assumed that ς > 1, and firms are price takers in the markets for labour

inputs. The minimum money cost of hiring one unit of the composite labour input H is denoted by

W , and this is now the relevant wage index appearing in firms’ cost function [2.9].

Each household (corresponding to a particular labour type) has a probability 1 − φw of being

able to adjust its money wage in any given time period. Since households have equal initial wealth

and expected lifetime income, as asset markets are complete and utility [2.1] is additively separable

between hours and consumption, households are fully insured and hence have equal consumption in

equilibrium. Consumption is the only source of expenditure, so goods market equilibrium requires

Ct = Yt. Thus by using [2.3] and [2.4], and by noting that [2.2b] is binding, the following intertemporal

IS equation and money demand function are obtained:

β(1 + it)Et

[
υc(Yt+1)

υc(Yt)

1

πt+1

]
= 1, and Yt =

Mt

Pt
. [4.10]

The wage setting and wage index equations are as in Erceg, Henderson and Levin (2000).19

Finally, the model is closed by specifying a rule for monetary policy. The growth rate of the

18This point is discussed further in an earlier working paper (Guimaraes and Sheedy, 2008).
19See appendix A.6 for details of these equations.
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money supply Mt is assumed to follow the first-order autoregressive process

Mt

Mt−1

=

(
Mt−1

Mt−2

)p

exp {(1− p)et} , where et ∼ i.i.d.(0, Ωm). [4.11]

4.4 Calibration

The distinguishing parameters of the sales model are the two elasticities ε and η and the fraction λ

of loyal customers. As shown in Proposition 1, these parameters are directly related to observable

prices and quantities: the markup ratio µ, which gives the size of the discount offered when a good

is on sale; the quantity ratio χ, which measures proportionately how much more is purchased when a

good is on sale; and the frequency of sales s. Furthermore, the model has a convenient block recursive

structure in that only ε, η and λ need to be known to determine these observables. There are thus

three parameters that can be matched to data on just these three variables.20

There is a growing empirical literature examining price adjustment patterns at the microeconomic

level. This literature provides information about the markup ratio µ and the sales frequency s. The

baseline values of these variables are taken from Nakamura and Steinsson (2008). Their study draws

on individual price data from the BLS CPI research database, which covers approximately 70% of

U.S. consumer expenditure. They report that the fraction of price quotes that are sales (weighted

by expenditure) is 7.4%, so s = 0.074 is used here.21 They also report that the median difference

between log pS and log pN is 0.295, which yields µ = 0.745.

In the retail and marketing literature, there has been for a long time a discussion of the effects of

price promotions on demand. This research provides information about the quantity ratio. Papers

typically report a range of estimates conditional on factors other than price that affect the impact

of a price promotion, for example, advertising. The baseline value of the quantity ratio is obtained

from the study by Narasimhan, Neslin and Sen (1996). Their results are based on scanner data from

a large number of U.S. supermarkets. According to the elasticities they report, a temporary price

cut of the size consistent with the sale discount taken from Nakamura and Steinsson (2008) implies

a quantity ratio of between approximately 4 and 6 if retailers draw their sale to the attention of

customers. The baseline number used here is the midpoint of this range, so χ = 5.22

The three facts about sales are then used to find matching values of the three unknown paramet-

ers.23 The results are shown in Table 1.

The remainder of the calibration is standard, drawing on conventional values from the DSGE

20It is also possible to match these three parameters using data on the average markup instead of the quantity ratio.
This approach would be in line with typical practice in macroeconomics, but the strategy adopted here is more direct.

21The sales frequency s is for the whole economy. Certain sectors have higher frequencies of sales and some sectors
have none. The implications of such heterogeneity are considered in section 5.

22This quantity ratio is very close to what would be consistent with a price elasticity of 6 over the relevant range
of the demand function. Levin and Yun (2009) find that substitution by consumers on the extensive margin between
brands alone can account for elasticities of approximately this size.

23A procedure for calculating the equilibrium values of µ, χ, and s is described in appendix A.1. Given the mapping
from parameters to the equilibrium of the model, parameters matching the three stylized facts were found by applying
the Nelder-Mead simplex algorithm. An extensive grid search over the elasticities ε and η was used to verify that
no other values are consistent with the targets for µ and χ. Proposition 1 demonstrates that given ε and η, there is
always one and only one value of λ matching the target sales frequency s.
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Table 1: Stylized facts about sales and matching parameter values

Description Notation Value

Stylized facts
Ratio of the sale-price markup to the normal-price markup (µS/µN) µ 0.745*

Ratio of quantities sold at the sale price and the normal price (qS/qN) χ 5†

Frequency of sales s 0.074*

Parameters
Elasticity of substitution between product types ε 3.01
Elasticity of substitution between brands for a bargain hunter η 19.7
Fraction of product types for which a household is loyal to a brand λ 0.901

Notes: These parameters are the only values exactly consistent with the three stylized facts about sales.
* Source: Nakamura and Steinsson (2008)
† Source: Narasimhan, Neslin and Sen (1996)

literature. The parameter values selected are shown in Table 2. One time period corresponds to one

month. The discount factor β is chosen to yield a 3% annual real interest rate, the intertemporal

elasticity of substitution in consumption θc is chosen to match a coefficient of relative risk aversion of

3, and the Frisch elasticity of labour supply θh is set to 0.7, which lies in the range of estimates found

in the literature (Hall, 2009). The production function is F(H) = AHα, where α is the elasticity

of output with respect to hours. The value of α is chosen to match a labour share of 0.667. This

production function implies that the elasticity γ of marginal cost with respect to output is given

by γ = (1 − α)/α. So α = 0.667 yields γ = 0.5. The elasticity of substitution between labour

inputs ς is taken from Christiano, Eichenbaum and Evans (2005). The probability φp of stickiness

of the normal price is set to match an average price-spell duration of 9 months, which is taken from

Nakamura and Steinsson (2008). The same number is used for the probability of wage stickiness φw,

as evidence shows that most, but not all, wages are adjusted annually. The persistence parameter of

money-supply growth p is chosen to match the first-order autocorrelation coefficient of M1 growth in

the U.S. from 1960:1 to 1999:12.

4.5 Dynamic simulations

This section calculates the impulse responses of output and the price level to monetary policy shocks

in the calibrated DSGE model with sales. These are compared to the corresponding impulse responses

in a standard DSGE model, that is, one where consumers have regular Dixit-Stiglitz preferences and

thus firms employ a one-price strategy, and where price adjustment times are staggered according to

the Calvo model. With Calvo pricing, a standard New Keynesian Phillips curve is obtained.24 The

latter model is set up so that it is otherwise identical to the DSGE model with sales.

The calibrated parameters of the DSGE model with sales are given in Table 1 and Table 2. For

the standard DSGE model without sales, the same parameter values from Table 2 are used, with the

24See Woodford (2003) for more details of this type of model.
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Table 2: Calibration of DSGE model parameters

Description Notation Value

Preference parameters
Subjective discount factor β 0.9975
Intertemporal elasticity of substitution in consumption θc 0.333
Frisch elasticity of labour supply θh 0.7†

Technology parameters
Elasticity of output with respect to hours α 0.667
Elasticity of marginal cost with respect to output γ 0.5
Elasticity of substitution between differentiated labour inputs ς 20‡

Nominal rigidities
Probability of stickiness of normal prices φp 0.889§

Probability of wage stickiness φw 0.889

Exogenous path for growth of the money supply
First-order serial correlation of the money-supply growth rate p 0.536]

Notes: Monthly calibration.
† Source: Hall (2009)
‡ Source: Christiano, Eichenbaum and Evans (2005)
§ Source: Nakamura and Steinsson (2008)
] Source: Authors’ calculations using data on M1 for the period 1960:1–1999:1. Series M1SL from

Federal Reserve Economic Data (http://research.stlouisfed.org/fred2).

probability of price stickiness φp applying to a firm’s single price, rather than to its normal price in

the sales model. In place of the parameters ε, η and λ, the standard model requires only a calibration

of its constant price elasticity of demand ξ (the elasticity of substitution in the usual Dixit-Stiglitz

aggregator). This is chosen to match the average markup (in the sense of the reciprocal of real

marginal cost) from the calibrated sales model. For the baseline calibration this implies ξ = 3.77.

Figure 5 plots the impulse response functions of aggregate output and the price level to a serially-

correlated money growth shock in both the sales model and the standard model without sales. The

real effects of monetary policy in the model with sales are large and very similar to those found in

the standard model, in spite of firms’ full freedom to adjust their sales decisions without cost. The

ratio of the cumulated responses of output between the two models is 0.89.

Strategic substitutability in sales decisions is fundamental to understanding the real effects of

monetary policy in the sales model. On the one hand, firms have an incentive to reduce sales in

response to a positive monetary shock, essentially mimicking an increase in price. On the other

hand, owing to strategic substitutability in sales, as other firms reduce their sales, an individual firm

has a strong incentive to target the bargain hunters, who are being neglected by others. Thus there

are two conflicting effects on sales and the price level after a monetary shock. One tends toward

money neutrality, while the other tends toward money having real effects.

Quantitatively, finding the right balance between targeting the two groups of consumers turns out
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Figure 5: Impulse responses to a persistent shock to money growth
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Notes: The specification of monetary policy used is equation [4.11].

to be much more important to firms’ profits than using sales as a means of changing their average

prices. Since there is a substantial gap between sale and normal prices on average, a relatively modest

response of sales to a monetary shock would suffice to raise the price level in line with the money

supply. However, strong strategic substitutability dissuades firms from adjusting sales in this way

because all firms would need to respond in the same way to the aggregate monetary shock.25

The role of strategic substitutability can be isolated by considering instead an idiosyncratic de-

mand shock to one single firm. Since this one firm is negligible, no other firms react, so the bargain

hunters’ price index PB does not change. From the first-order condition in [4.7], the marginal cost of

the affected firm must remain unchanged. Hence, the total quantity the firm produces is insulated

from the demand shock through its adjustment of sales. This is in stark contrast to the small response

25Although firms’ sales are reacting only slightly to monetary shocks, the losses from failing to adjust the normal
price more frequently are considerably smaller than they would otherwise be in a model without sales. The possibility
of adjusting sales implies that the quantity produced by an individual firm would be exactly the same had this firm
the option of adjusting its normal price in addition to adjusting its sales, as is shown in Theorem 2. Hence there are no
undesirable fluctuations in marginal cost, and so the further gains from adjusting the normal price are smaller. This
point is discussed further in an earlier working paper (Guimaraes and Sheedy, 2008).
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to aggregate demand shocks where strategic considerations dominate.

Figure 6: Sensitivity analysis for the real effects of monetary shocks
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Notes: For each graph, the results are obtained by fixing the other targets at their baseline values as
given in Table 1 (together with α = 2/3) and choosing matching values of the parameters ε, η and λ
as explained in section 4.4.

The robustness of these results is checked by performing a sensitivity analysis with respect to

the key empirical targets used to calibrate the model: the markup ratio, the quantity ratio, and the

sales frequency. A range of values for each around its baseline value from Table 1 is considered. One
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target is varied at a time while the other two are held constant. The sensitivity analysis is extended to

include the elasticity of output with respect to hours to explore the implications of different degrees

of curvature of firms’ cost functions.

Figure 6 depicts the ratio of the cumulated impulse response of output in the model with sales

to that in the standard model as a function of each target, performing exactly the same monetary

policy experiment described earlier.

The impulse responses are not particularly sensitive to the calibration targets. The quantity ratio

χ is the target for which the literature yields the widest range of estimates. But nonetheless, varying

χ from 2 to 8 implies that the ratio of cumulated output responses lies only between 0.87 and 0.9.

For the other targets, more precise data are available. By considering markup ratios from 0.65 to

0.85 (a wide band around the baseline value), the ratio between the models varies from 0.84 to 0.91.

Similarly, a wide range of sales frequencies from 0.05 to 0.15 yields ratios between 0.86 and 0.9.

Finally, for values of the elasticity of output with respect to hours above the baseline, all the way

up to one, the ratio of cumulated output responses is higher than 0.89. In particular, as the elasticity

gets close to one, the ratio approaches 0.99. This implies that when the cost function is close to being

linear, the real effects of monetary policy are essentially the same in the model with fully flexible

sales as in the standard model with no sales at all.

The intuition for this finding is that when the cost function is linear, marginal cost does not

depend on the quantity of output produced. So a rise in aggregate demand, which if accommodated

would increase the quantity sold, no longer provides firms with a reason to reduce sales. So all that

matters for the sales decision is striking the right balance between targeting loyal customers and

bargain hunters.

Figure 7: A typical individual price path generated by the model
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Notes: Obtained using the baseline calibration of the DSGE model with sales and the money supply
following a random walk with drift. The initial normal price is set to 1.

Figure 7 shows an example of an individual price path in the model with sales generated using the

baseline calibration. The underlying stochastic process for the money supply is a random walk with

drift. The behaviour depicted is qualitatively and quantitatively consistent with real-world examples
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of prices without needing to assume any idiosyncratic shocks are present.

It is interesting to note from Figure 7 that the model can explain the coexistence of both small

and large price changes for the same product in the presence of only macroeconomic shocks. Without

any shocks at all, sales would still occur at a very similar frequency, but individual prices would

switch between unchanging normal and sale prices.

Behind the findings of this section lies the fact that the equilibrium distribution of prices reacts

little to monetary shocks. So while the occurrence of sales means that there is much more nominal

flexibility of individual prices, the rationale for sales implies that there is an endogenous real rigidity

constraining the adjustment of the relative prices in firms’ price distributions.

5 Sectoral heterogeneity in sales

The model presented thus far assumes all sectors of the economy have the same pattern of sales.

But sales are in fact concentrated in some sectors, and rare or non-existent in others. This creates

a divergence between estimates of the frequency of sales using data covering the whole economy

(Nakamura and Steinsson, 2008) and those based on scanner data from supermarkets. These findings

suggest a multi-sector model is more empirically appropriate for analysing the implications of sales.

The model of section 2 is extended to include two sectors. In one sector, households have homo-

geneous Dixit-Stiglitz preferences over brands of product types, so no sales will occur in equilibrium.

In the other sector, household preferences over brands are heterogeneous, with some mixture of loyal

and bargain hunting behaviour, which will give rise to sales in equilibrium. This extension is simple

and tractable.

A measure σ of product types are in the sale sector, with T now denoting the set of just these

product types, where household preferences are as described in section 2. The remaining set of

product types with measure 1−σ in the non-sale sector are denoted by H . The new composite good

is

C ≡
(∫

Λ

c(τ,B(τ))
ε−1

ε dτ+

∫
T \Λ

(∫
B

c(τ, b)
η−1

η db

)η(ε−1)
ε(η−1)

dτ+

∫
H

(∫
B

c(τ, b)
ξ−1

ξ db

)ξ(ε−1)
ε(ξ−1)

dτ

) ε
ε−1

,

[5.1]

where ξ is the homogeneous elasticity of substitution between brands in the non-sale sector for all

households.

Two restrictions are imposed. First, the elasticity ξ is chosen to ensure the markup in the non-

sale sector is equal to the average markup (in the sense of the reciprocal of real marginal cost). This

entails choosing ξ = 1/(1−x), where x is calculated for the sale sector as in [3.8], as if it encompassed

the whole economy. Second, the price indices for the two sectors are required to be the same (in which

case, σ is the GDP share of the sale sector). Given that the sale sector features price distortions,

it is not possible to satisfy these two restrictions when the production function is the same in both

sectors. Consequently, a slight adjustment is made to the non-sale sector production function F(H),

but one which preserves the elasticity of output with respect to hours α and the elasticity of marginal
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cost with respect to output γ of the production function F(H) in the sale sector. These conditions

are satisfied only when F(H) = ∆F(∆−1H), where ∆ is the stationary equilibrium price distortion

in the sale sector from [3.10] (again, calculated as if this sector encompassed the whole economy).

Since ∆ is close to one, the difference between the production functions is very small in practice.

The characteristics of a sale when one occurs (the discount size, and the extra amount purchased)

should be the same here as in the earlier one-sector model. Proposition 1 shows that the markup

ratio µ and the quantity ratio χ depend solely on the elasticities ε and η. So neither µ and χ, nor

ε and η change when moving from the one-sector to the two-sector model. The two-sector model

allows for the sale sector to have an above-average frequency of sales s, while holding constant the

average sales frequency s̄ = σs. The higher frequency within the sale sector is matched by a lower

value of λ. Finally, the extent of nominal rigidity is the same across sectors, in the sense that price

stickiness in the non-sale sector is equal to normal-price stickiness in the sale sector.

Proposition 2 Define Ψ(s; ε,η) to be the Phillips curve coefficient ψ from Theorem 2 implied by

a sale frequency s, with parameters ε and η consistent with µ and χ, with λ implicitly adjusted to

match s, as if the sale sector encompassed the whole economy.

(i) The function Ψ(s; ε,η) is strictly increasing and strictly concave (Ψ′(s; ε,η) > 0, Ψ′′(s; ε,η) < 0).

(ii) In the case of constant marginal cost (γ = 0), the Phillips curve for aggregate inflation in the

two-sector model is of the same form as that in Theorem 2 with ψ replaced by the weighted

average of Ψ(s; ε,η) and 0 (for the non-sale sector). From part (i), it follows that σΨ(s̄/σ; ε,η) <

Ψ(s̄; ε,η) for all σ < 1.

Proof See appendix A.8. �

The first finding states that Ψ(s; ε,η), which can be interpreted as the amount of price flexibility

resulting from adjustment of sales, is increasing in the frequency of sales, but at a diminishing rate.

In a multi-sector context, what matters for aggregate price flexibility is mainly the weighted average

of the value of ψ across sectors. Therefore, by Jensen’s inequality, an economy with an unequal

distribution of sales across sectors implies a lower average value of ψ, and thus larger real effects of

money than an economy with one sector, but the same average sales frequency. The second finding

makes this intuition precise when the cost function is linear.26

The two-sector model is now calibrated to establish the magnitude of the effect of heterogeneity

on the earlier findings. The only change to the earlier calibration is that the sale frequency in the

sale sector s is targeted in addition to the average sale frequency s̄. The two targets are matched by

adjusting λ and σ appropriately.

Eichenbaum, Jaimovich and Rebelo (2008) study data from a major U.S. retailer and find that

prices are below their “reference” level 29% of the time on average. Hence, the target value for s is

0.29, which yields σ, the size of the sale sector, equal to 0.255. The calibration exercise is summarized

in Table 3.

26The equations of the two-sector model in the general case γ 6= 0 are presented in appendix A.7. The analysis here
can easily be extended to an n-sector model.
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Table 3: Calibration of the two-sector model

Description Notation Value

Stylized facts
Frequency of sales in the sale sector s 0.29*

Aggregated frequency of sales s̄ 0.074†

Parameters
Fraction of loyal customers for each brand in the sale sector λ 0.735
Size of the sale sector σ 0.255

Notes: The stylized facts for µ and χ are as in Table 1 along with the matching parameters
values for ε and η.

* Source: Eichenbaum, Jaimovich and Rebelo (2008)
† Source: Nakamura and Steinsson (2008)

Figure 8 shows the impulse response functions for the same monetary policy experiment described

in section 4 for the two-sector model with sales and the standard model without any sales. The

difference between the impulse responses is even smaller than before. The ratio of cumulated output

responses is now 0.96, in contrast to 0.89 in the one-sector model. This shows that flexibility of sales

decisions is essentially irrelevant for monetary policy analysis in the two-sector model.

6 Conclusions

For macroeconomists grappling with the welter of recent micro pricing evidence, one particularly

puzzling feature is noteworthy: the large, frequent and short-lived price cuts followed by prices

returning exactly to their former levels. If price changes are driven purely by shocks then explaining

this tendency requires a very special configuration of shocks. The model presented in this paper

shows that just such pricing behaviour arises in equilibrium if firms face consumers with sufficiently

different price sensitivities.

The model proposed in this paper is used to understand the implications for monetary policy

analysis of flexibility in sales decisions alongside stickiness in normal prices. Explaining the occurrence

of sales in a framework based on consumer heterogeneity entails strategic substitutability of sales

decisions. But it is exactly because sales are strategic substitutes that they barely react to aggregate

shocks, including monetary policy shocks. This is in spite of firms having a direct incentive to

adjust sales when the normal price is sticky. Firms would adjust sales in response to idiosyncratic

shocks: only aggregate shocks lead to a tension between adjustment through sales and strategic

considerations.

The findings of this paper indicate that in a world with both sticky normal prices and flexible

sales, it is stickiness in the normal price that matters so far as monetary policy analysis is concerned.

Arriving at this conclusion requires a careful modelling of the reasons why sales occur. Thus the

results highlight the importance for macroeconomics of understanding what lies behind firms’ pricing
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Figure 8: Impulse responses to a persistent shock to money growth in the two-sector model
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A Technical appendix (not for publication)

A.1 Solving the model

Steady state

Finding the steady state of the model requires solving only one equation numerically. For parameters ε
and η satisfying condition [3.3], the markup ratio µ is a root of the equation R(µ; ε,η) = 0, where R(µ; ε,η)
is the determinant

R(µ; ε,η) ≡

∣∣∣∣∣∣∣∣∣∣
a0(µ; ε,η) a1(µ; ε,η) a2(η) 0 0

0 a0(µ; ε,η) a1(µ; ε,η) a2(η) 0
0 0 a0(µ; ε,η) a1(µ; ε,η) a2(η)

b0(µ; ε,η) b1(µ; ε,η) b2(µ; ε,η) b3(η) 0
0 b0(µ; ε,η) b1(µ; ε,η) b2(µ; ε,η) b3(η)

∣∣∣∣∣∣∣∣∣∣
, [A.1.1]

and where the functions in the matrix are given by:

a0(µ; ε,η) ≡ ε(ε− 1)µη−ε; [A.1.2a]

a1(µ; ε,η) ≡ η(ε− 1)
(

1− µη−ε+1

1− µ

)
+ ε(η− 1)

(
µη−ε − µ

1− µ

)
; [A.1.2b]

a2(η) ≡ η(η− 1); [A.1.2c]

b0(µ; ε,η) ≡ (ε− 1)

(
µ2(η−ε) − µ2η−ε

1− µη

)
; [A.1.2d]

b1(µ; ε,η) ≡ (η− 1)

(
µ2(η−ε) − µη

1− µη

)
+ 2(ε− 1)

(
µη−ε − µ2η−ε

1− µη
)

; [A.1.2e]

b2(µ; ε,η) ≡ (ε− 1)
(

1− µ2η−ε

1− µη
)

+ 2(η− 1)
(
µη−ε − µη

1− µη
)

; [A.1.2f]

b3(η) ≡ (η− 1). [A.1.2g]

When searching for a root, it is necessary to restrict attention to economically meaningful solutions. These
correspond to positive real values of the function

z(µ; ε,η) ≡ −a1(µ; ε,η)−
√

a1(µ; ε,η)2 − 4a2(η)a0(µ; ε,η)
2a2(η)

. [A.1.3]

Under the conditions stated in Theorem 1, there exists a unique economically meaningful solution of the
equation R(µ; ε,η) = 0.

Having obtained the markup ratio µ, the quantity ratio χ is

χ = µ−ε
(

1 + µ−(η−ε)z(µ; ε,η)
1 + z(µ; ε,η)

)
, [A.1.4]

and the sales frequency s is

s =

(
λ

1−λz(µ; ε,η)
)−( η−1

η−ε

)
− 1

µ−(η−1) − 1
. [A.1.5]

This expression for the sales fraction is economically meaningful when λ lies between the bounds λ(ε,η) and
λ(ε,η) referred to in referred to in Theorem 1 and given by

λ(ε,η) ≡ 1
1 + µ−(η−ε)z (µ; ε,η)

, and λ(ε,η) ≡ 1
1 + z (µ; ε,η)

. [A.1.6]
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DSGE model

The system of log-linearized equations is

πt = βEtπt+1 +
1

1−ψ (κxt +ψ (∆xt − βEt∆xt+1)) ; [A.1.7a]

xt =
1

1 + γδ
wt +

γ

1 + γδ
Yt; [A.1.7b]

πW,t = βEtπW,t+1 +
(1− φw)(1− βφw)

φw

1
1 + ςθ−1

h

((
θ−1
c +

1
1 + γδ

θ−1
h

α

)
Yt −

(
1 +

δ

1 + γδ
θ−1
h

α

)
wt

)
;

[A.1.7c]

∆wt = πW,t − πt; [A.1.7d]
Yt = EtYt+1 − θc (it − Etπt+1) ; [A.1.7e]
Yt = Mt − Pt; [A.1.7f]

∆Mt = p∆Mt−1 + et. [A.1.7g]

All the coefficients apart from ψ and δ are as defined in Table 2. Formulæ for ψ and δ are

ψ = 1−
(1− s)

(
1−

(
η−1
ε−1

)(
µ1−ε−1
µ1−η−1

))
(1 + z(µ; ε,η)) + ((µ1−ε − 1) + (µ1−η − 1)z(µ; ε,η)) s

, and [A.1.8a]

δ =
sχε(1− µ)
sχ+ (1− s) [A.1.8b]

+
sχµ+ (1− s)
sχ+ (1− s)

 1
ε−1

(
(ε− 1)(µ−ε − 1)− ε(µ1−ε − 1)

)
+ z(µ;ε,η)

η−1

(
(η− 1)(µ−η − 1)− η(µ1−η − 1)

)(
µ1−η−1
η−1

)
−
(
µ1−ε−1
ε−1

)
 .

The solution of [A.1.7] can be obtained using standard methods for solving expectational difference equations.
The standard model without sales is a special case of [A.1.7] with the following parameter restrictions:

ψ = 0, δ = 0, and κ =
1

1 + ξγ
(1− φp)(1− βφp)

φp
,

where the Phillips curve then reduces to the standard New Keynesian Phillips curve.

A.2 Properties of the demand, revenue and marginal revenue functions

The structure of household consumption preferences introduced in section 2.2 implies that firms face a
demand curve q = D(p;PB, E) of the form given in equation [2.10] at each shopping moment. It is easier to
analyse the properties of this demand function — and the associated total and marginal revenue functions
— by working with what can be thought of as the corresponding “relative” demand function D(ρ), defined
by

D(ρ) ≡ λρ−ε + (1− λ)ρ−η, [A.2.1]

which satisfies D(1) = 1 for all choices of parameters. The relative demand function q = D(ρ) gives the
“relative” quantity sold q as a function of the relative price ρ, where relative price here means money price
p relative to PB, the bargain hunters’ price index from [2.7], and relative quantity means quantity q sold
relative to E/P εB, where E = P εY is the measure of aggregate expenditure from [2.10]:

ρ ≡ p

PB
, and q ≡ P εB

E q. [A.2.2]
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With these definitions, the original demand function [2.10] is stated in terms of the relative demand function
[A.2.1] as follows:

D(p;PB, E) =
E
P εB
D
(
p

PB

)
. [A.2.3]

The relative demand function [A.2.1] is a continuously differentiable function of ρ for all ρ > 0, and
is strictly decreasing everywhere. Notice also that D(ρ) → ∞ as ρ → 0, and D(ρ) → 0 as ρ → ∞. By
continuity and monotonicity, this implies that for every q > 0 there is a unique ρ > 0 such that q = D(ρ).
Thus the inverse demand function D−1(q) is well defined for all q > 0, and is itself strictly decreasing and
continuously differentiable. The revenue function R(q), defined in terms of the relative demand function, is

R(q) ≡ qD−1(q). [A.2.4]

Using the inverse demand function ρ = D−1(q), an equivalent expression for the revenue function is R(q) =
D−1(q)D

(
D−1(q)

)
, and by substituting the demand function from [A.2.1]:

R(q) = λ
(
D−1(q)

)1−ε + (1− λ)
(
D−1(q)

)1−η
.

Since ε > 1 and η > 1, and given the limiting behaviour of the demand function established above, it follows
that R(q)→∞ as q→∞ and R(q)→ 0 as q→ 0. Hence, R(0) = 0, and R(q) is continuously differentiable
for all q ≥ 0.

Differentiating the revenue function R(q) from [A.2.4] using the inverse function theorem, and substitut-
ing demand function [A.2.1] yields an expression for marginal revenue:

R′ (D(ρ)) =
(

(ε− 1)λ+ (η− 1)(1− λ)ρε−η

ελ+ η(1− λ)ρε−η

)
ρ. [A.2.5]

Because ε > 1 and η > 1, it follows that R′(q) > 0 for all q, so revenue R(q) is strictly increasing in q.
Furthermore, because ρ → ∞ as q → 0, and ρ → 0 as q → ∞, [A.2.5] implies R′(q) → ∞ as q → 0 and
R′(q)→ 0 as q→∞.

Just as [A.2.3] establishes the original demand function D(p;PB, E) in [2.10] is connected to the relative
demand function D(ρ) in [A.2.1], there are similar relations between the original inverse demand function
D−1(q;PB, E), original revenue R(q;PB, E) and marginal revenue R′(q;PB, E) functions, and their equival-
ents defined in terms of the relative demand function. The link between the inverse demand functions follows
directly from [A.2.3]:

D−1(q;PB, E) = PBD−1

(
qP εB
E

)
. [A.2.6]

Equations [2.11], [A.2.4] and [A.2.6] justify the following connections between the revenue functions and
their derivatives:

R(q;PB, E) = P 1−ε
B ER

(
qP εB
E

)
, R′(q;PB, E) = PBR′

(
qP εB
E

)
, and R′′(q;PB, E) =

P 1+ε
B

E R′′
(
qP εB
E

)
.

[A.2.7]
The next result examines the conditions under which marginal revenue R′(q) is non-monotonic.

Lemma 1 Consider the marginal revenue function R′(q) obtained from [A.2.4] using the relative demand
function [A.2.1], and suppose that η > ε > 1.

(i) If λ = 0 or λ = 1 or condition [3.3] does not hold then marginal revenue R′(q) is strictly decreasing
for all q ≥ 0.

(ii) If 0 < λ < 1 and ε and η satisfy condition [3.3] then there exist q and q such that 0 < q < q <∞ and
where R′(q) is strictly decreasing between 0 and q and above q, and strictly increasing between q and
q.
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Proof (i) If λ = 0 then it follows from [A.2.5] that R′(q) = ((η − 1)/η)D−1(q), and if λ = 1 that
R′(q) = ((ε− 1)/ε)D−1(q). Since the inverse demand function D−1(q) is strictly decreasing, then marginal
revenue must also be so in these cases.

(ii) In what follows, assume 0 < λ < 1. Differentiate [A.2.5] to obtain

D′(ρ)R′′ (D(ρ)) =
η(η− 1)

(
1−λ
λ
ρε−η

)2 − ((η− ε)2 − η(ε− 1)− ε(η− 1)
) ( (1−λ)

λ
ρε−η

)
+ ε(ε− 1)(

ε+ η
(

1−λ
λ
ρε−η

))2 , [A.2.8]

for all ρ > 0, where the assumption that λ 6= 0 is used to simplify the expression by dividing through by λ2.
Define the function Z(q) in terms of inverse demand function D−1(q):

Z(q) ≡ 1− λ
λ

(
D−1(q)

)ε−η
, [A.2.9]

and use this together with [A.2.8] to write the derivative of marginal revenue as follows:

R′′(q) =
η(η− 1) (Z(q))2 −

(
(η− ε)2 − η(ε− 1)− ε(η− 1)

)
Z(q) + ε(ε− 1)

D′ (D−1(q)) (ε+ ηZ(q))2 . [A.2.10]

Since D′
(
D−1(q)

)
< 0 for all q, and the remaining term in the denominator of [A.2.10] is strictly positive,

the sign of R′′(q) is the opposite of that of the quadratic function

Q(z) ≡ η(η− 1)z2 −
(
(η− ε)2 − η(ε− 1)− ε(η− 1)

)
z + ε(ε− 1), [A.2.11]

evaluated at z = Z(q). The aim is to find a region where marginal revenue is upward sloping, which
corresponds to Q(z) being negative, which is in turn equivalent to its having positive roots (it is U-shaped
because η > 1).

Under the assumptions ε > 1 and η > 1, the product of the roots of quadratic equation Q(z) = 0 is
positive, so it has either no real roots, two negative real roots, or two positive real roots (possibly including
repetitions). In the first two cases, since Q(0) = ε(ε− 1) > 0 it then follows that Q(z) > 0 for all z > 0. To
see which combinations of elasticities ε and η lead to positive real roots, define the following two quadratic
functions of the elasticity η (for a given value of the elasticity ε):

Gp(η; ε) ≡ η2 − (4ε− 1)η+ ε(ε+ 1), and Gr(η; ε) ≡ η2 − 2(3ε− 1)η+ (ε+ 1)2. [A.2.12]

By comparing Gp(η; ε) to the coefficient of z in [A.2.11], the sum of the roots Q(z) = 0 is positive if and
only if Gp(η; ε) > 0 since η > 1. Then the discriminant of the quadratic Q(z) is factored in terms of Gr(η; ε)
as follows: (

(η− ε)2 − η(ε− 1)− ε(η− 1)
)2 − 4εη(ε− 1)(η− 1) = (η− ε)2Gr(η; ε), [A.2.13]

and as η 6= ε, the equation Q(z) = 0 has two distinct real roots if and only if Gr(η; ε) > 0. To summarize,
the quadratic Q(z) has two positive real roots if and only if Gp(η; ε) > 0 and Gr(η; ε) > 0. It turns out that
in the relevant parameter region η > ε > 1, the binding condition is Gr(η; ε) > 0.

Since ε > 1, the quadratic equations Gp(η; ε) = 0 and Gr(η; ε) = 0 in η (for a given value of ε) both
have two distinct positive real roots (this is confirmed by verifying that the discriminants and the sums and
products of the roots are all positive). Let η∗(ε) be the larger of the two roots of the equation Gr(η; ε) = 0:

η∗(ε) = (3ε− 1) + 2
√

2ε(ε− 1),

and observe that η∗(ε) > ε and η∗′(ε) > 0 for all ε > 1. Since both quadratics Gp(η; ε) and Gr(η; ε) have
positive coefficients of η2, it follows that they are negative for all η values lying strictly between their two
roots.

The difference between the two quadratic functions Gp(η; ε) and Gr(η; ε) in [A.2.12] is

Gp(η; ε)− Gr(η; ε) = (2ε− 1)η− (ε+ 1),
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which is a linear function of η. Thus let η̂(ε) be the unique solution for η of the equation Gp(η; ε) = Gr(η; ε),
taking ε as given. As ε > 1, such a solution exists and is unique, and Gp(η; ε) > Gr(η; ε) holds if and only
if η > η̂(ε). The difference between the solution η̂(ε) and ε is given by

η̂(ε)− ε =
2ε− (2ε2 − 1)

2ε− 1
. [A.2.14]

Consider first the case of ε values where η̂(ε) ≤ ε. This means that for all η > ε, Gr(η; ε) < Gp(η; ε).
Since Gp(ε; ε) = −2ε(ε − 1) < 0 for all ε > 1, it follows that Gr(ε; ε) < 0. Therefore, the smaller root
of Gr(η; ε) = 0 is less than ε. This establishes that the only η values for which all the inequalities η > ε,
Gr(η; ε) > 0 and Gp(η; ε) > 0 hold are those satisfying η > η∗(ε).

Now consider what happens in the remaining case where η̂(ε) > ε. By rearranging the terms in [A.2.12],
notice that Gp(η; ε) = (η− ε)2 − 1− ((2ε− 1)η− (ε+ 1)). Therefore, from the definition of η̂(ε), it follows
that Gp(η̂(ε); ε) = Gr(η̂(ε); ε) = (η̂(ε) − ε)2 − 1. As η̂(ε) > ε in this case, equation [A.2.14] implies that
2ε− (2ε2 − 1) > 0, and therefore 0 < η̂(ε)− ε < 1 if 2ε2 − 1 > 1, which is equivalent to ε2 > 1. This must
hold since ε > 1, and hence (η̂(ε) − ε)2 < 1. Thus Gp(η̂(ε); ε) = Gr(η̂(ε); ε) < 0. As Gp(η; ε) > Gr(η; ε)
holds for η > η̂(ε), the larger of the roots of Gp(η; ε) = 0 lies strictly between η̂(ε) and η∗(ε). Therefore in
this case as well, the only values of η consistent with all the inequalities η > ε, Gr(η; ε) > 0 and Gp(η; ε) > 0
are those satisfying η > η∗(ε).

Thus for η > ε > 1, if η > η∗(ε) then the quadratic equation Q(z) = 0 from [A.2.11] has two distinct
positive real roots z and z with z < z. Q(z) < 0 must hold for all z ∈ (z, z) since the coefficient of z2 is
positive. For z ∈ [0, z) or z ∈ (z,∞), the quadratic satisfies Q(z) > 0. If η ≤ η∗(ε) then Q(z) > 0 for all z
(except at a single isolated point when η = η∗(ε) exactly). Therefore, in the case where η ≤ η∗(ε), it follows
from [A.2.10] and [A.2.11] that R′(q) is strictly decreasing for all q ≥ 0.

Now restrict attention to the case where η > η∗(ε). Since 0 < λ < 1, η > ε, and the inverse demand
function D−1(q) is strictly decreasing, the function Z(q) defined in [A.2.9] is strictly increasing. Its inverse
is

Z−1(z) = D
((

λ

1− λz
) 1

ε−η

)
, [A.2.15]

which is also a strictly increasing function. Define q ≡ Z−1(z) and q ≡ Z−1(z) using the roots z and z of
the quadratic equation Q(z) = 0. From [A.2.10] and [A.2.11] it follows that R′′(q) = 0 and R′′(q) = 0. As
Z−1(z) is a strictly increasing function, R′(q) must be strictly decreasing for 0 < q < q and q > q, and
strictly increasing for q < q < q. The condition η > η∗(ε) is the same as that given in [3.3], so this completes
the proof. �

When the marginal revenue function R′(q) is non-monotonic, the following result provides the foundation
for verifying the existence and uniqueness of the two-price equilibrium.

Lemma 2 Given the revenue function R(q) defined in [A.2.4], suppose that 0 < λ < 1, and ε and η are
such that non-monotonicity condition [3.3] holds.

(i) There exist unique values qS and qN such that 0 < qN < qS <∞ which satisfy the equations

R′(qS) = R′(qN ) =
R(qS)−R(qN )

qS − qN
. [A.2.16]

(ii) The solutions qS and qN of the above equations must also satisfy the inequalities

R′′(qS) < 0, R′′(qN ) < 0, R(qS)/qS > R′(qS), and R(qN )/qN > R′(qN ). [A.2.17]

(iii) The following inequality holds for all q ≥ 0:

R(q) ≤ R(qS) +R′(qS)(q− qS) = R(qN ) +R′(qN )(q− qN ). [A.2.18]
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Proof (i) When 0 < λ < 1 and condition [3.3] hold then Lemma 1 demonstrates that there exist q and
q such that 0 < q < q < ∞ and R′′(q) = R′′(q) = 0. Define R′ ≡ R′(q) and R′ ≡ R′(q). Since Lemma 1
also shows that R′(q) is strictly increasing between q and q, it follows that R′ < R′.

The function R′(q) is continuously differentiable for all q > 0 and limq→0R′(q) =∞. Hence there must
exist a value q

1
such that R′(q

1
) = R′ and q

1
< q. Define q1 ≡ q. According to Lemma 1, the function

R′(q) is strictly decreasing on the interval [q
1
, q1] and thus has range [R′,R′].

Define q
2
≡ q and q2 ≡ q. Given the construction of R′ and R′ and the fact that R′(q) is strictly

increasing on [q
2
, q2], the range of R′(q) is [R′,R′] on this interval.

Now define q
3
≡ q. Since limq→∞R′(q) = 0 and R′(q) is continuously differentiable, there must exist a

q3 such that R′(q3) = R′ and q3 > q
3
. Lemma 1 shows that R′(q) is strictly decreasing on [q

3
, q3] and so

has range [R′,R′] on this interval.
For each κ ∈ [0, 1], define the function q1(κ) as follows:

q1(κ) ≡ (1− κ)q
1

+ κq1, [A.2.19]

in other words, as a convex combination of q
1

and q1. Note that q1(κ) is strictly increasing in κ. The
construction of this function, the monotonicity of R′(q) on [q

1
, q1], and the definitions of R′ and R′ guarantee

that R′ ≤ R′(q1(κ)) ≤ R′ for all κ ∈ [0, 1]. Given that the function R′(q) is also strictly monotonic on each
of the intervals [q

2
, q2] and [q

3
, q3], and has range [R′,R′] on both, there must exist unique values q2 ∈ [q

2
, q2]

and q3 ∈ [q
3
, q3] such that R′(q2) = R′(q3) = R′(q1(κ)) for any particular κ. Hence define the functions

q2(κ) and q3(κ) to give these values in the two intervals for each specific κ ∈ [0, 1]:

R′(q1(κ)) ≡ R′(q2(κ)) ≡ R′(q3(κ)). [A.2.20]

At the endpoints of the intervals (corresponding to κ = 0 and κ = 1) note that

q2(0) = q3(0) = q, and q1(1) = q2(1) = q. [A.2.21]

Continuity and differentiability of R′(q) and of q1(κ) from [A.2.19] guarantee that q2(κ) and q3(κ) are
continuous for all κ ∈ [0, 1] and differentiable for all κ ∈ (0, 1). By differentiating [A.2.20] it follows that

q′2(κ) =
R′′(q1(κ))
R′′(q2(κ))

q′1(κ), and q′3(κ) =
R′′(q1(κ))
R′′(q3(κ))

q′1(κ).

As Lemma 1 establishes R(q) is concave on [q
1
, q1] and [q

3
, q3], and convex on [q

2
, q2], the results above show

that q′2(κ) < 0 and q′3(κ) > 0 for all κ ∈ (0, 1).

Existence

For each κ ∈ [0, 1], define the function z(κ) in terms of the following integrals:

z(κ) ≡
∫ q3(κ)

q2(κ)

(
R′(q)−R′(q2(κ))

)
dq−

∫ q2(κ)

q1(κ)

(
R′(q2(κ))−R′(q)

)
dq. [A.2.22]

From continuity and differentiability of q1(κ), q2(κ) and q3(κ), it follows that z(κ) is also continuous for
all κ ∈ [0, 1] and differentiable for all κ ∈ (0, 1). Evaluating z(κ) at the endpoints of the interval [0, 1] and
making use of [A.2.21] yields

z(0) = −
∫ q2

q
1

(
R′ −R′(q)

)
dq < 0, and z(1) =

∫ q3

q
2

(
R′(q)−R′

)
dq > 0,

where the first inequality follows because R′(q) < R′ for all q
1
< q < q2, and the second because R′(q) > R′

for all q
2
< q < q3. Differentiating z(κ) in [A.2.22] using Leibniz’s rule and substituting the definitions
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from [A.2.20] leads to the following result:

z′(κ) = −(q3(κ)− q1(κ))q′2(κ)R′′(q2(κ)) > 0,

for all κ ∈ (0, 1) since q3(κ) > q1(κ), q′2(κ) < 0, and R′′(q2(κ)) > 0 from Lemma 1. Therefore, because
z(0) < 0, z(1) > 0, and z(κ) is continuous and strictly increasing in κ, there exists a unique κ∗ ∈ (0, 1)
such that z(κ∗) = 0.

The solution of the system of equations [A.2.16] is found by setting qN ≡ q1(κ∗) and qS ≡ q3(κ∗), using
the solution κ = κ∗ of the equation z(κ) = 0 obtained above. From [A.2.20], it follows immediately that
R′(qN ) = R′(qS), establishing the first equality in [A.2.16]. Since z(κ∗) = 0, the definition of z(κ) in
equation [A.2.22] implies∫ qS

q2(κ∗)

(
R′(q)−R′(q2(κ∗))

)
dq =

∫ q2(κ∗)

qN

(
R′(q2(κ∗))−R′(q)

)
dq, [A.2.23]

which is rearranged to deduce ∫ qS

qN

R′(q)dq = (qS − qN )R′(q2(κ∗)). [A.2.24]

Equation [A.2.20] implies R′(q2(κ∗)) = R′(qN ) = R′(qS), which together with the above establishes that

R′(qS) = R′(qN ) =
R(qS)−R(qN )

qS − qN
. [A.2.25]

Thus, the values of qN and qS are indeed a solution of the system of equations in [A.2.16].

Uniqueness

First note that given the monotonicity of R′(q) on the intervals [0, q] and [q,∞), and using the fact that the
range of R′(q) is [R′,R′] on [q

1
, q1], [q

2
, q2] and [q

3
, q3], it follows that no solution of [A.2.16] can be found

in either [0, q
1
) or (q3,∞) since marginal revenue needs to be equalized at two quantities. Furthermore, as

the definitions of the functions q1(κ), q2(κ) and q3(κ) in [A.2.20] make clear, it is necessary that those two
quantities correspond to two out of the three of q1(κ), q2(κ) and q3(κ) for some particular κ ∈ [0, 1] if
marginal revenue is to be equalized at two distinct points.

In addition to equalizing marginal revenue, the solution qS and qN must satisfy the second equality in
[A.2.16]. If qN is set equal to q1(κ) and qS equal to q3(κ) for the same value of κ ∈ [0, 1] then equations
[A.2.23] and [A.2.24] show that the second equality in [A.2.16] requires z(κ) = 0. But it has already been
demonstrated that there is one and only one solution of this equation.

Now consider the alternative choices of setting qN to q1(κ) and qS to q2(κ) for some common κ ∈ [0, 1],
or to q2(κ) and q3(κ) respectively, again for some common value of κ. Since [A.2.20] holds by construction,
and the function R′(q) is strictly decreasing on the intervals [q

1
, q1] and [q

3
, q3], and strictly increasing on

[q
2
, q2], it follows that∫ q2(κ)

q1(κ)
R′(q)dq < (q2(κ)− q1(κ))R′(q2(κ)), and

∫ q3(κ)

q2(κ)
R′(q)dq > (q3(κ)− q2(κ))R′(q2(κ)),

and hence both inequalities R(q2(κ))−R(q1(κ)) < (q2(κ)− q1(κ))R′(q2(κ)) and R(q3(κ))−R(q2(κ)) >
(q3(κ) − q2(κ))R′(q2(κ)) must hold for every κ ∈ [0, 1]. Consequently, there is no way that all three
equations in [A.2.25] can hold except by setting qN = q1(κ∗) and qS = q3(κ∗). Therefore the solution of
[A.2.16] constructed above is unique.

(ii) Lemma 1 shows that R(q) is a strictly concave function on the intervals [0, q] and [q,∞). The
argument above demonstrating the existence and uniqueness of the solution establishes that qN and qS
must lie respectively in the intervals (q

1
, q1) and (q

3
, q3), which are themselves contained in [0, q] and [q,∞)

respectively. Together these findings imply R′′(qN ) < 0 and R′′(qS) < 0, and that the following inequalities
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must hold:

R(q) ≤ R(qN ) +R′(qN )(q−qN ) ∀q ∈ [0, q], and R(q) ≤ R(qS) +R′(qS)(q−qS) ∀q ∈ [q,∞), [A.2.26]

where the inequalities are strict for q 6= qN and q 6= qS respectively. Note that an implication of the equations
characterizing qS and qN in [A.2.16] is

R(qS)−R′(qS)qS = R(qN )−R′(qN )qN . [A.2.27]

By evaluating the first inequality in [A.2.26] at q = 0, where R(0) = 0, and making use of the equation
above it is deduced that

R(qS)−R′(qS)qS > 0, and R(qN )−R′(qN )qN > 0,

and thus R(qS)/qS > R′(qS) and R(qN )/qN > R′(qN ). This confirms all the inequalities given in [A.2.17].

(iii) By applying the inequalities in [A.2.26] at the endpoints q and q of the intervals [0, q] and [q,∞) it
follows that:

R(q) ≤ R(qN ) +R′(qN )(q− qN ), and R(q) ≤ R(qN ) +R′(qN )(q− qN ). [A.2.28]

Now take any q ∈ (q, q) and note that because Lemma 1 demonstrates R(q) is a convex function on this
interval:

R(q) ≡ R
((

q− q

q− q

)
q +

(
q− q

q− q

)
q

)
≤
(

q− q

q− q

)
R(q) +

(
q− q

q− q

)
R(q), [A.2.29]

using the fact that the coefficients of R(q) and R(q) in the above are positive and sum to one. A weighted
average of the two inequalities in [A.2.28] using as weights the coefficients from [A.2.29] yields R(q) ≤
R(qN ) +R′(qN )(q − qN ) for all q ∈ (q, q). This finding, together with the inequalities in [A.2.26] and the
equations [A.2.25] and [A.2.27], implies:

R(q) ≤ R(qS) +R′(qS)(q− qS) = R(qN ) +R′(qN )(q− qN )

for all q ≥ 0. Thus [A.2.18] is established, which completes the proof. �

The existence and uniqueness of the solution of equations [A.2.16] has been demonstrated given condition
[3.3] for the non-monotonicity of the marginal revenue function R′(q). A method for computing this solution
and a characterization of which parameters it depends upon is provided in the following result.

Lemma 3 Let qS and qN be the solution of equations [A.2.16] (under the conditions assumed in Lemma 2),
and let ρN ≡ D−1(qN ) and ρS ≡ D−1(qS) be the corresponding relative prices consistent with the demand
function [A.2.1]. In addition, define the markup ratio µ ≡ µS/µN = ρS/ρN and the quantity ratio χ ≡ qS/qN .

(i) The markup ratio µ ≡ ρS/ρN is the only solution of the equation R(µ; ε,η) = 0 from [A.1.1] with
0 < µ < 1 and where z(µ; ε,η) in [A.1.3] is a positive real number. Thus µ depends only on parameters
ε and η.

(ii) Given the value of µ satisfying R(µ; ε,η) = 0, the quantity ratio χ ≡ qS/qN is equal to the expression
in equation [A.1.4]. Hence χ depends only on parameters ε and η.

(iii) The equilibrium markups µS and µN from [3.5] depend only on ε and η and are given by

µS =
ε+ ηµ−(η−ε)z(µ; ε,η)

(ε− 1) + (η− 1)µ−(η−ε)z(µ; ε,η)
, and µN =

ε+ ηz(µ; ε,η)
(ε− 1) + (η− 1)z(µ; ε,η)

, [A.2.30]

where the function z(µ; ε,η) is given in [A.1.3].
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(iv) The equilibrium values of ρN , ρS , qN and qS depend on parameters ε, η and λ and are obtained as
follows:

ρN =
(

λ

1− λz(µ; ε,η)
)− 1

η−ε

, and ρS =
(

λ

1− λz(µ; ε,η)
)− 1

η−ε

µ, [A.2.31]

where qN = D(ρN ) and qS = D(ρS) using the relative demand function D(ρ) from [A.2.1].

Proof (i) Using the expression for marginal revenue from [A.2.5], the first equality in [A.2.16] is equi-
valent to the requirement that(

λ(ε− 1) + (1− λ)(η− 1)ρε−ηN

λε+ (1− λ)ηρε−ηN

)
ρN =

(
λ(ε− 1) + (1− λ)(η− 1)ρε−ηS

λε+ (1− λ)ηρε−ηS

)
ρS .

By dividing numerator and denominator of the above by λ, defining z ≡ ((1− λ)/λ)ρε−ηN , and restating the
resulting equation in terms of µ = ρS/ρN and z it follows that

µ =

(
ε+ ηµ−(η−ε)z

ε+ ηz

)(
(ε− 1) + (η− 1)z

(ε− 1) + (η− 1)µ−(η−ε)z

)
. [A.2.32]

Since ρS < ρN the markup ratio satisfies 0 < µ < 1, and thus neither of the denominators of the fractions
above can be zero. Hence for a given value of µ, equation [A.2.32] is rearranged to obtain a quadratic
equation in z:

η(η− 1)µ−(η−ε)(1− µ)z2 +
(
ε(η− 1)

(
1− µ1−(η−ε)

)
+ η(ε− 1)

(
µ−(η−ε) − µ

))
z + ε(ε− 1)(1− µ) = 0,

which as 0 < µ < 1 is in turn multiplied on both sides by µη−ε/(1− µ) to obtain an equivalent quadratic:

η(η− 1)z2 +
(
η(ε− 1)

(
1− µη−ε+1

1− µ

)
+ ε(η− 1)

(
µη−ε − µ

1− µ

))
z + ε(ε− 1)µη−ε = 0. [A.2.33]

This quadratic is denoted by Q(z;µ, ε,η) ≡ a0(µ; ε,η)+a1(µ; ε,η)z+a2(η)z2, where the coefficient functions
a0(µ; ε,η), a1(µ; ε,η) and a2(η) listed in [A.1.2] are obtained directly from [A.2.33].

Now note that R(qN ) − qNR′(qN ) = R(qS) − qSR′(qS) is deduced by rearranging the equations in
[A.2.16]. The definition of the revenue function R(q) in [A.2.4] shows that R (D(ρ)) = ρD(ρ) is a valid
alternative expression for all ρ > 0. By combining these two observations and substituting qS = D(ρS) and
qN = D(ρN ), the relative prices and quantities must satisfy

qS
(
ρS −R′(qS)

)
= qN

(
ρN −R′(qN )

)
. [A.2.34]

After expressing this in terms of the quantity ratio χ ≡ qS/qN and dividing both sides by R′(qS) = R′(qN )
(justified by [A.2.16]), equation [A.2.34] becomes

χ =
(

ρN
R′ (D(ρN ))

− 1
)/( ρS

R′ (D(ρS))
− 1
)
. [A.2.35]

The formula for marginal revenue R′(D(ρ)) in [A.2.5] is then rearranged to show

ρ

R′ (D(ρ))
− 1 =

λ+ (1− λ)ρε−η

λ(ε− 1) + (η− 1)(1− λ)ρε−η
,

which is substituted into [A.2.35] to obtain

χ =

(
λ+ (1− λ)ρε−ηN

λ+ (1− λ)ρε−ηS

)(
(ε− 1)λ+ (η− 1)(1− λ)ρε−ηS

(ε− 1)λ+ (η− 1)(1− λ)ρε−ηN

)
.

By dividing numerator and denominator of both fractions by λ and recalling µ = ρS/ρN and the definition
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z ≡ ((1− λ)/λ)ρε−ηN , this equation is equivalent to

χ =
(

1 + z

1 + µ−(η−ε)z

)(
(ε− 1) + (η− 1)µ−(η−ε)z

(ε− 1) + (η− 1)z

)
. [A.2.36]

The quantity ratio is then written as χ = D(ρS)/D(ρN ) using the relative demand function q = R(ρ)
from equation [A.2.1], and thus

χ =
λρ−εS + (1− λ)ρ−ηS
λρ−εN + (1− λ)ρ−ηN

.

By factorizing λρ−εS and λρ−εN from the numerator and denominator respectively, and using µ = ρS/ρN and
the definition z ≡ ((1− λ)/λ)ρε−ηN , the above expression for χ becomes

χ = µ−ε
(

1 + µ−(η−ε)z
1 + z

)
. [A.2.37]

Putting together the two expressions for the quantity ratio χ in [A.2.36] and [A.2.37], µ and z must
satisfy the equation(

1 + z

1 + µ−(η−ε)z

)(
(ε− 1) + (η− 1)µ−(η−ε)z

(ε− 1) + (η− 1)z

)
= µ−ε

(
1 + µ−(η−ε)z

1 + z

)
. [A.2.38]

Since the quantity ratio χ is finite, none of the terms in the denominators of [A.2.36] or [A.2.37] can be zero,
so [A.2.38] is rearranged as follows to obtain a cubic equation in z for a given value of µ:

(η− 1)µ−(2η−ε) (1− µη) z3 + µ−(2η−ε) ((ε− 1)
(
1− µ2η−ε)+ 2(η− 1) +

(
µη−ε − µη

))
z2

+ µ−(2η−ε)
(

(η− 1)
(
µ2(η−ε) − µη

)
+ 2(ε− 1)

(
µη−ε − µ2η−ε)) z

+ (ε− 1)µ−(2η−ε)
(
µ2(η−ε) − µ2η−ε

)
= 0.

Because 0 < µ < 1, both sides of the above are multiplied by µ2η−ε/(1− µη) to obtain an equivalent cubic
equation:

(η− 1)z3 +
(

(ε− 1)
(

1− µ2η−ε

1− µη
)

+ 2(η− 1)
(
µη−ε − µη

1− µη
))

z2

+

(
(η− 1)

(
µ2(η−ε) − µη

1− µη

)
+ 2(ε− 1)

(
µη−ε − µ2η−ε

1− µη
))

z

+ (ε− 1)

(
µ2(η−ε) − µ2η−ε

1− µη

)
= 0. [A.2.39]

This cubic is denoted by C(z;µ, ε,η) ≡ b0(µ; ε,η)+b1(µ; ε,η)z+b2(µ; ε,η)z2 +b3(η)z3, where the coefficient
functions b0(µ; ε,η), b1(µ; ε,η), b2(µ; ε,η) and b3(η) listed in [A.1.2] are obtained directly from [A.2.39].

These steps demonstrate that starting from a solution qS and qN of [A.2.16], the quadratic and the cubic
equations [A.2.33] and [A.2.39] in z must simultaneously hold for z = ((1− λ)/λ)ρε−ηN , with ρN ≡ D−1(qN ),
and where the coefficient functions [A.1.2] are evaluated at µ = ρS/ρN , with ρS ≡ D−1(qS). If the quadratic
equation Q(z;µ, ε,η) = 0 and cubic equation C(z;µ, ε,η) = 0 share a root then it is a standard result from
the theory of polynomials that the resultant R(µ; ε,η), as defined in [A.1.1], is zero. Since the coefficients of
the polynomials Q(z;µ, ε,η) and C(z;µ, ε,η) are functions only of the markup ratio µ and the parameters ε
and η, solving the equation R(µ; ε,η) = 0 provides a straightforward procedure for finding the equilibrium
markup ratio µ. Furthermore, the only parameters appearing in the equation R(µ; ε,η) = 0 are ε and η, so
the equilibrium markup ratio µ depends only on these parameters.

Lemma 2 shows that the solution of [A.2.16] for qS and qN is unique, and therefore the solution of
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R(µ; ε,η) = 0 for µ must also be unique, given the added condition that the shared root z of the quadratic
Q(z;µ, ε,η) = 0 and cubic C(z;µ, ε,η) = 0 is a positive real number. This restriction is required because
z = ((1− λ)/λ)ρε−ηN , and ρN must of course be a positive real number. Since η > ε > 1, the product of the
roots of the quadratic Q(z;µ, ε,η) = 0 is positive, so the shared root z is positive and real if and only if
either branch of the quadratic root function is positive and real. Hence this condition is verified by checking
whether z(µ; ε,η) is positive and real.

Note that the resultant R(µ; ε,η) is always zero at µ = 0 and µ = 1 for all values of ε and η. This is
seen by taking limits of the coefficients in [A.1.2] as µ→ 0 and µ→ 1 and applying L’Hôpital’s rule, which
yields

C(z; 0, ε,η) = zQ(z; 0, ε,η), and C(z; 1, ε,η) = (1 + z)Q(z; 1, ε,η).

As the polynomials Q(z;µ, ε,η) and C(z;µ, ε,η) clearly share roots when µ = 0 or µ = 1, it follows that
R(0; ε,η) = R(1; ε,η) = 0. Thus these zeros of the equation R(µ; ε,η) = 0 must be ignored when solving
for µ.

(ii) The quadratic equation Q(z;µ, ε,η) = 0 with z = ((1−λ)/λ)ρε−ηN determines a relative price ρN such
that with ρS = µρN , marginal revenue is equalized at both ρS and ρN . Lemma 1 demonstrates that there
are two candidate solutions for ρN that meet this criterion under the conditions shown by Lemma 2 to be
necessary for a solution qS and qN of [A.2.16] to exist. However, Lemma 2 shows that both ρN and ρS are
on the downward-sloping sections of the marginal revenue function. To rule out a solution in the middle
upward-sloping section of marginal revenue, the smaller of the two ρN candidate values must be discarded
to select the correct solution. Since z is decreasing in ρN , this is equivalent to discarding the larger of the
two roots of the quadratic. Given that a2(η) in [A.1.2] is positive, the smaller of the two roots of quadratic
Q(z;µ, ε,η) = 0 is found using the expression for z(µ; ε,η) in [A.1.3].

The equilibrium quantity ratio χ is obtained by substituting z = z(µ; ε,η) into [A.2.37]. This construction
demonstrates that χ depends only on ε and η.

(iii) Since ρS ≡ PS/PB and ρN ≡ PN/PB according to [A.2.2], the formula for the purchase multipliers in
[2.10] implies vN = ρε−ηN and vS = µε−ηvN . Using the fact that z ≡ ((1−λ)/λ)ρε−ηN , and dividing numerator
and denominator of the expression in [3.4] by λ yields [A.2.30].

(iv) The expressions for the relative prices ρS and ρN in [A.2.31] are obtained by rearranging the definition
of z ≡ ((1− λ)/λ)ρε−ηN and using ρS = µρN . This completes the proof. �

A.3 Proof of Theorem 1

Non-monotonicity of the marginal revenue function

Using the relationship between the revenue function R(q;PB, E) and its equivalent R(q) defined in [A.2.4] us-
ing the relative demand functionD(ρ) from [A.2.1], the corresponding marginal revenue functions R′(q;PB, E)
and R′(q) are proportional according to [A.2.7]. Lemma 1 demonstrates that R′(q) has the described pattern
of non-monotonicity under the conditions 0 < λ < 1 and [3.3], and is otherwise a decreasing function of q.

Existence of a two-price equilibrium

For a two-price equilibrium to exist, first-order conditions [3.2] for profit-maximization must be satisfied at
two prices pS and pN , with associated quantities qS = D(pS ;PB, E) and qN = D(pN ;PB, E), where PB is the
bargain hunters’ price index from [2.7], and E = P εY is the measure of aggregate expenditure from [2.10].

The necessary conditions for the two-price equilibrium are now restated in terms of the relative demand
function D(ρ) defined in [A.2.1], and its associated total and marginal revenue functions R(q) and R′(q), as
defined in [A.2.4] and analysed in section A.2. The relative demand function q = D(ρ) is specified in terms
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of the relative price ρ ≡ p/PB and relative quantity q ≡ q/(E/P εB), in accordance with [A.2.2]. Using the
relationships in [A.2.3] and [A.2.7], the first two optimality conditions in [3.2] are equivalent to

R′
(
qSP

ε
B

E

)
= R′

(
qNP

ε
B

E

)
=
R
(
qSP

ε
B
E

)
−R

(
qNP

ε
B
E

)
qSP

ε
B
E − qNP

ε
B
E

. [A.3.1]

With qS ≡ qS/(E/P εB) and qN ≡ qN/(E/P εB), the first-order conditions in [A.3.1] are identical to the equations
in [A.2.16] studied in Lemma 2. These clearly require the equalization of marginal revenue R′(q) at two
different quantities, which means that the marginal revenue function must be non-monotonic. Lemma 1
then shows that 0 < λ < 1 and parameters ε and η satisfying the inequality [3.3] are necessary and sufficient
for this. If these conditions are met then Lemma 2 demonstrates the existence of a unique solution qS and
qN of the equations [A.2.16].

The relative quantities qS and qN must also be well defined if the solution is to be economically meaning-
ful. This means that if ρS = D−1(qS) and ρN = D−1(qN ) are the corresponding prices pS and pN relative to
PB then ρS < 1 < ρN . This is a necessary requirement because the expression [3.7] for the bargain hunters’
price index PB implies:

sρ1−η
S + (1− s)ρ1−η

N = 1, [A.3.2]

and the equilibrium sales frequency s must satisfy s ∈ (0, 1).
Assume the parameters are such that ε and η satisfy [3.3], and consider a given value of λ ∈ (0, 1).

Lemma 3 shows that the markup ratio (or price ratio) µ ≡ µS/µN = ρS/ρN consistent with the unique
solution of [A.2.16] is a function only of the elasticities ε and η. The equilibrium relative prices ρS and ρN
are functions of all three parameters ε, η and λ, and are obtained from equation [A.2.31] by substituting
the equilibrium value of µ into the function z(µ; ε,η) defined in [A.1.3]. Since ρS = µρN and µ < 1, the
requirement ρS < 1 < ρN implies µ < ρS < 1. By substituting for ρS from [A.2.31], this condition is
equivalent to:

z (µ; ε,η) <
1− λ
λ

< µ−(η−ε)z (µ; ε,η) . [A.3.3]

Define lower and upper bounds for λ conditional on ε and η using the formulæ in [A.1.6] together with the
equilibrium value of µ (which is a function only of ε and η) and the function z(µ; ε,η) from [A.1.3]. Note
that if z(µ; ε,η) > 0 and 0 < µ < 1 then 0 < λ(ε,η) < λ(ε,η) < 1. By rearranging the inequality [A.3.3]
and using the definitions of the bounds on λ, the inequality is equivalent to λ lying in the interval:

λ(ε,η) < λ < λ(ε,η). [A.3.4]

This restriction on λ is necessary and sufficient for the existence of an equilibrium sales frequency s ∈ (0, 1)
satisfying [A.3.2]. The equivalence is demonstrated by substituting the expressions for ρS and ρN from
[A.2.31] into [A.3.2]: (

1 + s
(
µ−(η−1) − 1

))( λ

1− λz(µ; ε,η)
) η−1

η−ε

= 1.

This is a linear equation in s, and has a unique solution because η > 1 and 0 < µ < 1. Solving explicitly for
s yields:

s =

(
λ

1−λz(µ; ε,η)
)−( η−1

η−ε

)
− 1

µ−(η−1) − 1
. [A.3.5]

Recalling the equivalence of inequalities [A.3.3] and [A.3.4], it follows that s ∈ (0, 1) if and only if λ ∈
(λ(ε,η), λ(ε,η)). So for λ ∈ [0, λ(ε,η)] or λ ∈ [λ(ε,η), 1] there is no two-price equilibrium. But given
elasticities ε and η satisfying the non-monotonicity condition [3.3] and a loyal fraction λ ∈ (λ(ε,η), λ(ε,η)),
by using the arguments above there exist two distinct relative prices ρS ≡ pS/PB and ρN ≡ pN/PB and a
sales frequency s ∈ (0, 1) consistent with the first two equalities in [3.2]. Lemma 3 then demonstrates that the
two purchase multipliers vS and vN and the two optimal markups µS and µN are determined. Equations [3.1]
and [3.4] show that using the optimal markups in [3.5] is equivalent to satisfying the remaining first-order
condition involving marginal cost in [3.2]. The other variables relevant to the macroeconomic equilibrium
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are then determined as discussed in section 3.
Confirming that the two-price equilibrium exists then requires checking that the remaining first-order

condition [2.13c] is satisfied and that the first-order conditions are sufficient as well as necessary to charac-
terize the maximum of the profit function. Using the relationships in [A.2.7] and the results of Lemma 2 in
[A.2.17] the following inequalities are deduced:

R(qS ;PB, E)−R′(qS ;PB, E)qS > 0, and R(qN ;PB, E)−R′(qN ;PB, E)qN > 0. [A.3.6]

Since s ∈ (0, 1), the Lagrangian multiplier ℵ from first-order conditions [2.13b]–[2.13c] is determined as
follows:

ℵ = R(qS ;PB, E)−R′(qS ;PB, E)qS = R(qN ;PB, E)−R′(qN ;PB, E)qN ,

and hence ℵ > 0 because of [A.3.6]. By combining this expression for the Lagrangian multiplier with the
first-order condition [2.13c]:

R(q;PB, E) ≤ R(qN ;PB, E) + R′(qN ;PB, E)(q − qN ) = R(qS ;PB, E) + R′(qS ;PB, E)(q − qS), [A.3.7]

which is required to hold for all q ≥ 0. Appealing to the result of Lemma 2 in [A.2.18] and again using
[A.2.7] verifies the inequality.

The assumptions about the production function [2.8] ensure that the total cost function C (Q;W ) in [2.9]
is continuously differentiable and convex, so for all q ≥ 0:

C (q;W ) ≥ C (Q;W ) + C ′(Q;W )(q −Q), [A.3.8]

where Q ≡ sqS+(1−s)qN is the specific total physical quantity sold using the two-price strategy constructed
earlier. Now consider a general alternative pricing strategy for a given firm, assuming that all other firms
continue to use the same two-price strategy. The new strategy is specified in terms of a distribution function
F (p) for prices. Let G(q) ≡ 1−F (D(p;PB, E)) be the implied distribution function for quantities sold. The
level of profits P from the new strategy is obtained by making a change of variable from prices to quantities
in the integrals of [2.12]:

P =
∫
q
R(q;PB, E)dG(q)− C

(∫
q
qdG(q);W

)
.

Applying the inequalities involving the revenue and total cost functions from [A.3.7] and [A.3.8] to the
expression for profits yields:

P ≤
(
R(qN ;PB, E)−R′(qN ;PB, E)qN

)
−
(
C (Q;W )− C ′(Q;W )Q

)
+
(
R′(qN ;PB, E)− C ′(Q;W )

)(∫
q
qdG(q)

)
.

The first-order conditions [3.2] imply that the coefficient of the integral in the above expression is zero, and
that R(qN ;PB, E) −R′(qN ;PB, E)qN = R(qS ;PB, E) −R′(qS ;PB, E)qS . Recalling Q = sqS + (1 − s)qN , it
follows that:

P ≤ sR(qS ;PB, E) + (1− s)R(qN ;PB, E)− C (sqS + (1− s)qN ;W ) ,

for all alternative pricing strategies. Hence there is no profit-improving deviation from the two-price strategy.
This establishes that a two-price equilibrium exists when [3.3] and λ ∈ (λ(ε,η), λ(ε,η)) hold, and that it is
unique within the class of two-price equilibria.

Uniqueness of the two-price equilibrium

Suppose the parameters ε, η and λ are such that a two-price equilibrium exists. Now consider the possibility
that a one-price equilibrium also exists for the same parameters. Since all firms are symmetric, the relative
price found in this one-price equilibrium is necessarily equal to one. The relative prices ρS and ρN in the
two-price equilibrium cannot be on the same side of one, implying µ < ρS < 1 and thus ρS < 1 < ρN , where
ρS = D−1(qS) and ρN = D−1(qN ) using the relative quantities qS and qN . Since [A.2.1] implies D(1) = 1
and because the relative demand function D(ρ) is strictly decreasing in ρ, it follows that qN < 1 < qS .
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Given that marginal revenue must be non-monotonic if a two-price equilibrium is to exist, it follows from
Lemma 1 that R(q) is strictly concave on the intervals (0, q) and (q,∞), strictly convex on (q, q), and from
Lemma 2 that qN < q < q < qS .

Consider first the case where q < 1 < q. Since q1 = 1 for all firms in the one-price equilibrium, the
actual common quantity produced is q1 = E/P εB using [A.2.2], where PB and E are the values of these
variables associated with the putative one-price equilibrium. Since R′′(1) > 0, equation [A.2.7] implies
R′′(q1;PB, E) > 0. Therefore, for sufficiently small ε > 0, the profits P from selling quantity q1 − ε at one
half of shopping moments and q1 + ε at the other half exceed the profits from offering one price and hence
one quantity at all shopping moments:

1
2
R(q1 − ε;PB, E) +

1
2
R(q1 + ε;PB, E)− C

(
1
2

(q1 − ε) +
1
2

(q1 + ε);W
)
> R(q1;PB, E)− C (q1;W ).

Therefore a one-price equilibrium cannot exist in this case.
Next consider the case where qN < 1 < q. Let p1 = PB denote the price it is claimed all firms charge

in a one-price equilibrium, and q1 = E/P εB the associated quantity sold. Now let qS = D(ρSp1;PB, E) be
quantity sold if the sale relative price ρS = D−1(qS) is used when other firms are following the one-price
strategy of charging p1 at all shopping moments. Consider an alternative strategy where price ρSp1 is offered
at a fraction ε of moments and price p1 at the remaining fraction 1 − ε of moments. Profits P from the
hybrid strategy are given by:

P = (1− ε)R(q1;PB, E) + εR(qS ;PB, E)− C ((1− ε)q1 + εqS ;W ) . [A.3.9]

As the cost function C (q;W ) is differentiable in q, the above equation implies:

P = (R(q1;PB, E)− C (q1;W )) + ε(qS − q1)
(

R(qS ;PB, E)−R(q1;PB, E)
qS − q1

− C ′(q1;W )
)

+ O
(
ε2
)
,

where O
(
ε2
)

denotes second- and higher-order terms in ε. A necessary condition for a one-price equilibrium
to exist is that the single price p1 is chosen optimally, in which case first-order conditions [2.13] reduce
to the usual marginal revenue equals marginal cost condition R′(q1;PB, E) = C ′(q1;W ). Hence the above
expression for P becomes:

P = (R(q1;PB, E)− C (q1;W )) + ε(qS − q)
(

R(qS ;PB, E)−R(q1;PB, E)
qS − q1

−R′(q1;PB, E)
)

+ O
(
ε2
)
.

[A.3.10]
Since qN < 1 < qS in the case under consideration and q1 = 1, the results from Lemma 2 in [A.2.16] can

be expressed as follows: ∫ 1

qN

R′(q)dq +R(qS)−R(q1) = (qS − qN )R′(qN ). [A.3.11]

As qN < 1 < q and R′(q) is strictly decreasing for q < q, the integral above satisfies:∫ 1

qN

R′(q)dq < (1− qN )R′(qN ). [A.3.12]

Noting that R′(qN ) > R′(1) because of qN < 1 < q, and substituting [A.3.12] into [A.3.11] and rearranging
yields:

R(qS)−R(1)
qS − 1

> R′(qN ) > R′(1), [A.3.13]

where qS > 1 ensures that the direction of the inequality is preserved. Now given the fact that q1 = (E/P εB)
and qS = (E/P εB)qS from [A.2.2], and the links between the functions R(q) and R(q;PB, E) as set out in
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[A.2.7]:
R(qS ;PB, E)−R(q1;PB, E)

qS − q1
> R′(q1;PB, E). [A.3.14]

Therefore, by comparing this inequality with [A.3.10] and noting qS > q1, it follows for sufficiently small
ε > 0 that P > R(q1;PB, E)− C (q1;W ), so profits from a hybrid strategy exceed those from following the
strategy required for the one-price equilibrium to exist.

The remaining case to consider is q < 1 < qS . The argument here is analogous to that given above.
The alternative strategy considered is offering price pN = ρNp1 (where ρN = D−1(qN )) at a fraction ε of
shopping moments and price p1 = PB at the remaining fraction 1 − ε, with quantities sold respectively at
those moments of qN = D(ρNp1;PB, E) and q1. Following the steps in [A.3.9]–[A.3.10] leads to an expression
for profits P resulting from this hybrid strategy:

P = (R(q1;PB, E)− C (q1;W )) + ε(q1 − qN )
(

R′(q1;PB, E)− R(q1;PB, E)−R(qN ;PB, E)
q1 − qN

)
+ O

(
ε2
)
.

[A.3.15]
Appealing to the properties of R(q) for q > q and following similar steps to those in [A.3.11]–[A.3.13] implies
R′(1) > R′(qS) > (R(1)−R(qN ))/(1− qN ), and hence an equivalent of [A.3.14]:

R′(q1;PB, E) >
R(q1;PB, E)−R(qN ;PB, E)

q1 − qN
. [A.3.16]

Since q1 > qN , for sufficiently small ε > 0, [A.3.15] and [A.3.16] demonstrate that there is a hybrid strategy
which delivers higher profits than the one-price strategy used by all other firms. This proves that for all
parameters where the two-price equilibrium exists, a one-price equilibrium cannot exist for any of these same
parameter values.

One-price equilibrium

The first point to note is that when a two-price equilibrium fails to exist owing to a violation of the non-
monotonicity condition [3.3], Lemma 1 implies that marginal revenue R′(q;PB, E) is strictly decreasing for
all q. This is equivalent to revenue R(q;PB, E) being a strictly concave function of quantity q. Since total
cost C (q;W ) is a convex function of the quantity produced, it follows immediately that the profit function
is globally concave, and thus a one-price equilibrium always exists, and is the only possible equilibrium in
the parameter range where ε or η fail to satisfy [3.3], or where λ = 0 or λ = 1.

Now suppose the parameters are such that the marginal revenue function is non-monotonic, but a two-
price equilibrium fails to exist owing to λ not lying between λ(ε,η) and λ(ε,η). Note that [A.3.3] and [A.1.6]
imply λ ∈ [0, λ(ε,η)] and λ ∈ [λ(ε,η), 1] are equivalent to 1 > qS and 1 < qN respectively.

Taking the first of these cases, Lemma 1 demonstrates the concavity of R(q) on [q,∞) (containing qS),
which establishes that R(q) ≤ R(1) +R′(1)(q− 1) for all q ∈ [q,∞). Lemma 2 shows that R(q) ≤ R(qS) +
R′(qS)(q− qS) for all q ≥ 0. Note that the concavity of R(q) in the relevant range implies R′(qS) > R′(1),
which together with the second of the previous inequalities yields R(q) ≤ R(qS) + R′(1)(q − qS) for all
q ∈ [0, qS ]. Applying the first inequality at q = qS establishes that R(qS) ≤ R(1) + R′(1)(qS − 1). By
combining these results it follows that R(q) ≤ R(1) + R′(1)(q − 1) for all q ≥ 0. Translating this into a
property of the original revenue function R(q;PB, E) using [A.2.2] and [A.2.7] yields the following for all q:

R(q;PB, E) ≤ R(q1;PB, E) + R′(q1;PB, E)(q − q1). [A.3.17]

When λ ∈ [λ(ε,η), 1] the other case to consider is 1 < qN . Using an exactly analogous argument to that
given above, it is deduced that R(q) ≤ R(1) +R′(1)(q− 1) for all q ≥ 0 in this case as well. Hence [A.3.17]
holds in both cases. The convexity of the total cost function C (q;W ) together with [A.3.17] proves that no
pricing strategy can improve on that used in the one-price equilibrium.

Non-existence of equilibria with more than two prices

Take any two prices p1 and p2 offered by a firm at a positive fraction of shopping moments, and define
ρ1 ≡ p1/PB and ρ2 ≡ p2/PB in accordance with [A.2.2]. Denote the quantities sold by q1 and q2 and define
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q1 ≡ (P εB/E)q1 and q2 ≡ (P εB/E)q2 also in accordance with [A.2.2]. Using the first-order conditions [2.13]
together with [A.2.2] and [A.2.7], it follows that q1 and q2 must satisfy the system of equations [A.2.16] in
place of qS and qN . But as Lemma 2 demonstrates that the solution to this system of equations is unique,
there is a maximum of two distinct prices in any firm’s profit-maximizing strategy. This completes the proof.

A.4 Proof of Proposition 1

(i) The first-order conditions are of course necessary. For sufficiency, note using the argument in Theorem 1
that the first-order conditions in [3.2] are equivalent to the equations in [A.3.1]. As Lemma 3 shows, the
equations in [A.3.1] have a unique solution. Since a equilibrium is known to exist by Theorem 1, the
first-order conditions must also be sufficient.

(ii) Lemma 3 shows that µ and χ are uniquely determined as functions of ε and η when the inequality
[3.3] is satisfied, as is necessary for the two-price equilibrium to exist. Lemma 3 also gives solutions for µS
and µN , and implicitly determines the purchase multipliers vS and vN using the expressions for ρS and ρN
in [A.2.31] and the fact that vS = (pS/PB)−(η−ε) and vN = (pN/PB)−(η−ε) from [2.10]. Hence Lemma 3
shows that these variables depend only on ε, η and λ. In conjunction with equation [3.7], knowledge of ρS
and ρN from [A.2.31] yields a linear equation for s after dividing both sides of the equation by PB.

(iii) Lemma 3 shows that µ, µS , µN and χ are independent of λ, hence verifying the claim.

(iv) Substituting the bounds for λ from [A.1.6] into equation [A.3.5] proves the first two results. Differ-
entiating [A.3.5] with respect to λ yields the third result. This completes the proof.

A.5 Proof of Theorem 2

Log linearizations

The notational convention adopted here is that a variable without a time subscript denotes its flexible-
price steady-state value as determined in section 3, and the corresponding sans serif letter denotes the log
deviation of the variable from its steady-state value (except for the sales frequency s, where it denotes just
the deviation from steady state).

Consider first the demand function faced by firms. The levels of demand qS,`,t and qN,`,t at the sale and
normal prices are obtained from [3.9], which have the following log-linearized forms:

qS,`,t =
(

(1− λ)vS
λ+ (1− λ)vS

)
vS,`,t − ε(pS,`,t − Pt) + Yt, and [A.5.1a]

qN,`,t =
(

(1− λ)vN
λ+ (1− λ)vN

)
vN,`,t − ε(RN,t−` − Pt) + Yt, [A.5.1b]

and where the expressions are given in terms of log deviations of the purchase multipliers vS,`,t and vN,`,t
from [2.10]:

vS,`,t = −(η− ε) (pS,`,t − PB,t) , and vN,`,t = −(η− ε) (RN,t−` − PB,t) . [A.5.2]

By substituting the purchase multipliers into the demand functions [A.5.1], the following expressions are
found:

qS,`,t = −
(
λε+ (1− λ)ηvS
λ+ (1− λ)vS

)
pS,`,t + (η− ε)

(
(1− λ)vS

λ+ (1− λ)vS

)
PB,t + εPt + Yt, and [A.5.3a]

qN,`,t = −
(
λε+ (1− λ)ηvN
λ+ (1− λ)vN

)
RN,t−` + (η− ε)

(
(1− λ)vN

λ+ (1− λ)vN

)
PB,t + εPt + Yt. [A.5.3b]
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From equation [3.4], the log-linearized optimal markups at given sale and normal prices are:

µS,`,t = −cSvS,`,t, with cS ≡
λ(1− λ)(η− ε)vS

(λε+ (1− λ)ηvS) (λ(ε− 1) + (1− λ)(η− 1)vS)
, and [A.5.4a]

µN,`,t = −cNvN,`,t, with cN ≡
λ(1− λ)(η− ε)vN

(λε+ (1− λ)ηvN ) (λ(ε− 1) + (1− λ)(η− 1)vN )
, [A.5.4b]

which are given in terms of the purchase multipliers from [A.5.2]. Overall demand Q`,t = s`,tqS,`,t + (1 −
s`,t)qN,`,t is log-linearized as follows:

Q`,t =
(

χ− 1
sχ+ (1− s)

)
s`,t +

(
sχ

sχ+ (1− s)

)
qS,`,t +

(
1− s

sχ+ (1− s)

)
qN,`,t. [A.5.5]

Define the following weighted averages of variables across the distribution of normal-price vintages. First,
the average sale frequency:

st ≡ (1− φp)
∞∑
`=0

φ`ps`,t.

Now the average normal price, the average quantity sold, and the purchase multiplier associated with the
normal price:

PN,t ≡ (1− φp)
∞∑
`=0

φ`pRN,t−`, qN,t ≡ (1− φp)
∞∑
`=0

φ`pqN,`,t, and vN,t ≡ (1− φp)
∞∑
`=0

φ`pvN,`,t. [A.5.6]

Finally, the average sale price and associated average quantity and purchase multiplier:

PS,t ≡ (1− φp)
∞∑
`=0

φ`ppS,`,t, qS,t ≡ (1− φp)
∞∑
`=0

φ`pqS,`,t, and vS,t ≡ (1− φp)
∞∑
`=0

φ`pvS,`,t. [A.5.7]

The bargain hunters’ price index PB,t as given in [4.5] is log-linearized as follows:

PB,t = ϑBPS,t + (1− ϑB)PN,t −ϕBst, where [A.5.8]

ϑB ≡
(

s

s+ (1− s)µη−1

)
, and ϕB ≡

1
η− 1

(
1− µη−1

s+ (1− s)µη−1

)
,

using the averages defined above. By analogy with the expression for PB,t in [4.5], define a price index PL,t
corresponding to the average purchase price for a hypothetical loyal customer:

PL,t =

(
(1− φp)

∞∑
`=0

φ`p

{
s`,tp

1−ε
S,`,t + (1− s`,t)R1−ε

N,t−`

}) 1
1−ε

. [A.5.9]

This has the following log linearization:

PL,t = ϑLPS,t + (1− ϑL)PN,t −ϕLst, where [A.5.10]

ϑL ≡
(

s

s+ (1− s)µε−1

)
, and ϕL ≡

1
ε− 1

(
1− µε−1

s+ (1− s)µε−1

)
.

Note that [4.4], [4.5] and [A.5.9] imply that the price level Pt can be expressed in terms of PL,t and PB,t:

Pt =
(
λP 1−ε

L,t + (1− λ)P 1−ε
B,t

) 1
1−ε

,
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which can be log linearized to yield:

Pt = (1−$)PL,t +$PB,t, where $ =
(1− λ)

(1− λ) + λ~ε−1
, and ~ =

(
s+ (1− s)µε−1

) 1
ε−1

(s+ (1− s)µη−1)
1

η−1

, [A.5.11]

with ~ being a bargain hunter’s cost of consumption relative to a loyal customer, that is ~ ≡ PB/PL, and $
denoting the weight on the bargain hunters’ price index in the overall aggregate price level (0 ≤ $ ≤ 1). It
is convenient to express the price level Pt in terms of the average PS,t, PN,t and st:

Pt = ϑPPS,t+(1−ϑP )PN,t−ϕP st, where ϑP = (1−$)ϑL+$ϑB, and ϕP = (1−$)ϕL+$ϕB. [A.5.12]

The log linearization of the production function [2.8] is

Q`,t = αH`,t, where α ≡ F
−1(Q)F ′(F−1(Q))
F(F−1(Q))

. [A.5.13]

The nominal marginal cost function [2.9] has the following log-linear form:

X`,t = γQ`,t + Wt, where γ ≡ QC ′′(Q;W )
C ′(Q;W )

=
(
−F

−1(Q)F ′′(F−1(Q))
F ′(F−1(Q))

)(
Q

F−1(Q)F ′(F−1(Q))

)
.

[A.5.14]

(i) The log-linearized first-order condition for the sales frequency (the first equation in [4.3]) is

(χ− 1)X`,t = µSχpS,`,t − µNRN,t−` + (µS − 1)χ(qS,`,t − qN,`,t), [A.5.15]

where the fact that χ = (µN − 1)/(µS − 1) is used to simplify the expression. By using equation [A.5.3]:

(χ− 1)X`,t =
(
µS − (µS − 1)

(
λε+ (1− λ)ηvS
λ+ (1− λ)vS

))
χpS,`,t

−
(
µN − (µN − 1)

(
λε+ (1− λ)ηvN
λ+ (1− λ)vN

))
RN,t−`

+ (η− ε)
(

(1− λ)vS
λ+ (1− λ)vS

− (1− λ)vN
λ+ (1− λ)vN

)
(µS − 1)χPB,t.

Given the expressions for µS and µN in [3.4], the coefficients of both pS,`,t and RN,`,t in the above are zero.
Since χ > 1, this equation implies X`,t is independent of pS,`,t and RN,t−`. Using χ = (µN − 1)/(µS − 1)
yields:

(χ− 1)X`,t = (χ− 1)PB,t −
(

1− (η− ε)
(

(1− λ)vS
λ+ (1− λ)vS

)
(µS − 1)

)
χPB,t

+
(

1− (η− ε)
(

(1− λ)vN
λ+ (1− λ)vN

)
(µN − 1)

)
PB,t. [A.5.16]

After substituting the expressions for µS and µN from [3.5], the above equation reduces to

(χ− 1)X`,t = (χ− 1)PB,t + (ε− 1) ((µS − 1)χ− (µN − 1)) PB,t,

and noting that the coefficient on the final term is zero, it follows that X`,t = PB,t for all `. Hence, all firms
have the same marginal cost, Xt = PB,t, irrespective of the normal price vintage.

The optimal pS,`,t is characterized by the second equation in [4.3]. In log-linear terms it is

pS,`,t = µS,`,t + Xt.

By substituting the expression for the log-linearized optimal sale markup from [A.5.4] and the sale purchase
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multiplier from [A.5.2], and using Xt = PB,t, yields

(1− (η− ε)cS) (pS,`,t − Xt) = 0, [A.5.17]

so pS,`,t = Xt if the coefficient in the above is different from zero. The expressions for cS from [A.5.4] and
µS from [3.5] imply

(1− (η− ε)cS)
µS

=
(λ(ε− 1) + (1− λ)(η− 1)vS) (λε+ (1− λ)ηvS)− (η− ε)2λ(1− λ)vS

(λε+ (1− λ)ηvS)2 .

Using [A.2.8] and noting that vS = ρε−ηS it follows that 1 − (η − ε)cS = µSD′(ρS)R′′(D(ρS)), where the
functions D(ρ) and R(q) are defined in [A.2.1] and [A.2.4]. The coefficient in [A.5.17] is strictly positive
because D′(ρS) < 0 and Lemma 2 shows that R′′(D(ρS)) < 0, and therefore pS,`,t = Xt.

Since all firms face the same wage Wt, and as part (i) shows that all have the same nominal marginal
cost Xt, the log linearization of nominal marginal cost in [A.5.14] shows that all must produce the same total
quantity Qt when γ > 0.

The log-linearized expression for equation [4.2] for the optimal reset price RN,t simplifies to

∞∑
`=0

(βφp)`Et [RN,t − µN,`,t+` − Xt+`] = 0, [A.5.18]

where µN,`,t is the log-deviation of the optimal markup µN,`,t ≡ µ(RN,t−`;PB,t). The optimal markup
function is log-linearized in [A.5.4] and is given in terms of the corresponding purchase multiplier, itself
log-linearized in [A.5.2]. Putting together those results, it follows that µN,`,t+` = (η− ε)cN (RN,t − PB,t+`).
So by using Xt = PB,t and substituting these results into [A.5.18] yields

(1− (η− ε)cN )
∞∑
`=0

(βφp)`Et [RN,t − Xt+`] = 0.

An exactly analogous argument to the proof of 1 − (η − ε)cS > 0 above shows that 1 − (η − ε)cN > 0 also
holds. Hence:

RN,t = (1− βφp)
∞∑
`=0

(βφp)`EtXt+`,

which is expressed in an equivalent recursive form:

RN,t = βφpEtRt+1 + (1− βφp)Xt. [A.5.19]

(ii) By using PS,t = Xt and substituting this into [A.5.12] it is shown that

ϕP st = ϑP (Xt − Pt) + (1− ϑP )(PN,t − Pt). [A.5.20]

Likewise, by using PB,t = Xt and performing similar substitutions in the expression for PB,t from [A.5.8]:

ϕBst = (1− ϑB)(PN,t − Xt). [A.5.21]

Equation [A.5.20] can be written as

ϕP st = ϑP (Xt − Pt) + (1− ϑP ) ((PN,t − Xt)− (Xt − Pt)) ,

and st is eliminated using [A.5.21]. After some rearrangement this leads to

Xt − PN,t =
1

1−ψxt, [A.5.22]
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where xt = Xt − Pt is real marginal cost and ψ is defined as follows:

ψ =
(1− ϑB)ϕP + ϑPϕB

ϕB
. [A.5.23]

Note that the recursive form of the expression for PN,t in [A.5.6] is

PN,t = φpPN,t−1 + (1− φp)RN,t. [A.5.24]

Then multiplying both sides of [A.5.19] by (1−φp) and substituting in the recursive equation for PN,t yields

PN,t − φpPN,t−1 = βφpEt [PN,t+1 − φpPN,t] + (1− φp)(1− βφp)Xt,

which can be written in terms of normal-price inflation πN,t ≡ PN,t − PN,t−1:

πN,t = βEtπN,t+1 + κ(Xt − PN,t), [A.5.25]

and where κ is as defined in the statement of the theorem.
Taking the first difference of [A.5.21] yields

∆st = −(1− ϑB)
ϕB

(∆Xt − πN,t) . [A.5.26]

Now use [A.5.12] and make the substitution PS,t = Xt as before, and then take first differences and rearrange:

πt = πN,t + ϑP (∆Xt − πN,t)−ϕP∆st.

By eliminating ∆st from this equation using [A.5.26]:

πt = πN,t +ψ (∆Xt − πN,t) .

Substituting the first difference of equation [A.5.22] into the above yields

πN,t = πt −
ψ

1−ψ∆xt.

Combining this equation with [A.5.22] and [A.5.25] implies(
πt −

ψ

1−ψ∆xt

)
= βEt

[
πt+1 −

ψ

1−ψ∆xt+1

]
+

κ

1−ψxt,

which is rearranged to yield the result [4.8]. Recursive forward substitution of equation [4.8] leads to

πt =
1

1−ψ
∞∑
`=0

β`Et [κxt+` +ψ (∆xt+` − β∆xt+1+`)] .

Notice that all ∆xt+` terms apart from ∆xt cancel out because each occurs twice with opposite signs. Hence
equation [4.9] is obtained.

(iii) Equation [A.5.23] implies that an expression for 1−ψ is

1−ψ =
(1− ϑP )ϕB − (1− ϑB)ϕP

ϕB
. [A.5.27]

Note that [A.5.12] implies (1 − ϑP ) = (1 −$)(1 − ϑL) +$(1 − ϑB). Together with the expression for φP

20



from the same equation, it follows that

1−ψ =
((1−$)(1− ϑL) +$(1− ϑB))ϕB − (1− ϑB) ((1−$)ϕL +$ϕB)

ϕB
,

and by rearranging this expression:

1−ψ = (1−$)ϕL

(
1− ϑL
ϕL

− 1− ϑB
ϕB

)
. [A.5.28]

Define the function

Φ(ζ;µ) ≡ µ−ζ − 1
ζ

. [A.5.29]

An alternative expression for this function is Φ(ζ;µ) = (e(− log µ)ζ − 1)/ζ, which has derivative

Φ′(ζ;µ) =
((− logµ)ζ − 1) e(− logµ)ζ + 1

ζ2

Now define another function J (z) and note that

J (z) ≡ 1 + (z − 1)ez, and J ′(z) = zez.

Since J (0) = 0, and J ′(z) > 0, it follows that J (z) > 0 for all z > 0. Then note

Φ′(ζ;µ) =
J ((− logµ)ζ)

ζ2
,

which proves that Φ(ζ;µ) is strictly increasing in ζ.
The expressions for ϑL and ϕL given in [A.5.10] are now used to demonstrate that:

1− ϑL
ϕL

= (1− s)
(

ε− 1
(µ−1)ε−1 − 1

)
=

1− s
Φ(ε− 1;µ)

. [A.5.30]

Similarly, the expressions for ϑB and ϕB from [A.5.8] yield

1− ϑB
ϕB

= (1− s)
(

η− 1
(µ−1)η−1 − 1

)
=

1− s
Φ(η− 1;µ)

. [A.5.31]

These formulæ are then substituted into [A.5.28] to obtain:

1−ψ = (1−$)(1− s)ϕL
(

1
Φ(ε− 1;µ)

− 1
Φ(η− 1;µ)

)
.

Together with [A.5.23], this establishes that 0 ≤ ψ ≤ 1.
Now use [A.5.30] to obtain the following:

1−ψ = (1−$)(1− ϑL) (1−Θ(ε,η;µ)) , where Θ(ε,η;µ) ≡ Φ(ε− 1;µ)
Φ(η− 1;µ)

. [A.5.32]

Note that the expression for PB in [3.7] can be substituted into v(pS ;PB) from [2.7] to obtain:

vS =
1

(s+ (1− s)µη−1)
η−ε
η−1

,

and which by combining this with the expression for ~ from [A.5.11] yields

~ε−1 =
1
vS

(
s+ (1− s)µε−1

s+ (1− s)µη−1

)
.
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Thus, the weight 1−$ given in [A.5.11] is

1−$ =
λ(s+ (1− s)µε−1)

λ(s+ (1− s)µε−1) + (1− λ)vS(s+ (1− s)µη−1)
.

Substituting this into [A.5.32] and using the formula for ϑL from [A.5.10] implies

1−ψ =
λ(1− s)µε−1

λ(s+ (1− s)µε−1) + (1− λ)vS(s+ (1− s)µη−1)
(1−Θ(ε,η;µ)) .

Since the purchase multipliers are given by vN = ρ
−(η−ε)
N and vS = ρ

−(η−ε)
S , the expressions for ρS and ρN

from Lemma 3 imply that
(1− λ)vN = λz, and (1− λ)vS = µε−ηλz, [A.5.33]

where z = z(µ; ε,η). Substituting vS into the expression for 1−ψ above yields

1−ψ = (1− s)(1−Θ(ε,η;µ))
µε−1

(s+ (1− s)µε−1) + µε−ηz(s+ (1− s)µη−1)
.

After further rearrangement this implies

1−ψ =
(1−Θ(ε,η;µ))(1− s)

(1 + z) + ((µ1−ε − 1) + (µ1−η − 1)z) s
. [A.5.34]

Since all terms in this expression are positive, the derivative with respect to s (holding ε and η, and hence
µ and z, constant) is negative. Proposition 1 shows that λ and s are negatively related (holding ε and η
constant), so ψ is decreasing in λ.

By using [A.1.4], it follows that µχ = µ1−ε(1 + µε−ηz)/(1 + z), and hence

sµχ+ (1− s) =
1

1 + z

(
(1 + z) +

(
(µ1−ε − 1) + (µ1−η − 1)z

)
s
)
.

This expression is substituted into [A.5.34] to yield

1−ψ =
(1−Θ(ε,η;µ))(1− s)
(1 + z)(sµχ+ (1− s)) . [A.5.35]

Note that ψ = 1 requires the right-hand side of this expression to be zero. There are four terms to
consider. First, s = 1 is the only possibility for the 1− s term. Now consider the terms in the denominator.
Since µ = pS/pN and χ = qS/qN , the second term in the denominator is linked to the GDP share transacted
at the normal price:

1
sµχ+ (1− s) =

1
1− s

(
(1− s)pNqN

spSqS + (1− s)pNqN

)
.

So when s < 1, (sµχ + (1 − s)) → ∞ only if (1 − s)pNqN/(spSqS + (1 − s)pNqN ) → 0, that is, the GDP
share traded at the sticky normal price tends to zero. The other term in the denominator is 1 + z, where
z = z(µ; ε,η), which is the smallest root of the quadratic [A.2.33]. As the proof of Lemma 3 demonstrates,
this quadratic must always have two positive real roots in the relevant parameter range. The product of
these roots is (

ε(ε− 1)
η(η− 1)

)
µη−ε,

which is always less than one, hence 1+z is finite, so the only way the denominator of [A.5.35] can approach
infinity is through the normal-price GDP share approaching zero.

The final possibility to consider is Θ(ε,η;µ) = 1. The function Θ(ε,η;µ) can be written as:

Θ(ε,η;µ) =
(
η− 1
ε− 1

)(
e(− log µ)(ε−1) − 1
e(− log µ)(η−1) − 1

)
,
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and by L’Hôpital’s rule:
lim
µ→1

Θ(ε,η;µ) = 1,

for all 1 < ε < η <∞. Now take the derivative with respect to µ (hypothetically holding ε and η constant):

∂Θ(ε,η;µ)
∂µ

= − (η− 1)2

µµε−1µη−1
(
µ−(η−1) − 1

)2 (1− µη−1

η− 1
− 1− µε−1

ε− 1

)
.

Notice by using the definition of Φ(ζ;µ) in [A.5.29] that

1− µη−1

η− 1
− 1− µε−1

ε− 1
= Φ(η− 1;µ−1)−Φ(ε− 1;µ−1),

which is known to be positive sinceΦ(ζ;µ−1) is strictly increasing in ζ. This demonstrates that Θ(ε,η;µ) < 1
for all µ < 1 and associated parameters ε and η. Therefore µ = 1 is the only remaining possibility for ψ = 1.
This completes the proof.

The arguments developed in the proof above lead to the following set of results characterizing the
fluctuations in other variables of interest.

Lemma 4 In equilibrium, the log deviations of the markup ratio (sales discount), quantity ratio, sales
frequency, and relative price distortions are functions only of the log deviation of contemporaneous real
marginal cost. The relationships between these variables and real marginal cost are negative, positive,
negative, and positive, respectively.

Proof The log deviation of the markup ratio averaged across normal-price vintages is µt = PS,t − PN,t.
Using the result PS,t = Xt from Theorem 2 and [A.5.22] it follows that

µt = − 1
1−ψxt, [A.5.36]

where the coefficient is known to be negative because of the inequality for ψ derived in Theorem 2. The
log deviation of the quantity ratio averaged across vintages is χt = QS,t − QN,t. The log-linearized demand
functions and purchase multipliers in [A.5.1] and [A.5.2] imply

χt = −ζN (PN,t − PS,t),

where ζN is the steady-state price elasticity at the normal price, and PS,t = PB,t has been used. Substitution
of the result for the markup ratio yields

χt =
ζN

1−ψxt.

For the average sales frequency st, use [A.5.21] together with Xt = PS,t and the result on the markup ratio
to derive:

st = −
(

1− ϑB
ϕB

)(
1

1−ψ

)
xt, [A.5.37]

where the coefficient is seen to be negative.
The log deviation of relative price distortions is given by ∆t = Yt −Qt. From the expression for the log-

linearized demand function and purchase multipliers in [A.5.1] and [A.5.2], the following individual demand
functions are obtained:

qS,t = −εxt + Yt, qN,t = −εxt + Yt − ζN (PN,t − PS,t).

By substituting these into the expression for total quantity from [A.5.5]:

Qt = Yt − εxt − ζN
(

(1− s)
sχ+ (1− s)

)
(PN,t − PS,t) +

(
χ− 1

sχ+ (1− s)

)
st.
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Substituting [A.5.36] and [A.5.37] in the above expression yields

∆t ≡ Yt − Qt =
(
ε+

1
(sχ+ (1− s))(1−ψ)

(
(χ− 1)

(
1− ϑB
ϕB

)
− (1− s)ζN

))
xt.

This is written as ∆t = δxt, with the coefficient δ defined by:

δ =
sχµ+ (1− s)
sχ+ (1− s)

(
ε
sχ+ (1− s)
sχµ+ (1− s) + ℘

)
, [A.5.38]

and where ℘ is given by:

℘ =
1

(1−ψ)(sµχ+ (1− s))

(
(χ− 1)

(
1− ϑB
ϕB

)
− (1− s)ζN

)
.

By substituting the expression for 1−ψ from [A.5.35] and rearranging yields

℘ =
1 + z

1−Θ(ε,η;µ)

(
(χ− 1)

(
1− ϑB
ϕB(1− s)

)
− ζN

)
.

Equation [A.5.31] then implies

℘ =
1 + z

1−Θ(ε,η;µ)

(
χ− 1

Φ(η− 1;µ)
− ζN

)
.

Combining the expression for ζN from [3.1] and equation [A.5.33]:

ζN =
ε+ zη

1 + z
,

noting that χ− 1 can be obtained from equation [A.1.4]:

χ− 1 =
(µ−ε − 1) + z (µ−η − 1)

1 + z
.

Substituting these equations into the expression for ℘ yields:

℘ =
(µ−ε − 1) + z (µ−η − 1)− (ε+ ηz)Φ(η− 1;µ)

(1−Θ(ε,η;µ))Φ(η− 1;µ)
.

By using the definition of functionΦ(ζ;µ) from [A.5.29] and the definition of functionΘ(ε,η;µ) from [A.5.32]:

℘ =
ε (Φ(ε;µ)−Φ(η− 1;µ)) + zη (Φ(η;µ)−Φ(η− 1;µ))

Φ(η− 1;µ)−Φ(ε− 1;µ)
.

The expression for δ from [A.5.38] can thus be written as:

δ =
sχµ+ (1− s)
sχ+ (1− s)

(
ε
sχ+ (1− s)
sχµ+ (1− s) +

ε (Φ(ε;µ)−Φ(η− 1;µ)) + zη (Φ(η;µ)−Φ(η− 1;µ))
Φ(η− 1;µ)−Φ(ε− 1;µ)

)
.

Adding and subtracting ε inside the brackets, the final expression for δ is obtained:

δ =
sχε(1− µ)
sχ+ (1− s) +

sχµ+ (1− s)
sχ+ (1− s)

(
ε (Φ(ε;µ)−Φ(ε− 1;µ)) + zη (Φ(η;µ)−Φ(η− 1;µ))

Φ(η− 1;µ)−Φ(ε− 1;µ)

)
.

This completes the proof. �
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A.6 DSGE model derivations

Wage-setting behaviour

When each firm chooses its use of the continuum of labour inputs to minimize the cost of obtaining a
unit of H in equation [4.6], the minimized cost is given by the wage index

W ≡
(∫

W (ı)1−ςdı
) 1

1−ς

, [A.6.1]

and the cost-minimizing labour demand functions are

H(ı) =
(
W (ı)
W

)−ς
H. [A.6.2]

As households are selected to update their wages at random, as they enjoy the same consumption, and as
they face the same demand function for their labour services, all households setting a new wage at time t
choose the same wage. This common wage is referred to as the reset wage, and is denoted by RW,t. It is
chosen to maximize expected utility over the lifetime of the wage subject to the labour demand function
[A.6.2]. As shown by Erceg, Henderson and Levin (2000), the first-order condition for this maximization
problem is

∞∑
`=0

(βφw)`Et

W ς
t+`Ht+`υc(Yt+`,mt+`)

υc(Yt,mt)

RW,tPt+`
− ς

ς − 1

νh

(
R−ςW,tW

ς
t+`Ht+`

)
υc(Yt+`,mt+`)


 = 0. [A.6.3]

The wage index Wt in [A.6.1] then evolves according to

Wt =

(
(1− φw)

∞∑
`=0

φ`wR
1−ς
W,t−`

) 1
1−ς

. [A.6.4]

The presence of market power in wage setting means that the equation [3.11] for real marginal cost is replaced
by

x =
ς

ς − 1
νh
(
F−1(Y/∆)

)
υc(Y )F ′ (F−1(Y/∆))

.

Log linearizations

The DSGE model is log linearized around the flexible-price equilibrium characterized in section 3. The
log linearization of the intertemporal IS equation in [4.10] is

Yt = EtYt+1 − θc (it − Etπt+1) , where θc ≡ −
(
Y υcc(Y )
υc(Y )

)−1

. [A.6.5]

In the above, it ≡ log(1+it)−log(1+i) is the log deviation of the gross nominal interest rate, πt ≡ log πt−log π̄
is the log deviation of the gross inflation rate, and θc is the intertemporal elasticity of substitution. Money
demand is implied by the binding cash-in-advance constraint in [4.10]. It is log linearized as follows:

Mt − Pt = Yt. [A.6.6]

The money supply rule [4.11] has the following log-linear form:

∆Mt = p∆Mt−1 + (1− p)et. [A.6.7]
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The log-linearized version of equation [A.6.3] for the utility-maximizing reset wage is

RW,t = (1− βφw)
∞∑
`=0

(βφw)`Et

[(
1

1 + ςθ−1
h

)
(Pt+` + w∗t+`) +

(
ςθ−1
h

1 + ςθ−1
h

)
Wt+`

]
, [A.6.8]

where w∗t is the desired real wage if this were fully flexible:

w∗t = θ−1
h Ht + θ−1

c Y, where θh ≡
(F−1(Y/∆)νhh(F−1(Y/∆))

νh(F−1(Y/∆))

)−1

, [A.6.9]

The Frisch elasticity of labour supply is θh. Equation [A.6.8] has the following recursive form:

RW,t = βφwEtRW,t+1 + (1− βφw)

((
1

1 + ςθ−1
h

)
(Pt + w∗t ) +

(
ςθ−1
h

1 + ςθ−1
h

)
Wt

)
. [A.6.10]

The log-linearized wage index [A.6.4] is

Wt =
∞∑
`=0

(1− φw)φ`wRW,t−`,

which also has a recursive form:
Wt = φwWt−1 + (1− φw)RW,t. [A.6.11]

Combining the reset wage equation [A.6.10] with the wage index equation [A.6.11] yields an expression for
wage inflation πW,t ≡Wt −Wt−1:

πW,t = βEtπW,t+1 +
(1− φw)(1− βφw)

φw

1
1 + ςθ−1

h

(w∗t − wt) , [A.6.12]

where w∗t is defined in [A.6.9].
By averaging over normal-price vintages, equations [A.5.13] and [A.5.14] imply:

Qt = αHt, and xt = wt + γQt. [A.6.13]

Substituting Yt = Qt+δxt from Lemma 4 into the above yields [A.1.7b]. Using equation [A.6.13] to eliminate
Ht from [A.6.9] implies:

w∗t =
θ−1
h

α
Qt + θ−1

c Yt.

Then by using Qt = Yt − δxt to eliminate Qt and substituting in the expression for xt from [A.1.7b] leads to
the following expression for w∗t − wt:

w∗t − wt =

(
θ−1
c +

1
1 + γδ

θ−1
h

α

)
Yt −

(
1 +

δ

1 + γδ
θ−1
h

α

)
wt.

Replacing w∗t − wt in [A.6.12] with the expression above yields [A.1.7c].

A.7 Two-sector model

DSGE model

In the following, a bar above a variable denotes the log-deviation averaged across both sale and non-sale
sectors, using the appropriate weights (σ and 1 − σ), and this convention is also employed for the Phillips
curve coefficient ψ, with ψ̄ denoting the average Phillips curve coefficient σψ. All variables without a bar
refer either to economy-wide aggregates, or sale-sector variables as used in earlier sections, as appropriate.
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The system of equations is:

π̄t = βEtπ̄t+1 +
1

1− ψ̄
(
κxt + ψ̄ (∆xt − βEt∆xt+1)

)
+
(

1− σ
1− ψ̄ (κρt + ∆ρt − βEt∆ρt+1)

)
, [A.7.1a]

∆ρt = βEt∆ρt+1 +
κ

1 + ξγ

(
γ((1−ψ)δ+ψε− ξ)

1− ψ̄ xt −
γ(1−ψ)(ε− (1− σ)δ) + (1− ψ̄) + (1− σ)ξγ

1− ψ̄ ρt

)
,

[A.7.1b]

Yt = Ȳt + ε
(

1− σ
1− ψ̄

)
((1−ψ)ρt −ψxt) , [A.7.1c]

Yt = Qt + δ
(

1−ψ
1− ψ̄

)
(xt + (1− σ)ρt) , [A.7.1d]

xt = wt + γQt, [A.7.1e]

πW,t = βEtπW,t+1 +
(1− φw)(1− βφw)

φw

1
1 + ςθ−1

h

(w∗t − wt), [A.7.1f]

w∗t =

(
θ−1
c +

θ−1
h

α

∆

σ+ (1− σ)∆

)
Ȳt +

θ−1
h

α

σ

σ+ (1− σ)∆
(Qt −∆Yt) , [A.7.1g]

∆wt = πW,t − π̄t, [A.7.1h]
Ȳt = EtȲt+1 − θc (it − Etπ̄t+1) , [A.7.1i]
Ȳt = Mt − P̄t. [A.7.1j]

Derivation of the two-sector model

In the following, the notational conventions in addition to those already described are that large script
letters denote non-sale sector variables and small script letters denote the corresponding log deviations of
the non-sale sector variables.

The aggregate price level is now

P̄t =
(
σP 1−ε

t + (1− σ)P1−ε
t

) 1
1−ε ,

which has the log linear form:
P̄t = σPt + (1− σ)Pt. [A.7.2]

The log-linearized price level Pt in the non-sale sector is a weighted average of past reset prices Rt in that
sector:

Pt = φpPt−1 + (1− φp)Rt. [A.7.3]

The log-linearized first-order condition for the non-sale sector reset price is standard:

Rt = βφpEtRt+1 + (1− βφp)
(

1
1 + ξγ

Xt +
ξγ

1 + ξγ
Pt

)
, [A.7.4]

where ξ is the price elasticity in that sector and γ is the elasticity of marginal cost with respect to output
at the firm level. Optimization by households implies the following overall relative demand between the sale
and non-sale sectors:

Yt
Yt

=
(Pt
Pt

)−ε
,

which has the following log linear form:

Yt − Yt = −ε(Pt − Pt). [A.7.5]

Define ρt ≡ Pt − PN,t to be the average relative price between the non-sale sector and the normal prices in
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the sale sector. Substituting the sale-sector price level equation into the aggregate price level leads to

P̄t = (1− ϑ̄P )PN,t + ϑ̄PPS,t − ϕ̄P st + (1− σ)ρt, [A.7.6]

where ϑ̄P = σϑP and ϕ̄P = σϕP are defined (by analogy with the aggregate Phillips curve coefficient ψ̄).
Real marginal cost xt for the sale sector is defined in the usual way. By using equation [A.7.6]:

xt = (1− ϑ̄P )(PS,t − PN,t) + ϕ̄P st − (1− σ)ρt,

where Xt = PS,t has been substituted. Then by using [A.5.21] to eliminate st and rearranging:

xt =
(

(1− ϑ̄P )ϕB − (1− ϑB)ϕ̄P
ϕB

)
(PS,t − PN,t)− (1− σ)ρt.

Noting that the coefficient in parentheses is 1− σψ, which is also equal to 1− ψ̄ using the definition of ψ̄,
the equation above can be solved for PS,t − PN,t:

PS,t − PN,t =
1

1− ψ̄ (xt + (1− σ)ρt) . [A.7.7]

Using equation [A.5.21] again, the sales frequency st is given by

st = −
(

1− ϑB
ϕB

)(
1

1− ψ̄

)
(xt + (1− σ)ρt) . [A.7.8]

Taking equation [A.5.12] and substituting the expressions for PS,t − PN,t and st derived above yields

Pt − PN,t =
ψ

1− ψ̄ (xt + (1− σ)ρt) ,

which uses the formula for ψ derived in Theorem 2. Note that Xt − Pt = (PS,t − PN,t) + (PN,t − Pt), so

Xt − Pt =
1−ψ
1− ψ̄ (xt + (1− σ)ρt) . [A.7.9]

Similarly, note that Pt − P̄t = (Pt − Xt) + xt. Then substituting the expression for Xt − Pt and simplifying
yields:

Pt − P̄t =
1− σ
1− ψ̄ (ψxt − (1−ψ)ρt) . [A.7.10]

An analogous log-linearization of the cost function in the non-sale sector leads to

Xt = γQt + Wt,

where the assumption about the non-sale sector production function guarantees it implies the same elasticity
of marginal cost with respect to output as in the sale sector. Note that Qt = Yt in the non-sale sector since
all output is sold at the same price in the steady state. The derivation of the link between Yt and Qt in the
sale sector continues to hold subject to Pt being the price level for the sale sector alone:

Yt = Qt + δ(Xt − Pt).

Hence the marginal cost differential between the two sectors is

Xt − Xt = γ ((Yt − Yt) + δ(Xt − Pt)) . [A.7.11]

Using the demand function [A.7.5] and the aggregate price index [A.7.2], relative demand is given by

Yt − Yt =
ε

1− σ(Pt − P̄t). [A.7.12]
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By substituting this into [A.7.11] and using [A.7.9] and [A.7.10], the marginal cost differential is

Xt − Xt =
γ

1− ψ̄ ((εψ+ δ(1−ψ))xt + (1−ψ)(δ(1− σ)− ε)ρt) .

Since price-setting behaviour in the non-sale sector is entirely standard, the usual derivation of the New
Keynesian Phillips curve from [A.7.3] and [A.7.4] yields

∆Pt = βEt∆Pt+1 +
κ

1 + ξγ
(Xt − Pt).

Together with [A.5.25], the differential ρt between Pt and PN,t is determined by the equation:

∆ρt = βEt∆ρt+1 +
κ

1 + ξγ
((Xt − Xt)− ξγ(PS,t − PN,t)− ρt) ,

which is derived by using Xt = PS,t. Substituting [A.7.7] and [A.7.11] into the above leads to [A.7.1b] after
some rearrangement.

To obtain equation [A.7.1c], note that log-linearized aggregate output is Ȳt = σYt + (1− σ)Yt, which is
equivalent to Yt − Ȳt = −(1− σ)(Yt − Yt). Using [A.7.12] and substituting the expression for Pt − P̄t from
[A.7.10] yields the result.

Equation [A.7.1d] follows from substituting [A.7.9] into Yt = Qt + δ(Xt − Pt), which is taken from
Lemma 4.

By writing equation [A.7.6] as P̄t = PN,t + ϑ̄P (PS,t−PN,t)− ϕ̄P st + (1−σ)ρt, substituting in [A.7.7] and
[A.7.8], and then taking first differences:

π̄t = πN,t +
ψ̄

1− ψ̄∆xt +
(

1− σ
1− ψ̄

)
∆ρt. [A.7.13]

Then combine equation [A.5.25] with [A.7.7] to obtain:

πN,t = βEtπN,t+1 +
κ

1− ψ̄ (xt + (1− σ)ρt) .

Using equation [A.7.13] to write down an expression for π̄t−βEtπ̄t+1 and substituting for πN,t−βEtπN,t+1

from above yields the Phillips curve [A.7.1a].
Note that the choice of ξ (which equalizes the average markups in the two sectors) and the production

function F(H) in the non-sale sector imply that Y = Y, and hence Q/Q = ∆. Since the production functions
in the two sectors are related by F(H) = ∆F(∆−1H), it follows that H/H = ∆. This means that the total
labour usage equation H̄t = σHt + (1− σ)Ht is log linearized as follows:

H̄t =
(

σ

σ+ (1− σ)∆

)
Ht +

(
(1− σ)∆

σ+ (1− σ)∆

)
Ht.

The log-linearized production functions are the same in the two sectors, so Qt = αHt and Qt = αHt. By
substituting these into the above equation:

H̄t =
1
α

((
σ

σ+ (1− σ)∆

)
Qt +

(
(1− σ)∆

σ+ (1− σ)∆

)
Qt

)
.

By using Yt = Qt and noting that Yt = (Ȳt − σYt)/(1− σ):

H̄t =
1
α

1
σ+ (1− σ)∆

(
∆Ȳt + σ(Qt −∆Yt)

)
.

Substituting this expression into [A.6.9] and rearranging yields [A.7.1g].
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A.8 Proof of Proposition 2

(i) Note that Proposition 1 implies µ is only a function of ε and η. This is also true of z = z(µ; ε,η), as
can be seen from equation [A.1.3]. The value of s is then determined by λ — note that Proposition 1 shows
that for every s ∈ (0, 1), so there is a value of λ generating each s.

Hence, the equilibrium value of ψ can be obtained as a function of s, ε and η. This is denoted by
Ψ(s; ε,η). From [A.5.34], the function is:

Ψ(s; ε,η) = 1− (1−Θ(ε,η;µ))(1− s)
(1 + z) + ((µ1−ε − 1) + (µ1−η − 1)z) s

.

It has already been shown in Theorem 2 that Ψ(s; ε,η) is non-negative. By taking the first derivative with
respect to s (holding ε and η constant, and hence varying only λ implicitly):

Ψ′(s; ε,η) =
1−Θ(ε,η;µ)

(1 + z) + ((µ1−ε − 1) + (µ1−η − 1)z) s

(
1 +

(
(µ1−ε − 1) + (µ1−η − 1)z

)
s

(1 + z) + ((µ1−ε − 1) + (µ1−η − 1)z) s

)
,

which is always strictly positive using the same logic from the proof of Theorem 2. Finally, taking the second
derivative yields

Ψ′′(s; ε,η) = −2
(1−Θ(ε,η;µ))

(
(µ1−ε − 1) + (µ1−η − 1)z

)
(1 + z) + ((µ1−ε − 1) + (µ1−η − 1)z) s

(
1 +

(
(µ1−ε − 1) + (µ1−η − 1)z

)
s

(1 + z) + ((µ1−ε − 1) + (µ1−η − 1)z) s

)
,

which is always strictly negative. This establishes that the function Ψ(s; ε,η) is non-negative-valued, strictly
increasing and strictly concave.

(ii) The two-sector model’s Phillips curve in the general case is given in equation [A.7.1a]. Note that
when γ = 0, the only stable solution of [A.7.1b] is ρt = 0. By substituting this result into [A.7.1a] it is clear
that the resulting equation reduces to the Phillips curve with sales in [4.8] with coefficient ψ̄ in place of ψ.
Finally, note that γ = 0 implies that xt is real marginal cost for both sectors, and hence for the aggregate
economy. This completes the proof.
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