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Abstract

In this paper we present methods to solve for asset allocations in dy-
namic incomplete market economies, in which the impact of portfolio
choices goes beyond the cases studied in the perturbation literature so
far (e.g. IDeverenx and Sutherland (2008, 20074), Van Wincoop and Tilld
(2007) and udd and Guu (2001)). For instance, this more general case
is relevant in characterizing Ramsey optimal policies with multiple agents
and assets under incomplete markets. We also clarify the link between the
Devereux-Sutherland solution methods and the asymptotic approach pro-
posed by Judd and Guu to deal with bifurcations arising in static portfolio
problems. Finally, we extend the solution technique proposed by Devereux
and Sutherland, by allowing more than two agents (and multiple assets)
in dynamic incomplete markets economies.

We present three open-economy applications of our methods. First,
we solve the portfolio problem in a simple three-country three-bond nom-
inal economy for which we can find analytical results for the steady-state
portfolio. This solution shows that relative risk can have compositional
effects on the portfolio that would not exist in a two-country model, with
potentially interesting implications for the study of the interactions be-
tween optimal exchange rate regimes and portfolio allocation. In our
second application, we solve for the country portfolios dynamics in re-
sponse to shocks in a simple two-country model with both equities and
nominal bonds, studying how home equity bias reacts to shocks. In our
third and last application we solve for the optimal nominal bond portfo-
lio under Ramsey monetary policy in a canonical 2-country model with

*The views expressed in this paper do not necessarily represent the view of the European
Central Bank.



Calvo pricing, and technology and mark-up shocks, with both complete
and incomplete markets.
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1 Introduction

Analyses of asset markets equilibrium in dynamic incomplete market economies
are very difficult, and there are very few cases that can be solved exactly for
equilibrium prices and quantities. The difficulty arises from the fact that port-
folio choices are indeterminate in the absence of uncertainty. Since standard
methods to solve for dynamic economies use the nonstochastic steady state as
the starting point of approximation, they cannot be readily applied to these
problems.

In two important recent papers, Devereux and Sutherland have derived
the optimal portfolio composition for dynamic macro models with two agents

, 120074, |2_0_Oﬂ) They show that using standard first-
order solution techniques it is possible to determine the “near-stochastic” optimal
portfolio allocation around which the non-linear dynamic model can be approx-
imated. Furthermore they show that using simple second order approximation
techniques, it is possible to characterize the dynamics of this portfolio, up to
first order of accuracy. [Van Wincoop and Tilld (2007) propose iterative tech-
niques to solve for the optimal portfolio based on the same principles inspiring
the work of Devereux and Sutherland.

In this paper we extend their results along several dimensions. First, we
extend these methods to solve for dynamic problems in which portfolio alloca-
tions are still indeterminate in the nonstochastic steady state, but relaxing the
assumption that these allocations only appear multiplied by excess returns. The
latter assumption is necessary for the solution technique suggested by Devereux
and Sutherland and by Tille and van Wincoopﬂ The more general case could
be shown to be relevant in a number of important problems, for instance if one
is interested in solving for Ramsey optimal policies with multiple agents and
assets under incomplete markets. The Devereux and Sutherland solution does
not cover this class of interesting problems. We show how to solve this more
general class of models using iterative methods, providing an application to the
optimal nominal bond portfolio under Ramsey monetary policy in a canonical
2-country economy with Calvo pricing and technology and mark-up shocks.

In deriving these results, we provide a further contribution by clarifying
the link between the Devereux-Sutherland methodology and the asymptotic
approach proposed by lMudd and Gl (|20_OJ]), in which bifurcation techniques
(BT) are used to address the failure of the implicit function theorem (IFT)
when perturbations methods are applied to approximate the solutions to static
portfolio problems with small risks. We show that the two approaches share the
same formal foundations. Importantly, also in the Judd-Guu class of problems,
portfolio allocations only appear multiplied by excess returns.

Finally, we derive closed form solutions for the class of economies studied by
Devereux and Sutherland in the case of more than two agents, and also more
than two assets, for the dynamics. We derive these solutions with a relatively

IFor example “The only two ways that portfolio shares enter model equations are (i)
through the return on the overall portfolio and (ii) through asset demand.” Assumption

1 in [Van Wincoop and Tilld (2007)




compact matrix algebra, which should facilitate the generation of computer
codes. A number of important questions can be properly addressed only with a
multi-country model, especially concerning the links between financial globaliza-
tion and monetary policy. For example, a large literature has addressed the ques-
tion of optimal exchange rate regimes and optimum currency areas. The typical
trade-off emphasized by this literature is that between independently choosing
imperfect stabilization policies and gaining credibility by pegging the exchange
rate to the currency of a better managed economy (e.g. IGiavazzi and Pagand
(1988), Ravenna (2007) and IClerc et all (2008)). Neumeyer (1998) has showed
that eliminating currencies can amount to reducing assets (if nominal assets
were available) and could, therefore, reduce the amount of risk sharing among
countries. While in a two-country model choosing to peg the exchange rate
amounts to eliminating all possibilities to hedge risk by holding foreign cur-
rency nominal bonds, in a multi-country model this need not be the case, as
long as some currencies remain independent. Furthermore, the hedging role of
the exchange rate could generate strategic motives in deciding the admission
of new members in a currency union or in deciding whether to join an existing
currency union.

Using our solutions for optimal steady-state and dynamic portfolio alloca-
tions for multiple agents and assets, we analyze two simple models. The first
is a three-country, three-bond endowment economy model, with monetary and
endowment shocks. We show that having more than two agents can generate
portfolio compositions that are ruled out in the two-country setup. For example,
as the variance of the monetary policy shocks of one country becomes infinitely
large, all countries will still hold a nontrivial portfolio of bonds in the other two
currencies. On the contrary, in the two-country model the optimal portfolio
would display zero holding of all bonds. This result is potentially relevant for
the literature analyzing the interactions between optimal exchange rate regimes
under incomplete markets, as it suggests that two countries might fix their bilat-
eral exchange rate while allowing a float with respect to other third countries,
thereby preserving the diversification opportunities provided by a sufficiently
large set of nominal assets.

The second application consists of a two-country model with trade in equities
and bonds and with money, endowment and dividend shocks. With this model
we can address the question of equity home bias. We show that the long-run
equity position is affected by the relative persistence of dividend and endowment
shocks. In the special case of equal persistence of dividend and endowment
shocks, and without monetary shocks, we can produce perfect equity home-bias
(e.g. as discussed in (Coenrdacier et all (2007)). In addition, we also study the
dynamic responses of equity and bond holdings in response to shocks, with both
complete and incomplete markets.

In the complete-market case the wealth distribution is stationary. In gen-
eral, though, net-wealth (and real allocations) is not stationary when the model
is approximated around the non-stochastic steady state under incomplete mar-
kets. In principle this could obscure the interpretation of the long-run portfolio
compositions. Nevertheless, we show that introducing a stochastic discount




factor, as discussed in Schmitt-Grohé and Uribd (2003), we can eliminate the

non-stationarity without altering the main results, for reasonable parameteriza-
tion of the discount factor.

Finally, the third application shows that the solution proposed by Devereux and Sutherland

,m) cannot be applied to an interesting class of models, including mod-
els with Ramsey policymakers. We show that the general solution technique,
nevertheless, allows us to characterize the portfolio also in this broader class of
models. We apply the general solution to the canonical two-country model with
sticky prices used among others by Benigno and Benignd (2006). We show that
when there are only productivity shocks, PPI-stability coincides with the opti-
mal Ramsey monetary policy also in terms of optimal portfolio allocation. In
the presence of mark-up shocks, the Ramsey policy induces a different portfolio
allocation than the one obtained under the PPI-stability policy.

Other papers discuss the derivation of optimal portfolios in open-economy
models. [Coeurdacier et all (2008) find a closed form solution for a two country
model with trade in stocks and bonds. Their analysis is close to the work
of Heathcote and Perri (|20_0_7|) by showing that equity home bias can be the
result of optimal hedging of idiosyncratic risk. Their derivation of the portfolio
solution is based on the assumption of complete markets and, therefore, differs
from ours.

IVan Wincoop and Tilld (2007) propose a solution method for optimal port-
folios that is equivalent to that discussed in Deverenx and Sutherland (|20_0_Zd,

). Our derivation of the closed form solution differs substantially from
theirs. Different is also the derivation of the optimal portfolio obtained by
[Evans and Hnatkovska (2007). These authors also apply approximation meth-
ods to compute the optimal (dynamic) portfolio in DSGE models with multi-
ple assets. Nevertheless they combine discrete-time perturbation methods with
continuous-time approximation methods in order to characterize the portfolioE

[Engel_and Matsnmotd (2006) and [Engel and Matsumotd (2008) in partic-
ular, show that price stickiness is an important determinant of the portfolio
composition. Considering different assumptions regarding the currency used in
setting prices (i.e. local currency vs. producers’ currency) they show (analyti-
cally) that exchange rate risk is the most important determinant of the portfolio
composition when prices are sticky. In this context only a small trade in equities
is necessary alongside trade in bonds to replicate complete markets.

The rest of the paper is organized as follows. Section B defines the reference
model that we are going to solveH Section suggests an algorithm to solve for
the optimal portfolio when the conditions necessary for Devereux-Sutherland
method do not apply. Section Hl compares the asymptotic solution method of
Judd and Guu with that proposed by Devereux and Sutherland. Section
derives the optimal portfolio with multiple agents and multiple assets in the
near-stochastic steady state. Section [l derives the optimal portfolio dynamics.

2 A continuous-time two-country model is used by [Paviova_and Rigobod (2008) to solve the

portfolio problem. These authors stress the importance of including optimal portfolio decisions
in open economy models in order to understand the dynamics of the current account.
3A more general model will be discussed further below.




The following two sections discuss applications of our formulae. In particular,
Section [ derives the optimal bond portfolio in a three-country endowment econ-
omy. Section B derives the optimal equity and bond portfolio in a two-country
endowment economy. Section Bl applies the general solution technique to a two-
country model with sticky prices and Ramsey optimal monetary policy. Section
M@ concludes.

2 The reference model and the indeterminacy of
the portfolio

Let’s assume, for the sake of concreteness, that there are n countries and k
assets internationally tradedd Each country is populated by a representative
household with the following utility function (here for country 7)

Ui=E> 67 [u(Chr) +0 ()], (1)

where C' is consumption and v (-) refers to terms not relevant for our analysis.

The budget constraint agent j is of the type

k—1
Wie=> o, (Tf,t - TJB,t) + (Yje) + 15 W1 = Cjry (2)
1=1

where, following [Deverenx and Sutherland (2008), a;; denotes the

quantity of the particular asset ¢ and W;; denotes the net asset
ko _

holding so that 21 o; ; = Wj. We denote by r{, the real return on
i=

the asset ¢ and by r{% the return on the reference asset, in terms
of the consumption basket of agent j, so that riﬂ-’t = (rffﬁt — 7“% t)

measures the excess return of asset i relative to the reference asset
B. Y; measures output.

The first order conditions for the choice of the assets can be written as

E; [u’ (Cgﬂ) Tg,t+1} = F, {u’ (CgH) r%)t_kl} ii=1...k—landj=1...n.
(3)
For concreteness assume that the economies are subject to e independent
(but possibly serially correlated) shocks. We denote the innovations to this
shocks with the e x 1 vector &;.
The set of equations (B]) describe the condition governing the optimal choice
of portfolio. In a non-stochastic equilibrium all these conditions imply that all

4Notice that n could be larger or smaller than k. For example, a multi-country model with
only nominal bonds would admit as many distinct assets as independent currencies.



real return are identical. Therefore, agents are indifferent about the composition
of their portfolio in a world without risk. Likewise, to a first order of approx-
imation, certainty equivalence holds and these conditions imply that ex-ante
all returns are identical. Therefore, agents are indifferent about the composi-
tion of their portfolio in a world of certainty equivalence. Only when certainty
equivalence does not hold, i.e. at higher orders of approximation, equations (Bl
provide conditions to determine the demand for assets.

This indeterminacy of the portfolio constitutes a serious problem for the
solution of DSGE models using standard perturbation methods. These methods,
generally require us to take an approximation around the non-stochastic steady
state. A point in which the portfolio is indeterminate.

\Indd (1998) and Judd and Guul (2001) have suggested asymptotic methods
to address portfolio indeterminacy in a static setting, while Devereux and Sutherland
M) have developed a convenient technique to derive the solution for a large
class of intertemporal models. These two approaches are compared in Section

.

Before discussing the details of these techniques it is important noticing that
equations (@) can be used to assess whether any proposed portfolio allocation is
indeed optimal from the agent’s point of view. In the following section we exploit
this fact in proposing a solution for a larger class of models than those studied

by Devereux and Sutherland (2008) or by [Van Wincoop and Tilld (2007).

3 Finding a solution when the portfolio enters
the model in a more general form

In this section we discuss a more general solution for the optimal steady-
state portfolio when portfolio shares do not enter the model only as multi-
plied by the excess return, but are still indeterminate in the non-stochastic
steady state. The property that the portfolio only multiplies excess returns is
a necessary condition for the application of the solution method suggested by
Devereux and Sutherland (2008) and by [Van Wincoop and Tilld ). The
condition guarantees that i) to first-order of approximation of the system the
portfolio enters the model only as a constant and, ii) one can conflate this con-
stant in the auxiliary i.i.d. term in the Devereux and Sutherland (2008) solution
techniqueﬁ

In general, when the portfolio produces externalities, it might not be possible
to satisfy conditions i) or ii) or both. For example, consider the solution to the
optimal Ramsey monetary policy problem. The portfolio choice will affect the
policymaker FOCs in a way that violates condition i) or ii).

5The contribution of these papers is not limited to the proposed solution technique. They
also highlight the point that simple approximation methods can be used to evaluate the
moment conditions derived from the optimal portfolio choice. Neither of these papers, though,
hints at the fact that simple approximation methods can be used to solve the portfolio problem
in a larger class of models. See next section for further details.



Economic models with standard portfolio problems produce singular Jaco-
bian matrices (JTudd and Guii, 2001). This is due to the fact that each agents’
FOC for the choice of a particular asset is not linearly independent relative to
the FOC of the other agents: to first order (i.e. linearly) they all impose that
expected excess returns be zero. Judd and Guu (2001), show that in this case
one can still use perturbation methods and resort to the bifurcation theorem
to find a solution to the portfolio problem. In essence this amounts to finding
higher-order approximations of the optimality conditions for which the portfo-
lio choice ceases to be indeterminate. The optimal portfolio will then be the
portfolio that satisfies those optimality conditions at the appropriate level of
approximation.

This is the case for equations Bl describing the optimal choice of portfolio
shares. In particular, if we have k assets and n agents we must exclude k — 1 x
n — 1 equations. So, for example, with two assets and two agents we can only
include the FOC for the choice of one portfolio share (one asset) for only one
of the agents. Notice also that the FOC for the choice of net-wealth (the whole
portfolio) is included for each of the agentsﬁ

The FOC for the choice of a particular asset i and agent j are of the form

EU(Cl1)raps1 =0 (4)

We have argued that £ —1 x n — 1 of these equations are linearly dependent. In
what follows we will refer to these conditions as moment conditions.

For clarity and comparability we distinguish two cases: First, the case in
which the portfolio enters the model multiplied by variables that are zero in
the non-stochastic steady-state, whether they are i.i.d or notﬂ Second, the
case in which neither condition i) nor condition ii) hold. With reference to
\Judd and Guid (2001) we denote these two cases as Zero Jacobian and Singular

Jacobian respectively.

3.1 Zero Jacobian case

In this case the elements of the Jacobian matrix of the dynamic system associ-
ated to the portfolio elements are exactly zero

In order to characterize the constant component of the portfolio (the zero-
order portfolio) we need to evaluate equation () to second order. From

(2002) and lIndd (1998) we know that in order to evaluate this second-order mo-
ment condition we need to evaluate each variable up to first order. To this order
of approximation, the portfolio elements enter the model only through equation
@ as constantsE

6See any of our applications.

Le. condition i) holds but condition ii) might not hold.

8In the example in the next sectionthis will amount to block-partitioning the Jacobian
maftrix into a zero sub-matrix and a full-rank matrix.

9Notice furthermore that premium implied by the moment condition up to second order is
constant, so up to this order there is no incentive for the agents to alter the portfolio shares.



Furthermore, if we want to solve for the first order portfolio dynamics, we
need to evaluate equation (@) at least to third order. To evaluate the moment
conditions up to third order suffices to evaluate its determinant variables up to
second order. To this order of approximation, the portfolio elements are time
varying

In the following section we make clear how this description of the solution
translates in the singular-perturbation approach used by ludd and Gl (IZO_OJ])

A conceptually simple solution technique, hence, consists of replacing the
redundant moment condition with the linear equation

Qi = o+ Az (5)

and then of searching the unknown coefficient oy and elements of the vector A
of the portfolio that satisfy the moment conditionf]

2
{ao, A} = argmin { [ (EtU (OtJrl)Tz t+1) ‘IIIonET:| }

where X|;;;_ .. 4. denotes the third-order Taylor expansion of X. In the
particularly simple case of the Zero Jacobian we can recursively break this prob-
lem into i) seraching for ag using the second-order accurate moment condition
and ii) searching for the elements of A using the third-order accurate moment
condition

As an illustration, here we describe the simple case of the zero-order portfo-
lio.

The second order approximation of equation(s) (@), which (in log-deviation
terms) yields

U"(c) L~ 3
Etmc 3O, Fargr + 73 27“wt+1 +0(|le*]l) = (6)

where the the term TSH_l would need to be evaluated using a second-order
approximation to its policy function.

Taking the difference of each of the conditions that have been excluded
from the solution of the DSGE model with respect to any of the corresponding
conditions included in the solution (e.g. the one for country z) yields

u"(cs) U (Cg) N
Et(U'(CS)OOt“ U'(C)OO v~ Qi | Tarsn =0 (7)

10Notice also that to this order of approximation the premium is also time varying.

1 This is in essence what is suggested by Van Wincoop and Tilld (2007). They do not
consider the Singular Jacobian case.

120bviously, if one is only interested in the zero-order portfolio only i) should be carried
out.

13 The objective is to get rid of variables that require second order solutions, i.e. the linear
term in Tgyqq.

10



where @iil is the real exchange rate. This will allow us to obtain a system of
n—1 x k—1 equations that we can solve for the n — 1 x k — 1 asset shares using
simply a first-order approximation to the policy functions.

For the sake of simplicity define a new variable

UN(CS) ¥as UN(CS) FYar Y]
dOt - <U/(Cé) OOCt - U/(Coz) COCt - ¥+1 . (8)

Condition ([@) can then be simply re-written as
EdCy117% 141 =0 9)

To this purpose we need to extract from the state-space representation the
equations relative to the variables dC; and 7, ;1. Recall that the state-space
solution to first order can be written as

st = Fixy_ 1 + Fose_ 1 (10)
yr = Prxy + Pasy
vy =Nxi_1+&

where, for the sake of simplicity we represent all variables (exogenous, states
and controls) in the vector y;. Then we have that

Y = PiNzi_1 + Pysy + Pieg (].].)

and
Yi+1 = O124—1 + Oa5; + O3y + Preg (12)
©=(PN+PF)N (13)
0, = PR, (14)
O3 = (PFy + Py) (15)

Denote the position of the variables dC} in the vector y; by jqc and the position
of the variable 7; by j,.. We know that arbitrage conditions imply thatd

Yi(Jra) = Pi(j,. 6t (16)
Then we can write condition (@) as
Ey(jac)y(ra)' = Bt (©1(40,9% 11 + Oo(dc,n St + Os(dc.nt + Pi(ac,neet1) €11 Pi(j,..n =0
which, after simplifying reduces to "

Ey(jac)y(jra) = PracyEPy,, ) =0 (18)

Jraxst

M Following Matlab syntax, a “:” denotes all the elements along that particular dimension.
E.g. M) denotes the row 7 of matrix M.

11



We notice that the matrix P;will be a function of the steady state portfolio
shares, as condition ([[8), in general, would be satisfied only by the optimal
portfolio. Therefore, to solve for the optimal portfolio we need simply to solve
condition ([[¥). While in particularly simple cases this could be done analytically,
in general we would need numerical methods to solve this equation
We apply this technique to the simple bond-economy model of Deverenx and Sutherland
) for which we can also compute the solution using their method 4 Fig-
ure [ shows the residual of equation ([I¥) as a function of the portfolio share
ao. The optimal portfolio share found by Devereux and Sutherland (2008) is at
g = —2.11864.

3.2 Singular Jacobian

If to first order of approximation the dynamic component of the portfolio does
not vanish (i.e. «; is not multiplied by zero in the steady state), the zero-order
portfolio and the first-order portfolio must be solved jointly. Further below we
will show that it is still convenient to break the moment condition into two
parts: i) the second-order accurate moment condition (€2) and ii) the third-
order accurate moment condition, conditional on the second-order condition
being satisfied (€23). In general we must use numerical methods to solve the
fixed-point problem:

ap =a(A)
AZA(OZ())
Q34+03=0

A way to proceed is:

1. for initial guess A use first-order solution of the model to search for aél)

until Qp (A©, o) =0
2. use second-order solution of the model to search for A until Q3 (AM), o) =
0

3. Continue until ozé"H) ="

Notice that o amounts to condition ([B0) while Q3 amounts to the term in
square brackets in condition (BIl), derived further below.

15With reference to the simple model studied in the next section and in

Deverenx and Sutherland (2008), we would find that

B B8
Piac,y =1 -p5) [ 20+ =50 20+ 105 ]

and
PGy =[1 1]
o2 0 B
so that under ¥ = y > | and ¢y = (y* we would have o = ——————.
0 oy 2(1 - B¢y)

16Recall that this model is a special case of our three-country model displayed in the Ap-
pendix.

12



4 Comparing the Devereux and Sutherland and
Judd and Guu solution methods

The solution methods used so far for the steady-state portfolio allocation are
constructed without explicit reliance on the Implicit Function and Bifurca-
tion Theorems”(henceforth IFT and BF respectively) [Devereux and Sutherland
M) On the contrary, Judd and Guu (2001) the foundation of the solution
proposed by Lludd and G (|20_DJ]) In this section we show that we can follow
the same approach used in Uudd and Guu (2001) to the simple dynamic model
studied in Deverenx and Sutherland (2008). In this way we are able to highlight
the strong link between the two solution techniques. In doing so we extend the
solution in ludd and Guil (2001) for the static asset market equilibrium to a
dynamic framework. In the process, we spell out the mathematical conditions
stressed by these outhors that are needed to ensure that the above system of
equations yields a well defined solution.

Judd and Gl (2001) argue that the IFT cannot be used to approximate as-
set market equilibria because in the absence of uncertainty all assets are perfect
substitutes, implying a continuum of equilibrium portfolio allocations. Hence,
they resort to bifurcation methods to compute asset allocations for small devi-
ations from the deterministic economy ("small risks").

We start by considering the simple economy in Devereux and Sutherland
in which there are only two agents and two nominal bonds, for which the first
order conditions characterizing the portfolio choice are given by:

0=FE; |:(Ot+1)7p Tr,t+1:|
0=FE; |:(Y;g+1 + Y:I-l - Ct+1)_p Tm,t-i—l} )

where therefore r; ;41 is a scalar and we have used the economy resource con-
straint to substitute out consumption of the foreign agent, C*. The other equi-

17For example, “Our solution approach relies on first-order and second-order approximations
of the model, rather than the Implicit Function and Bifurcation Theorems, but the under-
lying theory described by Judd and Guu (2001) is applicable to our equilibrium solution”

(Deverenx_and Sutherland, P00d, page 3)
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librium conditions are

s o Y
0=0Cy 7 - BEt{ Chha }
t+1

_ . Yy
0= +Y —-C) " Z; — BE, {(YtJrl +Y = Cia) M;;H }
41

Y.
A1 = (A4+ Y —Cy) M:Jrlz* + oy 41

t+1
Zi Yy Yy
Zioa My, M;
Zi
InYii1 = Y41 = Gyt + 0yt
InY =yl = Gui +oeys 141,

Tet =

where Z; is the nominal price of the bond and where we have substituted out the
price level in terms of the quantity equation, and defined (total financial) wealth
for the domestic agent A; as in m ) — note incidentally that this is
an analytically more convenient expression than the one used by Devereux and
Sutherland in terms of net savings:

+ag 1y + Yy — Gy,
At: (Wt-i-Y;g—Ct)
Following Lludd (1998) and Schmitt-Grohé and Uribe (2004), the decision

rules solving the above equilibrium conditions, can be generally expressed as
functions of exogenous (y:, y;) and endogenous states (A;), and the perturbation
parameter o :

C (At y1,9750)

Z (A, y1,9150)

Tyt = R(At,yt,y:§0)
o = Oz(At,ytay:§0)
Arp1 = Q(An y,y550)

The four first order conditions thus define a functional equation F (C (-), Z (+) ,a(-) ,R(-),0) =
0. However, since they hold for any value of « in the nonstochastic steady state
(0 = 0), we cannot directly apply the implicit function theorem (IFT) to charac-
terize the decision rules as it is customary in the perturbation approach — e.g.

Schmitt-Grohé and Uribd (2004) and [Lombardo and Sutherland (2007). To see

this, differentiate both the portfolio and non portfolio equations in F'(-) with

14



respect to o:

[ s -0+ a(Ry + RaQa + Ryey,e1 + Rysey-141) + |
« —Zy, Oy
_p071 CU+OAEt (A+Y—C) BEY ,tgzl _7 .0
0= +CyEt€y_’t+1 + Oy*EtEy*7t+1
as -0+« (R + RAQ4 + R yEY, t+1 T+ Ry*ay*7t+1) +
* Zy Cy
+Ra' + RAEt (A + Yy — O) ﬁt’:‘y t+21 _ Yo
B B
i +RyEeyi41 + Ry-Eiey~ 141 }
[ s -0+ a(Ry + RaQa + Ryey,p1 + Ryseye 1) + |
. -7y, C4
pC*1 Cy + CyFE; (A+Y —C) Bey t;21 - 0
0= + (C - 1) EtEYt-i-l + (C * — 1) EtEY* 41
Qg+ O+04(R +RAQA—|-R ey,i+1 + Ry Ey*7t+1)+ ’
* . .
+R,+ RaE: (A+Y —0O) Bey t;21 B %
i +RyEiey 41 + Ry« Erey« 141 }
and

0=—pBpC~tC, + Z,+

Co +CyEiey i1+ Cy=Erey= 11+
AT < Ao -0+ a(Ry + RaQa + ReEiey 41 + Re- Ereye 141) ) + Biey- 1
A

BEiey* 111—Zo Cy
+(A+Y — ) Pergnte o

Cyr+ (Cy —1)Eiey 41+ (Cys — 1) Eyeyw g1+
— B |pC*t C < g 0+ a(Rs + RaQa + ReEreyin + Rs*EtEY* 1) ) + Eiey« 141
A

BEtey* 141—Zo  Cy
A4y —C) BBl G,

Provided C4, Cy, Cy« are well defined, and given that

Zia Y, Y¢

 Zya My My

Tot = = —
i1

implies R4 = 0 and R, = —R,- = 37, the last two equations at o = 0 further
simplify:

Ong—i-ﬁpC_lCA(ag-O—i—aR —(A+Y - C)E_%>
0= 2, - 390" Ca (g -0+ ol - (447 - 0) 52 - ).

Clearly these two equations imply that Z, = 0, and aBR, = C,, provided «,
is well-defined.

15



To verify the assumption on a,, and compute R, and C, we need to consider
the two portfolio Euler equations. Provided again Cy, Cy, Cy+ are well defined,
when evaluated at 0 = 0 they simplify to:

E; (ey41 — Ey*141)
B

Ei(eyi41 —y=i41)

/8 )

)-[2]n ]

If a, is to be well defined, given that it is multiplied by 0, the last two terms have
to be equal to 0 as well (see lludd and Gmi, 2001 ). Intuitively, the only way
the derivative o, can be well defined is if it is the solution of the indeterminate

O0=a,-04+ R, +

0=a, -0+ Rs+

0
form —, which can be dealt with using I’Hospital’s rule. Then it must be the

case that R, = 0, and thus it is also C, = 0.

We still wish to try to determine the steady state portfolio allocation «
as a function of uncertainty o. The condition above ensuring the existence of
a, defines a candidate bifurcation point at o = 0, as the portfolio allocation
from determinate becomes indeterminate — the number of solutions for « for
the first order conditions changes as o increases from 0. The broad idea of
bifurcation analysis is to provide conditions to find a point where the branch of
interesting (e.g. unique) solutions to a system of equations crosses the "trivial"
branch of (indeterminate) solutions, at which point the nontrivial solution can
be characterized as an implicit function of an underlying parameter (e.g. o), for
which a Taylor series approximation can be found. In order to do so, following
Judd and Guu, we substitute a second order expansion of r, ;4 in ¢ in the two
portfolio equations:

_ _ 1
0=FE; {Ct+p1 |:(ﬁ 1 (Ey7t+1 — Ey*)t+1) + Rg) o+ §R (U) 0'2:| }
_ 1
0= Et {(}/tJrl + }/t:l — Ct+1) r (571 (€yﬂt+1 — 6Y*7t+1) + Ra’) o+ 57?, (0’) 0’2:| } ;

where R (o) represents the risk premium of the domestic bond relative to the for-
eign bond and is thus a function of o. This substitution — assuming a quadratic
gauge function in the perturbation parameter o, see Judd (1998), Ch. 15 —
ensures that the first two conditions of Theorem 4 in Judd and Guu for the
existence of a bifurcation point in R™ are satisfied, namely that:

Hz (207 0= O) = 02m2
Hcr (207 o= O) = Ole,

where z = [R (0) ,a (+,0)] and the (analytic) function H (-) is defined by the two
portfolio first order conditions. This theorem ensures the existence of two im-
plicit functions R () # 0 and « (+,0) # 0 for o # 0, such that lin%oz (,0)=a(0)
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is well defined. Furthermore, these functions are analytic and can be approxi-
mated by a Taylor series. In order, to see this, dividing for, and differentiating
with respect to o, now yields

Hya, + HRRys + H, =0 (19)
that is,

Chraw 04+ 810, [ ©lEvass —eveip) +
ace 0+ F7Ca ( (A+Y = C)ey i1 (Eviet1 = ev= 1)

+Cyey,ir1 + Cyrey= 111

0= —pﬁ_IC_IEt

1
+ 5 (O-Rg' +R)

Cuc -0+ 510, [ @Evist—eyeapa)+
acs 0+ f7Ca ( (A+Y = C)ey~ 41 (Evip1 = Evei41)

+ (Oy — 1) €y,t+1 (Oy* — 1)5y*1t+1

0= pﬁ_lC*_lEt

1
+§(0RU+R),

where
_ 71071
Ho(a,R,0=0)=0-Cy [ pgﬁc*,l ]
110
HR(O&,R,U—O)— 5 |: 0 :| s
and
HU (CY,R, 0 = 0) = 02;E1
[ B-1C4 « (EY,t+1 - 8Y*,t+1) +
—pB1C1E, (A+Y —C)ey- 141 (Eviis1 — Eve.it1)
_ +Oy5Y,t+1 + Cy*Ey*7t+1
Caay -0 10 « (€Y,t+1 - 6Y*,t+1) +
pﬁflc*flEt AN + 6 A (A+Y_C)5Y*,t+1 (gy)tJrl _EY*,tJrl)
L + (Cy - 1) EY)tJ,_l + (Cy* - 1) EY*,t-‘rl

defines the bifurcation point in the unknowns R (0) and « (0). It is worth-
while to notice that this expression effectively amounts to taking a second order
Taylor approximation of the portfolio equations, as required by the general so-
lution approach discussed in the previous section, and also by Devereux and
Sutherland.

Taking the difference of the two equations to get rid of R we have:

Ca ( a ey —€v-141) + >
0=FE, |C™* (A4+Y —C)ey 141 (evis1 —Ey= 1) | +
+BCyey 141 + BCy=ev= 141
a(eyi41 —€yep41) +
CA ( (A + Y — C) 5Y*,t+1 >
+B(Cy — 1) ey,ir1+ B(Cyr — 1) ey 111

E, |C*! (Eyi+1 — Ey=141)

17
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Under the same assumptions as in Devereux-Sutherland of a symmetric steady
state (C' = C*) and uncorrelated shocks the above expression simplifies to:

0=2Caa (0'12/,15+1 + 0')2/*,15+1) +6((2C, — 1) U)2f,t+1 —(2Cy- = 1) 012/*,15+1) )

which allows to express steady state « as a function of the first order approxi-
mation of the consumption decision rule:

(ZCy -1) Ulzf,t—i-l - (QCy* -1) 012/*,1:+1

2 2
2C4 (UY,t+1 + UY*,t—i—l) :

Solving for « thus requires knowledge of the policy functions for consumption
and excess returns up to first order. The last step is to verify that the Jacobian
Hy(a,r) (a(0),R(0),0 = 0) is nonsingular, as required by Theorem 4 in Judd
and Guu. Here it is easy to verify that this condition is met by differentiating
H, (a,R,0) above to obtain:

Ca

(SIS

P (U%’,Hl + 0)2/*,t+1)
Det (Ha'(a,R) (Oé (O) 7R (0) ) O)) = 6 ¢ 7é 0

A
pﬂQC (U%’,Hl + U%’*,t+1)

N[

if Cy #0.

Finally, to show that the solution is exactly the same as in Devereux-
Sutherland we need to derive Cy,Cy,Cy~. This can be done easily by dif-
ferentiating the system F (C' (), Z (-),a(-),R(-), o) with respect to A;, y; and
y;, to obtain:

Ca=1-p
g2 g

1-fG, _1-G

B o2

The following two observations are in order. First, while the portfolio al-
location does not appear in the above solutions, this will not generally be the
case and the first order approximation will depend on the steady state value of
a. Second, the (unknown) first order approximation terms of the portfolio allo-
cation rule (a4, oy, ay+) all appear multiplied by 0, as in the case of a, above.
Thus, they will also be well defined if, loosely speaking, they are expressed as

a solution of the indeterminate form —. In turn, it can be shown that this con-

dition will be always satisfied by the solutions of the unknown derivatives of
the other decision rules (C' (), Z (-), R(+)), obtained by standard perturbations
methods based on differentiation of F (C(-),Z (:),a(),R(-),0).

We are now in a position to solve for a; for instance, assuming o3, ,, =

0%« 41 @S in Devereux and Sutherland (2008), the counterpart of the expression
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in their Section 4.1.2 obtains:

Q CU_CU* - 1

B 20-8) 2(1-p¢)

To summarize, in this section we have shown that the method by Judd
and Guu, based on a rigorous application of bifurcation techniques, can be
extended to dynamic economies, allowing to determine the steady state portfo-
lio allocation as a function of the first order terms of consumption decision
rules and excess returns. For a specific dynamic economy also studied by
Devereux and Sutherland (2008) we have formally shown the coincidence of the
solutions under the two approaches. This is due to the fact that the key con-
dition used to solve for the portfolio allocation is exactly the same moment
condition, obtained from a second order Taylor approximation of the portfolio
equations by Devereux and Sutherland, and from the use of a quadratic gauge
in the same set of equations by Judd and Guu. The use of a second order Tay-
lor expansion or a quadratic gauge in a perturbation approach amount to the
same thing. In both cases the Bifurcation Theorem allows us to say whether a
solution exists at a second order of approximation.

5 Steady-state portfolios

In this section we show how the near-stochastic steady-state optimal portfolio
solution of Deverenx and Sutherland (2008) can be generalized to the case of
more than two-agents (and more than two assets) I3

Under some general conditions, Devereux and Sutherland show that since ex-

pected excess returns are equal to zero up to first order, the term Z 0% o1 (rie —7B1)

will only be a function of the unexpected shocks in the appr0x1mate solution
around the steady state — in the case of our model economy, the vector of
innovations of exogenous processes €. Moreover, they show that in the case of
2 countries the steady state optimal portfolio will be implicitly defined by the
following moment conditions obtained by taking a second order approximation
of the portfolio first order conditions around a non-stochastic steady state:

E, 1[(Crp— Cot)rsid] =0,

where r; ;+ =r;+ — 7B+, ¢ = 1.k — 1. Under the assumption of homoschedastic

shocks, the above condltlons w1ll be the same for any period. Devereux and Sutherland
(2008) show that the term E ozZ .1 (rit —rB,) can be replaced with the aux-

iliary i.i.d. variable &, so that a solution for the approximated equilibrium
around the non stochastic steady state will yield policy rules for the vector of

18From now on variables will denote log-deviations from their steady-state value, except for
net wealth (W) and individual assets («) which are measured relative to output.
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excess returns ry ¢ and for Ay = (Cy; — Ca+) which will be functions of & and
innovations 5,5

Since & ~ a'ry ¢, where a denotes the steady-state value of a4, the auxiliary
variable could be substituted out yielding expressions in terms of fundamentals
innovations for A; = De; and 5, = Re;. FormallyE

ﬁm,t = Ri& + Roey
Ay = di& + Doey,

so that substituting out & and re-arranging yields

R = (I-Ri) 'Ry

D = dla’(I—Rla’)71R2+D2

Then the above time-invariant portfolio moment conditions will amount to
the following matrix equation:

0 = RxD (20)
~— ——
kx1 (kx1)(exe)(ex1)

implicitly defining the steady-state unknown elements of the vector «, represent-
ing the gross holdings of foreign assets and liabilities for country 1, excluding
the reference asset. The position of the latter will be derived from the assumed
level of steady state net foreign assets — we will assume throughout that this
is zero for all countries.

Equation [Z0) can be easily solved for «, i.eFl

o = (RySDLR) — dyRySRY) ™ (RoSDY) .

In the case of more than two agents, to take into account the effects of asset
returns on the wealth distribution across agents, we will have to keep track of
the holdings of n-1 agents, and include the relevant moment conditions from
their portfolio optimization problems. For each n-1 couple of agents it is more
convenient to write the moment conditions as

0 =  DISR
~— ~——
1xk (I1xe)(exe)(exk)
!
. — . —_ /
0 = | DI o (I-Ra@) 'Ry, + Di| ¥R, ((I—Rlo/) 1) ,
\ , v \ A J/ \ ,
1><(n71)("_1)><k7 kxk kxe 1xe

19The marginal utility differential A will also be a function of state variables, like the wealth
distribution.
20A¢ would depend also on state variables. This term, though, would drop out in the cross

product with 74 ¢.
!

. 1
21In deriving this expression we have made use of the fact that ((I - @) ) a =

o ((I - a’Rl)*l)/ .
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where as indicated above, @ is now a k x (n — 1) matrix. Rearranging the above
expression yields:

(DiRR,—D}) @ = Dy R,
Ix(n—1) (n—1)xk 1xe €Xk

where R = SR}, (RySR,) ™.
Collecting all the conditions yields the following system:

(DYRR, — DY) D
(DiRR, —D}) |@=| Dy | R,
: exk
(Dy'RR, — DY) Dy
(n—=1)x(n—1) (n—1)xe
or ~
Q o= D) R,
~~ ~
(n—1)x(n—1) (n—1)xe Xk
where Q = D, (I ®RRy) — Dy, Dy = [ DY ... Dy ... Dy | and
Dy=[DY ... DY ... DIV

A solution for the steady state portfolio is given by
o = 9715/273.
Notice that with two agents the above formula yields

W (DoXRy) (RoXR))
(d1 — (D2XRY) (ReZRY) ™ Rl)

which can be shown to be equal to the expression derived by [Devereux and Sutherland
(2004).

6 Portfolio dynamics
We are now in the position to solve for the portfolio dynamics. We first present
the case of two agents and one asset to re-cast the [Devereux and Sutherland

(20074) result into our notation. The multiple-agent multiple-asset case will be
a straightforward extension.
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6.1 The two-agents one-asset case

Deverenx and Sutherland (2007a) show that in order to obtain a second-order
accurate solution for the portfolio dynamics, one has to take a third order ap-
proximation of the consumption Euler equation of each agent In particular,
with reference to their equation (26) we have

2
* 14 *,2 14 *
Ey|—p (Ct+1 - Ct—i—l) T+l + & (Ct2+l - Ct+1) Tzt+1 — ) (Ct+1 - Ct-',—l) (T%,t—i-l - 7“§7t+1) =0

2
(21)
In order to evaluate this expression we need the solution for consumption
and the return on the assets at most to the second order of accuracy.

As shown in [Lombardo and Sutherland (2007) the second order solution for

the consumption differential between the two agents can be written as

First order part
(O — C*) = D1§ + Doe + D3z
+ Do + Davee (e€') + #'Dse + Dyvec (=) (22)

Second order part

and
first order part
—~
ry = Ri&+ Rse
+E[r,] — R, + Ryvec (e€') 4 2’ Rse + Rgvec (22') (23)

Second order part

_
where all the variables have the same timing, ¥ = FE [vec(e€’)], and where
2" = [z, St4+1]; ot being the e x 1 vector of shocks and s; the | x lvector of
endogenous state variables P

Devereux and Sutherland (20074), show that the portfolio dynamics can be

described as a linear transformation of the state variables, i.e.

a1 =7z (24)

where v in this case is a (I + €) x 1 vector of coefficients to be determined.
The second order approximation of the budget constraint of each agent
(equation (@))) generates a term in the cross product of the portfolio and the

22This subsection does not add anything to [Devereux and Sutherland (2007d) except repro-
ducing their calculations using matrix notation in place of tensor notation.

23Gee the Appendix for a second-order state-space representation of the solution. The
matrices in equations (Z2) and ([Z3)) correspond to transformations of the rows of the P matrices

given in the Appendix. Notice that, up to second order, Ry = E [rz}—Rgz—R4E)—Ravec (z2")
and that, since up to first order r5 is i.i.d., R3z = 0. Notice also that it is possible to re-write
terms like Rsvec(e2') as z'Rse. See the Appendix for further details. The arrows denote
vectorization.
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excess returns: az_17;,. Following Devereux and Sutherland (|20_0_Zd), we can

express this product as an i.i.d. variable

§t+1 = T t+1 = VY2e4+1Tz,t+1 (25)

Since this relation involves only first order variables, we can use the first order
part of equation ([23) in the latter expression to get (dropping time subscripts)

& =7 2Rge = Roe?'y (26)

Replace this into [Z2) and @3)

(C - C*) = Do+ Dlz"sza + Dse + D3z
-i-.D4§;‘> + ZID5E + DGZ_2>’ (27)
and
re = FElrg]— R4§> + R12'yRoe + Rae
+R4E2 + 'Rie. (28)

As this expression involves first order terms in C' and 7 owe need the first
order solution to these variables, i.e.

C=Cle+ClHy C*=Cfe+Cf2
ri=Reet+RE: ry=REce+ RE:

where by the i.i.d.nature of 7, must be that R{ = R
Taking cross-products of these equations we have, e.g.

CP= (o0 e+ (Cff oCi) 2+ [(CF @ C3T) + (C4 ® C3') ] €2
(29)
where P, is a vector-permutation matrix. For convenience we re-write these
cross products as

C?=ClL,e2+ClL,z2 + ClL,ez O = O, .22 + OF 22 + OF 422
1f = REG9EE + RiGa22 + RiGaE2 13 = Rigee + Rigs2? + REgafz
and
C?—C*? =L E + Oyt 22 + CoLy e
and
ri —ry® = Ry, 8 + Ry ez

where we have defined e.g. C25," = (CIL, — CL.,).
Consider one addendum of equation [ 1)) at a time (and abstract from the
p coeflicient for the time being), i.e.

Dora + D12'yRoery + Doery + Dazry + Dyery + 2’ Dsery + DeZre  (30)
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(Cosfe+ o2+ CllFe2) < €'Ry (31)

(Dae+ Dsz) x  (RIG,T2 + RIS 22) (32)
Let’s start with equation (B). Recall that to first order r, = Rae, while, to

a first order C — C* = Cy' Fe i1,
Notice that since Doce’ Ry = 0, and assuming that third moments of the

shocks are zero, the (conditional on time t) expected value of equation (B)
reduces to (omitting the expectation operator)

|:R2€E/RI2D12/’Y + z’l%as'R’J + (ZIR5€E/D/2) +
=Y ’ —=\/ p/
Y DocEry] + ( Elry] — (2) R, + (2) R, ) (D32)
Notice that
o / —=\/ p/
Elr] - (T) By + (@) Ry ) (Dsz) = (Blr)) (Ds2)
Furthermore notice that the sum of the second order expansion of the Euler

equations we can derive an expression for E [r;]. So for, say the home country,
have

1

1
c*3 (a N R

_?§> —pBC () (71 = 72) = 0.

2 2

Adding this to the foreign counterpart yields,
Efr] = SB[(Cf + CF) 'Ry + (CF + CF) 2¢'Ry) —% (Roso' 88 + Rogy' €2)
implying that
(Blr)) (Ds2) = p (CX) [Ds2SRY) — 5 RIS 22Dy
and that
DacBlr] = p (Off + CF) #Raee! Dy Doe (RE ) = — 3 Do (REST22) =0
where we have used the fact that

Doe (R353FE2) = Doe (RY'ee’ RY — RYee’RY) = DoeRee’ Ry = 0

and that that Djz is a scalar and that (C4 + CJ') SR} = 2CHSR) + DX R).
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the first addendum of equation (ZII) gived
E; [RgEE'R'QDlz"y + 2’15555’1%'2} +
A 1
(z’R555’D’2) + 0 (Cf1) [Ds2SRy] — S RES 8D,z
As for the second addendum one can show that it reduces to

Roee’ (2 @ 1) (CQH®},F)/ 2Rse [(Cfsz’C’f’) - (Cfsz’ zf’)] (33)

= 208 D;2¥R)

And for the third have
(RILTE2) (D32) + Dace! (' @ 1) (RELF)
where
Doee’ (7' @ T) (R§®3F)/ =2 Dye[Riez’RY’' — RYez'RY’]
2Dqee’ R 2 RE — Doec’ RE ' RYY
= 2Dyec/RE'Y (R =0

and
(RALLFE8) (D3z) = [Ree’ RY — REec’RE'] (Dsz)

Taking all terms together yields
—FE, {sts’Rngz' v+ z'l%ss’R'Q} +
- (Z’R555’D’2) — p(CH) [Ds25RY) + %R§I®_2F5_5’Dgz +
p[C3'D3zSR] +
5 [(RIE) 22 (Ds2)]
Simplifying gives
B, { [szzRng n 1552R’2} n (R52D’2)} -0
This must be valid for all possible z i.e.
{[yRe2RyD:y + DsSRS| + (Rsxpy) } =0

or

_ Ds%R) + Rs%D)
RyXRL Dy
which is the formula derived in [Devereux and Sutherland (20074).

24Notice that Daee’Rl, = 0 implies that Dzaa’Rg’ = Dgaa’Rf’ and that C’faa’R’z =
Clee'R!
2 2°
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6.2 Two-agents multiple-assets case

In order to extend the result of[Devereux and Sutherland (2007a) to the multiple-
asset case we notice that a; and 75 ; are now k — 1 vectors.
Now we have k — 1 different Euler equations, one for asset

(C—=C") = Do+ D:1&+ Dae+ D3z
+Dyvec (e€') + ' Dse + Dgvec (z2') (34)

and, for the ¢ — th asset
rei = FErg]—RyY + Ri€ + Rse
+Rivec (e€') + 2/ Rie + Rivec (z2') (35)
The first order solution to the vector of excess returns can be written as

re = Ry € (36)
~~
(k—1)xe

where Rf = {R%” . .R];*l”} . Then the cross-product of assets and their excess

return can still be written as
&ix1 = 2'vRae (37)

where 7 is a [ x (k — 1) matrix of coefficients.
Then, by analogy with the results shown earlier we have

E.7 { |:’7R2€€IR%ID1 + 13555’Ré"} + ( Agas'D'z)} =0

or using the fact that

( Agsa’Dé) = vec (I RéEEJDé) = (Daee’ ® Iixq) vec (Ré) (38)

Etz/ { [’YRQE@’R%’Dl + .lA)5€5’R;’/} + (Dz&'g’ ® Il><l) vec (R%)} = 04x1

Ix1

This must be valid for all possible z i.e.

{ [WRQER;”Dl + DQRQ’} + (D22 @ L) vee (Rg)} = Oyt

Ix1

{[YB2SRE Dy + DsSRE | + (D32 @ D) vee (RE) } = 0,1

Ix1

26



stack column wise all the £k — 1 conditions and get

{ {”yRQER;Dl + DsSRY| + (Do ® Iv) RgJ,eX(k_l)} = Oper (39)

Ixk—1
or

= [ﬁsERé + (D22 ® L) Rg,l-ex(kfl)} (R2SR, D)™

6.3 The multiple-agents multiple-assets case
Notice that now we have n — 1 i.i.d. terms

{Xl :oe;-rx: j=1...n—-1
where o and 7, are (k—1) x 1.

Furthermore, now we have & — 1 different equations for the assets excess
return and n — 1 for the consumption differentials.

Our solution strategy is to find the optimal portfolio condition agent-by-
agent and then stack them together to solve the simultaneous portfolio problem.
The counterpart of the optimal portfolio condition as found in the previous
section (equation (BY)) is the following for agent i

FE, D§7171R288/R2 R Di)n_l’Yn_lRQEE/R? + f)é&‘g/R/g + (D%E ® Il><l) Ré} =0

Ix(k—1)

where D! is a scalar, v; is a | x (k — 1) matrix (j = 1...(n — 1)).
More compactly we can write

94!
Di| : | =~ {DEERIQ + DgRg,l.ex(kq)} (R2ZRp) ™
V2

where Di = [ D' 11y ... D21y ], Dy = (DY @ I1x) and DE = DE.
We can stack these equations (for agent ¢ = 1...(n — 1)) row by row to get

ga!
Di| ¢ | =~ [D5ERI2 + DQRg,l»ex(k—l)} (RoXR5)
72
where Diis (n — 1) -1 x (n — 1) -1 . Then have

1

4!

1

= —D7! [Ds SRy + DaR ooy | (R2SRy)~ (40)

V2
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7 Application 1: Monetary shocks and optimal
portfolio choice in a three-country model with
nominal bonds

In this section we apply our formulae for the solution of the optimal port-
folio to a three-country version of the endowment-economy model used by
Devereux and Sutherland (2008, 20074).

The model consists of three symmetric economies populated by identical
agents having preferences and constraints as described by equations () and (&).
These agents can only trade in three nominal bonds. Money and endowments,
in each country, follow an exogenous AR(1) process. Prices are determined by
a simple equation of exchange i.e

PiYip = My (41)

where i = {a, b, ¢} denotes the country. Table [ reports the non-linear model.
The variance of the stochastic innovations is denoted by oy,; and oar4, ¢ =

{a,b,c}.

7.1 Steady-state portfolio

This model remains sufficiently simple to allow for an analytical representation
of the solution for the steady-state portfolio. For the sake of comparison, the
steady-state portfolio for the two-country two-bonds version of our model is

given by
1 1 Oay +0by )
a=-= ’ : 42
2(1-p¢y) (Ua,y+0'b,y+0'a,M+Ub,M (42)

For the three-country case the solution will be a 2 x 2 matrix. The rows of
a correspond to country a and c respectively and the columns correspond to
the bonds issued in the currency of the country a and c respectively. Country
b is the reference country and its position can be inferred in relation to the
net-wealth of country a and c.

Extending the results of [Devereux and Sutherland (2008) we can show that
in the case of our three-country three-bond model we hav

25Here velocity is set to 1. Alternatively we could have assumed a constant money supply
and a stochastic velocity (money demand shocks). The results would be the same.
260ne can show that

0 0 -1 1 0 -1 1 0

Ri=1y 0} Rz—{ 0 1 -1 -1 0 1

_ 271 _ 1 Jo oo -1 10
Dl_p(l_ﬁ){l 2} D2_p17ﬁ<y{0 00 -1 0 1}

Notice that in this model the risk-aversion parameter p cancels out in the formula for the
portfolio.
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a” =3[(oma+ova) (omp +0ove) + (Ore +0v,e)) + (0mp + 0vp) (Oare + 0v,e) (1 — Gy B)

(43)
aty = =2(omp+ 0Ovie + Orre + 0vip) Ovia + (Oare + 20v.c) Oy + Oap0y,c
(44)
04{\,[2 =((20mp+0ve+0vp)ova+ ora(ove—ovp) + (Ovip+ 0mp)ove)
(45)
049{2 = — (UM,b + 2 (O'y_rc + O’y’b)) Uy_’a—I—(O'Mﬁa + 20y_]c) UY,b+2 (O'M,a + UM,b) Oy,c
(46)
a3y = ((0v,a + 2001 + 0v,p) Ovie + Oarc (Ovia — 0vip) + (Ovip + Oarp) Ovia)
(47)
and
alN.
i,
Gij =5 (48)
In the special case of identical variances across countries we have
oy —2 1 ]
o= 49
ST aTE | 1 2 ()

This is to say that, each country splits its portfolio in a short position in domestic
assets and a long position (of equal amount) in foreign assets. The foreign
position is then equally divided among the foreign-currency bonds.

In the special case of the reference country (country b) having zero variance
of endowment and policy, we obtain

_9 OY,a JY,c
o= l (UM,a +g)}//:g) (1 - CYﬁ) (UM,C + 0Y78'))/,(c1 - CYﬁ) (50)

(oM,a+0v,e) (1 —Cyv ) 2 (omc+oy,e)(1—CvB)

The portfolio that we obtain for generic variances highlights an important
difference between the two-country two-asset model and the three-country three-
asset version. In particular, the general case highlight the interdependence
between the different types of risk. In the two-country version (Cf. equation
[E2)) the risk associated with monetary policy affects the total portfolio holding:
in the limit, as either of the monetary policy variances goes to infinity, the gross
positions are run to zero.

This is not the case for the three-country model. For example, one can show
that

0 ifj=1
1 Oy, — OYp o
. = ' : ifi=1
lim o ; = 3(1—¢B)(oyp+oye+omp+ome)
oN 100 1 20Y,c —+ oy,b th i
- otherwise
3(L=¢vB)(ovp+ov,et+omp+onme)
(51)
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so that all countries would still hold gross positions in the bonds issued in the
currencies of the countries with finite variances. Notice though, that there is an
asymmetry between these holdings: The holding «a; 2 (i.e. country a’s holding
of bonds in country ¢’s currency) would be zero if the other two countries (b
and c¢) experience the same degree of endowment volatility. In other words,
as the monetary policy of a country becomes too volatile, this country would
hold nominal foreign assets only to the extent that they can hedge the foreign
relative risk: going short (long) in country ¢ (b) currency if the its endowment
is less (more) volatile than country b’s (¢’s). Country ¢ on the contrary would
have non-zero positions in country ¢’s and country b’s currency (going short in
the first and long in the second)

More in general, these results show that in this simple model no country goes
long in its own currency. The position in the foreign asset will instead depend
on the relative volatility of the foreign countries and on the domestic volatility
of monetary policy.

Finally, if monetary policy is perfectly correlated across countries, the port-

folio reduces to ) -

] Y o2
independently of the variance of the endowments. This result highlights the
fact that it is not the absolute volatility of monetary policy that matters for
portfolio allocation but rather its volatility relative to that of other countries’
monetary policies.

7.2 Portfolio Dynamics

An analytical description of the dynamic properties of the optimal portfolio

would be too involved to offer (new) useful insights@ In this section, therefore,

we give numerical examples of the dynamic response of the portfolio to shocks.
As benchmark parameterization we use the following values:

| Description | Symbol | Value |
Discount factor I6] 0.98
Risk aversion p 1
Persistence of money shock | (ay,, ., 0.6
Persistence of output shock CVabiey 0.9
Variance of shocks OV, M40y 1

As discussed earlier, the dynamics of the portfolio, up to second order of
accuracy, can be described as a linear mapping from exogenous and endogenous
state variables.

daq 2
9o N L a

daz 1
> 9o e

dag 1
> 00\ a

270ne can show that <0 <0 § 0 depending on the relative size of

the variances.

28Deverenx and Sutherland (20074d) derive the analytical response coefficients of the optimal
portfolio, up to the underlying variances and for a unit degree of risk aversion. Their solution
is insightful as it separates the portfolio level-effect induced by net-wealth movements, from
the hedging effect due to exogenous shocks.
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As is apparent from the analysis of Devereux and Sutherland (20074), changes

in the portfolio composition should be interpreted as deriving from two main
factors: The level effect and the hedging effect B The latter reflects changes in
the sensitivity, to shocks, of the cross-country consumption differential. A given
change in expected returns must bring about an equal change in the marginal
utility of the trading countries. As utility is concave, changes in marginal utility
can only be brought about by large changes in consumption when the level of
consumption is high. At high levels of consumption the covariance of the returns
and relative consumption is larger (other things equal), thus increasing hedging
motives.

The level effect is due to the fact that increases in net-wealth, other things
equal, translate into increases in holdings of all bonds. For example, in our
model a positive money supply shock in country a improves its net-wealth posi-
tion. Therefore, the share of all currencies in country a’s portfolio increases (in
particular ay (1) — a1 = 0.94) The opposite is true for the other countries,
which experience a net-wealth deterioration.

Upon a domestic endowment shock in country a, the share of domestic cur-
rency in country a’s portfolio decreases (by —2.0857) while the share of foreign
currency bonds in country a’s portfolio is reduced (by—0.0871 per foreign cur-
rency). After the first period the shares increase monotonically. The response
of the portfolio derives from the combined effect of the desire to reinforce the
hedging position (as relative consumption has increased) and a change in net-
wealth.

Figure [l shows the response to country a’s endowment shock of country a’s
holding of country a’s currency bond and of country ¢’s currency bond (the
response of home net-wealth is also shown). Figure Bl shows the response to the
same shock of country ¢’s portfolio.

7.2.1 Net-wealth persistence and portfolio adjustment

The permanent effect of the shocks, due to incomplete markets and to approxi-
mation of the model around the non-stochastic steady-state, seems to contradict
the statement that there is a unique steady-state portfolio. Under the alternative
assumption that there are only endowment shocks, we would reproduce complete
markets, so that the optimal choice of the portfolio composition would make the
model stationary A way to evaluate the sensitivity of the model to the unit
root under the incomplete market assumption, would be to adopt the suggestion
by [Schmitt-Grohé and Uribd (2003) for small open economy modelsBd One of
the solution that these authors consider is to impose that the agents discount
factor is a function of deviations of (country-wide) consumption from the steady

29T his decomposition is also emphasized by [Van Wincoop and Tilld (2007) and referred to
as portfolio growth and portfolio reallocation, respectively.

30We return in the next section to the problem non-stationarity of the responses.

31This fact is used, for example, by [Engel and Matsumotd (2008) to derive the optimal

portfolio composition under complete-markets.

32 Another way to eliminate the unit root would be to assume that agents die with a positive

probability. This solution is adopted, for example, by [Van_Wincoop and Tilld (m)
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state value. We specify the discount factor as 8; = 3 (c; — €) = (1 +¢, — ).
Under this assumption, the size of the largest root lying within the unit circle
is inversely proportional to .

In this model, the steady-state portfolio is unaffected by this modification F4
The dynamics of the portfolio, instead, is affected by . The response of the
portfolio to any shock is smaller (in absolute terms) and shorter lived the larger
is 1. In the special case of i.i.d. shocks (and for monetary shocks in general), the
only dynamics imparted to the portfolio is the endogenous dynamics deriving
from the evolution of net wealth. In this case, for example, a positive endowment
shock in country a induces a current account surplus and, therefore, an increase
in the net-foreign-asset position of this country. So, despite a reduction in
holding of own-currency bonds on impact (due to the temporary increase in
sensitivity of consumption differentials), after the first period the increase in
wealth implies an increase in holding of all types of bonds for as long as wealth
is above the steady-state level. In the extreme case of a one-period-lived net-
wealth increase, the portfolio would return to its steady state after one period.

7.3 Welfare

It is easy to use the solution for the optimal portfolio to compute countries’
respective welfare. It is important to notice, first, that the dynamic behavior
of the portfolio, up to second order, does not have consequences for aggregate
welfare, when the latter is measured using the expected (conditional or not)
life-time utility of the households. This is because the only place where the
portfolio dynamics appears, is the budget constraint of the households. There
it shows up lagged (i.e. the amount that is carried over from last period) and
multiplied by excess returns. Since excess returns are i.i.d. up to first order,
the conditional expectation of this product must be zero P

On the contrary, the steady-state composition of the portfolio has important
effects on welfare. The following Table reports the welfare gains (in steady-state
consumption units) for each country in adopting the optimal portfolio relative

=
G

to the case of one single bond (of the reference country b)

331t should be noticed that our stochastic discount factor does not affect the degree of
relative risk aversion. The discount factor is a function of aggregate consumption so that

vu'c
U
and even at first order, is affected by the stochastic discount factor. Hence, the sensitivity of
the portfolio to v is not simply due to the reduction is persistence of net wealth.

A better way to eliminate the unit root would be to evaluate the model around a point that
takes into account the role of risk (see [Ljungqvist and Sargenil (2000, ch. 14)). This solution
is not trivial and we leave it to future research.

34While we don’t have a symbolic representation of this case, numerical experiments showed
that the matrices Diand Dg that enter the formula for the steady-state portfolio depend 1.
As is happens for the parameter of risk aversion, though, 1 cancels out (see footnote EH).

35This implies that to appreciate welfare gains from portfolio dynamics we need to look at
order of approximation higher than second for welfare.

367 he infinite discounted sum of the conditional mean of the period utility is re-scaled by

(1-29).

= p. Nevertheless, the sensitivity of aggregate consumption differentials, in general
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Country a Country b Country ¢

Welfare gain ~ 18.29% 35.24% 18.29%

The table shows that, as should be expected, all countries experience a
welfare improvement when the steady-state portfolio is chosen optimally. It is
also evident that the gain is larger for country b. This can be rationalized by
considering that in the single-bond case, country a and country ¢ run a positive
net-wealth position on average (up to second order of accuracy). This means
that they must have a long position in the foreign asset (country b’s currency
bond). Although quantitatively different, this is the position that they hold in
the three-bond case. Country b, on the contrary does not have the possibility
of going long in foreign currency

7.4 Some implications for exchange rate regimes

This example, although admittedly quite simplified, allows nevertheless to make
an interesting point related to the literature on currency union, precisely the
branch spurred by m M) His paper shows, in a two-country model,
that to the extent that having an independent currency expands the set of
assets trades thus fostering international risk sharing, the costs of having a
suboptimally volatile monetary policy will not be enough to establish a monetary
union.

Neumeyer’s argument emerges clearly from the solution for optimal portfolio
allocation in the two country case. The cost from lack of diversification entailed
by setting up a monetary union can be matched only by an independent mone-
tary policy with an arbitrarily large volatility of shocks — in both cases agents
will be forced to hold a zero equilibrium position in both currencies.

It is clear however that a world economy with several countries may sub-
stantially alter this result, as foregoing monetary independence will reduce only
some of the diversification opportunities provided by nominal state uncontingent
assets, rather than all of them, as in the case of two countries only.

E}E M) and |Clerc et all (2008) also show that imperfect monetary
policy credibility or lack of commitment possibilities at the national level can
generate positive gains from joining a currency unionPd Also in these cases,
the balance of pros and cons of pegging the currency could be tilted against
the currency union if exchange rates can be used to hedge idiosyncratic risks.
In a multi-country context, though, each country might need to have access
only to a subset of independent currencies to find the currency union attractive.
In a multi-country context, it might be that if a subset of currencies remains
independent, the gain from joining the currency union might be positive. This

37The two-country version of this model gives the opposite result: i.e. the reference country
(b) has a smaller gain from portfolio diversification. Indeed in this case, in expectations,
country a takes a very large short position in the foreign currency, while the optimal portfolio
prescribes a long position.

38See also [Giavazzi and Pagand (1984).
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raises strategic issues, since the optimal currency area would have fewer members
than existing countries.

It would be straightforward to extend the model described above, for in-
stance by including an endogenous cost of monetary policy volatility beyond
that implied by the presence of nominal bonds, so as to provide a formal anal-
ysis of these trade-offs.

8 Application 2: A two-country model with eq-
uities and bonds

For the second application we use a two-country version of the model used in
Dedola_and Straub (2008) (see Table Bl in the Appendix).

This model is a simple extension of the previous model. Now there are only
two countries. Each country’s total income is composed of an endowment (as
in the previous section) and of a dividend stream. Only claims on the dividend
stream can be traded. The model allows for home-bias in consumption (denoted
by 1) and partial substitutability of domestic and foreign goods (elasticity de-
noted by #). In this model we introduce the stochastic discount factor discussed
in the previous section.

Benchmark parameterization

Our benchmark parameterization displays the following values

| Description | Symbol | Value |
(Non-Stochastic) Discount Factor Jé] 0.98
Elasticity of Substitution 0 3
Home Bias in Consumption I 0.8
Risk Aversion p 2
Persistence of the Shocks ¢ 0.5
Elasticity of Stochastic Discount Factor P 0

Furthermore, we assume that the share of dividends in total income is 15%.

8.1 Steady-State portfolio

There are two main points that we want to make in relation to the steady-state
portfolio. The first is that, contrary to the previous application, the persistence
of the net-wealth deviation from steady state has effects on the steady state
portfolio. The second is that when we allow only for dividend and endowment
shocks we have the result of perfect equity home bias only when this two shocks
have identical persistence.
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8.1.1 Net-Wealth persistence

Figure B shows that introducing dividend shocks and equities alongside bonds
generates a steady-state effect of the stochastic discount factor. It is clear though
that the sensitivity of the portfolio to ¥ is relatively small so that even quantita-
tively the steady-state results are independent of the persistence of net-wealth.

8.1.2 Persistence of the shocks and equity home bias

ICoenrdacier et al! (2007), in a two-period two-country endowment model, show
that full home-equity bias can be produced, for example, when only output and
redistributive shocks are present. By setting to zero the variance of the monetary
shocks in our model, perfect home-bias in equities holds only in the special
case of equal persistence of the dividend and endowment shocks (although they
can have different variance). The persistence of the shocks, as discussed in
the previous application, is important. For example, predictable changes in
endowments, affect the sensitivity of consumption differential to shocks. Only
when dividend and endowment shocks are equally persistent, the home equity
provides a perfect hedge once bonds insure against exchange rate risk

Figure @ shows the portfolio of country a for different relative values of
the endowment and dividend shock. For equities the shares are shown: i.e. 1
means that 100% of the equities are held by country a. For this example, the
persistence of the dividend shock is fixed at 0.5 and we vary the persistence of
the endowment shock. We see that when the endowment shock is less persistent
than the dividend shock, country a holds less than 100% of domestic equities
and holds a positive share of foreign equities@ When endowment shocks are
more persistent than dividend shocks, country a goes short in foreign equities
and long in domestic equities.

8.2 Portfolio dynamics

Using equation ([H0) we can derive the response of bonds and equities to the
exogenous shocks of the model. Figures (@) and (f) show the response of country
a’s portfolio to a domestic dividend shock and to a domestic endowment shock,
respectively, in the “complete-market” case: i.e. when only these two sources of
risk are present and the two shocks are equally persistent.

The steady-state portfolio of this particular case displays a short position
in home currency bonds and full equity home biasE] After either of the two
shocks has hit the economy net-wealth falls and so do all the gross positions.
The persistence of these changes is entirely dictated by the persistence of the
shocks. Furthermore the change in value of the equity positions is due to the

39Gee (Engel_and Matsumotd, 2008) for a discussion on the role of bonds in insuring against
the exchange rate risk.

40Short selling of equities is not ruled out.

41This corresponds to the point Cy ~C51 =1 of Figure ({@).
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change in their price (as opposed to change in shares)@

These Figures also show an important results of the complete-market case:
If the agents choose the optimal steady-state portfolio, the portfolio dynamics
is mean-reverting

If we introduce monetary shocks along side the dividend and endowment
shocks we reproduce the incomplete-market case. Now the optimal steady-
state portfolio is contingent on the existence of a further source of risk. Its
composition, therefore, differs from the composition of the optimal portfolio
under complete-markets: e.g. country a goes short in domestic currency bonds
and in foreign equities. It goes long on domestic equities@

The portfolio dynamics in this case shows non-stationarity, as is evident from
Figures [@) and @). In this particular case, net-wealth improves after a dividend
or endowment shock. In the short run holding of domestic assets increases while
holding of foreign assets falls.

9 Application 3: The Ramsey optimal policy in
a two-country sticky-price model with bonds

In this section we show an example of a model in which the portfolio shares enter
the model also not multiplied by the excess return, and in particular multiplied
by a variable that is not i.i.d.. This fact violates the necessary conditions for the

application of the technique suggested by Deverenx and Sutherland (|20_0_S) and
by Van Wincoop and Tilld ). We use here the sticky-price two-country
model presented in Benigno and Benignd (200€), extended by introducing two

bonds, one per currency and two shocks per country: a cost-push shock and a
productivity shock. We don’t give here all the details of the model as we only
need to focus on few dimensions of it. [

42 A5 the model is written in the Appendix, the share of country a’s equities held by country
a’s households is %_2 — 1 and their share of country b’s equities is %—i

431t is important to stress that if the steady-state portfolio is not optimal, either of these
shocks would produce a permanent departure of net-wealth from the steady-state value. Hav-
ing assumed equal persistence of the shocks is irrelevant for this result.

441n particular, the value of the portfoliois « = [ —0.2135 0.3870 —0.3870 ], where the
elements of o correspond to domestic bonds, home equities and foreign equities, respectively.

45The reader should refer toIB_e.u.].gn_Q_a.n.d_B_e.mgn_d (m for details. In essence the model
is a two-country production economy with labor as only factor of production, prices set & la
[Calvd M) and Dixit-Stiglitz consumption aggregators. The point we want to make here
is to show that our technique can solve this type of models. This is true independently of
the specific values assigned to the parameters of the model. Nevertheless, in the particular
case studied here we assume a probability of not adjusting prices of 0.8; discount factor of
0.99 (quarterly frequency); intra-temporal elasticity of substitution (cross-country) of 1.5;
mark-up of 1.11 subsidized with a tax (not crucial for the results); elasticity of intertemporal
substitution of 1 and elasticity of labor supply of 1. We assume that government spending is
zero and that the shocks have a coefficient of autocorrelation of 0.9. The size of the variance is
identical for all shocks and the absolute value of these variances is not relevant for our results
as condition () makes clear.
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In particular, the Ramsey (cooperative) policy problem can be described as

Yoo v b ;51 {nU (Crsi, Lei) + (1 = n)U (Cfyi, Liys) } (53)
subject to
EtF (}/h}/t“rlv}/tfla}/t*) thl)}/ttl’Tm;h’rf»tat*l’st) =0 (54)

where (3 is the discount factor, U (-) are the utility functions of the representative
agents of each country, n is the size of the first country (home) and 1 —n is the
size of the second country (foreign), C; is consumption, L; is labor (asterisks
denoting foreign variables), e, is the vector of all the shocks while the vectors
Y; and Y} contain all the variables of the model, excluding portfolio shares
(o) and excess real returns (r,:). The function F (-) contains all the first-
order conditions of the agents’ optimization problem as well as the resources
constraints. In particular, F' () contains a subset of efficient portfolio conditions
that is linearly independent (This is justified by the constrained qualification
requirement in the Kuhn-Tucker Theorem (e.g. Sundaram d]_&&d))%

The Ramsey optimal policy is described by the set of FOCs for the prob-
lem B3)-GBA). In particular, among these we have two conditions that relate
specifically to the portfolio problem, namely

F, ., ()=-+ ABc,0p—1+ =0 (55)

and
Fo, (1) = EtBABC 4172041 =0 (56)

where Apc; is the Lagrange multiplier associated with the net-saving equation
of the form (). The second equation has exactly the form of the orthogonality
condition (B).

It is possible to show that in general, in a symmetric (non-stochastic) steady
state equilibriumApc = 01 In this case the dynamics of « is not determi-
nate to first order of approximation. More in general though, this example
shows that the dynamics of the portfolio would be determinate to first order
whenever a policy maker sets its policy by solving an optimization problem
subject to the decentralized-economy constraints and if Apc # 0. Here we
only focus on the symmetric case. Even in this case, though, we cannot apply

Devereux and Sutherland (2008) technique as Apc, is not an i.i.d. variable.

46 Abstracting from the portfolio allocation (e.g. setting o to any constant value), after
removing one of the portfolio efficiency conditions and after including a description of the
monetary policy, this model could be solved with standard methods as done for example in

47Consider the abstract policy problem of transferring dW units of wealth from the home
agent to the foreign agent for consumption purposes, then the total differentiation of the
Lagrange equation around the steady state, i.e. 0.5U’ (C)dC +0.5U (C*) dC* + ApcdW = 0,
would imply Apc = 0 as dW = —dC = dC*. One can easily see that in general, with
asymmetric steady states, we would have Agc # 0.
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Intuitively, notice that the policymaker’s FOC with respect to the net-wealth
Wiy1 would be the usual Euler equation, i.e. Apc: = EtBApct+171,441, and
would have the same stochastic properties of the marginal utility of consump-
tion.

Using the general efficiency condition (equation ([I¥)) we can derive numer-
ically the optimal portfolio.

We first consider the case of perfect spanning only two productivity shocks.
Due to the absence of monetary-policy trade offs, PPI stability is the opti-
mal policy, as discussed, among others, by Benigno and Benignd (200€) and by
Devereux and Sutherland (2007h) in relation to portfolio choices. In this case
we can compare the optimal portfolio allocation under PPI-stability obtained
using the Devereux and Sutherland technique with the one obtained under the
Ramsey policy using our algorithm. We find that the optimal holdings of do-
mestic bonds, for our benchmark parameterization, are equal to oy = 2.29358
under both, the Ramsey and the PPI-stability policies. This is reassuring as
we know that the PPI-stability policy reproduces the first-best allocation which
should be achieved by the Ramsey policymaker as well.

The second case refers to complete spanning but only two mark-up shocks.
In this case PPI-stability is no longer the optimal monetary policy. Under
this policy the optimal portfolio is again ay = 2.29358 as mark-up shocks and
productivity shocks have identical macroeconomic consequences@ Under the
Ramsey optimal policy, instead, the optimal portfolio requires oy = 6.39368.
We can see that the optimal policy induces a larger holding of domestic bonds.

The final case we consider is that of incomplete spanning: all four shocks are
present. In this case, the portfolio under PPI-stability is unchanged as having
four shocks of this type amounts to taking a multiple of the variance of either
of the pairs of shocks considered separately. Under the Ramsey policy, instead,
the optimal portfolio requires oy = 2.56435, which is closer to the one obtained
with technology shocks.

Finally, it should be noticed that in all these cases the home agent goes long
in bonds denominated in domestic currency. When we compute the optimal
portfolio under a simple Taylor rule, we obtain the opposite result: i.e. agents
go short in the bonds denominated in their own currency. We can see that
both of the policies considered above, PPI-stability and Ramsey policy, make
the return of the foreign assets comove positively with home GDP.

10 Conclusions

In this paper we have shown how to use standard perturbation methods to solve
for asset market allocations in a general class of incomplete market economies
with multiple agents and assets, in which portfolio choices are indeterminate

48The difference between these two shocks is that the technology shock shifts the aggregate
disutility function of labor in a way that compensate the fluctuations in labor supply. The
mark-up shocks generates fluctuations in the labor supply that are not compensated by shifts
in the aggregate disutility of labor.
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in the absence of uncertainty. This class of economies is more general than

that analyzed by existing contributions such asDeverenx and Sutherland (|20_OH
) or [Van Wincoop and Tilld (2007), and is relevant in a number of inter-

estlng problems, for instance in solving for Ramsey optimal policies with mul-
tiple agents and assets under incomplete markets. Differently from Devereux
and Sutherland, our general solution does not provide closed-form solutions but
requires iterative methods, except in particularly simple cases.

We provide an application of our methods by solving for the optimal nominal
bond portfolio under Ramsey monetary policy in a canonical 2-country economy
with Calvo pricing and technology and mark-up shocks.

As a further contribution, we have also clarified the link between the Devereux-
Sutherland solution methods and the asymptotic approach proposed by Judd
and Guu 2001) to deal with bifurcations arising in static portfolio problems,
showing that the two approaches rest on the same formal generalization of the
Implicit Function Theorem provided by Bifurcation Theory.

Finally, we have shown how to use simple matrix algebra to extend the closed
form solutions developed by IDevereux and Sutherland (2008, 2007a) to solve
for asset market equilibrium with more than two agents and, concerning their
dynamics, also more than two assets, for the case in which portfolio allocations
only appear multiplied by excess returns. Our extension is based on the fact that
the optimal portfolio composition for each agent must be solved simultaneously
with the portfolio of the other agents. Re-writing the (second-order accurate)
state-space solution of the model in a particular matrix form, it is then possible
to stack all agents’ portfolio problem together, obtaining a simple linear system
of equations. This is then solved with a standard matrix inversion.

Using our algebra it is straightforward to compute the optimal portfolio with
any number of agents and assets. We show this by means of two applications
widely discussed in the literature. The first consists of a three-country nominal-
bond endowment economy. This application offers interesting insights on the
portfolio composition that cannot be seen in a two-country setup. For exam-
ple, assuming zero initial net-foreign-asset positions, an infinite variance of the
monetary shock of one country would reduce all bond holdings to zero in the
two-country model. In the three-country model, on the contrary, this infinite
risk associated with one particular currency will only eliminate the bond holding
in that currency for all countries.

The second application consists of a two-country model with trade in equities
and bonds. This is a workhorse model for studying equity-home-bias issues.
Solving for the optimal portfolio under complete markets (i.e. as many shocks
as assets) we show that equity home bias is optimal only in a particular case:
i.e. when all shocks are equally persistent. The relative persistence of the
shocks, therefore, is an important determinant of the portfolio composition.
Extending the model to an incomplete-market setup generates non-stationarity
in the economic dynamics. By introducing a stochastic discount factor, and
using our generalized portfolio solution, we can assess the effect of the unit-
root in net-wealth on the portfolio composition. We show that the results are
qualitatively unchanged.
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Our generalized portfolio solution can be used to address a number of inter-
esting questions in open and closed economy models with multiple agents and
assets.

Appendix

The three-country model

The following list defines the notation used for the variables of the model. Table
[ reports the non-linear equations of the three-country model 9

List of Variables

Consumption

Money

Endowment
Consumer Prices
Return on Bond
Nominal price of Bond
Net Wealth

SN o=

49 A (+1) denotes next period value of a variable. A (—1) denotes previous period value.

40



Table 1: The non-linear three-country model

Table 1: The non-linear three-country model

Asset Choice First Order Conditioins

(Coa(+1) " (ro(+1) — rp(+1)) = 0
(Co(+1) 77 (re(+1) = rp(+1)) =0

Real Return on Bonds (definition)

Ta = Pz, (—D)
Ty =

Te =

Euler Equations (Pricing of Bonds)

Z, (Ca)*f? _ B(Ca(+1))"*

o)
—p _ B(Cy(+1)™
Zb (Cb) "= Pbb(-ﬁ-l)

—p _ B(Ce(£1)""
2:(Ce) " = T

Resource and Budget Constraints

Co+Cp+Co=ec+e¥e e
Wy = ryWo(—1) 4 e¥e — C, +efa + a1,1 (ra — 7)) +a12 (re — 1)
We = ryWe(—1) +e¥e — Co + efe + ag1 (ra —mp) + 22 (Te —1p)

Quantity Equations

eMa = Pe¥e
eMv = p,e¥s
eMe = p eYe

Auxiliary Equations

dry =1q — 19
dre =1r:—1p
dC, = Cy — Cy
dC. =C. — Cy

Exogenous Shocks (variables in logs)

Y, =y, Ya(—l) + ey,
Y, = (v, Yo(—1) + ey,
Ye =y, Ye(=1) +ev.
Mq = (u, Mo(=1) + e,
My = Cur, Myp(=1) + e,
Mc = <MC Mc(_l) + EM,

Continued on next page ...
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The two-country model

For this model we use the same notation used for the three-country model, for
the variables that are present in both models. The following lists the remainin,
variables. Table B reports the non-linear equations of the two-country model

Other Variables in the Two-Country Model

Dividend D
Price of Equities Z
Price of Bonds Q
Return on Bond rb
Return on Equities re
Price of Domestic Goods Py
Real Exchange Rate RER
Demand of Country ¢ for Goods of Country j | C; ;
Stochastic discount factor B(C)

50A (41) denotes next period value of a variable. A (—1) denotes previous period value.
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Table 2: The non-linear two-country model

Table 2: The non-linear two-country model

Resource and Budget Constraint

W, = Wa(=1)rby + Py (Yo + Do) — Co + €5+
a_1(rby —rby) +a_2 (req —rby) + a3 (repy, — rby)
eYa + eDa = Cb,a + Ca,a
eYs + eDv = Cu,,b + Cb,b

Asset Choice First Order Condition

(rba(+1) = 1bp(+1)) (Co(+1)) " =0
(rep(+1) — rby(+1)) (Co(+1)) 7 =
(req(4+1) — rbp(+1)) (Cp(+1)) 7 =0

Real Return on Bonds (definition)

— T
Tba - PaQa%_l)
rby = sRLE

b T BQu(=D)

Euler Equations (Pricing of Bonds)

(Co) ? = BCIB @O "

P, (+1)Qa
(Cp)™" _ B(Cy)B(Cr(+1)"
RER Py (+1)Qp

Quantity Equations

s

P = Pra (e +eP
My Py p(e¥o+e"v)
P, RER

CES Aggregator and Demands

6—1

-1 6—1 -1 6—1 %1
Co= (17 (Coa) T + (=) (Cu)'T )’

-1 o1 -1 9-1\ 71
Cy = (MG (Cop) ™ + (1 =) (Coa) ™ ’

Real Return on Assets (definition)

Py q,ePe+7Z

req = %

_ PypeTt+7,
T€Ep = Zb(—l)

Auxiliary Equations

reb = rb, — rby

rxel = re, — rby
rxe2 = rey — rby

cd = Ca — Cb — @

Continued on next page ...
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Table 2 — Continued

Stochastic Discount Factor

Exogenous Shocks (variables in logs)

Da = CD Da(_l) + €D,
Dy = CD Db(_l) +¢€p,
Ya = CY Ya(_l) + €y,
Yy = ¢y Yo(—1) + ey,
M, = C]u Ma(—l) +em,
]\/fb = <M ]\/fb(—l) + EM,
§=c¢¢

Continued on next page ...
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Cross product notation

Notice that the solution equation of each variable has a term of the form (e.g.

for equation 1)
2 Aje =€'Alz

This can be written as
(2’ ® ') vec (A}) = vec(4}) (z®€)
Therefore, stacking each equation on top of the other would have

vee (A}

: (2 ®@¢€) = Avec (e2').
vec (A”)

—

Other Kronecker rules
€ T; = 57’;
vec(ez') e’ = (2 @ Lnxm) €€’
and also

evec (e2') = €' (2 @ Lnxm)’

Shift of endogenous state variables

The solution we are interested in is a function of the cross products of the
state vector z; = [xy—1, $¢], such that F;z;11 = z¢11. Some solution algorithms
would deliver a solution in terms of the state vector Z; = [z, s¢]. For example,

as shown in [Lombardo and Sutherland (2007) have
st = Fiaxy 1 + Fosy 1 + F3Vi_1 + FuXo
Ct = Plxt + PQSt + Pg‘/t + P42
Vi=®Vi +T& + ‘i’gt
e =Nxi_1 +ey

SZ = Fixi_1 + FQStf_l
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where V; = (2; ® %;) and & = (3:-1 ®¢&y), or

w=[n]=[R R ]l [a v [R]= 5]

>
(62)
=] PPy |2 4 P3 (2 ® %) + P4X (63)
(5 @2) =@ (51®%-1)+T &+ T (21®e) (64)
s] = Fiaiy + Fos]_ (65)

Say that we want to express ¢; in terms of z;. Then we should recognize that

ét:[J(\)[ ?}zt—i—[é]at (66)

U1 U2
Then replacing this in equation (E3)) we have

a = [ PPy [Uiz+ [ PPy |Use (67)
+ P ((Ulzt + UQE) & (Ulzt + UQE)) + Py (68)

Then, noting that for given matrices A, B, C' and D we have
(A+B)®(C+D)=(A®C)+(A®D)+ (B®C)+ (B® D)
we can rewrite

e = [ PP ] Uiz + [ PP } Use + P, (69)
+ P ((Ulzt X Ulzt) =+ (Ulzt ® UQS))
+ P3((Ue @ Urz) + (Uze @ Use))

or
. = [ PP ] Uiz + [ PP } Use + Py (70)
+ PU10U01) (26 ®@2)+ P3[(U @ Us) + (U @ Uy) Py) (2t ® €)
+ P3 (U2 & Ug) (Et & Et)

where P, is a vector permutation matrix such that P, (2; Q&) = (6, ®@ 2¢) =
vec (zee}).
With reference to the portfolio solutions given in the text, notice that D5 =
P; (ic,:) [(Up ® Us) + (Us ® Uy) P,] where i¢ indicates here the row correspond-
ing to the consumption differential. Similarly Rs = Ps (iy,:) [(U1 ® Uz) + (U2 @ Uy) P,]
where 7, indexes the row corresponding to the excess return.
If the state-space solution was given in terms of Psvech (2:Z]), then can
use the matrix L" such that LMvech(-) = wec(-), to have Psvech (3:2)) =
P3LMvec (3:2)).
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Finally notice that the solution for the dynamics of the portfolio is given by

!
Q =7 241

I 0 |. 0
Zip1 = [ Pl o ]zt—i— [ 1 }at (71)
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Figure 1: Response of country a’s portfolio to country a’s endowment shock
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Figure 2: Response of country ¢’s portfolio to country a’s endowment shock
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Figure 3: Sensitivity of steady-state portfolio to ¢ (the vector A contains the
“stable” eigenvalues)
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Figure 4: Response of country a’s portfolio to a domestic dividend shock (com-
plete markets)
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Figure 7: Response of country a’s portfolio to a domestic dividend shock (in-
complete markets)
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