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Abstract

We lay out a sticky price dynamic general equilibrium model in or-
der to study the nominal exchange rate– tradable price pass-through,
the tradable — non-tradable inflation gap, and the interconnection of these
phenomena.

We show that if prices are sticky, then asymmetric productivity shocks
are not the only factors which can influence the inflation gap. But still the
key determinant of the large long-run inflation gap observable in Hungary
is the productivity difference of the two sectors. Furthermore we show
that the productivity shocks which generate the inflation gap are partly
responsible for the slow exchange rate pass-through in Hungary.

1 Introduction

The National Bank of Hungary (NBH) introduced inflation targeting in 2001.
The efficient conduction of this regime needs clear understanding exchange rate
pass-through and the determinants of tradable — non-tradable inflation differ-
ence. Macroeconomic theory explains the long run evolution of these phenom-
ena by purchasing power parity (PPP) and the Balassa-Samuelson effect. That
is, in the long run domestic tradable prices are determined by foreign tradable
prices and nominal exchange rate, an tradable — non-tradable inflation gap by
asymmetric sectoral productivity shocks.
On the other, hand these traditional theories cannot provide consistent ex-

planation for the short run behavior of these variables. They contradict empiri-
cal evidences on exchange rate pass-through, e.g. Darvas (2001) and Hornok et
al. documented that the Hungarian exchange rate pass-through is slow, while
PPP implies a perfect, infinitely quick pass-through. Furthermore, both PPP
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and the Balassa-Samuelson mechanism preclude demand as an explanatory fac-
tor. According to these theories neither government spending, nor foreign de-
mand shocks has any effects on inflation.
For this reason the studies prepared in the NBH follow more pragmatic

approaches. E.g. Benczúr et al. (2002) or Hornok et al. (2002) share the
view that domestic tradable prices are determined solely by foreign prices and
nominal exchange rate, but they refuse perfect exchange rate pass-through.
Furthermore in their models demand has a role in determination of non-tradable
prices.
But there are some problems with this pragmatic view: Firstly, if somebody

refuse PPP and perfect exchange rate pass-through then implicitly assume that
foreign and domestic tradables are not perfect substitutes and price formation is
sticky. But this implies that domestic tradable prices are determined not simply
by an arbitrage process but by the interaction of demand an supply. Hence
nominal exchange rate and foreign prices cannot be the only determinants of
these prices. They have their role, but there are other factors, as well.
Secondly, the paper of Hornok et al. uses the model of Milesi-Ferretti (2000)

in order to give a role to demand factors in the explanation of tradable — non-
tradable inflation gap. But that model is based on the assumption that the
two sectors do not use common inputs. Since this assumption contradicts the
Balassa-Samuelson type explanations their approach moved to the other ex-
treme. But according to empirical studies, e.g. Kovács (2002), this is not a
useful view.
The purpose of this paper is to study in a consistent new open economy

macroeconomics (NOEM) framework1 the exchange rate pass-through, the trad-
able — non-tradable inflation gap, and their interactions. Our model is based on
the Christiano et al. (2000) modification of the sticky price model of Calvo
(1983) and of the sticky wage model of Erceg et al. (2000). The sectoral asym-
metries are treated similarly as in Woodford (2002) and we used key elements
of the small open economy model of Gali and Monacelli (2002).
In our model both price and wage formation are sticky. Prices of each

sector are determined by real marginal cost, which depends on productivity,
input prices and real wage. Nominal exchange rate influences real marginal
cost through the prices of imported inputs, and aggregate demand through real
wages. Foreign demand is influenced by nominal exchange rate through terms
of trade, hence nominal exchange rate has a demand and a supply side effect on
the prices.
In traditional models or according to the pragmatic approach, the nominal

exchange rate — tradable price pass-through and the tradable — non-tradable in-
flation gap are independent phenomena. But in this model they are not: the
inflation gap observable in Hungary cannot be explained without real shocks,
but this shocks disturbs the demand for and the supply of home made tradables,
hence the price formation and indirectly the exchange rate pass-through.

1This approach started by the seminal paper of Obstfeld and Rogoff (1995), their nov-
elty was the joint assumption of the non-perfect substitutability of foreign and home made
tradables and sticky prices.
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This paper tries to help to better understand the inflation process in Hun-
gary in two ways. Firstly, in our model the exchange rate pass-through depends
on microeconomic parameters, hence it can utilize the information contained in
microeconomic empirical studies (e.g. Rátfai (2001), Tóth and Vincze (1999)).
Secondly, the consistent framework can help to integrate the different submod-
ules of the NBH’s inflation forecasting system, since its econometric module
and its module on government spending and wage formation is not yet fully
compatible to each other.
The structure of the paper is organized as follows. Section 2 presents the

structure of the model. In Section 3 we discuss the simulation results. Firstly, in
Section 3.1 we explain the determinants of the tradable — non-tradable inflation,
then in Section 3.2 we review the results on exchange rate pass-through, and
discuss its connection to the inflation gap and asymmetric productivity shocks,
finally in Section 3.3 we study the effects of some other shocks on prices.

2 Structure of the model

2.1 Households

The model contains a unit mass of uniform households, who maximize the fol-
lowing utility function,

E0

" ∞X
t=0

βt (U(ct)− V (lt))
#
, (1)

where ct is aggregate consumption, lt is labor supply, U(c) = c1−σ/(1− σ) and
V (l) = l1+ϕ/(1+ϕ). The consumption and labor supply of individual households
can be different, hence it could be useful labelling the variables by indices, but
to keep the notation simple and tractable we omit them. Since in equilibrium
the economic activity of each household will be the same this simplification
will not cause any confusion. Aggregate consumption can be decomposed into
consumption of tradable, cTt , and non-tradable goods, c

N
t . Their relationship is

defined by the following CES function,

ct =
h¡
aTχTt

¢1−η ¡
cTt
¢η
+
¡
aNχNt

¢1−η ¡
cNt
¢ηi 1η

,

where 1 > η > −∞, and χNt , χNt represent stochastic taste shocks which modify
the structure of aggregate consumption, furthermore

aTχTt + a
NχNt = 1. (2)

Home made and foreign tradable goods are not perfect substitutes. (Hence their
prices measured in the same currency can be different.) Aggregate tradable
consumption is defined by the following CES aggregator,

cTt =
h¡
aTF

¢1−ρ ¡
cTFt

¢ρ
+
¡
aTH

¢1−ρ ¡
cTHt

¢ρi 1ρ
, (3)
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where cTFt is the consumption of foreign and cTHt is that of the home made
tradable goods, 1 > ρ > −∞ and aTF + aTH = 1. Furthermore we assume that
ckt , k = TF, TH, N are also created by aggregation of individual goods,

ckt =

µZ 1

0

¡
c(i)kt

¢%
di

¶ 1
%

,

where 1 > % > 0. Households maximize (1) subject to a sequence of intertem-
poral budget constraints,Z 1

0

£
P (i)TFt c(i)TFt + P (i)THt c(i)THt + P (i)Nt c(i)

N
t

¤
di+Dt+1

≤ Rt+1Dt +Wtlt +Πt + Tt, (4)

where P (i)TFt = etP (i)TF∗t , Dt is the nominal portfolio bought at the beginning
of period t, and Rt+1 is the stochastic return of the portfolio. Furthermore, we
assume that financial markets are complete. Πt denotes the profit of domestic
firms and Tt is a tax/transfer variable.
Define for all k = TF, TH, N goods the following price indices,

P kt =

µZ 1

0

¡
P (i)kt

¢ %
%−1 di

¶ %−1
%

,

the price index of tradables,

PTt =
h
aTF

¡
PTFt

¢ ρ
ρ−1 + aTH

¡
PTHt

¢ ρ
ρ−1
i ρ−1

ρ

,

and the consumer price index, CPI,

Pt =
h
χTaT

¡
PTFt

¢ η
η−1 + χNaN

¡
PNt

¢ η
η−1
i η−1

η

.

One can demonstrate that using the above defined price indices the households’
optimization problem can be simplified by using the following aggregated budget
constraint sequence,

PtCt +Dt+1 ≤ Rt+1Dt +Wtlt + Tt +Πt. (5)

This approach makes it possible to solve the optimization problem in four sub-
sequent distinct steps. Firstly, one can solve the intertemporal decision problem
for aggregate quantities. Then for given aggregate variables one can find optimal
tradable and non-tradable consumption. Thirdly, for given tradable consump-
tion it is possible to divide it into home made and foreign tradables. Finally,
one can find the demand for individual goods.
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Aggregate consumption

Assuming complete international financial markets the solution of the house-
holds’ optimization problem provides the following first order condition,

β

µ
ct+1
ct

¶−σ µ
Pt
Pt+1

¶
=

1

Rt+1
. (6)

The assumption of international completeness implies, that foreign households’
have to satisfy a similar condition,

β

µ
c∗t+1
c∗t

¶−σ µ
PF∗t
PF∗t+1

¶µ
et
et+1

¶
=

1

Rt+1
, (7)

where c∗t is aggregate consumption of foreign consumers and PF∗t is the foreign
CPI, in foreign currency terms. Combining eq. (6) and (7) and iterating them
yields,

ct = ϑc∗t

µ
etP

F∗
t

Pt

¶ 1
σ

, (8)

where ϑ is a constant, which depends on initial conditions (details are in the
Appendix). Since the size of the domestic economy is negligible to the world
economy, foreign consumption is equal to foreign output, i.e. c∗t = y∗t . Loglin-
earizing (8) yields

c̃t = ỹ
∗
t +

ẽt + P̃F∗t − P̃t
σ

. (9)

Since domestic economy is negligible, domestic goods have zero weight in the
foreign CPI, and we assume that foreign tradables and non-tradables have the
same price hence PF∗t = PTF∗t .
Let us define the terms of trade, St = (etP

TF∗
t )/PTHt . Its loglinearized

version is,

S̃t = P̃
F∗
t + ẽt − P̃THt . (10)

Define the non-tradable — tradable relative price, P gt = P
N
t /P

TH
t , hence

P̃ gt = P̃
N
t − P̃THt .

It is useful to express the relative price in (9) alternatively. Since2

P̃t = s
N P̃ gt + P̃

TH + sTaTF S̃t. (11)

2

P̃t = sN P̃Nt + sT aTH P̃THt + sT aTF
³
P̃F∗t + ẽt

´
= sN P̃ gt +

³
sN + sT aTH

´
P̃TH + sT aTF

³
P̃F∗t + ẽt

´
,

and 1− sT aTF = sN + sT aTH .
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the following identity will be true

ẽt + P̃
F∗
t − P̃t = (ẽt + P̃

F∗
t − P̃THt )− sN P̃ gt − sTaTF S̃t

= (1− sTaTF )S̃t − sN P̃ gt , (12)

where sT is the steady state share of tradable goods and sN = 1 − sT is that
of the non-tradables.3 Combining (9) and (12) yields the following equation for
aggregate consumption,

c̃t = ỹ
∗
t +

(1− sTaTF )S̃t − sN P̃ gt
σ

. (13)

Demand for tradable and non-tradable goods

If the path of aggregate consumption is known, then one can calculate that of
the tradable and non-tradable consumption,

cTt = aTχTt

µ
Pt
PTt

¶ 1
1−η

ct.

cNt = aNχNt

µ
Pt
PNt

¶ 1
1−η

ct.

Loglinearizing these equations, and using4

P̃t − P̃Tt =
sN

sT

h
(1− sN)P̃ gt − sTaTF S̃t

i
,

and using, the fact that the loglinearized version of eq. (2) implies

χ̃Nt = −
aN

aT
χ̃Nt , (14)

we get

c̃Tt = χ̃Tt +
sN

(1− η)sT

³
sT P̃ gt − sTaTF S̃t

´
+ c̃t. (15)

Similarly, loglinearizing the equation for cNt , and using

P̃t − P̃Nt = sTaTF S̃t − (1− sN)P̃ gt
yields

c̃Nt = χ̃Nt +
sTaTF S̃t − (1− sN)P̃ gt

1− η
+ c̃t. (16)

3Since in steady state PT 6= PN , the loglinearized P̃t price index cannot be weigheted by
aT and aN .

4We proove this identity in the Appendix.
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Knowing the consumption of tradables we can derive the demand of home
made and foreign tradables.

cTHt = aTH
µ
PTt
PTHt

¶ 1
1−ρ

cTt .

Loglinearization yields

c̃THt =
1

1− ρ

³
P̃Tt − P̃THt

´
+ c̃Tt .

The loglinear price index of tradables is

P̃Tt = a
TF (P̃F∗t + ẽt) + (1− aTF )P̃THt .

Hence

c̃THt =
aTF

1− ρ

³
P̃F∗t + ẽt − P̃THt

´
+ c̃Tt

=
aTF

1− ρ
S̃t + c̃

T
t , (17)

the demand for cTF can be found similarly.

Demand for individual goods

For all k = TF, TH, N types of goods

c(i)kt =

µ
P (i)t
Pkt

¶ 1
1−%

ct. (18)

Foreign demand

Similarly to domestic residents, we assume that foreigners has the following
demand for home made goods,

cTH∗t = aTH∗
µ
etP

F∗
t

PTHt

¶ 1
1−ρ

y∗t

Using PF∗t = PTF∗t and loglinearizing the previous demand equation yields

c̃TH∗ =
1

1− ρ
S̃t + ỹ

∗
t . (19)

Aggregate demand

Define domestic tradable and non-tradable output as

yTt = cTHt + cTH∗t ,

yNt = cNt ,
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and aggregate output is their sum. This summation seems incorrect since we
sum different types of goods. But we show that in our case both in the steady
state and the loglinearized version the variables can be expressed by the same
measures, hence summation is meaningful. Since our analysis is based on the
loglinearized model this is sufficient for us. Let us start with the steady state,

y = yN + yT = cN + cTH + cTH∗.

Express domestic tradable consumption alternatively: Assume that the steady
state trade balance is in equilibrium and PTH = ePTF∗. Then PTHcTH∗ =
ePTF cTF + eP zz where z is and imported input good and P z∗ its prices in
foreign currency terms. Define P̄ z = eP z∗/PTH , then cTH∗ = cTF + P̄ zz, and
yT = cTH + cTF + P̄ zz. PTH = ePTF∗ implies, that cTH = (1 − aTF )cT and
cTF = aTF cT , hence

yT = cT + P̄ zz.

Define

āN = aN
µ
P

PN

¶ 1
1−η

,

āT = aT
µ
P

PT

¶ 1
1−η

.

Then the demand functions imply cN/āN = c and cT/āT = c. Hence non-
tradable output can be measured in tradable good terms,

yN = cN =
āN

āT
cT .

Hence the tradables output is

y = yN + yT =
āN

āT
cT + cT + P̄ zz.

Since cT = āT c, the previous equation can be expressed in the following way,

y = āc+ P̄ zz,

where ā = āN + āT . Define âj = āj/ā, j = N, T , z̄ = (P̄ zz)/(āc) és xz =
1/(1 + z̄). Then one can show, that

cN

y
= xzâN ,

cT

y
= xz âT ,

P̄ zz

y
= xzz̄. (20)

Loglinearizing the aggregate output yields

ỹt =

µ
cN

y

¶
c̃Nt +

µ
cT

y

¶µ
cTH

cT

¶
c̃THt +

µ
cTH∗

y

¶
c̃TH∗t .
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Since cTH/cT = aTH and cTH∗/y = aTF (cT/y) + (P̄ zz)/y, using eq. (20) the
previous equation can be expressed as

tyt = x
zâN c̃Nt + x

zâTaTH c̃THt + xz(âTaTF + z̄)c̃TH∗t .

If we consider eq. (14), (15), (13), (16), (17) and (19), then one can se that all
c̃Nt , c̃

TH
t , and c̃TH∗ are linear combinations of S̃t, P̃

g
t , ỹ

∗
t and χ̃Nt , hence it is

possible to sum them. Substituting the previous equations into the loglinearized
version of aggregate output yields

ỹt =
ωs
σ
S̃t − ωgP̃

g
t + ỹ

∗
t + ωχχ̃

N
t , (21)

where the expressions for the coefficients are in the Appendix. Since

ỹt = xzâN ỹNt + (1− xzâN)ỹTt , ỹNt = c̃
N
t ,

ỹTt =
xzâT (1− aTF )
1− xzâN c̃THt +

xz
¡
âTaTF + z̄

¢
1− xz âN c̃TH∗t ,

the non-tradable and tradable output can be expressed as the linear combination
of the same variables.

ỹNt = λNs
ωs
σ
S̃t − λNg ωgP̃

g
t + ỹ

∗
t + λNχ ωχχ̃

N
t , (22)

ỹTt = λTs
ωs
σ
S̃t − λTg ωgP̃

g
t + ỹ

∗
t + λTχωχχ̃

N
t , (23)

where

λNj =
ωNj
ωj
, λTj =

ωTj
ωj

ωj = xz âNωNj + (1− xz âN)ωTj .

2.2 Price and wage setting

We already mentioned that both tradable and non-tradable goods are composite
of many individual goods, which are not perfect substitutes We assume that each
individual good is produced by a distinct individual firm. Eq. (18) implies that
demand for the products of the ith non-tradable producer, and the jth tradable
producer is

y(i)Nt =

µ
PN(i)t
PNt

¶ 1
1−%

yNt , y(j)Tt =

µ
PT (j)t
PTt

¶ 1
1−%

yTt ,

where P (i)Nt and P (j)Tt the individual prices, y(i)
N
t and y(j)Tt are individual

output levels, and 0 < % < 1. Hence firms are not price takers, but monopolistic
competitors.
Following Calvo (1983) we assume that both the non-tradable and tradable

producers in a given period independently of their past actions reset their prices
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by probability 1−γN , 1−γTH, respectively. Since we assume uncountably many
producers in each time period 1− γN and 1−γTH fraction of the firms set new
prices. Each entrepreneur who resets its prices does in an optimal forward
looking manner.
Christiano et al. (2001) extended this model. They assume that in every pe-

riod νN or νTH portion of those firms, which do not reset their prices optimally
in the given period will reset their prices in a backward looking non-optimal
manner. More exactly they rise their prices by the inflation rate of the previous
period.
In the Appendix we show that these assumptions imply the following price

setting equations,

π̄THt = βEt
£
π̄THt+1

¤
+ ξTHm̃cT ,

π̄Nt = βEt
£
π̄Nt+1

¤
+ ξNm̃cN ,

where

π̄THt = πTHt − νTHπTHt−1, π̄Nt = π̄Nt − νN π̄Nt−1. (24)

πTHt = P̃THt − P̃THt−1 , πNt = P̃
N
t − P̃Nt−1, (25)

where m̃cT , m̃cN are loglinearized real marginal cost of the two sectors. We
omitted indices i and j, since in a given sector individual firms have the same
technology and choose the same prices in equilibrium.
The technology of a given sector is the following:

ykt = A
k
t h

αk

t ,

where Akt is a stochastic productivity variable, 0 < αk ≤ 1 and k = T, N .
αk = 1means constant return-to scale, αj < 1 means decreasing return-to scale.
ht input variable is a Leontieff aggregate of labor, lt, and imported inputs, zt.
Formally

ht = min [a
zzt, (1− az)lt] ,

where 0 < az < 1. Now we can express the real marginal cost of each sector.

m̃cT = w̃zt + P̃t − P̃TH − ᾱT ỹTt −
ÃTt
αT
,

m̃cN = w̃zt + P̃t − P̃N − ᾱN ỹTt −
ÃNt
αN

,

where ᾱj = (1− αj)/αj and

w̃zt = (1− āz)w̃t + āz(P̃ z∗t + ẽt − P̃t),
where wt is real wage, (1− āz) is the steady state portion of w in wz. Knowing
ᾱT and ᾱN we can express ξTH and ξN coefficients of the price setting equations,

ξTH =
(1− γTH)(1− βγTH)

γTH
³
1 + ᾱT

1−%
´ , ξN =

(1− γN)(1− βγN)

γN
³
1 + ᾱN

1−%
´ .
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Let us define the inflation gap,

πgt = P̃
g
t − P̃ gt−1, (26)

and the following variable,

π̄gt = πgt − νNπgt−1. (27)

To express the inflation gap we rearrange the price setting equation of the
tradable sector,

πTHt − νNπTHt−1 − (νTH − νN)πTHt−1 =

β
¡
Et
£
πTHt+1

¤− νNπTHt − (νTH − νN)πTHt
¢
+ ξNm̃cTt +

³
ξTH − ξN

´
m̃cTt ,

and that of the non-tradable sector,

πNt − νNπNt−1 = β
³
Et
£
πN
¤
t−1 − νNπNt

´
+ ξNm̃cNt .

Subtracting the first from the second yields,

π̄gt = βEt
£
π̄gt+1

¤
+ ξN

¡
m̃cNt − m̃cTt

¢
−

³
ξTH − ξN

´
m̃cTt +

¡
νTH − νN

¢ ¡
βπTHt − πTHt−1

¢
.

Since

m̃cTt =
π̄THt − βEt

£
π̄THt+1

¤
ξTH

,

and

m̃cNt − m̃cTt =
ÃTt
αT
− Ã

N
t

αN
− P̃ gt + ᾱN ỹNt − ᾱT ỹTt ,

the inflation gap equation is

π̄gt = βEt
£
π̄gt+1

¤
+ ξN

"
ÃTt
αT
− Ã

N
t

αN
− P̃ gt + ᾱN ỹNt − ᾱT ỹTt

#
(28)

−
³
1− ξN/ξTH

´¡
π̄THt − βπ̄THt+1

¢− ¡νN − νTH
¢ ¡
βπTHt − πTHt+1

¢
.

Let us express alternatively the price setting equation of the tradables. Using
eq. (11) the real marginal cost can be expressed as follows,

m̃cTt = (1− āz)w̃t + āz(P̃ z∗t + ẽt − P̃t) + ᾱT ỹTt −
ÃTt
αT

+ P̃t − P̃THt

= (1− āz)w̃t + āz(P̃ z∗t + ẽt) + ᾱT ỹTt −
ÃTt
αT

+ (1− āz)sN P̃ gt + (1− āz)sTaTF S̃t − āzP̃THt .
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Substituting this into the pricing equation of the tradable sector yields,

π̄THt = βEt
£
π̄THt+1

¤
+ ξTH

h
(1− āz)w̃t + āzP̃ z∗t + āz ẽt + ᾱT ỹTt (29)

+ (1− āz)sN P̃ gt + (1− āz)sTaTF S̃t − āzP̃THt − Ã
T
t

αT

#
.

Let us apply the sticky wage model of Erceg et al. (2002) combining it with
the extension of Christiano et al. (2001). Suppose that labor inputs supplied
by the individual households are not perfect substitutes. On the other hand,
each firm use composite labor, lt, defined by the following CES aggregator,

lt =

µZ 1

0

lt(i)
%w di

¶ 1
%w

,

where l(i) denotes the individual labor inputs. The aggregate wage index is

Wt =

µZ 1

0

Wt(i)
%w

%w−1 di

¶ %w−1
%w

,

whereW(ti) is the individual wage. The demand for a given type of labor input
is

lt(i) =

µ
wt
wt(i)

¶ 1
1−ρw

l.

Since the individual labor suppliers are monopolistic competitors sticky wage
formation can occur. They change their wages optimally by probability 1− γw,
and νw fraction of the rest change the wages in a backward looking manner. In
the Appendix we show that if πw is the nominal wage inflation, then

π̄wt = πwt − νwπwt−1 (30)

is determined in the following way,

π̄wt = βEt
£
π̄wt+1

¤
+ ξw [m̃rst − w̃t] ,

where m̃rst is the loglinearized MRS between leisure and labor, and

ξw =
(1− γw)(1− βγw)

γw
³
1 + ϕ 1

1−%w
´ .

If wages are flexible, i.e. γw = 0 and 1/ξw = 0, then we have the usual w̃t =
m̃rst labor supply formula. In the Appendix we show that the labor supply
formula can be expressed in the following alternative way,

π̄wt = βEt
£
π̄wt+1

¤
(31)

+ ξw
·
ϕ

µ
ȳT

αT
ỹTt +

ȳN

αN
ỹNt −

ȳT

αT
ÃTt −

ȳN

αN
ÃNt

¶
+ σc̃t − w̃t

¸
.
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To determined the wage inflation we need the following identity, as well,

πwt = w̃t − w̃t−1 + sNπgt + πTHt + sTaTF (S̃t − S̃t−1), (32)

where we used formula (11) for the CPI.

2.3 Equilibrium

The equilibrium of the previously presented model is determined by the following
13 equations: Eq. (21) represents aggregate demand, the demand for tradables
and non-tradables is captured by eq. (22) and (23). The aggregate supply side
contains eq. (29), which is the pricing formula of tradables, eq. (29), which
describes the inflation gap, and eq. (31) sticky wage equation. The following
definitions and identities close the model: eq. (10), (24), (27), (30), (25), (26)
and (32). This system determines the path of the following 13 variables: ỹt, ỹNt ,
ỹTt , w̃t, S̃t, P̃

TH
t , P̃ gt , π

TH
t , πgt , π

w
t , π̄

TH
t , π̄gt , π̄

w
t .

We can further simplify the system. Firstly, let us express variable S̃t by eq.
(21) Then substitute it into eq. (22), (23) and (13). By the elimination of this
variable we get expressions independent of S̃t.

ỹNt = λNs ỹt + (λ
N
g − λNs )ωgP̃

g
t + (1− λNs )ỹ

∗
t + (λ

N
χ − λNs )ωχχ̃

N
t , (33)

ỹTt = λTs ỹt + (λ
T
g − λTs )ωgP̃

g
t + (1− λTs )ỹ

∗
t + (λ

T
χ − λTs )ωχχ̃

N
t , (34)

c̃t = (1−Φ)ỹ∗t +Φỹt + (Φωg − sN/σ)P̃ gt −Φωχχ̃Nt , (35)

Substituting the definition of terms of trade, eq. (10), into eq. (21), and substi-
tuting eq, (33), (34), (35) into the price and wage setting equations, i.e. (28),
(29) and (31), and then combining them by (24), (27) and (30) identities yiedls
the following four equations:

ỹt =
ωs
σ

³
P̃F∗t + ẽt − P̃THt

´
− ωgP̃

g
t + ỹ

∗
t + ωχχ̃

N
t , (36)

this represents aggregate demand.

(1 + βνTH)πTHt = βEt
£
πTHt+1

¤
+ νTHπTHt−1 (37)

+ξTH
"
(1− āz)w̃t + āzP̃ z∗t + āzẽt − āzP̃THt − Ã

T
t

αT

#
+ξTH

h
XT
y ỹt +X

T
g P̃

g
t −XT

y∗ỹ
∗
t +X

T
χ χ̃

N
t

i
,

this is the price setting equation of the tradable sector.

(1 + βνN)πgt = βEt
£
πgt+1

¤
+ νNπgt−1 (38)

+ξN
"
ÃTt
αT
− Ã

N
t

αN
− (Xg

g + 1)P̃
g
t +X

g
y ỹt +X

g
y∗ỹ
∗
t +X

g
χχ̃

N
t

#
+β

³
1− ξN/ξTH

´
πTHt+1 +

h³
1− ξN/ξTH

´
νTH + (νN − νTH)

i
πTHt−1

+
h³
1− ξN/ξTH

´
(1 + βνTH) + (νN − νTH)β

i
πTHt ,
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this determines the tradable — non-tradable inflation gap.

(1 + βνw)πwt = βEt
£
πwt+1

¤
+ νwπgt−1 (39)

+ξw
£
ϕXh

y + σΦ
¤
ỹt + ξw

£
ϕXh

y∗ + σ(1−Φ)¤ ỹ∗t
+ξw

£
ϕXh

g + σΦωg − sN
¤
P̃ gt + ξw

£
ϕXh

g − σΦωχ
¤
χ̃Nt

−ξwϕ
µ
ȳT

αT
ÃTt +

ȳN

αN
ÃNt

¶
− ξww̃t,

this describes wage setting. The coefficients of the above four equations are
defined in the Appendix.
If we add to the system eq. (36)-(39) the definition of πTHt , i.e. (25, that

of πgt , i.e (26), and if we combine eq. (32) and (10), then we have a 7 equation
system for the following 7 variables, ỹt, πTHt , P̃THt , πgt , P̃

g
t , π

w
t , w̃t path. This

dynamic linear system can be solved by the undetermined coefficients method,
see Uhlig (1999).

2.4 Special cases

It is worth looking over some special cases of the model. Suppose that the
domestic and foreign tradables are perfect substitutes, that is ρ = 1, price and
wage setting are flexible , that is γTH = γN = γW = 0, furthermore, constant
return-to scale technologies, that is αN = αT = 0. Then σ/ωs = 0, hence eq.
(36) becomes P̃THt = P̃F∗t + ẽt. In this case the domestic tradable prices are
determined solely by nominal exchange rate and foreign prices, and the exchange
rate pass-through is perfect. Flexible price and wage setting imply that 1/ξTH =
1/ξN = 1/ξw = 0, and constant return-to scale implies that Xg

g = X
g
y = X

g
y∗ =

Xg
χ = 0. Substituting these values into eq. (38) it becomes P̃

g
t = Ã

T
t −ÃNt , that

is the tradable—non-tradable relative price is solely determined by productivity
factors. Furthermore eq. (36) and (37) implies that the real wage is independent
of demand. Hence we get a version of our model which practically equivalent
to the Balassa-Samuelson model presented in chapter 4 of Obstfeld and Rogoff
(1996).
For some parameter values our model becomes the same as that of Gali and

Monacelli (2002). Let us assume, that there is no imported input, i.e. z̄ = āz = 0
és xz = 1, and there is no non-tradable sector, i.e. aN = âN = sN = ȳN = 0,
and aT = âT = sT = ȳT = 1. Furthermore wages are flexible, i.e. 1/ξw = 0
and there is no backward looking pricing, i.e. νTH = 0, and there is constant
return-to scale, i.e. αT = 1. Then ωg = ωχ = 0 and eq. (36) becomes

ỹt =
ωs
σ
S̃t + ỹ

∗
t ,

where ωs = 1+aTF (2−aTF )[σ/(1−ρ)−1]. This is the first fundamental equation
of Gali and Monacelli. Of course in this case eq. (38) becomes irrelevant, and
eq. (39) simply implies that real wage is equal to MRS. In our case since

14



Φ = (1− aTF )/ωs and Xh
y = 1 és X

h
y∗ = Xh

g = X
h
χ = 0, it is

w̃t =

µ
ϕ+

σ(1− aTF )
ωs

¶
ỹt +

σ(ωs − 1 + aTF )
ωs

ỹ∗t − ϕÃTt .

In eq. (37) XT
g = X

T
χ = 0 and X

T
y = a

TFσ/ωs, and XT
y∗ = aTFσ/ωs. Hence in

eq. (37) the term, which represents the real marginal cost becomes

w̃t + a
TF σ

ωs
ỹt − aTF σ

ωs
ỹ∗t − ÃTt .

Combining this with the previous expression for w̃t, and substituting for the
real marginal cost in eq. (37) yields the second fundamental equation of Gali
and Monacelli,

πTHt = βEt
£
πTHt+1

¤
+ ξTH

·µ
σ

ωs
+ ϕ

¶
ỹt + σ

µ
1− 1

ωs

¶
ỹ∗t − (1 + ϕ)ÃTt

¸
.

To close the model we need the definition of terms of trade, S̃t, eq. (10). The
authors use this three-equation system to study, for example domestic inflation
targeting, when πTHt is exogenous and the endogenous variables are ẽt, S̃t and
ỹt.

3 Simulation results

3.1 Determinants of tradable —non-tradable inflation gap

In this subsection we study (38) to understand the determinants of the inflation
gap. This equation contains πgt and P̃

g
t , and four exogenous shocks Ã

T
t , Ã

N
t ,

ỹ∗t and χ̃Nt , and two more endogenous variables π
TH
t and ỹt. Since we study

eq. (38) separately in this subsection we treat this two endogenous variables
like exogenous shocks. We solve the system of eq. (38) and the identity πgt =
P̃ gt − P̃ gt−1 by Uhlig’s (1999) algorithm. It provides as a solution for πgt the
following loglinear function,

πgt = µππgt−1 + µ
P P̃ gt−1 + θA

T

ÃTt + θA
T

1 ÃTt−1 + θA
N

ÃNt + θA
N

1 ÃNt−1

+ θχ
N

χ̃Nt + θχ
N

1 χ̃Nt−1 + θy∗ỹ∗t + θy∗1 ỹ
∗
t−1

+ θyỹt + θy1 ỹt−1 + θπ
TH

πTHt + θπ
TH

1 πTHt−1. (40)

Since we assume that the shocks follow second order autoregessive processes,
the solution contains lags of shock variables.5

5The shocks are determined by the following equations,

Ãkt = 1.8Ãkt−1 − 0.081Ãkt−2 + εA
k

t , χ̃Nt = 1.8χ̃Nt−1 − 0.081χ̃Nt−2 + εχ

ỹ∗t = 1.8χ̃Nt−1 − 0.081ỹ∗t−2 + εy∗, ỹt = 1.8χ̃
N
t−1 − 0.081ỹt−2 + εy ,

πTHt = 8πTHt−1 + επ .
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It is worth considering the special cases of eq. (38). Suppose the price
setting behavior of both sectors are the same, i.e. ξTH = ξN and νTH = νN .
Furthermore assume constant return-to scale technologies, i.e. αN = αT . This
latter assumption implies that Xg

g , X
g
y , X

g
y∗ coefficients are equal to zero. That

is, (38) is reduced to the following special form,

(1 + βνN)πgt = βEt
£
πgt+1

¤
+ νNπgt−1 + ξN

h
ÃTt − ÃNt − P̃ gt

i
.

One can observe that the inflation difference is determined by solely by produc-
tivity difference of the sectors. If tradable pricing is flexible, i.e 1/ξN = 0, then
P̃ gt = Ã

T
t − ÃNt , as we have seen in the previous sector. If price setting is sticky

then the previous relationship will be more complex, but still be determined
only by productivity factors.
If we relax the assumption of constant return-to scale, then

(1 + βνN)πgt = βEt
£
πgt+1

¤
+ νNπgt−1

+ξN
"
ÃTt
αT
− Ã

N
t

αN
− (Xg

g + 1)P̃
g
t +X

g
y ỹt +X

g
y∗ỹ
∗
t +X

g
χχ̃

N
t

#
.

In this case beyond productivity two more exogenous shocks, ỹ∗t and χ̃Nt , have
influence on inflation gap. These two variables are independent form monetary
policy. But in this case aggregate output ỹt, which depends on monetary policy,
also has influence.
In the general case ξTH and ξN can be different, νTH and νN also. Then

the inflation rate of tradable goods πTHt also can influence the inflation gap, see
eq. (38), hence this is another channel of monetary policy.
We started the simulations with the assumption of uniform pricing and

technologies. We studied flexible and 1.5, 3, 4 and 6 quarter pricing (i.e.
γTH = γN = 0, 1/3, 1/2, 3/4, 5/6) We compared the coefficients that mea-
sured the contemporary effects of the shocks, i.e. θA

T

, θA
N

, θχ
N

, θy, θy∗. With
constant return to-scale only the productivity shocks matter: In case of flexible
pricing θA

T

= 1 and θA
N

= −1. As prices become more sticky these coefficients
will decrease, see panel 1 of Graph 1
As return-to scale becomes decreasing demand shocks will matter, as well.

But their effect is negligible compared to productivity shocks. The strongest
among them χN relative demand shock (its 1 % increase accompanies with a
1 % rise of non-tradable consumption) But if αT = αN = 0, 8 its effect is
still around 20% of the productivity shocks, see panel 2 and 3 in Graph 1.
Graphs 3 presents the impulse responses of P̃ gt and πgt if α

T = αN = 0.8,
νTH = νN = 0.8 and γTH = γN = 1/3.
Summarizing: With uniform pricing and technologies only the productivity

shocks have the strongest effects, with decreasing return-to scale demand factors
have some impact, but it is negligible relative to that of the productivity shocks.
In the next phase we allowed asymmetric technologies. Panel 1 of Graph

3 shows the αT = 0.9, αN = 1 case, panel 2 the αT = 0.8, αN = 1 and panel 3
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the αT = 0.8, αN = 0, 9 (νTH = νN = 0.8), i.e. in all three cases the tradable
sector has more decreasing return-to scale technology. It is clear, that the effect
of the two productivity shocks are not the same any more, but they are still
closer to each other, than the other shocks. The role of the output gap, ỹt,
becomes more important. Its effect is around 25% of that of ÃNt . The same can
be observed on the impulse responses of Graph 4. (Be careful in the graph we
displayed −ỹt.)
Graph 5 and 6 shows αN = 0, 9, αT = 1; αN = 0, 8, αT = 1 and αN = 0, 8,

αT = 0, 9 cases. The impact of ÃNt becomes stronger than ÃTt The influence
of ỹt becomes negligible, the impact of ỹ∗t remains roughly the same as in the
uniform technology case, and that of χNt a bit weaker.
Summarizing: Technological asymmetry makes stronger the effect of some

types of demand shocks, but productivity factors remain the dominant ones.
Now let us study the effect of asymmetric pricing. In this case πTH can

influence inflation gap. We considered two cases. In the first case the price
setting of the non-tradable sector is stickier, γN = 1/2 and γTH = 1/3, see
the left column of Graph 7. On the other hand the right column presents the
opposite case, i.e. γN = 1/3 and γTH = 1/2. The graph clearly reveals that
tradable inflation can induce movements of the inflation gap, but its effect is
not persistent, and the inflation gap changes sign quickly, i.e. its movement is
cyclical. On the other hand the initial impact can be quite strong if there is
significant asymmetry between νTH and νN .
Let us summarize the findings of this subsection from two points of view.

The first question is how we can explain the large, 5-8 %, and persistent inflation
gap in Hungary, the second is what can deviate this gap temporarily from its
long run level.
Our answer for the first question is the following: The argument based on the

Balassa-Samuelson effect is basically correct. Without significant and persistent
asymmetric productivity shocks it is hard to explain the observable long run
inflation gap. On the other hand, the short run fluctuation of the inflation gap
can be influenced by other factors, even by monetary policy (through ỹt and
πTHt ), but these can be significant if there are technological or price setting
asymmetries.

3.2 Nominal exchange rate — tradable price pass-through

In this subsection we consider how the parameters of the model influence the
nominal exchange rate — tradable price pass-through. The most important pa-
rameters αT and αN technological coefficients, ρ the measure of substitution in
eq. (3) (ρ = 1 means perfect substitution, ρ = −∞ perfect complements) and
γk, νk, (k = TH, N , w) price setting parameters.
We set αT and αN in [0.8, 1], ρ = 0.5, this latter means that foreign and

home made tradables are close but not perfect substitutes.
The most important are the price and wage setting parameters There are

two empirical studies on price setting in Hungary, which based on micro data,
Tóth and Vincze (1999), and Rátfai (2000). Both contain information on the
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frequency of price revision in Hungary, but they do not say much on the method
of these revisions. The Calvo-Christiano et al. model we use needs information
on optimal forward looking and boundedly rational backward looking pricing,
but the two above mentioned papers do not separates this two types of behavior.
For example in the Calvo-Christiano et al. model both γk = 0, i.e. flexible
prices , and γk close to 1, νk = 1, i.e. very sticky prices, can be consistent
with quarterly pricing, which is reported by the two above mentioned empirical
paper.
Hence we considered a wide parameter range for γk: [1/3, 3/4], and we set

νk in [0.8, 1]. We compared these results with the pass-through estimation of
Hornok et al. (2002), which reports a quite slow passthrough, 40% in the first
year and 60% for the second.
Graph 8 shows the case when wage setting is flexible only price setting is

sticky. But in this case even the stickiest case produce too quick pass-through,
(80% in the firs year).
In Graph 9 we consider cases when both prices and wages are sticky. Panel

4 shows the case when optimal forward looking revision of the prices occurs
annually, and backward looking revision quarterly. In this case the pass-through
is 40% in the first year as in Hornok et al. (2002), but in the second year our
simulation produces faster pass-through than it is reported in the empirical
study.
As we mentioned in the Introduction it is an important property of this

model, that domestic tradable prices determined by not only foreign tradable
prices and nominal exchange rate, but by other factors, as well. On the other
hand, if in an empirical study domestic tradable prices are explained only by
these above mentioned two factors, then it is possible that the nominal exchange
rate pass-through estimation incorporate the effects of some other omitted vari-
ables. Hence the measured slow exchange rate pass-through in Hungary may be
the result of some other not considered shocks.
That is why, we assume that a negative persistent non-tradable productivity

shock, ÃNt , occurs in the economy (6 periods before the exchange rate shock)
and this generates a persistent large tradable — non-tradable inflation gap. We
present in Graph 10 the joint impulse responses of the nominal exchange rate
and productivity shock (we used the same parameters as in Graph 9). The
last panel reveals that in the second year the pass-through becomes smaller than
in the case without productivity shock, hence it replicates the findings of the
mentioned empirical papers.
The intuitive explanation of this phenomenon is the following: A negative

ÃNt shock reduces the supply of non-tradables, hence its relative price increases.
Since tradables and non-tradables are not imperfect substitutes the relative
price of home made tradables will also rise, although less than the non-tradable
prices. As a consequence, St terms of trade variable will decrease. This implies
by eq. (10), that the absolute value of ẽt − P̃THt will increase. In other words,
this means that if an appreciation occurs domestic tradable prices will follow
the nominal exchange rate movement slower than otherwise. That is, the price
adjustment will be more rigid downward. This is important, because with long
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and good quality time series data it is possible to separate the exchange rate
and the productivity factor, but with the recent available Hungarian data set
this is not necessarily possible.
If a positive persistent ÃTt shock occurs in the tradable sectors it produces

the same inflation gap as in the previous case, and by similar reasoning one can
show that it accelerates downward movements of tradable prices. But according
to our simulations this acceleration is unrelaistically large, hence we do not
consider further this option.
It is worth considering the interpretation of a negative productivity shock

of non-tradable sector. It does not mean that productivity decreases in the
non-tradable sector. It is better to assume that in foreign tradable, domestic
tradable and non-tradable sector productivity has the same long run growth
rate, and when a negative productivity shock occurs in the non-tradable sector,
than its productivity growth will be temporarily lower then in the other two
sectors.

3.3 Other shocks

See Graph 11.

4 Conclusion

In this paper we laid out a sticky price dynamic general equilibrium model
in order to study the nominal exchange rate — tradable price pass-through, the
tradable — non-tradable inflation gap, and the interconnection of these phenom-
ena.
We showed that if technologies has decreasing return-to scale or the price

setting behavior of the tradable and non-tradable sector are different, then not
only asymmetric productivity shocks, but demand factors and monetary policy
can influence the inflation gap. On the other hand according to our simulations
the key determinant of the large long-run inflation gap which can be observed
in Hungary is the productivity difference of the two sectors.
Since we assumed that foreign and home made tradables are imperfect substi-

tutes the domestic tradable prices has other determinants than foreign tradable
prices and nominal exchange rate, among these determinants one can find those
factors which determines the tradable — non-tradable inflation gap. We demon-
strated by our simulations that the asymmetric productivity shocks which can
generate the inflation gap observable in Hungary significantly can influence trad-
able prices.
If we generate the inflation difference by a negative shock of the non-tradable

sector, then aggregate supply decreases, which increases the domestic relative
prices. This implies real depreciation, and a consequence of this phenomenon
is that the domestic nominal tradable price level will increase relative to the
nominal exchange rate. Hence if the monetary authority wants to decreases the
prices by a nominal appreciation, then the tradable prices will follow the nominal
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exchange rate path slower than otherwise. In other words, the pass-through will
be slower.
On the other hand, if the inflation gap is generated by a positive productivity

shock of the tradable sector, then by the same reasoning the pass-through will
be quicker if appreciation occurs. But our simulations demonstrated that the
tradable productivity shock needed to replicate the inflation gap in Hungary
causes an unrealistic path of the tradable prices.
Hence our conclusion is that a slower than trend growth of the tradable

productivity generates the long-run inflation gap in Hungary, which is partly
responsible for the slow empirically observable exchange rate pass-through.

A Appendix

A.1 Steady state

A.2 Price and wage setting

A.3 Coefficients of the model

ωTs =

σ
1−ρ

nh
(1− aTF )

³
1− sN 1−ρ

1−η
´
+ 1
i
aTF âT + z̄

o
âT + z̄

+
âT (1− aTF )(1− sTaTF )

âT + z̄
,

ωNs =
sTaTFσ

1− η
+ (1− sTaTF ),

ωs = xz âNωNs + (1− xz âN)ωTs .

ωTg = −
âT (1− aTF )sN

h
1
1−η − 1

σ

i
âT + z̄

,

ωNg =
1− sN
1− η

+
sN

σ
,

ωg = xz
½
âNsT − âT sN(1− aTF )

1− η
+
sN(1− âTaTF )

σ

¾
.

ωTχ = − â
T (1− aTF ) aTaN
âT + z̄

, ωNχ = 1,

ωχ = xzaN
·
1− (1− aTF ) â

T

âN
aN

aT

¸
.
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XT
y = ᾱTλTs + (1− āz)sTaTF

σ

ωs
,

XT
y∗ = −ᾱT (1− λTs ) + (1− āz)sTaTF

σ

ωs
,

XT
g = (1− āz)sN − ᾱT (λTg − λTs )ωs + (1− āz)sTaTFσ

ωg
ωs
,

XT
χ = −ᾱT (λTχ − λTs )ωχ + (1− āz)sTaTFσ

ωχ
ωs
.

Xg
y = ᾱNλNs − ᾱTλTs ,

Xg
y∗ = ᾱN(1− λNs )− ᾱT (1− λTs ),

Xg
g =

h
ᾱN(λNg − λNs )− ᾱT (λTg − λTs )

i
ωg,

Xg
χ =

h
ᾱN(λNχ − λNs )− ᾱT (λTχ − λTs )

i
ωχ.

Xh
y =

ȳT

αT
λTs +

ȳN

αN
λNs ,

Xh
y∗ =

ȳT

αT
(1− λTs ) +

ȳN

αN
(1− λNs ),

Xh
g =

·
ȳT

αT
(λTg − λTs ) +

ȳN

αN
(λNg − λNs )

¸
ωg,

Xh
χ =

·
ȳT

αT
(λTχ − λTs ) +

ȳN

αN
(λNχ − λNs )

¸
ωχ.
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