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Source of last graph

Masaaki Fujii , Yasufumi Shimada , Akihiko Takahashi:
“On the Term Structure of Interest Rates with Basis Spreads, Collateral
and Multiple Currencies”
Conference presentation.
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Motivation

Solution Methods for DSGE Models

1 Workhorse: linearization around steady state
Severe limitations, most importantly: Certainty equivalence
solution: no effect of uncertainty on behavior

2 Next step: higher order perturbation around steady state
(available in Dynare).
Local method.
Makes sense if local information around steady state is sufficient
to recover global solution.

3 General approach: global methods (“projection methods”,
“weighted residual methods“).

1 Has been around since Judd (1992).
2 What’s new?
3 What’s important?
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Motivation

Plan

1 Solution techniques: overview.
2 Some examples: big shocks make a difference.
3 Global methods: problems and tricks to solve them.
4 Examples in detail:

Simple NK model with zero lower bound.
OLG model with portfolio choice.

5 A toolkit to make things easy (easier? too easy?).

Michael Reiter (IHS, Vienna) Solution Methods for Economies With Large Shocks Budapest, 20.09.13 6 / 83



Motivation

Handling Small Shocks: the Concept of Analyticity

Analyticity: local information (value and all derivatives) pins down
function globally.
An analytic function is described by its Taylor expansion:

f (x) =
∞∑

k=0

f (k)(x0)

k !
(x − x0)k (1)

Examples:
exponential function: (1) is valid for all x0 and x .
This function has infinite convergence radius.
logarithmic function: convergence radius of (1) is finite.
Example: x0 = 1. (1) only converges for |x − 1| < 1.
[Still, value of log at any x can be obtained from information at
x0 = 1, using Taylor expansions in overlapping circles.]
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Motivation

Is Analyticity Special?

1 In the space of all continuous function, analyticity is a very special
case, but

2 the “commonly used” functions are all analytic,
3 except for functions like max, absolute value etc (functions with

kinks).
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Motivation

Analyticity: consequences for solving models

If it holds, perturbation methods (local information around
deterministic steady state) can be used, although they may not be
optimal.
If not, global methods necessary.

Analyticity breaks down because of
inequality constraints (occasionally binding)
regime switching
etc.
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Motivation

Perturbation Solution

The solution y(x) depends parametrically on the standard deviation of
shocks, σ.
Write this as y(x ;σ).
The perturbation approach approximates this as (scalar case)

y(x ;σ) ≈ y∗ + yx (x∗; 0)(x − x∗) + yσ(x∗; 0)σ

+
1
2

yxx (x∗; 0)(x − x∗)2 +
1
2

yσσ(x∗; 0)σ2

+ yxσ(x∗; 0)(x − x∗)σ
+ . . .
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Motivation

Advantages of Local (Perturbation) Methods

1 Can be obtained “mechanically” (just differentiate often enough at
the deterministic steady state).

2 Don’t need choices by the user except for order of approximation
(and perhaps nonlinear transformation of variables).

3 Are difficult to implement, but
4 a toolkit is available: Dynare.
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Motivation

Problems with Perturbation Methods

Even if solution is analytic,
1 high-order approximation may be necessary to get sufficient

accuracy;

2 approximate solution may be unstable.
Proposed solution: “pruning”. (Kim, Kim, Schaumburg, and Sims
2008; Lan and Meyer-Gohde 2013; Andreasen,
Fernndez-Villaverde, and Rubio-Ramrez 2013)
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Motivation

Use Analytic Approximations?

Continuous functions can be approximated by analytic functions
with arbibrary precision.

Problems:
Inequality constraints are a simple, intuitive modeling feature.
In high-dimensional (and even medium-dimensional) applications,
only very low-order approximations possible.

My conclusion: we have to live with kinks, and try to compute solutions
with kinks.
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Motivation

Global (Projection) Methods

Example: RBC model
2 States:

1 capital kt
2 technology zt

Solution: consumption function C(kt , zt ) and labor supply L(kt , zt ).
They satisfy the Euler equation

Uc(C(kt , zt ),L(kt , zt )) =

β Et [(1 + Fk (kt+1, zt+1)− δ)Uc(C(kt+1, zt+1),L(kt+1, zt+1))] (2)

and the labor supply equation

FL(kt , zt ) = −UL(kt , zt )

Uc(kt , zt )
(3)
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Motivation

Projection Solution, RBC Model

Approximate

C(k , z) ≈
n∑

i=1

γC
i ϕi(k , x)

L(k , z) ≈
n∑

i=1

γL
i ϕi(k , x) (4)

where
ϕi are known basis functions
γC

i and γL
i are undetermined coefficients.

Choose γC
i and γL

i such that Euler equation (2) and labor supply
equation (3) are satisfied at a set of grid points

(ki , zi), i = 1, . . . ,n (5)

(Collocation method.)
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Motivation

Project Method, General Model

Solution: y(x), where x is state vector. Has to satisfy the functional
equation

Et (xt , yt , xt+1, yt+1, εt+1) = 0 (6)

Approximate

y(x) ≈
n∑

i=1

γiϕi(x) (7)

Choose γi s.t. F(xi , y) = 0 is satisfied at a set of grid points

xi , i = 1, . . . ,n (8)

Big system of nonlinear equations!
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Motivation

Big Shocks matter in strongly nonlinear models

Inequality constraints
More general: strong asymmetries, kinks in functions (capital
adjustment cost upwards vs. downwards)
Asset choice: distribution of shocks essential
Models of heterogeneous agents, lumpy decision: density at
threshold matters

My focus:
1 Handling occasionally binding constraints.
2 Models with portfolio constraints
3 Efficient implementation.
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Some Examples from the Literature

Examples in the literature

1 Petrosky-Nadeau and Zhang (2013a) and Petrosky-Nadeau and
Zhang (2013b): Explaining unemployment crises

2 Fernndez-Villaverde et al. (2012): “Adventures at the zero lower
bound”

3 Brunnermeier and Sannikov (2012): “A macroeconomic model
with a financial sector.”
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Some Examples from the Literature

Solving the Labor Market Matching Model Accurately

Petrosky-Nadeau and Zhang (2013a) consider the DMP model with
the calibration of Hagedorn and Manovskii (2008).
This calibration has a small job surplus and leads to large
unemployment fluctuations.
Petrosky-Nadeau and Zhang (2013a) find:

Model has strong nonlinearities:
much stronger impulse responses in recessions than in booms.
asymmetries in impulse responses

which are not captured by log-linearized solution.
Accurately solved, the model fails to explain labor market data.
Projection method very accurate.
Second-order perturbation improves on log-linearization.
But solution is closer to log-lin. than to projection.
They don’t examine higher-order perturbations.

Conclusion: exact solution can matter for the qualitative properties of
the model.
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Some Examples from the Literature

Explaining unemployment crises

Petrosky-Nadeau and Zhang (2013b)
Empirical finding:

1 unconditional frequency of crisis (UR about 20%) is 2–3%
2 crisis state very persistent (0.89 monthly)

Model: labor market matching model (Mortensen and Pissarides
1994; Andolfatto 1996; Merz 1995) with

1 credible bargaining (Hall and Milgrom 2008): outside option in
bargaining is delay, not breaking up the relationship
=⇒ small feedback from unemployment to wages

2 vacancy posting costs have a fixed component, additional to cost
proportional to number of vacancies (Mortensen and Nagypal
2007; Pissarides 2009)

can explain unemployment dynamics, including Great Depression.
Strong nonlinearities in the model:

new matches are product of unemployment and vacancies
Inequality constraint: vacancy formation cannot be negative
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Some Examples from the Literature

Solution Method in Petrosky-Nadeau/Zhang

Critical equation:

κt

θt
− λ(Nt ,Xt ) =

β Et

[
Xt+1 −Wt+1 + (1− s)

(
κt+1

θt+1
− λ(Nt+1,Xt+1)

)]
(9)

Two states:
1 employment N
2 productivity X

λ is Lagrange mutliplier for inequality constraint qtVt ≥ 0.
Approximation:

1 17 grid points in productivity (discrete, exogenous)
2 spline approximation with 45 grid points in employment.

Approximate not q(N,X ) and V (N,X ), but rhs of (9)
(parameterized expectations), to handle kink.
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Some Examples from the Literature

Adventures at the Zero Lower Bound

Fernndez-Villaverde et al. (2012):
New Keynesian framework:

Intermediate good producers with Calvo price setting
Monetary policy: Taylor rule with zero lower bound

4 exogenous shocks
productivity
discount factor
monetary policy
government expenditures.

Endogenous state: price dispersion
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Some Examples from the Literature

Fernndez-Villaverde et al. (2012): solution method

Approximation on a sparse grid (Smolyak) in the 5 states
Time iteration.
Approximate

consumption
inflation
discounted marginal cost

as polynomials of the states.
Use continuous shocks to smooth out the effect of future
nonlinearities
Interest rate R not approximated, but computed from other
variables (takes care of kink).

Problem: approximated variables still have a kink, because of
contemporary effect of R on output etc.
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Some Examples from the Literature

A Macroeconomic Model with a Financial Sector

Brunnermeier and Sannikov (2012)
Consumers and experts in production.
Efficient production requires experts who

cannot issue equity
require positive net worth

Strong nonlinear effects through endogenous volatility (leverage of
experts).
Global nonlinear analysis.
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Some Examples from the Literature

Simplifying assumptions

Continuous time.
One aggregate shock: depreciation rate of capital
Output linear in capital, with productivity a for experts and a for
experts, with a > a.
Frictionless market for physical capital
No idiosyncratic shocks
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Some Examples from the Literature

Solution method

States: aggregate capital and net worth of entrepreneurs
Because of linear homogeneity, can be reduced to one:

η ≡ Expert net worth
Market value of aggregate cap.

(10)

Follows stochastic differential equation.
Equilibrium objects (asset price, expert value function, expert
leverage) are function of η.
Satisfy ODE.
Solution method:

Iterate on boundary conditions
Solve ODE’s.

Conclusions:
1 Continuous time makes things easier.
2 Essential: reduction to one state variable.
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Some Examples from the Literature

Brunnermeier and Sannikov (2012)

Figure 2: The price of capital, the marginal component of experts’ value function and
the fraction of capital managed by experts, as functions of η

In equilibrium, the state variable ηt, which determines the price of capital, fluctuates
due to aggregate shocks dZt that affect the value of capital held by experts. To get
a better sense of equilibrium dynamics, Figure 3 shows the drift and volatility of ηt
for our computed example. The drift of ηt is positive on the entire interval [0, η∗),
because experts refrain from consumption and get an expected return of at least r.
The magnitude of the drift is determined by the amount of capital they hold, i.e. ψt,
and the expected return they get from investing in capital (which is related to whether
capital is cheap or expensive). In expectation, ηt gravitates towards η

∗, where it hits a
reflecting boundary as experts consume excess net worth.

Figure 3: The drift ηµη and volatility ηση of ηt process.

Thus, point η∗ is the stochastic steady state of our system. We draw an analogy
between point η∗ is our model and the steady state in traditional macro models, such
as BGG and KM. Just like the steady state in BGG and KM, η∗ is the point of global
attraction of the system and, as we see from Figure 3 and as we discuss below, the
volatility near η∗ is low. However, unlike in traditional macro models, we do not
consider the limit as noise η goes to 0 to identify the steady state, but rather look
for the point where the system remains still in the absence of shocks when the agents
take future volatility into account. Strictly speaking in our model, in the deterministic
steady state where ηt ends up as σ → 0 : experts do not require any net worth to

19
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Global Methods

Global Methods

Have been around in economics since Judd (1992).

Are difficult to implement.
Require user choices.
Can fail to converge.
Also have problems with kinks.
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Global Methods

Recent Advances in Global Methods, I

Much recent progress for high-dimensional smooth models
(Aruoba, Fernandez-Villaverde, and Rubio-Ramirez 2006;
Kollmann, Maliar, Malin, and Pichler 2011)

Sparse (Smolyak) grids (Barthelmann, Novak, and Ritter 2000;
Malin, Krueger, and Kubler 2011; Judd, Maliar, Maliar, and Valero
2013)
Efficient computation of expectations, based on Stroud (1971);
(Pichler 2011; Fernndez-Villaverde, Gordon, Guerrn-Quintana, and
Rubio-Ramrez 2012; Judd, Maliar, and Maliar 2011)
Adaptive domain (Judd, Maliar, and Maliar 2012)
Perturbation for heterogeneous agent models (Mertens 2011)
Projection-perturbation for heterogeneous agent models (Reiter
2010; Reiter 2009)
Unertainty shocks:a Krusell-Smith method (Bloom 2009)

Portfolio choice in GE
perturbation, static: Judd and Guu (2000)
perturbation, dynamic: Mertens (2011)
global solution on event tree: Dumas and Lyasoff (2012)
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Global Methods

Recent Advances in Global Methods, II

Models with occasionally binding constraints (“kinks”)
Dynare toolkit by Guerrieri and Iacoviello (2013):
certainty-equivalence solutions (as in first-order perturbations)
Problem: OCB imply strong nonlinearity, which make
certainty-equivalence solutions less precise than in smooth models.
Precise solution: Extension of endogenous grid point method
Carroll (2006) to models with OBC by Hintermaier and Koeniger
(2010).
Problem: may be tedious to apply to higher dimensions.
Judd: “get rid of kinks” Judd (2008) ; approximate kinks by smooth
(analytic) functions (Kim, Kollmann, and Kim 2010; Mertens and
Judd 2011)
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Global Methods

Problems with Global (Projection) Methods

No proof of existence or convergence.
Computationally expensive: need efficient implementation.
Difficult to approximate non-smooth functions (variables).
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Global Methods

Outline of a Systematic Solution Method

Solve for deterministic steady state.
Compute linearized solution around steady state.
Compute global solution in several steps:

1 Start with very small shocks; use linearized solution as starting
point of nonlinear solution.

2 In each iteration
simulate the model with the most recent solution
use simulation results to learn about the state space
increase the size of the shocks
compute new solution, use last solution as starting point.

3 Iterate until desired size of shocks is reached.

This is parallel to the global existence proof in Mertens (2011)!

Other parameters can be adjusted along the path.
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Global Methods

Choices

Which state variables?
Which domain? (set on which solution lives)
Which object to approximate?
Which type of basis functions for approximation?
How to find fixed point? Newton or time iteration?
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Global Methods

Choice of State Variables

Generally, as few as possible:
Portfolio choice without transaction costs: write problem in terms of
market wealth of each agent, not of portfolio. (More sophisticated
choice: Chien et al. (2011), Dumas and Lyasoff (2012).)
Eliminate homogeneity to reduce dimension of state space
Example: if all decisions are linearly homogenous in the two states
(x , y), one can usually write the whole problem in the variable x/y
only. (Example: Brunnermeier and Sannikov (2012).)

Exception: if more variables allow smoother approximation
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Global Methods

Global solution: find the fixed point

Quasi-Newton methods: solve one big system of nonlinear
equations (all residuals at all grid points)
Time iteration (as in dynamic programming):

1 Use parameters γt+1 to approximate variables in period t + 1.
2 Separately for each grid point: solve equation system for time-t

variables.
3 use time-t variables to update approximation parameters γt .
4 Iterate until convergence.

Other fixed point iterations are possible (Judd, Maliar, Maliar, and
Valero 2013).
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Global Methods

Newton vs. Time-Iteration

Quasi-Newton:
quadratic convergence
requires solution of system of n linear equations (n is dimension of
parameter vector γ).

computation is of order n3

memory is of order n2 (dense case: polynomials; less for splines).

Time iteration
local convergence
computation is of order n2

memory is of order n.

For n very large, quasi-Newton may not be feasible.
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Global Methods

Domain of Approximation

Set on which the solution lives.
may be far away from deterministic steady state
not known ex ante
must be known to find a solution
we need iterative procedure
Iterative approach:

1 Simulate model, compute covariance matrix of states, use this to
determine ellipsoid where state vector is most likely
Start by region obtained from linearized solution (can be computed
analytically for normal shocks)

2 Cluster grid approach: can handle irregular geometry
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Global Methods

Domain of Approximation, ctd.

Ideally, state space is an ergodic set: if economy is in the set, it
stays there with probability 1

1 Easy in deterministic model
2 Might be impossible in models with risky assets (even the richest

people get richer if the stock market performs very well).
Requires extra-polation (rather than inter-polation)! Making state
space large relative to size of shocks alleviates instability of
extrapolation.

Use covariance matrix of state to rotate coordinate system
Unit ball rather than hypercube (ellipsoid rather than rectangle):
extreme value of several variables very unlikely.
Unit ball much smaller than unit cube in high dimensions! Judd
(2008).
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Global Methods

Approaches to deal with kinks

Ken Judd: “get rid of kinks”
(“Adding real-word fuzziness willl make computing easier.”)

Traditional recipe: use splines rather than polynomials (good idea,
but requires many parameters)
Good solution (if possible): only approximate smooth functions

1 If shocks
have smooth (differentiable) density, and
are big enough (if not, consider certainty-equivalence solution,
Guerrieri and Iacoviello (2013) toolkit)

then approximate expectated values (Wright-Williams Smoothing).
2 and/or: approximate using more variables, to avoid effect of current

non-smooth variables.
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Guerrieri and Iacoviello (2013) toolkit)

then approximate expectated values (Wright-Williams Smoothing).

2 and/or: approximate using more variables, to avoid effect of current
non-smooth variables.

Michael Reiter (IHS, Vienna) Solution Methods for Economies With Large Shocks Budapest, 20.09.13 39 / 83



Global Methods

Approaches to deal with kinks

Ken Judd: “get rid of kinks”
(“Adding real-word fuzziness willl make computing easier.”)
Traditional recipe: use splines rather than polynomials (good idea,
but requires many parameters)
Good solution (if possible): only approximate smooth functions

1 If shocks
have smooth (differentiable) density, and
are big enough (if not, consider certainty-equivalence solution,
Guerrieri and Iacoviello (2013) toolkit)

then approximate expectated values (Wright-Williams Smoothing).
2 and/or: approximate using more variables, to avoid effect of current

non-smooth variables.

Michael Reiter (IHS, Vienna) Solution Methods for Economies With Large Shocks Budapest, 20.09.13 39 / 83



Global Methods

Splines

What are splines? Piecewise polynomials.
Example: cubic spline:

Cubic polynomial between knot points.
Twice differentiable at knot points.
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Global Methods
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Global Methods
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Global Methods
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Global Methods
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Global Methods
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Global Methods
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Global Methods
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Global Methods
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Global Methods

Splines vs. polynomials

1 Splines approximate functions with kinks somewhat better than
polynomials with the same number of parameters (degrees of
freedom).

2 More importantly: spline approximation can handle more
parameters:

1 Much faster to evaluate (basis functions have local support).
2 Jacobian matrix (residuals w.r.t. parameters) is sparse.

3 Splines face curse of dimensionality (tensor products).
4 number of parameters of complete polynomials grows

polynomially in dimension.
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Global Methods

Which Functions (Variables) to Approximate?

Should be smooth!
How can we do this in a model with kinks?
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Global Methods

Example 1: asymmetric adjustment costs

Consider a growth model with capital adjustment costs:

max
k0,k1,...

E0

∞∑
t=0

βtU(ct ) (11a)

subject to

f (kt , zt ) = ct + kt+1 − (1− δk )kt + Ψ(kt+1, kt ) (11b)
zt+1 = ρzt + εt+1, Et εt+1 = 0 (11c)

(11d)

where we assume

Ψ(k ′, k) =

{
1

2kψ(k ′ − k)2 if k ′ ≥ k
1

2kψ(k ′ − k)2 if k ′ < k ,
with ψ > ψ (12)

Then the optimal investment function k ′(k , z) has a kink at any point
(k , z) where k ′ = k .
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Global Methods

Parameterizing Expectations

The Euler equation is

U ′(ct ) (1 + Ψ1(kt+1, kt )) =

β Et
[
U ′(ct+1) (1 + fk (kt+1, zt+1)−Ψ2(kt+2, kt+1))

]
(13)

kt+2 and ct+1 are functions of (kt+1, zt+1). Define

Γ(kt+1, zt+1) ≡ U ′(ct+1)
(
1 + ezt+1 f ′(kt+1)−Ψ2(kt+2, kt+1)

)
(14)

1 Γ(kt+1, zt+1) has a kink where kt+2 = kt+1
2 If ε has a smooth density ξ(ε), then EWW is smooth:

EWW (kt+1, zt ) ≡
∫

Γ(kt+1, ρzt + ε)ξ(ε) dε (15)

3 But not
EPE (kt , zt ) ≡ EWW (kt+1(kt , zt ), zt ) (16)
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Global Methods

Wright-Williams Smoothing

Approximating EWW (kt+1, zt ) is called “Wright-Williams
smoothing” (Judd 1998, p.586ff.).
In parameterized expectations algorithm, usually EPE (kt , zt ) is
approximated, which is not a smooth (differentiable) function
(pointed out by K. Judd, but often ignored!)
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Zero Lower Bound

Example 2: NK model with ZLB

Basic NK model:

yt = Et (yt+1)− 1/σ(Rt − Et (πt+1)) + zy ,t (17a)
πt = β Et (πt+1) + λmct (17b)

mct = κyt + zmc,t (17c)

Taylor rule:
R̂t = φpπt + φyyt (17d)

ZLB (0.005 is StSt inflation):

Rt = max(R̂t ,−0.005) (17e)

Shocks:

zmc,t = ρzmc,t−1 + εmc,t (18a)
zy ,t = ρzy ,t−1 + εy ,t (18b)
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Zero Lower Bound

Approximation I: WW smoothing

No endogenous state: if shock is smooth, then Et (yt+1) and
Et (πt+1) are smooth variables.
Approximate them as functions of the exogenous states zmu and
zy .
Given Et (yt+1) and Et (πt+1), solve equation system (17) for y , π,
R̂, R and mc.

Is this enough?
Works reasonably well if Et (yt+1) and Et (πt+1) are approximated by
splines, not polynomials.
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Zero Lower Bound

Approximation II: R as auxiliary state

Approximate yt and πt as functions of zy ,t , zmu,t and Rt .
Requires again to solve an inner loop:

1 Guess Rt
2 Evaluate yt and πt
3 Check guess of Rt .

Works well, even with polynomial approximations!
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Numerical Results

NK Model, Parameters

discount factor: β = 0.961/4

inverse LSE: φ = 1
risk aversion; σ = 1
demand elasticity; ε = 7
Taylor rule, output; φy = 0.125
Taylor rule, inflation; φp = 2.5
persistence of shocks; ρz = 0.5

α = 0.3
Θ = (1− α)/(1− α(1− ε))
θ = 0.6667
λ = (1− θ)(1− βθ)/θΘ
κ = σ(φ+ α)/(1− α)
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Numerical Results

NK Model, Size of Shocks

Shock to marginal cost: uniformly distributed on [−0.035,0.035].
Shock to Euler equation: uniformly distributed on [−0.007,0.007].
ZLB binding in about 10% of periods.
With larger shocks: solution fails to converge!
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Numerical Results

Approximation errors, Output

Spline 10 Spline 20 WW Sm., 10 WW Sm., 20
Mean 7.29e-6 -6.38e-7 7.74e-7 9.05e-7
Mean abs. 1.17e-4 3.43e-5 1.51e-6 1.57e-6
Max abs. 6.15e-4 3.47e-4 1.00e-5 9.21e-6
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Numerical Results

Errors for Approximation II

Approximation:
cubic polynomial in y , π
linear in R

Residuals from 2500 random points in state space:

mean mean(abs) max(abs) max(abs) rel.
Output: 7.23e-08 1.01e-06 3.28e-06 1.82e-04
Inflation: 1.19e-08 1.52e-07 5.06e-07 1.11e-04
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Numerical Results
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Numerical Results

Output
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Numerical Results

SError y , pline order 20
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Numerical Results

Error y , Spline order 20
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Numerical Results

Error y , Spline order 20,WW Smoothing
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Numerical Results

Error y , Spline order 20,WW Smoothing
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Numerical Results

Error y , Polyn. in R
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Numerical Results

Necessary: Two-Step Approximation

1 Approximated object: set of smooth functions A (x)
2 Decision y(x) is obtained from A (x) by solving

G(A(x), y(x)) = 0 (19)

Efficient implementation: exploit

∂y
∂γ

=
∂y
∂A

∂A
∂γ

= −G−1
y (A(x), y(x))GA(A(x), y(x))

∂A
∂γ

(20)

Compute by Automatic Differentiation.
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Numerical Results

Automatic Differentiation

Numerical computation of derivatives of a function f (x) at a
specific point x0, using the exact rules of differentiation.
Example:

f (x) = log(x · sin(x3)); (21)

a = x3; b = sin(a); c = x · b; f (x) = log(c)

Then, at x = x0,

da/dx = 3 · x2
0 (22a)

db/dx = cos(a) · da/dx (22b)
dc/dx = b + x0 · db/dx (22c)
df/dx = (1/c) · dc/dx (22d)

These computations can be automatized by the computer in
object-oriented programminj through operator overloading.
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Numerical Results

Efficiency of Automatic Differentiation

1 Theoretical result: computing the complete gradient of a function
f : < → <n takes not more than 5 times the operation that it takes
to compute f .
But this is difficult to implement (reverse mode).

2 The chain of calculations in (22) is easy to implement, but often
rather inefficient.

3 In our application, even forward mode rather efficient, because
use of implicit function theorem in two-step approximation
function evaluation:

∂A(x)

∂γ
=
∂A(x)

∂x
∂x
∂γ

(23)

Since x has much fewer elements than γ, (23) is much faster than
computing ∂A(x)

∂γ by forward differentiation!
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Portfolio Choice

Example: 3-period OLG with Portfolio Choice

Technology
yt = F (Kt ,Lt ) (24)

yt = Kt+1 − (1− δtKt + Ct (25)

rt = Fk (Kt ,Lt )− δt (26)

wt = FL(Kt ,Lt ) (27)

Stochastic depreciation factor:

δt = δ̄ + ρ(δt−1 − δ̄) + εt (28)
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Portfolio Choice

Model: Assets

Capital K and riskless bond A

Kt = ((W2,t + W3,t )/(1 + rt )) (29)

K1,t = (wtζ1L1 − c1,t − qS
t A1,t ) (30)

W2,t = K1,t−1RK
t + A1,t−1 (31)

K2,t = (W2,t + wtζ2L2 − c2,t − qS
t A2,t ) (32)

W3,t = K2,t−1RK
t + A2,t−1 (33)
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Portfolio Choice

Euler Equations

β Et (RK
t+1Uc(c2,t+1,L2)) = Uc(c1,t ,L1))

β Et (Uc(c2,t+1,L2)) = qS
t Uc(c1,t ,L1)) + κA1,t

β Et (RK
t+1Uc(c3,t+1,0)) = Uc(c2,t ,L2))

β Et (Uc(c3,t+1,0)) = qS
t Uc(c2,t ,L2))

κ 6= 0 forces Ai,t = 0 in steady state and linear approx.
Short-sale and collateral constraints:

Ki,t ≥ 0
Ai,t + φKi,t ≥ 0 (34)

Asset market equilibrium:

A1,t + A1,t = 0; (35)
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Portfolio Choice

Model: Aggregation

c3,t = W3,t (36)

Lt = ζ1L1 + ζ2L2 (37)

Ct = c1,t + c2,t + c3,t (38)
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Portfolio Choice

Solving the Portfolio Choice Model: Outline

State variables: Household net worth of each cohort at beginning
of period (assuming no trading frictions)
Not: whole asset position (too many states).
Approximate: consumption of each cohort.
Not: asset choice. (because of kinks: short-sale constraints)
Given time-(t + 1) consumption function, calculate asset position
in period t from Euler equations.
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Portfolio Choice

Problems with portfolio choice model

Asset choice indeterminate in steady state and in linearized
solution
Solution:

punish holdings of safe asset by parameter κ
set κ = 0 in final step of nonlinear solution.

Difficult to find compact stable state space (extreme realizations of
asset returns kick households beyound bounds).
(Partial) Solution: state space large compared to shocks =⇒
mild extrapolation.
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Portfolio Choice

Problems with portfolio choice model, ctd.

State variables of time t (market value of wealth) depend on
endogenous variables of time t (asset returns).
Solution: iterate over portfolios and over interest rate in each
computation of state transition function.

1 Select asset returns as variables that are approximated as function
of states

2 At t , guess
portfolio choices of each cohort
asset returns (here: interest rate) of t + 1 for each possible realization
of exogenous shocks t + 1

3 Compute next period’s wealth levels
4 Update guesses until

Euler equations are satisfied
Guessed asset returns consistent with approximation.
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Portfolio Choice

Accuracy portfolio choice model

Mean(abs) error:
K/L C1 C2

3: 3.9322e-04 4.0989e-04 4.0057e-04
4: 1.8495e-05 1.7580e-05 1.8194e-05
6: 2.3788e-06 2.3607e-06 2.4118e-06

Max(abs) error:
K/L C1 C2

3: 1.3640e-03 1.2223e-03 1.5433e-03
4: 6.0046e-04 5.1620e-04 6.8820e-04
6: 1.0832e-04 9.0181e-05 1.1168e-04
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A Toolkit (in the making)

A Toolkit

Linear part
Similar to Dynare
Systematic way to compute steady state
Can handle large models through loop constructions.

Nonlinear part
Projection method
Choice of different approximation schemes

Complete polynomials
Splines
Sparse grids
Combinations (tensor products) of these.

Implementation
Written in C++
Each project gets compiled in C++ (but the user need not know any
C++)
Output in Matlab form, so it can be analyzed in Matlab.
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A Toolkit (in the making)

Toolkit file NK, linear part

z(0) := rho_z*z(-1) + eps_mc;
z2(0) := rho_z*z2(-1) + eps_euler;
y(0) := EXP(y(1)) - 1/sigma * (IntR(0)-EXP(pi(1))) + z2(0);
pi(0) := beta*EXP(pi(1)) + lambda*mc(0);
mc(0) := kappa*y(0) + z(0);
R0(0) := phi_p * pi(0) + phi_y *y(0);
IntR(0) := max(R0(0),-0.005);

STST;
@LINEARMODEL;
END;
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A Toolkit (in the making)

Toolkit file NK, nonlinear part

STATE(z(0),z2(0));
APPROX(y,pi);
DEFINE(mc,R0,IntR);

REALIZ(eps_mc;-0.03:1/3, 0:1/3, 0.03:1/3);
REALIZ(eps_euler;-0.005:1/2, 0.005:1/2);
STEPSSIGMA(0.01,20);
PROBSPACE(0.999);
DOSPLINE(20,20);
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A Toolkit (in the making)

Toolkit file NK, WW smoothing, nonlinear part

STATE(z_mc(0),z_y(0));
APPROX(Ey,Epi);
GUESSSTATIC(IntR);
DEFINE(y,mc,pi,R0);

REALIZ(eps_mc;-0.03:1/3, 0:1/3, 0.03:1/3);
REALIZ(eps_y;-0.005:1/2, 0.005:1/2);
STEPSSIGMA(0.01,20);
PROBSPACE(0.999);
DOSPLINE(20,20);
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Conclusions

Conclusions

Systematic procedure, starting from linearization around
stationary state
Many implementation issues,

Fast computation of polynomial and spline approximations, sparse
grids.
Automatic differentiation, dense and sparse Jacobian
Parallelization

Toolkit needed.
TODO:

Discretionary policy (dynamic games)
Problem: steady state is not a system of algebraic equations.

Homotopy from full commitment to no-commitment through “loose
commitment” Debortoli and Nunes (2010)
Iterate over derivatives at StSt.

Nonlinear solution of models with continuum of agents.
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