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1 Introduction

There is a considerable consensus among academic economists and economic policy

makers that modern macroeconomic models are rich enough to be useful as tools for

policy analysis. It is also well understood that when structural models are used for

quantitative analysis, it is crucial to use parameter values that are empirically relevant.

The best way of obtaining such values is to estimate and evaluate the models in a formal

and internally consistent manner. This is what the new empirical dynamic stochastic

general equilibrium (DSGE) literature attempts to do.

The estimation of DSGE models exploits the restrictions they impose on the joint

probability distribution of observed macroeconomic variables. A fundamental question

that arises is whether these restrictions are sufficient to make possible the reliable esti-

mation of the parameters. This is known as the identification problem in econometrics,

and to answer it econometricians study the relationship between the true probability

distribution of the data and the parameters of the underlying economic model (Koop-

mans (1949)). Such identification analysis should precede the statistical estimation of

economic models (Manski (1995)).1

Although the importance of parameter identification has been recognized, the issue

is rarely discussed when DSGE are estimated. Examples of models with unidentifiable

parameters can be found in Kim (2003), Beyer and Farmer (2004) and Cochrane (2007).

That DSGE models may be poorly identified has been pointed out by Sargent (1976)

and Pesaran (1989). More recently, Canova and Sala (2009) summarize their study of

identification issues in DSGE models with the conclusion: “it appears that a large class

of popular DSGE structures can only be weakly identified”.

This paper develops a new framework for studying identification issues in linearized

DSGE models. It takes as a starting point a description of the economic model -

structural equations and parameter space, and a description of the statistical model -

a Gaussian likelihood for a set of observable endogenous variables, and a sample size.

1This is not always possible, however. If the distribution of the data involves unknown nuisance
parameters, the identification of the parameters of interest would be conditional on those parameters.
In such models the identification problem is no longer separate from that of statistical inference. DSGE
models typically do not have this problem since all parameters are deemed structural and are either
estimated or assumed known.
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Then it provides an answer to each one of the following questions: (1) which parameters

are locally identified and which are not; (2) how well identified are the identifiable

parameters; (3) if identification fails for some parameters or is weak, is this due to data

limitations, or is it intrinsic to the structure of the model; (4) how the answers to (1)-(3)

vary across different regions in the parameter space.

The central tool employed in this framework is the expected Fisher information

matrix, the use of which for identification analysis was first suggested by Rothenberg

(1971). The information matrix can be derived in closed-form for linear Gaussian state

space models, which explains why the identification analysis is restricted to linearized

Gaussian DSGE models. This covers most, but not all estimated models in the current

empirical DSGE literature.2 Although the computation of the expected information

matrix does not involve information about a particular sample of data, it does depend

on which of the model variables are included in the analysis. This is one feature of

the data that matters for identification. Furthermore, the strength of identification is

an issue only in finite samples. Thus, having a meaningful measure of how well identi-

fied different parameters are, requires specifying the number of available observations.

Consequently, this is a second feature of the data that matters for identification. How-

ever, if one can choose among different sets of observables and different sample sizes,

it is straightforward to investigate what effect that would have on identification. Thus,

we may add another question to those listed above, namely, (5) how the answers to

(1)-(4) vary across different sets of observables and with the sample size. Finally, the

information matrix is parameter-dependent, and, therefore, the conclusions regarding

identifiability and identification strength may change across regions in the parameters

space. The parameter space, defined as the set of theoretically admissible parameter

values, should be specified as a part of the economic model under study.

It is a common misconception to regard identification as relevant to empirical work

only, and to think of identification problems as caused by either deficiencies of the data

or of the statistical methodology. While it is true that there is a purely statistical

dimension of the problem, its economic modeling aspect is often far more important.

Parameters are unidentifiable or weakly identified if the economic features they repre-

2In general, showing identification of a linearized Gaussian model is sufficient but not necessary for
identification in the original non-linear model under more general distributional assumptions. More on
the role of the Gaussian assumption can be found in Section 3.2.

3



sent have no empirical relevance at all, or very little of it. This may occur either because

those features are unimportant on their own, or because they are redundant given the

other features represented in the model. These issues are particularly relevant to DSGE

models, which are sometimes criticized of being too rich in features, and possibly over-

parameterized (Chari, Kehoe, and McGrattan (2009)). This paper shows how one can

distinguish between the statistical and economic modeling aspects of identification prob-

lems, and provides tools for determining the causes leading to them.

Papers related to this one are Iskrev (2009), which addresses the parameter identifia-

bility question, and Canova and Sala (2009), which is focused on the weak identification

problem. In Iskrev (2009), I present an identifiability condition that is easier to use

and more general than the one developed here. The condition is based on the Jaco-

bian matrix of the mapping from theoretical first and second order moments of the

observable variables to the deep parameters of the model. The condition is necessary

and sufficient for identification with likelihood-based methods under normality, or with

limited information methods that utilize only first and second order moments of the

data. However, that paper does not deal with the weak identification issue, which is the

main theme of this paper. The paper of Canova and Sala (2009) was the first one to

draw attention to the problem of weak identification in DSGE models, and to discuss

different strategies for detecting it. Those include: one and two dimensional plots of

the estimation objective function, estimation with simulated data, and checking numer-

ically the conditioning of matrices characterizing the mapping from parameters to the

objective function. The paper of Canova and Sala (2009) differs form the present paper

in several ways. First, they approach parameter identification from the perspective of

a particular limited information estimation method, namely, equally weighted impulse

response matching. In addition to the model and data deficiencies discussed above, weak

identification in that setting may be caused by the failure to use some model-implied

restrictions on the distribution of the data, and by the inefficient weighing of the utilized

restrictions. Consequently, it is very difficult to disentangle the causes and quantify their

separate contribution to the identification problem. Second, it is very common in DSGE

models to have identification problems that stem from a near observational equivalence

involving a large number of parameters. This means that the objective function is flat

with respect to all of the parameters as a set. The plots used in Canova and Sala (2009)

are limited to only two parameters at a time, and it is far from straightforward to select
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the appropriate pairs from a large number of free parameters. Third, Canova and Sala

(2009) do not discuss the role of the set of observables for identification. The effect of

using different observables for the estimation of a DSGE model is investigated in Guer-

ron (2007), who finds that the parameter estimates and the economic and forecasting

implications of the model vary substantially with the choice of included variables. The

last and perhaps most important difference is in the approach itself. While it is possible

in principle to address all identification questions discussed here, by conducting Monte

Carlo simulations, this is hardly a viable strategy for an a priori identification analysis of

most DSGE models. Estimating a multidimensional and highly non-linear model even

once is a numerically challenging and time consuming exercise. Doing that many times

and for a large number of parameter values is completely impractical. In contrast, the

tools used in this paper are simple, easy to apply, and general.

The remainder of the paper is organized as follows. Section 2 provides some back-

ground on identification and the Fisher information matrix, and explains the role of the

latter for detecting and measuring identification problems in general parametric models.

Section 3 starts with an introduction of the class of linearized DSGE models, followed

by an outline of the derivation of the log-likelihood function and the Fisher information

matrix for Gaussian models. Then it explains the various aspects and tools involved in

the a priory approach to identification. The methodology is illustrated, in Section 4,

with the help of a medium-scale DSGE model estimated in Smets and Wouters (2007).

Concluding comments are given in Section 5.

2 Identification and the Information Matrix

Let a model be parameterized in terms of a vector θ ∈ Θ ⊂ Rk, and suppose that

inference about θ is made on the basis of T observations of a random vector x with

a known joint probability density function f(X;θ), where X = [x1, . . . ,xT]. When

considered as a function of θ, f(X;θ) contains all available sample information about

the value of θ associated with the observed data. Thus, a basic prerequisite for making

inference about θ is that distinct values of θ imply distinct values of the density function.

Formally, we say that a point θ0 ∈ Θ is identified if

f(X;θ) = f(X;θ0) with probability 1⇒ θ = θ0 (2.1)

5



This definition is made operational by using the following property of the log-

likelihood function3 `T (θ) := log f(X;θ)

E0 `T (θ0) ≥ E0 `T (θ), for any θ (2.2)

It follows that the function H(θ0,θ) := E0 (`T(θ)− `T (θ0)) achieves a maximum at

θ = θ0, and θ0 is identified if and only if that maximum is unique. While conditions for

global uniqueness are difficult to find in general, local uniqueness of the maximum at

θ0 may be established by verifying the usual first and second order conditions, namely:

(a) ∂H(θ0,θ)
∂θ
|θ=θ0 = 0, (b) ∂2H(θ0,θ)

∂θ∂θ′
|θ=θ0 is negative definite. If the maximum at θ0 is

locally unique we say that θ0 is locally identified. This means that there exists an open

neighborhood of θ0 where (2.1) holds for all θ. Global identification, on the other hand,

extends the uniqueness of f(X;θ0) to the whole parameter space. One can show that

(see Bowden (1973)) the condition in (a) is always true, and the Hessian matrix in (b)

is equal to the negative of the Fisher information matrix, defined as

IT (θ) = E0

[{
∂`T (θ)

∂θ′

}′{
∂`T (θ0)

∂θ′

}]
Thus, we have the following result of Rothenberg (1971),

Theorem 1. Let θ0 be a regular point of the information matrix IT (θ) Then θ0 is

locally identifiable if and only if IT (θ0) is non-singular.

A point is called regular if it belongs to an open neighborhood where the rank of

the matrix does not change. Without this assumption the condition is only sufficient

for local identification. Although it is possible to construct examples where regularity

does not hold (see Shapiro and Browne (1983)), typically the set of irregular points is of

measure zero (see Bekker and Pollock (1986)). Thus, for most models the non-singularity

of the information matrix is both necessary and sufficient for local identification. By

definition, a model is (locally) identified if all points in the parameter space are (locally)

identified. This can be checked by examining the rank of the information matrix at all

points in Θ.

Verifying that the model is identified, at least locally, is important since identifiability

is a prerequisite for the consistent estimation of the parameters. Intuitively, singularity

3This follows from the Jensen’s inequality (see Rao (1973)) and the fact that the logarithm is a
concave function.

6



of the information matrix means that likelihood function is flat at θ0 and one has no

hope of finding the true values of some the parameters even with an infinite number

of observations. There are two possible reasons why a parameter θi may be locally

unidentifiable:

(a) Changing θi does not change the likelihood, i.e.

∂`T (θ0)

∂θi
= 0, for all X (2.3)

(b) The effect on the likelihood of changing θi can be offset by changing other param-

eters in θ, i.e.
∂`T (θ0)

∂θi
=
∑
j 6=i

aj
∂`T (θ0)

∂θj
, for all X (2.4)

where aj, j 6= i are scalars.

In the first case row i and column i of the information matrix are vectors of zeros;

in the second they are equal to linear combinations of the other rows/columns of the

information matrix. The likelihood is flat with respect to θi in (a), and with respect to

a linear combination of several elements of θ in (b).

The rank condition ensures that the likelihood function is not flat, and that the

expected log-likelihood function achieves a locally unique maximum at the true param-

eter values. However, it provides no information about the finite sample properties of

a likelihood-based estimator of θ, which depend greatly on the degree of curvature of

log-likelihood surface in the neighborhood of θ0. Nearly flat likelihood means that small

changes in the value of `T (θ0), due to random variations in the data, result in relatively

large changes in the value of θ that maximizes the observed likelihood function. In this

situations parameter identification is said to be weak in the sense that the estimates are

prone to be very inaccurate even when the number of observations is large.

There is now a substantial literature on weak identification in econometrics, and in

particular on the weak instruments problem in linear models. Yet, unlike identification

in the strict sense, there does not exist a general definition of weakness, which one can

apply to determine if a parameter or a model is weakly identified. Intuitively, it is

clear the flatter the likelihood function, the less precise the parameter estimates will
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be. This suggests that measures of estimation precision may be used to quantify the

strength of parameter identification. Adopting this notion of identification strength, a

parameter is considered weakly identified when the degree of precision with which it can

be estimated is unacceptably low. In that sense what weak means depends on what is

considered unacceptable, and is therefore a relative not an absolute concept.

The relationship between the degree of curvature of the expected likelihood function

and the precision of a ML estimator θ̂T is obtained from the asymptotic distribution of

the latter. Assuming that θ̂T is consistent for θ0, we have

√
T(θ̂T − θ0)

d−→ N
(
0,I−1(θ0)

)
(2.5)

where I(θ0) = plim
T→∞

1

T
IT (θ0) is the asymptotic expected Fisher information matrix.

Therefore cov(θ̂T ) = 1
T
I−1(θ0) provides an approximation of the sampling covariance

matrix of θ̂T, and var(θ̂i) = 1
T
I(ii)(θ0) approximates the sampling variance of θ̂i, where

I(ii) is the i-th diagonal element of the inverse of information matrix. Also, the asymp-

totic normality of θ̂T implies that

T (θ̂T − θ0)′I(θ0)(θ̂T − θ0)
d−→ χ2(k) (2.6)

Using (2.6), we can compute asymptotic confidence intervals for each θi, and joint

confidence sets for θ as a whole. In particular, a joint (1 − α) confidence set contains

all points θ that satisfy

T (θ̂T − θ)′I(θ0)(θ̂T − θ) ≤ cα (2.7)

where cα is the (1−α) quantile of the χ2(k) distribution. Individual confidence intervals

for each parameter can be constructed by projecting the k-dimensional ellipsoid defined

by (2.7) onto the parameter axes. This leads to intervals of the form

θi −
√
cα var(θ̂i) ≤ θ̂i ≤ θi +

√
cα var(θ̂i) (2.8)

This interval has the following interpretation: in repeated samples the ML estimate

of θi will fall within the interval [θi −
√
cα var(θ̂i); θi +

√
cα var(θ̂i)] in (1 − α)% of the

time. Several caveats should be added to this interpretation, however. First, the joint

confidence sets are constructed on the basis of a quadratic approximation of the pop-
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ulation objective function - the expected log-likelihood, and may give an inaccurate

assessment of the sampling uncertainty in finite samples. Second, the individual confi-

dence intervals are conservative in the sense that the multidimensional rectangle defined

by (2.8) includes points that lie outside the hyperellipsoid defined by (2.7). Third, the

confidence intervals (2.8) are solely based on the curvature of the likelihood and do not

incorporate any prior knowledge that may be available about the elements of θ. In

DSGE models the parameters have clear economic meaning and are usually restricted

to a range of possible values. The confidence intervals do not reflect such restrictions

and may include values which are theoretically inadmissible.

Constructing confidence intervals as in (2.8) is a convenient way of assessing how

well identified are the individual parameters on the basis of the likelihood function.

A parameter is considered to be weakly identified if the interval is too wide at the

desired level of confidence. However, this approach is not convenient for comparing the

identification strength across different parameters or across different values of the same

parameter. For that I will use the ratio of the half-length of the confidence interval to

the absolute value of θi, i.e.

r(θi) =

√
cα var(θ̂i)

|θi|
(2.9)

Note that r(θi) is not defined when θi = 0. When this is the case, the endpoints of

the confidence interval should be reported instead of the ratio r(θi). In addition to the

individual measures, I will also need a measure of the strength of identification of θ as

a whole. For that I will use the geometric average of the individual measures, i.e.

r̄(θ) =

(
k∏
i=1

r(θi)

) 1
k

(2.10)

Here the individual measures are weighted equally, which means that the parame-

ters are considered to be equally important. When this is not the case, the weighted

geometric average should be used instead. Denoting the weights by w1, w2, . . . , wk, the

weighted measure of overall strength of identification is

r̄w(θ) = exp

(∑k
i wir(θi)∑k

i wi

)
(2.11)
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Note that these quantities are independent of the units of measurement. Thus, they can

be compared for different elements or values of θ.

The causes of weak identification may be expressed as in (2.3) and (2.4) by replacing

the ”=” sign with ”≈”. This means that the likelihood is almost, though not completely,

flat with respect to one component of θ in the first case, or with respect to a set of

parameters - in the second. The weak identification version of (a) is equivalent to

having a very small variance of i-th component of the score vector ∂`T (θ0)
∂θ

; the one in

(b) is equivalent to having strong linear dependence, or near-collinearity, among the

components of the score. To isolate the effects of these two causes we can factorize the

information matrix as follows:

I(θ0) = D
1
2 Ĩ(θ0)D

1
2 (2.12)

where D = diag(IT (θ0)) is a diagonal matrix containing the variances of the elements

of the score vector, and Ĩ(θ0) is the correlation matrix of the score vector. It is straight-

forward to show that the asymptotic variance of θ̂i can be expressed as4

var(θ̂i) =
1

TDi

(
1

1− %2
i

)
(2.13)

where Di is the i-th element of D, and %i is the multiple correlation coefficient between

the i-th element and all other elements of the score. From (2.13) the variance of θ̂i is

large if either Di - the variance of ∂`T (θ0)
∂θi

, is small, or if %i - the degree of collinearity

between ∂`T (θ0)
∂θi

and the other elements of the score, is strong.

The decomposition in (2.13) is useful to researchers who wish to find out what

features of the model lead to identification problems for some parameters. Consider the

first term. A very small variance of ∂`T (θ0)
∂θi

means that the likelihood is very insensitive

to θi, or, in other words, that the statistical implications of that parameter are hard to

detect. Hence, the economic feature represented by θi is not very important empirically.

Note that ∂`T (θ0)
∂θi

and its variance are not scale invariant, i.e. it matters in what units

the parameters in θ are measured. A unit-free measure is θi
∂`T (θ0)
∂θi

- the elasticity of

the likelihood with respect to θi. Thus, instead of Di we should compare θ2
iDi to asses

4This follows from the fact that the diagonal of the inverse of the correlation matrix contains the
squared multiple correlation coefficients, see e.g. Tucker, Cooper, and Meredith (1972)
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the relative importance of the elements of θ. The second term in (2.13) captures the

fact that there may be some degree of overlap between the statistical implications of

different parameters. The closer is %i to one, the more difficult it is to distinguish θi

from the other elements of θ. In that sense we may say that, from an empirical point

of view, the economic feature represented by θi is nearly redundant, given the other

features of the model.

It is important to remember that the conclusions from such analysis are conditional

on the statistical model one uses to evaluate the underlying economic model. A partic-

ular statistical model, be it the joint density of the variables in x, or a set of moments

of these variables, may not capture all empirical implications of the economic model.

For instance, DSGE models are typically estimated using a relatively small subset of

the endogenous variables in the model. Parameters that are nearly irrelevant with re-

spect to those variables may achieve a much sharper identification from variables that

are not used in the analysis. Moreover, DSGE models are usually estimated using only

first and second moments of the data. Unless the structural shocks are truly Gaus-

sian, higher moments would provide additional information about the parameters that

may make identification stronger. Yet another caveat to making conclusions about the

economic relevance of weakly identified parameters, is that we usually study an ap-

proximation of a DSGE model, typically a log-linearized version, and not the original

system. Consequently, parameters which play a very distinct economic role in the model

before approximation, may become redundant after that. I will show how to separate

the statistical from the the purely model-related aspects of identification in the next

section.

3 DSGE Models

3.1 Structural model and reduced form

A DSGE model is summarized by a system of non-linear equations. Currently, most

studies involving either simulation or estimation of DSGE models use linear approxima-

tions of the original models. That is, the model is first expressed in terms of stationary

variables, and then linearized around the steady-state values of these variables. Once
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linearized, most DSGE models can be written in the following form:

Γ0(θ)zt = Γ1(θ) Et zt+1 + Γ2(θ)zt−1 + Γ3(θ)ut (3.1)

where zt is a m−dimensional vector of endogenous and exogenous state variables, and

the structural shocks ut are independent and identically distributed n-dimensional ran-

dom vectors with Eut = 0, Eutu
′
t = In. The elements of the matrices Γ0, Γ1, Γ2 and

Γ3 are functions of a k−dimensional vector of deep parameters θ, where θ is a point

in Θ ⊂ Rk. The parameter space Θ is defined as the set of all theoretically admissible

values of θ.

There are several algorithms for solving linear rational expectations models (see

for instance Blanchard and Kahn (1980), Anderson and Moore (1985), Klein (2000),

Christiano (2002), Sims (2002)). Depending on the value of θ, there may exist zero,

one, or many stable solutions. Assuming that a unique solution exists, it can be cast in

the following form

zt = A(θ)zt−1 +B(θ)ut (3.2)

where the m×m matrix A and the m× n matrix B are unique for each value of θ.

The model in (3.2) cannot be taken to the data directly since some of the variables

in zt are not observed. Instead, the solution of the model is expressed in a state space

form, with a transition equation given by (3.2), and a measurement equation

xt = s(θ) +C(θ)zt (3.3)

where xt is a l-dimensional vector of observed state variables, s is a l-dimensional

vector, and C is a l × m matrix. I will use τ to denote the vector of all parameters

characterizing the reduced-form of the model, i.e. τ = [s′, vec(A)′, vec(C)′, vech(Ω)′]′,

where Ω(θ) = B(θ)B(θ)′.

3.2 Log-likelihood function and the Information matrix

The log-likelihood function of the data X = [x1, . . . ,xT] is derived using the predic-

tion error method whereby a sequence of one-step ahead prediction errors et|t−1 =

xt − s − Cẑt|t−1 is constructed by applying the Kalman filter to the obtain one-

step ahead forecasts of the state vector ẑt|t−1. Assuming that the structural shocks
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ut are jointly Gaussian, it follows that the conditional distribution of et|t−1 is also

Gaussian with zero mean and covariance matrix given by St|t−1 = CPt|t−1C
′, where

Pt|t−1 = E
(
zt − ẑt|t−1

) (
zt − ẑt|t−1

)′
is the conditional covariance matrix of the one-

step ahead forecast, and is also obtained from the Kalman filter recursion. This implies

that the log-likelihood function of the sample is given by

`T (θ) = const.− 1

2

T∑
t=1

log det(St|t−1)− 1

2

T∑
t=1

e
′

t|t−1S
−1
t|t−1et|t−1 (3.4)

The ML estimator θ̂T is the value of θ ∈ Θ which maximizes (3.4). Following the

discussion in Section 2, we can measure the precision of θ̂T using the inverse of the Fisher

information matrix. The next result, due to Klein and Neudecker (2000), provides an

explicit expression for the Fisher information matrix for Gaussian models.

Theorem 2. The expected Fisher information matrix is given by

IT (θ) =
T∑
t=1

E

[(
∂et|t−1

∂θ′

)′
S−1
t

(
∂et|t−1

∂θ′

)]
+

1

2

T∑
t=1

(
∂vec(St)

∂θ′

)′
(St ⊗ St)−1

(
∂vec(St)

∂θ′

)
(3.5)

The asymptotic information matrix, defined as the limit of (3.5), can be computed

using the following result (see Ljung (1999))

Theorem 3. Let S∞ = CP∞C
′, where P∞ = lim

T→∞
Pt|t−1 is the steady state covariance

matrix of the one-step ahead forecast vector ẑt|t−1. Then

I(θ) = E

[(
∂et|t−1

∂θ′

)′
S−1
∞

(
∂et|t−1

∂θ′

)]
+

1

2

(
∂vec(S∞)

∂θ′

)′
(S∞ ⊗ S∞)−1

(
∂vec(S∞)

∂θ′

)
(3.6)

To evaluate either (3.5) or (3.6), one needs the derivatives of the reduced-form ma-

trices A,Ω and C with respect to θ. Explicit formulas for computing these derivatives

can be found in Iskrev (2009). Therefore, the full information matrix and all measures

of identification strength discussed earlier can be evaluated analytically.
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Since the Gaussian assumption is sometimes difficult to justify, it is important to un-

derstand the role it plays here. It has two important consequences. First, the likelihood

function involves only first and second-order moments of the data. Therefore, for an

efficient estimation of the parameters it is sufficient to use the model-implied restrictions

on these moments only. Second, the Gaussian assumption facilitates the computation

of the optimal weights one should place on the restrictions to achieve efficiency. To see

this, note that the ML estimator can be interpreted as a generalized method of mo-

ments (GMM) estimator, where the moment function is the score vector. The optimal

weighting matrix, given by the inverse of the variance of the score, is not available in

closed-form unless Gaussianity is assumed. It can be shown that the inverse of the in-

formation matrix (3.6) is smaller than the asymptotic covariance matrix of an efficient

GMM estimator for a general distribution. Thus, the confidence intervals computed

using the information matrix provide an upper bound on the strength of identification

for general statistical models that utilize only first and second moments.

3.3 A priori analysis of identification

From the earlier discussion it follows that the information matrix is all one needs to

check the identifiability and to evaluate the strength of identification of the parameters

in a model. Therefore, the result presented in the previous section provides us with the

necessary tool to study identification in DSGE models. Consider what is involved in the

computation of information matrix in (3.5) and (3.6). Taking the linearized structural

model in (3.1) together with the assumption about the distribution of u as given, the

expected Fisher information matrix depends on: (1) the true value of θ, (2) the set of

observed variables in x, and, in the case of (3.5), on (3) the number of observations T .

That identification is parameter-dependent is a property of all non-linear models,

and implies that θ may be identifiable in some regions of the parameter space, and

unidentified in others. Similarly, identification may be strong in some regions and weak

in others. Unless one has an a priori knowledge of the exact true value of θ, one has to

study the properties of the information matrix at all theoretically plausible values, i.e.

everywhere in Θ. I will return to this point later. The set of observed variables may be

considered as a part of the econometric model, and in that sense as given. The practice

in the empirical DSGE literature, however, shows that it is to some extent a matter

of choice how many and which macroeconomic variables to include in the estimation.
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The relevance of this for identification is that some parameters may be well identified if

certain endogenous variables are included in x, and poorly identified or unidentified if

these variables are treated as unobserved. Finally, the value of T enters directly in the

computation of IT (θ), and therefore may affect the rank of that matrix. Having more

observations may help identify parameters which are otherwise unidentifiable. Naturally,

the sample size also matters for the strength of identification of θ. This is seen from

(2.7), where the volume of the joint confidence sets is inversely proportional to T .

The effect on identification of having different sets of observables can be investigated

by making the appropriate changes in C, the matrix which selects the observed among

all model variables (see equation (3.3)). Similarly, the effect of having data sets of

different sample size is straightforward to find by changing the value of T . Fixing these

two dimensions of the statistical model, one can study how identification varies with

the value of θ by evaluating the information matrix at all points in the parameter

space. There are two problems with implementing this in practice. First, it is usually

impossible to know, before solving the model, for which values of θ there are either zero

or many solutions. Such points are typically deemed as inadmissible, and have to be

excluded from Θ. A second problem arises from the fact that there are infinitely many

points in Θ, and it is not feasible to evaluate the information matrix at all of them. In

view of these difficulties, one approach is to start by specifying a larger set Θ′, such

that the parameter space Θ is a subset of Θ′, and evaluate the information matrix at

a large number of randomly drawn points from Θ′, discarding values of θ that do not

imply a unique solution. The set Θ′ may be constructed by specifying a lower and an

upper bound for each element of θ. Such bounds are usually easy to come by from the

economic meaning of the deep parameters. An alternative approach is to define Θ′ by

specifying some univariate probability distribution for each parameter θi. The benefit

of this approach is that, by choosing the shape and parameters of the distribution, one

can achieve a better coverage of the parts of the space that are believed to be more

plausible. In practice the choice of distributions may follow the logic of specifying a

prior distribution for a Bayesian estimation of DSGE models (see e.g. Del Negro and

Schorfheide (2008)).

It should be stressed that the information matrix approach for identification analysis

applies only to full information methods. Identification with full information is neces-
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sary but not sufficient for identification with limited information. The same applies to

the strength of identification - a well identified model may still suffer from weak identi-

fication problems if the statistical model is a limited information one. Thus, if a DSGE

model is to be estimated with methods, such as impulse response matching, that do

not utilize all model-implied restrictions on the distribution of the data, identification

should be studied differently. A general rank condition for local identification in DSGE

models, which applies to any estimation approach that utilizes only second moments of

the data, is developed in Iskrev (2009). Applying that result, one can determine if θ is

identifiable from, for instance, the covariance and first-order autocovariance matrix of

some observable endogenous variables. This is useful to know even in a full information

setting since identification with limited information is sufficient, though not necessary,

for identification with full information methods. Thus, finding that the rank condition

in Iskrev (2009) is satisfied for some small number of second moments obviates the need

to compute the information matrix, which is generally more computationally expensive.

A second necessary condition for identification from Iskrev (2009), that does not de-

pend on statistical model and the distributional assumptions in particular, concerns the

invertibility of the mapping from τ - the reduced-form parameters, to θ. Note that by

the chain rule we have:

∂`T (θ0)

∂θ′
=
∂`T
∂τ ′

∂τ

∂θ′
(3.7)

and therefore the information matrix may be written as

IT = E

[(
∂τ

∂θ′

)′{(
∂`T
∂τ ′

)′(
∂`T
∂τ ′

)}(
∂τ

∂θ′

)]
(3.8)

Thus, the Jacobian matrix ∂τ
∂θ′

must have full column rank in order for IT and

its limit I to be non-singular. If this condition does not hold some deep parameters

are unidentifiable for purely model-related reasons, not because of deficiencies of the

statistical model or lack of observations for some model variables. Furthermore, the

conditioning of the Jacobian matrix, when it has full column rank, has implications

for the strength of identification of θ. From (3.7) it is clear that the two types of

weak identification problems discussed in Section 2 may be due to either one of the

following two transformations - from θ to τ , or from τ to `T , or to both. The second

transformation is partially determined by data limitations - how many and which of the
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model variables are included, and the number of observations. The first one depends

only on the model, and the Jacobian matrix measures how sensitive are the elements of

τ to those of θ. A very low sensitivity means that relatively large changes in some deep

parameters have a very small impact on the value of τ . Consequently, these parameters

would be difficult to pin down even if one had data for all endogenous variables in

the model, instead of only some of them. In that sense we may say that such deep

parameters are poorly identified in the model. To find out what parameters are poorly

identified, as well as what features of the model are causing the problem, one may

proceed as in Section 2. Specifically, θi is weakly identified if either one of the following

two conditions holds:

(a) τ is insensitive to changes in θi, i.e.∥∥∥∥∂τ∂θi θi
∥∥∥∥ ≈ 0 (3.9)

(b) The effect on τ of changing θi can be well approximated by changing other pa-

rameters in θ, i.e.

cos

(
∂τ

∂θi
,
∂τ

∂θ−i

)
≈ 1 (3.10)

If (a) is true, changing θi while keeping the other deep parameters fixed has almost

no effect on τ . We need to multiply by θi in order to make the measure unit-free. If

(b) is true, we can alter several elements of θ simultaneously and have almost the same

value of the reduced-form parameters. Note that this is equivalent to having strong

collinearity among the columns of the Jacobian matrix ∂τ
∂θi

. We can quantify the degree

of collinearity with the cosine of the angle between the vector ∂τ
∂θi

, and the space spanned

by the other columns of ∂τ
∂θ

. I will refer to (3.10) as the coefficient of multiple collinearity.

Note that we can similarly compute the degree of linear dependence between ∂τ
∂θi

and

any number of other columns of the Jacobian matrix, and thus quantify the similarity

between θi and a selected set of other deep parameters. As a special case we have the

coefficient of pairwise collinearity, defined as the cosine of the angle between only two

columns of ∂τ
∂θ

.
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4 Application: Identification in the Smets and

Wouters (2007) model

In this section I illustrate the identification analysis tools discussed above using a

medium-scale DSGE model estimated in Smets and Wouters (2007) (SW07 henceforth).

The model, based on the work of Smets and Wouters (2003) and Christiano, Eichen-

baum, and Evans (2005), is an extension of the standard RBC model featuring a number

of nominal frictions and real rigidities. I start with an outline of the main features of

the model, and then turn to the identification of the parameters.

4.1 The model

The model, based on the work of Smets and Wouters (2003) and Christiano, Eichen-

baum, and Evans (2005), is an extension of the standard RBC model featuring a number

of nominal frictions and real rigidities. These include: monopolistic competition in goods

and labor markets, sticky prices and wages, partial indexation of prices and wages, in-

vestments adjustment costs, habit persistence and variable capacity utilization. The

endogenous variables in the model, expressed as log-deviations from steady state, are:

output (yt), consumption (ct), investment (it), utilized and installed capital (kst , kt), ca-

pacity utilization (zt), rental rate of capital (rkt ), Tobin’s q (qt), price and wage markup

(µpt , µ
w
t ), inflation rate(πt), real wage (wt), total hours worked (lt), and nominal interest

rate (rt). The log-linearized equilibrium conditions for these variables are presented in

Table 1. The last equation in the table gives the policy rule followed by the central

bank, which sets the nominal interest rate in response to inflation and the deviation of

output from its potential level. To determine potential output, defined as the level of

output that would prevail in the absence of the price and wage mark-up shocks, the set

of equations in Table 1 is extended with their flexible price and wage version (see Table

2). The model has seven exogenous shocks. Five of them - to total factor productiv-

ity, investment-specific technology, government purchases, risk premium, and monetary

policy - follow AR(1) processes; the remaining two shocks - to wage and price markup,

follow ARMA(1, 1) processes.

The model is estimated using data of seven variables: output growth, consumption

growth, investment growth, real wage growth, inflation, hours worked and the nominal
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interest rate. Thus, the vector of observables is given by

xt = [yt − yt−1, ct − ct−1, it − it−1, wt − wt−1, πt, lt, rt, ]
′ (4.1)

and the constant term in the measurement equation (3.3) is given by

s =
[
γ̄, γ̄, γ̄, γ̄, π̄, l̄, r̄

]′
(4.2)

where γ̄ is the growth rate of output, consumption, investment and wages, π̄ is the

steady state rate of inflation, l̄ is the steady state level of hours worked and r̄ is the

steady state nominal interest rate.

The deep parameters of the model are collected in a 41-dimensional vector θ given

by5

θ = [δ, λw, gy, εp, εw, ρga, β, µw, µp, α, ψ, ϕ, σc, λ,Φ, ιw, ξw, ιp, ξp, σl,

rπ, r4y, ry, ρ, ρa, ρb, ρg, ρI , ρr, ρp, ρw, γ, σa, σb, σg, σI , σr, σp, σw, π̄, l̄]
′ (4.3)

4.2 Identification Analysis

Before proceeding with the identification analysis, I need to complete the description

of the economic model, by specifying a parameter space, and to add a description of

the statistical model, namely, what are the observed variables and what is the sample

size. In my baseline specification I follow SW08. Therefore, the parameter space is

determined as explained in Section 3.3, with Θ′ given by the prior distribution in SW07

(see Table 3).

The identifiability of the parameters in SW07 was studied in Iskrev (2009), and

the following was found: 37 out of the 41 parameters in (4.3) locally identified; the

remaining four parameters - ξw, ξp, εw andεp, are not separately identifiable in the sense

that ξw and εw cannot be distinguished in the linearized model, and neither can ξp and

εp. Given these findings, below I study the strength identification of a 39-dimensional

vector θ, obtained by removing εw, and εp from the list of parameters in (4.3).

5Note that by definition γ̄ = 100(γ−1), and r̄ is determined from the values of β, σc, γ and π̄ from
r̄ = 100( π̄γ

σc

β − 1).
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The results I report below are based on 100, 000 randomly drawn points from Θ.

Table 4 provides information about the strength of identification of θ at three of these

points, corresponding to the minimum, median and maximum value of r̄(θ), computed,

as in all of following tables, for α = .1. In addition to the value of r̄(θ), shown in the

last row, the table presents the values of r(θi) for each parameter in the columns labeled

with r. The results suggest that there are points in the parameter space where almost

all parameters are reasonably well identified. This is seen in the first column, where the

values of r(θi) are quite small for all parameters except ρga. However, many parameters

appear to be poorly identified in large regions of the parameter space. This is seen from

the fourth column, corresponding to the median value of r̄(θ), where the value of r(θi)

exceeds 1.2 for one third of the parameters. This implies that the length of the 90%

confidence interval is more than 240% of the true value of θi. Furthermore, the values of

r(θi) at the worst identified point, shown in column 7, indicate that several parameters,

namely λw, β, µp, ξw, and ρp may be extremely poorly identified.

To get a sense of why some parameters are well identified and other are not, I use the

factorization of var(θ̂i) discussed in Section 2. In particular, I express r(θi) as follows

r(θi) =

( √
cα

|θi|
√
Di

)(
1√

1− %2
i

)
(4.4)

The first term, which I denote with r1, measures the sensitivity of the likelihood with

respect to θi, and tells us what r(θi) would be if θi was the only free parameter.6 The

second term, denoted with r2, captures the interdependence among the parameters, and

reflects the fact that there is a loss of information for each individual parameter when

there are other free parameters.

The columns labeled r1 and r2 in Table 4 suggest that most poorly identified param-

eters suffer from a severe parameter interdependence problem. This is indicated by the

very large values found in the r2 columns of the table. For instance, r2 = 7 implies that

%i = .99 in (4.4). The exceptions, for which poor identification is mostly due to a very

low sensitivity of the likelihood, are ρga and β.

6Note that r2 is bounded from below by 1, and r(θi) = r1(θi) when θi is either independent from
the other parameters, or is the only estimated parameter.
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The results in Table 4 refer to the distribution of r̄(θ) and are not necessarily fully

informative about the individual parameters. In order to assess the identification of

each element of θ separately, we need to consider the distributions of r(θi). Table 5

presents the extreme values and the four quintiles of the distribution of r(θi) for each θi.

The numbers confirm the conjecture made earlier that many of the parameters are quite

poorly identified in most points of the parameter space, and some of them, namely λw,

β, ϕ, σc, ξw, σl, ry, ρp and ρw, are very poorly identified almost everywhere. Parameters

that are relatively well identified are: α, h, Φ, ξp, ρ, and the volatility parameters of the

exogenous shocks (σa, σb, σg, σI , σr, σp, σw).

The values of r(θi) in Table 5 result from the interaction of the two terms, r1 and r2,

in the decomposition shown in (4.4). Table 6 shows the values of r1 associated with the

numbers for r(θi) in Table 5. It is apparent that almost all parameters would be well

identified on their own, i.e. if they were the only ones we estimate. Exceptions are rga,

β, ry and to a lesser degree δ and ρg. This implies that in most cases the identification

problems are caused by strong parameter interdependence, leading to large values of r2.

This is confirmed by the numbers in Table 7, where instead of r2 I present the values

of %i, which are bounded between 0 and 1 and are therefore easier to interpret than r2.

For more than half of the parameters the value of %i exceeds .9 in at least 60% of the

points, and for λw, σc, and ξw it is very close to 1 virtually everywhere in the parameter

space.

Strong parameter interdependence indicates that many features of the model are

difficult to distinguish on the basis of the particular statistical model I have considered.

Perhaps using more or different economic variables in the analysis would help us with

the identification of some parameters, if their statistical implications for those variables

are stronger and more distinct. However, it may also be that some parameters play

very similar roles in the structural model, and would be difficult to distinguish with any

statistical model. As was explained in Section 3.3, we can answer the second question

by studying the Jacobian matrix of the reduced-form parameters τ with respect to θ.

Since τ fully characterizes the equilibrium dynamics of all endogenous variables, deep

parameters that have similar effects on τ will be hard to identify separately on the basis

of any subset of the model variables. Table 8 provides a summary of the distribution of
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the multiple collinearity coefficient, defined in (3.10), which measures the angle between
∂τ
∂θi

and the projection of this vector onto the space spanned by the other columns of ∂τ
∂θ

.

Values close to one imply that the two are nearly collinear, and the effect of varying θi

can be offset to a large extent by changing other deep parameters. The results indicate

that the severe interdependence problem observed in Table 7 largely originates in the

structural model, and is not caused be limitations in the statistical model.

The results in Table 8 suggest that the SW07 model contains too many features,

some of which are nearly redundant given the other features present in the model.

Consequently, the parameters that represent such features are difficult to identify and

estimate. The most severely affected parameters are: λw, σc, h, ξw, ξp, σl, rπ, ry and

ρ. We can go a step further and ask which ones among all other 35 parameters are

the most important ones in replicating the effect of a given deep parameter on τ . It

is reasonable to expect that only a small subset of them - those representing closely

related features of the theoretical model, will be important, while the others have only

a marginal contribution. Finding the important parameters, therefore, would shed light

on the relationships among the model parameters and the features they represent. A

simple way to address this question is to compute pairwise collinearity coefficients, that

is, angles between two columns of the Jacobian matrix ∂τ
∂θ

, instead of the multiple

collinearity coefficients used above. Doing this, we find that, for instance, the degree

of similarity between the wage markup parameter λw and wage stickiness parameter ξw

varies between .8211 and .9991. Furthermore, for both of these parameters the pairwise

relationship is always stronger between the two than with any other parameter. Thus,

we may conclude that the large multiple collinearity coefficients for these two parameters

are primarily due to the strong pairwise dependence between them. However, it is not

as simple to explain the large values in Table 8 for some of the other parameters listed

above. For instance, at the point where the multiple collinearity coefficient for the price

stickiness parameter ξp is .81, the strongest pairwise collinearity for that parameter is

with the wage indexation parameter ιw, with a coefficient of only .38. Moreover, at other

points in the parameter space the strongest pairwise collinearity for ξp is not with ιw but

with either ιp, ρp or Φ. Similar lack of a stable and strong two-parameter relationship

is observed for most of the other deep parameters. This suggest that the parameter

interdependence problem in the SW07 model in most cases involves more than two deep

parameters.
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The problem of selecting a small set of parameters that are most useful for approx-

imating the effect of a given deep parameter θi on τ , is similar to that of choosing a

few among many potential predictors in a linear regression model. Various methods

for doing this have been developed in the variable selection literature. I use a method

called elastic net, which, besides its simplicity, has the advantage of allowing for group-

ing among the predictors. This means that the method will select a variable even if

its marginal contribution is small, if that variable is strongly correlated with another

included predictors (see Zou and Hastie (2005) for details). For instance, since λw and

ξw are strongly related in the SW07 model, both will be selected by the elastic net if

any one of them is useful for approximating the effect of a third variable on τ . Simi-

larly, additional parameters may be selected to approximate the effect of λw on τ , even

though their marginal contribution is small once ξw is included.

The elastic net procedure was used to select small subsets of deep parameters that

are most functionally similar to each one of the nine worst identified parameters listed

above. The result can be seen in the last column of Table 9. The table also reports

the values of the multiple correlation coefficients one obtains when these subsets of all

elements of θ are used. To facilitate the comparison with Table 8, the coefficients are

evaluated at the same points in the parameter space. Therefore, for instance, at the

point where the multiple correlation of σc with all other deep parameters is .98, the

coefficient is .93 if only gy, h and σl are included.

The list of parameters shown in the last column of Table 9 was compiled after

an extensive experimentation with the tuning parameters of the elastic net procedure

applied to many different points in the parameter space. It should be stressed, however,

that it is always possible to improve the approximations by including many additional

parameters. Moreover, there are points in the parameter space where some of the

parameters included in the list may be replaced by other, and, by doing so, increase quite

substantially the value of the collinearity coefficients. Table 9 is only an demonstration

of the fact that it is possible to select a robust and yet parsimonious list of parameters,

which generally manage to replicate quite well the role of a given deep parameter in the

linearized model.
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To summarize, the objective in this section was the illustrate the a priori approach

to parameter identification analysis in DSGE models, and to demonstrate the types of

questions one can investigate using the tools developed in the paper. Although this

should not be considered to be a complete and comprehensive study of identification in

the SW07 model, several conclusions emerge that appear quite robust. First, most iden-

tifiable parameters in the model seem to be very poorly identified. Interestingly, among

the worst identified ones is the wage markup parameter λw, which Smets and Wouters

(2007) assert to be “clearly unidentifiable”. Strictly speaking this statement is false,

but given how poorly identified λw is, it may be classified as practically unidentifiable.

However, if we are to apply the same standard to all parameters, also unidentifiable are

the following: the discount rate β, the wage stickiness ξw, and the response to output

gap in the Taylor rule ry. Second, in most cases the identification weakness stems from a

very strong parameter interdependence problem. This means that different parameters

have very similar empirical implications, and are thus difficult to distinguish when the

model is estimated. Third, in principle the parameter interdependence problem may be

alleviated if more variables are included in the analysis. This is not likely in the SW07

model however, since many deep parameters were found to have similar effects on the

parameters describing the equilibrium law of motion of the economy. Thus, parameter

interdependence would still be a serious problem even if all endogenous variables were

observed.

An important point that should be remembered is that identification is a parameter-

dependent property of most models. Therefore, in spite of the conclusion that the

SW07 model is generally poorly identified, as we saw in Table 4 there exist points

in the parameter space where all parameters are very well identified. One may ask

how well identified are parameter values that are not only theoretically admissible but

also empirically relevant. To find that out, we should examine the information matrix

evaluated at the parameter values obtained when the model is estimated for a given set

of data. This is done in Table 10 for the posterior mean value of θ reported in Smets and

Wouters (2007). In columns 2 to 4 are shown the mean, the 5-th and 95-th percentile of

the posterior distribution; columns 5 and 6 show the lower and upper bound of the 90%

confidence intervals; the last three columns show the relative measures of identification

strength, defined in (4.4). Although they are conceptually quite different, it is interesting

to compare the 90% confidence intervals with their Bayesian counterparts. Doing this
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provides some indication of the contribution of the prior knowledge, including the fact

that δ, λw and gy are assumed known in Smets and Wouters (2007). On average,

the confidence intervals are about 7.5 times wider than the corresponding Bayesian

credibility intervals. Particularly striking is the difference for h, α, and β; for them the

confidence intervals are 11, 13, and 65 times wider, respectively. Note, however, that

for many parameters the confidence intervals cover regions which are not part of the

parameter space. As was already discussed in section 2, such a priori restrictions on the

parameter values are not accounted for in the measure of weak identification. Overall,

the results suggest that the prior mean is very weakly identified from the likelihood only,

and that this particular point is among the worst identified points in the parameter

space. This can be seen by comparing the values of r(θi) with those reported in Table

5. For all parameters except µw, µp, ρa, ρg and ρp the values of r(θi) are in the upper

tails of the distributions.

5 Concluding Remarks

There are two main reasons why we should care about identification in DSGE mod-

els. First, using such models for policy analysis hinges upon having reliably estimated

parameters. Obtaining such estimates is impossible when identification fails or is very

weak. Second, identification failures often have their roots in the underlying model and

the economic theory that motivated it. Thus, detecting identification problems and

investigating the causes leading to them may provide useful insights to researchers who

are not interested in estimation.

This paper develops a new framework for analyzing parameter identification in lin-

earized DSGE models. By following the steps and applying the tools described here,

researchers can assess how well identified the model parameters are, and determine the

causes for identification problems when they occur. The main advantage of the method-

ology is that it does not involve simulation or estimation. This makes it suitable for

analysis of large and complicated models prior to their empirical evaluation.

An important lesson learnt from the application of the methodology is that the

identification properties of a model are strongly dependent on the parameter values,

and may change quite dramatically across different regions in the parameter space.
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Therefore, it is a mistake to label a model as “weakly identified” or “strongly identified”,

unless it is determined that either one of this conclusions applies to the large majority

of the theoretically plausible parameter values. Unfortunately, the results indicate that

the parameters in the Smets and Wouters (2007) model are quite poorly identified in

most of the parameter space. The analysis also shows that the identification problems

are largely due to the structure of the model, and could not be resolved by extending

the set of observed variables. Thus, it may be concluded that this and other similar

models are indeed nearly overparameterized, as has been suggested in the literature.

One limitation of the approach in this paper is that it cannot detect certain types

of global identification problems. It is possible that some parameters are well identified

locally, and yet globally unidentifiable or poorly identified. Such identification failures

are less common, but not impossible. Unfortunately, they are very difficult to discover

in large and highly non-linear models as those estimated in the DSGE literature.
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Table 1: Log-linearized equations of the SW07 model (sticky-price-wage economy)

(1) yt = cyct + iyit + rksskyzt + εgt

(2) ct =
λ/γ

1 + λ/γ
ct−1 +

1
1 + λ/γ

Et ct+1 +
wsslss(σc − 1)
cssσc(1 + λ/γ)

(lt − Et lt+1)

− 1−λ/γ
(1+λ/γ)σc

(rt − Et πt+1)− 1−λ/γ
(1+λλ/γ)σc

εbt

(3) it = 1
1+βγ(1−σc) it−1 + ββγ(1−σc)

1+βγ(1−σc) Et it+1 + 1
ϕγ2(1+βγ(1−σc))

qt + εit

(4) qt = β(1− δ)γ−σc Et qt+1 − rt + Et πt+1 + (1− β(1− δ)γ−σc) Et rkt+1 − εbt

(5) yt = φp(αkst + (1− α)lt + εat )

(6) kst = kt−1 + zt

(7) zt = 1−ψ
ψ rkt

(8) kt = (1− δ)/γkt−1 + (1− (1− δ)/γ)it + (1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit

(9) µpt = α(kst − lt)− wt + εat

(10) πt = βγ(1−σc)

1+ιpβγ(1−σc) Et πt+1 + ιp
1+βγ1−σc ιp

πt−1 − (1−βγ(1−σc)ξp)(1−ξp)

(1+ιpβγ(1−σc))(1+(φp−1)εp)ξp
µpt + εpt

(11) rkt = lt + wt − kt

(12) µwt = wt − σllt − 1
1−λ/γ (ct − λ/γct−1)

(13) wt = βγ(1−σc)

1+βγ(1−σc) (Etwt+1 + Et πt+1) + 1
1+βγ(1−σc) (wt−1 + ιwπt−1)− 1+βγ(1−σc)ιw

1+βγ(1−σc) πt

− (1−βγ(1−σc)ξw)(1−ξw)

(1+βγ(1−σc))(1+(φw−1)εw)ξw
µwt + εwt

(14) rt = ρrt−1 + (1− ρ)(rππt + ry(yt − y∗t )) + r4y((yt − y∗t )− (yt−1 − y∗t−1)) + εrt

(15) εat = ρaε
a
t−1 + ηat

(16) εbt = ρaε
b
t−1 + ηbt

(17) εgt = ρgε
a
t−1 + ρgaη

a
t + ηgt

(18) εit = ρIε
I
t−1 + ηIt

(19) εrt = ρrε
r
t−1 + ηrt

(20) εpt = ρpε
p
t−1 + ηpt − µpη

p
t−1

(21) εwt = ρwε
w
t−1 + ηwt − µwηwt−1

Note: The model variables are: output (yt), consumption (ct), investment (it), utilized and
installed capital (kst , kt), capacity utilization (zt), rental rate of capital (rkt ), Tobin’s q (qt),
price and wage markup (µpt , µwt ), inflation rate(πt), real wage (wt), total hours worked (lt),
and nominal interest rate (rt). The shocks are: total factor productivity (εat ),
investment-specific technology (εit), government purchases (εgt ), risk premium (εbt), monetary
policy (εrt ), wage markup (εwt ) and price markup (εpt ).
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Table 2: Log-linearized equations of the SW07 model (flexible-price-wage economy)

(1) y∗t = cyc
∗
t + iyi

∗
t + rksskyz

∗
t + εgt

(2) c∗t =
λ/γ

1 + λ/γ
c∗t−1 +

1
1 + λ/γ

Et c∗t+1 +
wsslss(σc − 1)
cssσc(1 + λ/γ)

(l∗t − Et l∗t+1)

− 1−λ/γ
(1+λ/γ)σc

r∗t −
1−λ/γ

(1+λλ/γ)σc
εbt

(3) i∗t = 1
1+βγ(1−σc) i

∗
t−1 + ββγ(1−σc)

1+βγ(1−σc) Et i∗t+1 + 1
ϕγ2(1+βγ(1−σc))

q∗t + εit

(4) q∗t = β(1− δ)γ−σc Et q∗t+1 − r∗t + (1− β(1− δ)γ−σc) Et rk∗t+1 − εbt

(5) y∗t = φp(αks∗t + (1− α)l∗t + εat )

(6) ks∗t = k∗t−1 + z∗t

(7) z∗t = 1−ψ
ψ rk∗t

(8) k∗t = (1− δ)/γk∗t−1 + (1− (1− δ)/γ)i∗t + (1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit

(9) µp∗t = α(ks∗t − l∗t )− w∗t + εat

(10) µp∗t = 1

(11) rk∗t = l∗t + w∗t − k∗t

(12) µw∗t = −σll∗t − 1
1−λ/γ (c∗t + λ/γc∗t−1)

(13) w∗t = µw∗t

Note: The model variables are: output (y∗t ), consumption (c∗t ), investment (i∗t ), utilized and
installed capital (ks∗t , k

∗
t ), capacity utilization (z∗t ), rental rate of capital (rk∗t ), Tobin’s q (q∗t ),

price and wage markup (µp∗t , µw∗t ), real wage (w∗
t ), and total hours worked (l∗t ).
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Table 3: Prior Distribution and posterior mean

prior posterior

Parameter distr. mean stdd. lb ub mean
ρga B 0.5000 0.2500 0.0100 2.0000 0.5211
l̄ N 0.0000 2.0000 -10.0000 10.0000 0.5416
π̄ G 0.6250 0.1000 0.1000 2.0000 0.7852

100(β−1 − 1) G 0.2500 0.1000 0.0100 2.0000 0.1661
µw B 0.5000 0.2000 0.0100 0.9999 0.8414
µp B 0.5000 0.2000 0.0100 0.9999 0.6988
α N 0.3000 0.0500 0.0100 1.0000 0.1906
ψ B 0.5000 0.1500 0.0100 1.0000 0.5462
ϕ N 4.0000 1.5000 2.0000 15.0000 5.7439
σc N 1.5000 0.3750 0.2500 3.0000 1.3803
λ B 0.7000 0.1000 0.0010 0.9900 0.7140
Φ N 1.2500 0.1250 1.0000 3.0000 1.6043
ιw B 0.5000 0.1500 0.0100 0.9900 0.5891
ξw B 0.5000 0.1000 0.3000 0.9500 0.7007
ιp B 0.5000 0.1500 0.0100 0.9900 0.2437
ξp B 0.5000 0.1000 0.5000 0.9500 0.6503
σl N 2.0000 0.7500 0.2500 10.0000 1.8365
rπ N 1.5000 0.2500 1.0000 3.0000 2.0454
r4y N 0.1250 0.0500 0.0010 0.5000 0.2237
ry N 0.1250 0.0500 0.0010 0.5000 0.0876
ρ B 0.7500 0.1000 0.5000 0.9750 0.8084
ρa B 0.5000 0.2000 0.0100 0.9999 0.9577
ρb B 0.5000 0.2000 0.0100 0.9999 0.2167
ρg B 0.5000 0.2000 0.0100 0.9999 0.9764
ρI B 0.5000 0.2000 0.0100 0.9999 0.7106
ρr B 0.5000 0.2000 0.0100 0.9999 0.1513
ρp B 0.5000 0.2000 0.0100 0.9999 0.8914
ρw B 0.5000 0.2000 0.0010 0.9999 0.9682
γ N 0.4000 0.1000 0.1000 0.8000 0.4310
σa IG 0.1000 2.0000 0.0100 3.0000 0.4595
σb IG 0.1000 2.0000 0.0250 5.0000 0.2405
σg IG 0.1000 2.0000 0.0100 3.0000 0.5289
σI IG 0.1000 2.0000 0.0100 3.0000 0.4532
σr IG 0.1000 2.0000 0.0100 3.0000 0.2453
σp IG 0.1000 2.0000 0.0100 3.0000 0.1399
σw IG 0.1000 2.0000 0.0100 3.0000 0.2443
δ B 0.0250 0.0050 0.0100 0.4000 0.0250
λw N 1.5000 0.2500 1.0000 2.0000 1.5000
gy N 0.1800 0.0500 0.1500 0.2500 0.1800

Note: N is Normal distribution, B is Beta-distribution, G is Gamma
distribution, IG is Inverse Gamma distribution.
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Table 4: Overall identification of θ

Best Median Worst

Parameter r r1 r2 r r1 r2 r r1 r2

δ 0.0044 0.0006 6.8 1.71 0.36 4.76 5.55 1.60 3.5
λw 0.0067 0.0000 164.3 1.96 0.08 24.72 711.86 0.05 14519.9
gy 0.0080 0.0007 11.1 0.93 0.17 5.42 2.58 0.49 5.3
ρga 1.8911 0.1665 11.4 3.36 1.20 2.81 1.20 0.39 3.1

100(β−1 − 1) 0.0473 0.0024 19.7 15.60 2.15 7.27 74.47 12.77 5.8
µw 0.0539 0.0001 554.7 3.55 0.28 12.55 1.63 0.11 14.9
µp 0.0986 0.0110 9.0 2.20 0.15 14.64 69.77 0.26 266.2
α 0.0020 0.0002 11.6 0.70 0.12 5.83 2.93 0.37 8.0
ψ 0.0033 0.0002 19.1 0.96 0.15 6.36 2.30 0.49 4.7
ϕ 0.0080 0.0002 46.6 0.80 0.05 15.75 2.57 0.17 15.4
σc 0.0094 0.0001 73.2 0.59 0.05 12.43 2.62 0.10 26.1
h 0.0006 0.0000 33.5 0.31 0.02 12.35 0.45 0.05 8.7
Φ 0.0016 0.0001 17.3 0.25 0.03 7.52 0.28 0.05 5.7
ιw 0.0111 0.0004 27.0 0.46 0.12 3.99 0.98 0.26 3.8
ξw 0.0101 0.0000 240.4 1.25 0.05 24.25 623.42 0.04 14520.1
ιp 0.0202 0.0012 17.5 3.34 0.33 10.28 1.82 0.36 5.0
ξp 0.0095 0.0009 10.8 1.57 0.10 15.50 0.83 0.17 4.9
σl 0.0146 0.0002 81.4 1.24 0.17 7.42 2.48 0.39 6.3
rπ 0.0020 0.0002 10.8 0.76 0.02 36.18 2.32 0.20 11.7
r4y 0.0046 0.0008 5.5 0.76 0.06 13.43 1.29 0.23 5.7
ry 0.0080 0.0007 11.0 1.98 0.28 7.16 4.05 0.79 5.1
ρ 0.0013 0.0001 10.3 0.25 0.01 28.35 0.59 0.05 12.4
ρa 0.0192 0.0015 12.8 0.40 0.13 3.17 3.32 1.21 2.8
ρb 0.0120 0.0002 54.7 0.74 0.16 4.53 1.48 0.21 7.1
ρg 0.0198 0.0026 7.5 0.67 0.25 2.67 0.64 0.23 2.8
ρI 0.0037 0.0005 7.2 0.90 0.27 3.29 2.14 0.58 3.7
ρr 0.0080 0.0021 3.8 0.03 0.01 4.53 1.97 0.51 3.9
ρp 0.0235 0.0017 13.5 0.17 0.03 6.47 67.79 0.26 265.4
ρw 0.0098 0.0009 11.6 1.71 0.13 12.82 3.14 0.21 15.3
σa 0.3397 0.0340 10.0 0.43 0.15 2.87 0.52 0.15 3.5
σb 0.0001 0.0000 548.6 0.57 0.15 3.84 0.63 0.13 4.7
σg 0.3769 0.0637 5.9 0.41 0.15 2.79 0.58 0.15 3.9
σI 0.2937 0.0187 15.7 0.45 0.15 3.04 0.51 0.15 3.4
σr 0.3884 0.1324 2.9 0.67 0.15 4.52 0.42 0.15 2.8
σp 0.3910 0.1483 2.6 0.97 0.15 6.54 0.59 0.15 4.0
σw 0.3366 0.0182 18.5 0.52 0.16 3.38 0.49 0.14 3.5
r̄(θ) 0.016 0.82 2.53

Note: The table shows the results on the identification of θ at the points in the parameters space with the minimum,

the median and the maximum value of r̄(θ) =
(∏k

i=1 r(θi)
)1/k

. The identification strength of each parameter θi is

measured by r(θi) =

√
cα var(θ̂i)

θi
, and is decomposed into the product of r1(θ) and r2(θ), which capture the likelihood

sensitivity and the parameter interdependence aspect of identification, respectively. The results are based on 100, 000

draws from Θ and apply to the baseline statistical model with ct, lt, πt, wt, it, rt and yt as observed variables, and

T = 156. cα is the (1− α) quantile of the χ2(36) distribution, and α is set to .1.
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Table 5: Quantiles of the distribution of r(θi)

Parameter 0 .2 .4 .6 .8 1
δ 0.0033 0.42 0.73 1.09 1.68 8.2
λw 0.0067 0.97 1.58 2.49 4.84 22433.2
gy 0.0080 0.44 0.69 0.97 1.40 12.3
ρga 0.0008 0.56 0.99 1.71 3.50 792.0

100(β−1 − 1) 0.0366 4.13 6.53 9.35 14.21 169.3
µw 0.0077 0.42 1.37 2.73 5.83 68799.2
µp 0.0054 0.40 1.72 3.49 7.57 25032.2
α 0.0020 0.20 0.31 0.45 0.66 3.6
ψ 0.0031 0.33 0.52 0.73 1.04 5.9
ϕ 0.0080 0.69 0.95 1.21 1.54 4.0
σc 0.0094 0.62 0.88 1.14 1.47 3.7
h 0.0003 0.09 0.16 0.25 0.37 1.8
Φ 0.0016 0.10 0.15 0.20 0.28 1.3
ιw 0.0087 0.48 0.75 1.12 1.81 44.8
ξw 0.0101 0.97 1.55 2.39 4.57 17304.5
ιp 0.0050 0.32 0.52 0.80 1.37 22.0
ξp 0.0032 0.20 0.28 0.37 0.51 4.5
σl 0.0088 0.71 1.25 1.95 3.11 32.5
rπ 0.0010 0.38 0.63 0.92 1.39 10.2
r4y 0.0046 0.48 0.76 1.13 1.82 195.7
ry 0.0080 1.56 2.48 3.66 5.81 859.1
ρ 0.0007 0.12 0.20 0.28 0.38 1.4
ρa 0.0101 0.39 0.58 0.82 1.26 25.1
ρb 0.0011 0.23 0.41 0.62 0.97 28.1
ρg 0.0024 0.40 0.60 0.85 1.30 31.1
ρI 0.0015 0.28 0.41 0.57 0.84 18.9
ρr 0.0002 0.19 0.38 0.63 1.02 19.0
ρp 0.0092 0.75 1.52 2.92 6.76 25021.2
ρw 0.0098 0.63 1.24 2.31 5.38 68800.7
σa 0.0048 0.39 0.40 0.42 0.45 1.1
σb 0.0000 0.38 0.48 0.53 0.59 1.2
σg 0.0142 0.40 0.41 0.42 0.46 0.9
σI 0.0092 0.44 0.49 0.52 0.54 1.3
σr 0.0012 0.39 0.41 0.46 0.55 2.4
σp 0.1309 0.44 0.48 0.52 0.57 3.7
σw 0.0001 0.44 0.48 0.52 0.63 31.3

Note: Each row of the table shows the extreme values and the four quintiles of the

distribution of r(θi) =

√
cα var(θ̂i)

θi
, which measures the identification strength of θi. The

results are based on 100, 000 draws from Θ and apply to the baseline statistical model

with ct, lt, πt, wt, it, rt and yt as observed variables, and T = 156. cα is the (1− α)

quantile of the χ2(36) distribution, and α is set to .1.
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Table 6: Sensitivity component in the distribution of r(θi)

Quantiles of r(θi)

Parameter 0 .2 .4 .6 .8 1
δ 0.00003048 0.20 0.39 0.64 1.04 5.44
λw 0.00000966 0.02 0.04 0.07 0.13 0.90
gy 0.00003680 0.10 0.19 0.29 0.48 5.13
ρga 0.00000167 0.46 0.87 1.51 3.01 560.14

100(β−1 − 1) 0.00026126 0.78 1.53 2.54 4.31 65.06
µw 0.00000284 0.07 0.21 0.39 0.68 25.19
µp 0.00000052 0.09 0.26 0.47 0.82 32.59
α 0.00001303 0.05 0.08 0.13 0.21 1.08
ψ 0.00000898 0.08 0.14 0.23 0.36 3.87
ϕ 0.00002746 0.09 0.16 0.26 0.42 1.76
σc 0.00000701 0.04 0.07 0.12 0.17 0.47
h 0.00000143 0.01 0.03 0.05 0.10 0.68
Φ 0.00000311 0.02 0.03 0.05 0.07 0.40
ιw 0.00004052 0.17 0.32 0.54 0.96 21.27
ξw 0.00001759 0.02 0.04 0.08 0.14 1.05
ιp 0.00001052 0.14 0.27 0.43 0.66 5.09
ξp 0.00000459 0.03 0.07 0.12 0.20 0.75
σl 0.00006790 0.08 0.17 0.31 0.59 7.22
rπ 0.00001272 0.06 0.12 0.19 0.28 1.05
r4y 0.00007077 0.13 0.25 0.42 0.72 93.45
ry 0.00004711 0.35 0.68 1.09 1.77 306.35
ρ 0.00000285 0.02 0.03 0.05 0.08 0.39
ρa 0.00005061 0.29 0.48 0.71 1.13 24.36
ρb 0.00000248 0.04 0.12 0.24 0.47 19.25
ρg 0.00007091 0.31 0.50 0.74 1.17 31.06
ρI 0.00000583 0.16 0.26 0.38 0.59 15.19
ρr 0.00001757 0.07 0.18 0.35 0.65 16.10
ρp 0.00000217 0.14 0.26 0.39 0.64 41.66
ρw 0.00000947 0.12 0.21 0.32 0.55 23.45
σa 0.00000116 0.39 0.39 0.39 0.39 0.39
σb 0.00000004 0.15 0.34 0.38 0.39 0.41
σg 0.00000135 0.38 0.39 0.39 0.39 0.39
σI 0.00004477 0.38 0.39 0.39 0.39 0.40
σr 0.00000054 0.34 0.38 0.39 0.39 0.39
σp 0.00002382 0.39 0.39 0.39 0.39 0.40
σw 0.00000056 0.35 0.38 0.39 0.40 0.50

Note: Each row of the table shows the value of r1(θ) =

√
cα/Di
θi

at the extreme values and

the four quintiles of the distribution of r(θi). Large values of r1(θ) imply low sensitivity of

the log-likelihood function with respect to θi. The results are based on 100, 000 draws from

Θ and apply to the baseline statistical model with ct, lt, πt, wt, it, rt and yt as observed

variables, and T = 156. cα is the (1− α) quantile of the χ2(36) distribution, and α is set to

.1. Di is the variance of the i−th component of the score vector.
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Table 7: Parameter interdependence component in the distribution of r(θi)

Quantiles of r(θi)

Parameter 0 .2 .4 .6 .8 1
δ 0.35 0.734 0.7910 0.8403 0.89460 0.99999987241
λw 0.92 0.998 0.9995 0.9998 0.99996 0.99999999996
gy 0.34 0.871 0.9354 0.9678 0.98705 0.99999985796
ρga 0.01 0.188 0.2912 0.4147 0.60224 0.99999999979

100(β−1 − 1) 0.49 0.924 0.9570 0.9758 0.98826 0.99999998070
µw 0.56 0.957 0.9833 0.9936 0.99875 0.99999999998
µp 0.53 0.963 0.9836 0.9932 0.99837 0.99999999998
α 0.53 0.913 0.9470 0.9672 0.98253 0.99999994395
ψ 0.21 0.885 0.9364 0.9638 0.98249 0.99999995301
ϕ 0.66 0.938 0.9712 0.9868 0.99475 0.99999989013
σc 0.89 0.990 0.9946 0.9971 0.99871 0.99999997740
h 0.64 0.950 0.9718 0.9834 0.99153 0.99999977950
Φ 0.39 0.926 0.9612 0.9794 0.99108 0.99999999829
ιw 0.20 0.709 0.8381 0.9147 0.96442 0.99999998284
ξw 0.87 0.998 0.9994 0.9998 0.99996 0.99999999996
ιp 0.45 0.763 0.8247 0.8834 0.94352 0.99999999762
ξp 0.57 0.887 0.9383 0.9701 0.98952 0.99999999836
σl 0.48 0.966 0.9833 0.9920 0.99679 0.99999998947
rπ 0.60 0.950 0.9742 0.9867 0.99458 0.99999999018
r4y 0.48 0.842 0.9067 0.9494 0.97942 0.99999996394
ry 0.45 0.895 0.9455 0.9717 0.98859 0.99999999802
ρ 0.69 0.960 0.9786 0.9888 0.99532 0.99999998021
ρa 0.02 0.236 0.3618 0.5158 0.72441 0.99999979811
ρb 0.46 0.842 0.9116 0.9583 0.98593 0.99999991612
ρg 0.03 0.233 0.3569 0.4999 0.69232 0.99999939471
ρI 0.32 0.655 0.7059 0.7562 0.82993 0.99999998246
ρr 0.19 0.645 0.7859 0.8893 0.95556 0.99999771107
ρp 0.14 0.962 0.9839 0.9932 0.99835 0.99999999998
ρw 0.15 0.960 0.9827 0.9926 0.99816 0.99999999998
σa 0.01 0.204 0.3124 0.4219 0.55873 0.99999999998
σb 0.19 0.677 0.7402 0.7964 0.90617 0.99999999998
σg 0.01 0.237 0.3461 0.4591 0.60713 0.99999999979
σI 0.05 0.546 0.6308 0.6736 0.71783 0.99999999325
σr 0.01 0.288 0.4874 0.6704 0.82687 0.99999999998
σp 0.04 0.525 0.6187 0.6808 0.75501 0.99999998344
σw 0.08 0.542 0.6268 0.7080 0.82918 0.99999999951

Note: Each row of the table shows the value of %i at the extreme values and the four quintiles of the

distribution of r(θi). Values close to 1 indicate strong parameter interdependence problem and

near-redundancy of θi. The results are based on 100, 000 draws from Θ and apply to the baseline

statistical model with ct, lt, πt, wt, it, rt and yt as observed variables.
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Table 8: Parameter interdependence in the structural model

Quantiles of cos
(
∂τ
∂θi
, ∂τ
∂θ−i

)
Parameter 0 .2 .4 .6 .8 1

δ 0.57 0.811 0.8764 0.9194 0.95715 0.9983464283
λw 0.96 0.995 0.9983 0.9996 0.99995 0.9999999882
gy 0.76 0.866 0.9022 0.9237 0.96920 0.9999700745
ρga 0.14 0.737 0.9121 0.9607 0.98460 0.9990421323

100(β−1 − 1) 0.83 0.918 0.9405 0.9612 0.98226 0.9999994432
µw 0.07 0.326 0.4215 0.5086 0.60781 0.9671890433
µp 0.22 0.483 0.6537 0.7343 0.80572 0.9972787213
α 0.86 0.924 0.9411 0.9598 0.98229 0.9999977067
ψ 0.13 0.223 0.2793 0.3623 0.46999 0.9432934213
ϕ 0.59 0.800 0.8596 0.9176 0.96805 0.9999995522
σc 0.98 0.996 0.9981 0.9993 0.99987 0.9999999997
h 0.94 0.992 0.9974 0.9989 0.99983 0.9999999997
Φ 0.76 0.926 0.9487 0.9604 0.97855 0.9984902894
ιw 0.67 0.816 0.8711 0.9188 0.97297 0.9999998643
ξw 0.95 0.995 0.9984 0.9996 0.99995 0.9999999859
ιp 0.69 0.847 0.8973 0.9415 0.98025 0.9999993589
ξp 0.81 0.960 0.9722 0.9840 0.99164 0.9999995108
σl 0.90 0.963 0.9726 0.9864 0.99373 0.9999994155
rπ 0.74 0.971 0.9847 0.9946 0.99908 0.9999999812
r4y 0.27 0.651 0.7962 0.8780 0.96169 0.9999943718
ry 0.76 0.950 0.9748 0.9878 0.99686 0.9999998917
ρ 0.73 0.931 0.9723 0.9859 0.99691 0.9999999085
ρa 0.04 0.557 0.6562 0.7099 0.78225 0.9999961581
ρb 0.12 0.889 0.9571 0.9822 0.99603 0.9999999575
ρg 0.05 0.414 0.5344 0.6244 0.71443 0.9999958296
ρI 0.06 0.239 0.3833 0.5256 0.68363 0.9981250333
ρr 0.03 0.499 0.6801 0.8597 0.94317 0.9999261878
ρp 0.19 0.604 0.7817 0.8933 0.95010 0.9987404769
ρw 0.11 0.373 0.5088 0.6665 0.84165 0.9995829154
σa 0.10 0.607 0.8258 0.9048 0.95859 0.9965723603
σb 0.54 0.823 0.9045 0.9681 0.99181 0.9999984997
σg 0.17 0.622 0.8169 0.9107 0.96345 0.9964866185
σI 0.13 0.265 0.3253 0.4126 0.52482 0.9931261729
σr 0.54 0.755 0.8272 0.8723 0.93071 0.9994093412
σp 0.14 0.367 0.4552 0.5211 0.60895 0.9596850368
σw 0.07 0.199 0.2514 0.3118 0.39339 0.9778976469

Note: Each row of the table shows the extreme values and the four quintiles of the distribution of

cos
(
∂τ
∂θi

, ∂τ
∂θ−i

)
, which measures the degree of parameter interdependence in the structural model.

Values close to 1 indicate that the effect of θi on τ may be approximated very well by that the

other deep parameters. The results are based on 100, 000 draws from Θ.
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Table 9: Worst identified parameters

worst identified Quantiles of cos
(
∂τ
∂θi
, ∂τ
∂θ−i

)
functionally similar

parameters 0 .2 .4 .6 .8 1 parameters
λw 0.860 0.952 0.993 0.992 0.987 0.996923 σc, ξw, σl
σc 0.928 0.982 0.986 0.970 0.994 0.999480 gy, h, σl
h 0.809 0.932 0.960 0.944 0.984 0.999410 σc, ρb
ξw 0.823 0.928 0.981 0.993 0.950 0.937484 λw, σl
ξp 0.448 0.910 0.924 0.969 0.973 0.954205 µp, ϕ, Φ, ιp, ρp
σl 0.702 0.860 0.855 0.898 0.952 0.998846 λw, gy, α, σc,σl
rπ 0.494 0.920 0.964 0.960 0.993 0.999995 r4y, ry, ρ, ρb
ry 0.670 0.879 0.935 0.973 0.989 0.999982 rπ, r4y, ρ, ρb, σb, σr
ρ 0.688 0.900 0.930 0.954 0.994 0.999918 rπ, r4y, ry, ρr

Note: This table shows to what extent the results in Table 8 can be explained, for the worst identified

parameters, using only a small set of other functionally similar parameters. Each row reports the multiple

collinearity coefficients for the parameter in the first column with those in column 8. The multiple collinearity

coefficient for θi is computed as the cosine of the angle between the vector ∂τ
∂θi

and the space spanned by the

columns of ∂τ
∂θ

corresponding to the parameters in column 8. Values close to 1 indicate that the effect of θi on

τ may be approximated very well by that of the other deep parameters.
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Table 10: Parameter identification at the posterior mean

posterior distribution 90% CI ratios

Parameter mean 5 percent. 95 percent. lb ub r r1 r2

δ∗ 0.03 0.03 0.03 -0.04 0.09 2.51 1.10 2.28
λ∗w 1.50 1.50 1.50 -3.31 6.31 3.21 0.31 10.41
g∗y 0.18 0.18 0.18 -0.29 0.65 2.63 1.57 1.67
ρga 0.52 0.37 0.66 -0.22 1.26 1.43 1.22 1.17

100(β−1 − 1) 0.17 0.07 0.26 -6.01 6.34 37.18 10.12 3.68
µw 0.84 0.75 0.93 0.52 1.16 0.38 0.11 3.34
µp 0.70 0.54 0.85 -0.13 1.53 1.18 0.21 5.66
α 0.19 0.16 0.21 -0.14 0.53 1.76 0.41 4.30
ψ 0.55 0.36 0.72 -0.51 1.60 1.93 0.96 2.02
ϕ 5.74 3.97 7.42 -7.74 19.22 2.35 1.12 2.10
σc 1.38 1.16 1.59 -0.43 3.19 1.31 0.29 4.50
h 0.71 0.64 0.78 0.33 1.10 0.54 0.19 2.86
Φ 1.60 1.48 1.73 0.84 2.37 0.48 0.25 1.89
ιw 0.59 0.38 0.78 -0.56 1.74 1.96 1.46 1.34
ξw 0.70 0.60 0.81 -0.43 1.83 1.62 0.15 10.44
ιp 0.24 0.10 0.38 -0.49 0.98 3.02 1.40 2.17
ξp 0.65 0.56 0.74 0.29 1.01 0.55 0.22 2.53
σl 1.84 0.91 2.78 -4.59 8.27 3.50 1.40 2.51
rπ 2.05 1.74 2.33 -0.66 4.75 1.32 0.37 3.56
r4y 0.22 0.18 0.27 -0.08 0.53 1.36 0.70 1.93
ry 0.09 0.05 0.12 -0.17 0.34 2.93 0.93 3.16
ρ 0.81 0.77 0.85 0.51 1.10 0.36 0.13 2.84
ρa 0.96 0.94 0.97 0.86 1.05 0.10 0.06 1.70
ρb 0.22 0.07 0.36 -0.16 0.60 1.75 1.10 1.60
ρg 0.98 0.96 0.99 0.91 1.04 0.06 0.04 1.53
ρI 0.71 0.61 0.80 0.40 1.02 0.43 0.23 1.86
ρr 0.15 0.04 0.24 -0.24 0.54 2.59 2.07 1.25
ρp 0.89 0.80 0.96 0.54 1.25 0.40 0.09 4.22
ρw 0.97 0.94 0.99 0.87 1.07 0.10 0.05 2.15
σa 0.46 0.41 0.50 0.24 0.68 0.48 0.39 1.24
σb 0.24 0.19 0.27 0.10 0.38 0.58 0.39 1.50
σg 0.53 0.48 0.58 0.27 0.79 0.48 0.39 1.25
σI 0.45 0.37 0.53 0.18 0.73 0.61 0.39 1.57
σr 0.25 0.22 0.27 0.13 0.36 0.47 0.39 1.20
σp 0.14 0.11 0.16 0.02 0.26 0.87 0.39 2.22
σw 0.24 0.20 0.28 0.09 0.40 0.63 0.39 1.61

Note: The posterior mean and percentiles are those reported in Smets and Wouters (2007). The lower (lb) and
upper bound (ub) of the individual confidence intervals are obtained by projecting the 90% confidence ellipsoid onto
the parameter axes. r(θi) is a unit-free measure of identification strength, defined as the half-length of the confidence
interval, divided by the true parameter value. r(θi) is expressed as the product of r1(θ) and r2(θ), which capture the
likelihood sensitivity and the parameter interdependence aspect of identification, respectively.

*These parameters are fixed in Smets and Wouters (2007)
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