
Solving for Optimal Portfolio Dynami Choieswith Multiple Agents and Multiple Assets: Anasymptoti approah with some open eonomyappliations∗(PRELIMINARY AND INCOMPLETE)Lua Dedola Giovanni LombardoECB and CEPR ECBAugust 21, 2009AbstratIn this paper we present methods to solve for asset alloations in dy-nami inomplete market eonomies, in whih the impat of portfoliohoies goes beyond the ases studied in the perturbation literature sofar (e.g. Devereux and Sutherland (2008, 2007a), Van Winoop and Tille(2007) and Judd and Guu (2001)). For instane, this more general aseis relevant in haraterizing Ramsey optimal poliies with multiple agentsand assets under inomplete markets. We also larify the link between theDevereux-Sutherland solution methods and the asymptoti approah pro-posed by Judd and Guu to deal with bifurations arising in stati portfolioproblems. Finally, we extend the solution tehnique proposed by Devereuxand Sutherland, by allowing more than two agents (and multiple assets)in dynami inomplete markets eonomies.We present three open-eonomy appliations of our methods. First,we solve the portfolio problem in a simple three-ountry three-bond nom-inal eonomy for whih we an �nd analytial results for the steady-stateportfolio. This solution shows that relative risk an have ompositionale�ets on the portfolio that would not exist in a two-ountry model, withpotentially interesting impliations for the study of the interations be-tween optimal exhange rate regimes and portfolio alloation. In ourseond appliation, we solve for the ountry portfolios dynamis in re-sponse to shoks in a simple two-ountry model with both equities andnominal bonds, studying how home equity bias reats to shoks. In ourthird and last appliation we solve for the optimal nominal bond portfo-lio under Ramsey monetary poliy in a anonial 2-ountry model with
∗The views expressed in this paper do not neessarily represent the view of the EuropeanCentral Bank. 1



Calvo priing, and tehnology and mark-up shoks, with both ompleteand inomplete markets.
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1 IntrodutionAnalyses of asset markets equilibrium in dynami inomplete market eonomiesare very di�ult, and there are very few ases that an be solved exatly forequilibrium pries and quantities. The di�ulty arises from the fat that port-folio hoies are indeterminate in the absene of unertainty. Sine standardmethods to solve for dynami eonomies use the nonstohasti steady state asthe starting point of approximation, they annot be readily applied to theseproblems.In two important reent papers, Devereux and Sutherland have derivedthe optimal portfolio omposition for dynami maro models with two agents(Devereux and Sutherland, 2007a, 2008). They show that using standard �rst-order solution tehniques it is possible to determine the �near-stohasti� optimalportfolio alloation around whih the non-linear dynami model an be approx-imated. Furthermore they show that using simple seond order approximationtehniques, it is possible to haraterize the dynamis of this portfolio, up to�rst order of auray. Van Winoop and Tille (2007) propose iterative teh-niques to solve for the optimal portfolio based on the same priniples inspiringthe work of Devereux and Sutherland.In this paper we extend their results along several dimensions. First, weextend these methods to solve for dynami problems in whih portfolio alloa-tions are still indeterminate in the nonstohasti steady state, but relaxing theassumption that these alloations only appear multiplied by exess returns. Thelatter assumption is neessary for the solution tehnique suggested by Devereuxand Sutherland and by Tille and van Winoop.1 The more general ase ouldbe shown to be relevant in a number of important problems, for instane if oneis interested in solving for Ramsey optimal poliies with multiple agents andassets under inomplete markets. The Devereux and Sutherland solution doesnot over this lass of interesting problems. We show how to solve this moregeneral lass of models using iterative methods, providing an appliation to theoptimal nominal bond portfolio under Ramsey monetary poliy in a anonial2-ountry eonomy with Calvo priing and tehnology and mark-up shoks.In deriving these results, we provide a further ontribution by larifyingthe link between the Devereux-Sutherland methodology and the asymptotiapproah proposed by Judd and Guu (2001), in whih bifuration tehniques(BT) are used to address the failure of the impliit funtion theorem (IFT)when perturbations methods are applied to approximate the solutions to statiportfolio problems with small risks. We show that the two approahes share thesame formal foundations. Importantly, also in the Judd-Guu lass of problems,portfolio alloations only appear multiplied by exess returns.Finally, we derive losed form solutions for the lass of eonomies studied byDevereux and Sutherland in the ase of more than two agents, and also morethan two assets, for the dynamis. We derive these solutions with a relatively1For example �The only two ways that portfolio shares enter model equations are (i)through the return on the overall portfolio and (ii) through asset demand.� Assumption1 in Van Winoop and Tille (2007). 4



ompat matrix algebra, whih should failitate the generation of omputerodes. A number of important questions an be properly addressed only with amulti-ountry model, espeially onerning the links between �nanial globaliza-tion and monetary poliy. For example, a large literature has addressed the ques-tion of optimal exhange rate regimes and optimum urreny areas. The typialtrade-o� emphasized by this literature is that between independently hoosingimperfet stabilization poliies and gaining redibility by pegging the exhangerate to the urreny of a better managed eonomy (e.g. Giavazzi and Pagano(1988), Ravenna (2005) and Cler et al. (2008)). Neumeyer (1998) has showedthat eliminating urrenies an amount to reduing assets (if nominal assetswere available) and ould, therefore, redue the amount of risk sharing amongountries. While in a two-ountry model hoosing to peg the exhange rateamounts to eliminating all possibilities to hedge risk by holding foreign ur-reny nominal bonds, in a multi-ountry model this need not be the ase, aslong as some urrenies remain independent. Furthermore, the hedging role ofthe exhange rate ould generate strategi motives in deiding the admissionof new members in a urreny union or in deiding whether to join an existingurreny union.Using our solutions for optimal steady-state and dynami portfolio alloa-tions for multiple agents and assets, we analyze two simple models. The �rstis a three-ountry, three-bond endowment eonomy model, with monetary andendowment shoks. We show that having more than two agents an generateportfolio ompositions that are ruled out in the two-ountry setup. For example,as the variane of the monetary poliy shoks of one ountry beomes in�nitelylarge, all ountries will still hold a nontrivial portfolio of bonds in the other twourrenies. On the ontrary, in the two-ountry model the optimal portfoliowould display zero holding of all bonds. This result is potentially relevant forthe literature analyzing the interations between optimal exhange rate regimesunder inomplete markets, as it suggests that two ountries might �x their bilat-eral exhange rate while allowing a �oat with respet to other third ountries,thereby preserving the diversi�ation opportunities provided by a su�ientlylarge set of nominal assets.The seond appliation onsists of a two-ountry model with trade in equitiesand bonds and with money, endowment and dividend shoks. With this modelwe an address the question of equity home bias. We show that the long-runequity position is a�eted by the relative persistene of dividend and endowmentshoks. In the speial ase of equal persistene of dividend and endowmentshoks, and without monetary shoks, we an produe perfet equity home-bias(e.g. as disussed in Coeurdaier et al. (2007)). In addition, we also study thedynami responses of equity and bond holdings in response to shoks, with bothomplete and inomplete markets.In the omplete-market ase the wealth distribution is stationary. In gen-eral, though, net-wealth (and real alloations) is not stationary when the modelis approximated around the non-stohasti steady state under inomplete mar-kets. In priniple this ould obsure the interpretation of the long-run portfolioompositions. Nevertheless, we show that introduing a stohasti disount5



fator, as disussed in Shmitt-Grohé and Uribe (2003), we an eliminate thenon-stationarity without altering the main results, for reasonable parameteriza-tion of the disount fator.Finally, the third appliation shows that the solution proposed by Devereux and Sutherland(2008, 2007a) annot be applied to an interesting lass of models, inluding mod-els with Ramsey poliymakers. We show that the general solution tehnique,nevertheless, allows us to haraterize the portfolio also in this broader lass ofmodels. We apply the general solution to the anonial two-ountry model withstiky pries used among others by Benigno and Benigno (2006). We show thatwhen there are only produtivity shoks, PPI-stability oinides with the opti-mal Ramsey monetary poliy also in terms of optimal portfolio alloation. Inthe presene of mark-up shoks, the Ramsey poliy indues a di�erent portfolioalloation than the one obtained under the PPI-stability poliy.Other papers disuss the derivation of optimal portfolios in open-eonomymodels. Coeurdaier et al. (2008) �nd a losed form solution for a two ountrymodel with trade in stoks and bonds. Their analysis is lose to the workof Heathote and Perri (2007) by showing that equity home bias an be theresult of optimal hedging of idiosynrati risk. Their derivation of the portfoliosolution is based on the assumption of omplete markets and, therefore, di�ersfrom ours.Van Winoop and Tille (2007) propose a solution method for optimal port-folios that is equivalent to that disussed in Devereux and Sutherland (2007a,2008). Our derivation of the losed form solution di�ers substantially fromtheirs. Di�erent is also the derivation of the optimal portfolio obtained byEvans and Hnatkovska (2007). These authors also apply approximation meth-ods to ompute the optimal (dynami) portfolio in DSGE models with multi-ple assets. Nevertheless they ombine disrete-time perturbation methods withontinuous-time approximation methods in order to haraterize the portfolio.2Engel and Matsumoto (2006) and Engel and Matsumoto (2008) in parti-ular, show that prie stikiness is an important determinant of the portfolioomposition. Considering di�erent assumptions regarding the urreny used insetting pries (i.e. loal urreny vs. produers' urreny) they show (analyti-ally) that exhange rate risk is the most important determinant of the portfolioomposition when pries are stiky. In this ontext only a small trade in equitiesis neessary alongside trade in bonds to repliate omplete markets.The rest of the paper is organized as follows. Setion 2 de�nes the referenemodel that we are going to solve.3 Setion 3 suggests an algorithm to solve forthe optimal portfolio when the onditions neessary for Devereux-Sutherlandmethod do not apply. Setion 4 ompares the asymptoti solution method ofJudd and Guu with that proposed by Devereux and Sutherland. Setion 5derives the optimal portfolio with multiple agents and multiple assets in thenear-stohasti steady state. Setion 6 derives the optimal portfolio dynamis.2A ontinuous-time two-ountry model is used by Pavlova and Rigobon (2008) to solve theportfolio problem. These authors stress the importane of inluding optimal portfolio deisionsin open eonomy models in order to understand the dynamis of the urrent aount.3A more general model will be disussed further below.6



The following two setions disuss appliations of our formulae. In partiular,Setion 7 derives the optimal bond portfolio in a three-ountry endowment eon-omy. Setion 8 derives the optimal equity and bond portfolio in a two-ountryendowment eonomy. Setion 9 applies the general solution tehnique to a two-ountry model with stiky pries and Ramsey optimal monetary poliy. Setion10 onludes.2 The referene model and the indeterminay ofthe portfolioLet's assume, for the sake of onreteness, that there are n ountries and kassets internationally traded.4 Eah ountry is populated by a representativehousehold with the following utility funtion (here for ountry j)
Ut = Et

∞∑
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; i = 1 . . . k − 1 and j = 1 . . . n.(3)For onreteness assume that the eonomies are subjet to e independent(but possibly serially orrelated) shoks. We denote the innovations to thisshoks with the e× 1 vetor εt.The set of equations (3) desribe the ondition governing the optimal hoieof portfolio. In a non-stohasti equilibrium all these onditions imply that all4Notie that n ould be larger or smaller than k. For example, a multi-ountry model withonly nominal bonds would admit as many distint assets as independent urrenies.7



real return are idential. Therefore, agents are indi�erent about the ompositionof their portfolio in a world without risk. Likewise, to a �rst order of approx-imation, ertainty equivalene holds and these onditions imply that ex-anteall returns are idential. Therefore, agents are indi�erent about the omposi-tion of their portfolio in a world of ertainty equivalene. Only when ertaintyequivalene does not hold, i.e. at higher orders of approximation, equations (3)provide onditions to determine the demand for assets.This indeterminay of the portfolio onstitutes a serious problem for thesolution of DSGE models using standard perturbation methods. These methods,generally require us to take an approximation around the non-stohasti steadystate. A point in whih the portfolio is indeterminate.Judd (1998) and Judd and Guu (2001) have suggested asymptoti methodsto address portfolio indeterminay in a stati setting, while Devereux and Sutherland(2008) have developed a onvenient tehnique to derive the solution for a largelass of intertemporal models. These two approahes are ompared in Setion4. Before disussing the details of these tehniques it is important notiing thatequations (3) an be used to assess whether any proposed portfolio alloation isindeed optimal from the agent's point of view. In the following setion we exploitthis fat in proposing a solution for a larger lass of models than those studiedby Devereux and Sutherland (2008) or by Van Winoop and Tille (2007).3 Finding a solution when the portfolio entersthe model in a more general formIn this setion we disuss a more general solution for the optimal steady-state portfolio when portfolio shares do not enter the model only as multi-plied by the exess return, but are still indeterminate in the non-stohastisteady state. The property that the portfolio only multiplies exess returns isa neessary ondition for the appliation of the solution method suggested byDevereux and Sutherland (2008) and by Van Winoop and Tille (2007). Theondition guarantees that i) to �rst-order of approximation of the system theportfolio enters the model only as a onstant and, ii) one an on�ate this on-stant in the auxiliary i.i.d. term in the Devereux and Sutherland (2008) solutiontehnique.5In general, when the portfolio produes externalities, it might not be possibleto satisfy onditions i) or ii) or both. For example, onsider the solution to theoptimal Ramsey monetary poliy problem. The portfolio hoie will a�et thepoliymaker FOCs in a way that violates ondition i) or ii).5The ontribution of these papers is not limited to the proposed solution tehnique. Theyalso highlight the point that simple approximation methods an be used to evaluate themoment onditions derived from the optimal portfolio hoie. Neither of these papers, though,hints at the fat that simple approximation methods an be used to solve the portfolio problemin a larger lass of models. See next setion for further details.8



Eonomi models with standard portfolio problems produe singular Jao-bian matries (Judd and Guu, 2001). This is due to the fat that eah agents'FOC for the hoie of a partiular asset is not linearly independent relative tothe FOC of the other agents: to �rst order (i.e. linearly) they all impose thatexpeted exess returns be zero. Judd and Guu (2001), show that in this aseone an still use perturbation methods and resort to the bifuration theoremto �nd a solution to the portfolio problem. In essene this amounts to �ndinghigher-order approximations of the optimality onditions for whih the portfo-lio hoie eases to be indeterminate. The optimal portfolio will then be theportfolio that satis�es those optimality onditions at the appropriate level ofapproximation.This is the ase for equations 3, desribing the optimal hoie of portfolioshares. In partiular, if we have k assets and n agents we must exlude k− 1×
n − 1 equations. So, for example, with two assets and two agents we an onlyinlude the FOC for the hoie of one portfolio share (one asset) for only oneof the agents. Notie also that the FOC for the hoie of net-wealth (the wholeportfolio) is inluded for eah of the agents.6The FOC for the hoie of a partiular asset i and agent j are of the form

EtU
′(Cjt+1)rx,t+1 = 0 (4)We have argued that k− 1×n− 1 of these equations are linearly dependent. Inwhat follows we will refer to these onditions as moment onditions.For larity and omparability we distinguish two ases: First, the ase inwhih the portfolio enters the model multiplied by variables that are zero inthe non-stohasti steady-state, whether they are i.i.d or not;7 Seond, thease in whih neither ondition i) nor ondition ii) hold. With referene toJudd and Guu (2001) we denote these two ases as Zero Jaobian and SingularJaobian respetively.3.1 Zero Jaobian aseIn this ase the elements of the Jaobian matrix of the dynami system assoi-ated to the portfolio elements are exatly zero.8In order to haraterize the onstant omponent of the portfolio (the zero-order portfolio) we need to evaluate equation (4) to seond order. From Jin and Judd(2002) and Judd (1998) we know that in order to evaluate this seond-order mo-ment ondition we need to evaluate eah variable up to �rst order. To this orderof approximation, the portfolio elements enter the model only through equation(2) as onstants.96See any of our appliations.7I.e. ondition i) holds but ondition ii) might not hold.8In the example in the next setionthis will amount to blok-partitioning the Jaobianmatrix into a zero sub-matrix and a full-rank matrix.9Notie furthermore that premium implied by the moment ondition up to seond order isonstant, so up to this order there is no inentive for the agents to alter the portfolio shares.9



Furthermore, if we want to solve for the �rst order portfolio dynamis, weneed to evaluate equation (4) at least to third order. To evaluate the momentonditions up to third order su�es to evaluate its determinant variables up toseond order. To this order of approximation, the portfolio elements are timevarying.10In the following setion we make lear how this desription of the solutiontranslates in the singular-perturbation approah used by Judd and Guu (2001).A oneptually simple solution tehnique, hene, onsists of replaing theredundant moment ondition with the linear equation
αi,t = αi,0 +Azt (5)and then of searhing the unknown oe�ient α0 and elements of the vetor Aof the portfolio that satisfy the moment ondition:11
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r̂xt+1 = 0 (7)10Notie also that to this order of approximation the premium is also time varying.11This is in essene what is suggested by Van Winoop and Tille (2007). They do notonsider the Singular Jaobian ase.12Obviously, if one is only interested in the zero-order portfolio only i) should be arriedout.13The objetive is to get rid of variables that require seond order solutions, i.e. the linearterm in crxt+1. 10



where Q̂jzt+1 is the real exhange rate. This will allow us to obtain a system of
n− 1× k− 1 equations that we an solve for the n− 1× k− 1 asset shares usingsimply a �rst-order approximation to the poliy funtions.For the sake of simpliity de�ne a new variable

dCt =

(
U ′′(Ci0)

U ′(Ci0)
Ci0Ĉ
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EtdCt+1r̂x,t+1 = 0 (9)To this purpose we need to extrat from the state-spae representation theequations relative to the variables dCt and r̂x,t+1. Reall that the state-spaesolution to �rst order an be written as
st = F1xt−1 + F2st−1 (10)
yt = P1xt + P2st

xt = N xt−1 + εtwhere, for the sake of simpliity we represent all variables (exogenous, statesand ontrols) in the vetor yt. Then we have that
yt = P1Nxt−1 + P2st + P1εt (11)and

yt+1 = Θ1xt−1 + Θ2st + Θ3εt + P1εt+1 (12)
Θ = (P1N + P2F1)N (13)

Θ2 = P2F2 (14)
Θ3 = (P2F1 + P1) (15)Denote the position of the variables dCt in the vetor yt by jdC and the positionof the variable r̂xt by jrx. We know that arbitrage onditions imply that14
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We notie that the matrix P1will be a funtion of the steady state portfolioshares, as ondition (18), in general, would be satis�ed only by the optimalportfolio. Therefore, to solve for the optimal portfolio we need simply to solveondition (18). While in partiularly simple ases this ould be done analytially,in general we would need numerial methods to solve this equation.15We apply this tehnique to the simple bond-eonomymodel of Devereux and Sutherland(2008) for whih we an also ompute the solution using their method.16 Fig-ure 9 shows the residual of equation (18) as a funtion of the portfolio share
α0. The optimal portfolio share found by Devereux and Sutherland (2008) is at
α0 = −2.11864.3.2 Singular JaobianIf to �rst order of approximation the dynami omponent of the portfolio doesnot vanish (i.e. αt is not multiplied by zero in the steady state), the zero-orderportfolio and the �rst-order portfolio must be solved jointly. Further below wewill show that it is still onvenient to break the moment ondition into twoparts: i) the seond-order aurate moment ondition (Ω2) and ii) the third-order aurate moment ondition, onditional on the seond-order onditionbeing satis�ed (Ω3). In general we must use numerial methods to solve the�xed-point problem: 
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.16Reall that this model is a speial ase of our three-ountry model displayed in the Ap-pendix. 12



4 Comparing the Devereux and Sutherland andJudd and Guu solution methodsThe solution methods used so far for the steady-state portfolio alloation areonstruted without expliit reliane on the Impliit Funtion and Bifura-tion Theorems�(heneforth IFT and BF respetively) Devereux and Sutherland(2008). On the ontrary, Judd and Guu (2001) the foundation of the solutionproposed by Judd and Guu (2001).17 In this setion we show that we an followthe same approah used in Judd and Guu (2001) to the simple dynami modelstudied in Devereux and Sutherland (2008). In this way we are able to highlightthe strong link between the two solution tehniques. In doing so we extend thesolution in Judd and Guu (2001) for the stati asset market equilibrium to adynami framework. In the proess, we spell out the mathematial onditionsstressed by these outhors that are needed to ensure that the above system ofequations yields a well de�ned solution.Judd and Guu (2001) argue that the IFT annot be used to approximate as-set market equilibria beause in the absene of unertainty all assets are perfetsubstitutes, implying a ontinuum of equilibrium portfolio alloations. Hene,they resort to bifuration methods to ompute asset alloations for small devi-ations from the deterministi eonomy ("small risks").We start by onsidering the simple eonomy in Devereux and Sutherlandin whih there are only two agents and two nominal bonds, for whih the �rstorder onditions haraterizing the portfolio hoie are given by:
0 = Et

[
(Ct+1)

−ρ
rx,t+1

]

0 = Et

[(
Yt+1 + Y ∗

t+1 − Ct+1

)−ρ
rx,t+1

]
,where therefore rx,t+1 is a salar and we have used the eonomy resoure on-straint to substitute out onsumption of the foreign agent, C∗. The other equi-17For example, �Our solution approah relies on �rst-order and seond-order approximationsof the model, rather than the Impliit Funtion and Bifuration Theorems, but the under-lying theory desribed by Judd and Guu (2001) is appliable to our equilibrium solution�(Devereux and Sutherland, 2008, page 3)
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librium onditions are
0 = C

−ρ
t Z∗

t − βEt

{
C

−ρ
t+1

Y ∗
t+1

M∗
t+1

}

0 = (Yt + Y ∗
t − Ct)

−ρ
Z∗
t − βEt

{(
Yt+1 + Y ∗

t+1 − Ct+1

)−ρ Y ∗
t+1

M∗
t+1

}

At+1 = (At + Yt − Ct)
Y ∗
t+1

M∗
t+1Z

∗
t

+ αtrx,t+1

rx,t =

Z∗
t−1

Zt−1

Yt

Mt

−
Y ∗
t

M∗
t

Z∗
t−1

lnYt+1 = yt+1 = ζyyt + σεY,t+1

lnY ∗
t+1 = y∗t+1 = ζyy

∗
t + σεY ∗,t+1,where Zt is the nominal prie of the bond and where we have substituted out theprie level in terms of the quantity equation, and de�ned (total �nanial) wealthfor the domesti agent At as in Luas (1982) � note inidentally that this isan analytially more onvenient expression than the one used by Devereux andSutherland in terms of net savings:

Wt = Wt−1
Y ∗
t

Z∗
t−1

+ αt−1rx,t + Yt − Ct,

At = (Wt + Yt − Ct) .Following Judd (1998) and Shmitt-Grohé and Uribe (2004), the deisionrules solving the above equilibrium onditions, an be generally expressed asfuntions of exogenous (yt, y∗t ) and endogenous states (At), and the perturbationparameter σ :

Ct = C (At, yt, y
∗
t ;σ)

Z∗
t = Z (At, yt, y

∗
t ;σ)

rx,t = R (At, yt, y
∗
t ;σ)

αt = α (At, yt, y
∗
t ;σ)

At+1 = Ω (At, yt, y
∗
t ;σ) ,The four �rst order onditions thus de�ne a funtional equation F (C (·) , Z (·) , α (·) , R (·) , σ) =

0. However, sine they hold for any value of α in the nonstohasti steady state(σ = 0), we annot diretly apply the impliit funtion theorem (IFT) to hara-terize the deision rules as it is ustomary in the perturbation approah � e.g.Shmitt-Grohé and Uribe (2004) and Lombardo and Sutherland (2007). To seethis, di�erentiate both the portfolio and non portfolio equations in F (·) with
14



respet to σ:
0 =




−ρC−1




Cσ + CAEt




ασ · 0 + α (Rσ +RAΩA +RyεY,t+1 +Ry∗εY ∗,t+1) +

(A+ Y − C)
βεY ∗,t+1 − Zσ

β2
−
Cσ

β




+CyEtεY,t+1 + Cy∗EtεY ∗,t+1


 · 0

+Rσ +RAEt




ασ · 0 + α (Rσ + RAΩA +RyεY,t+1 +Ry∗εY ∗,t+1)+

(A+ Y − C)
βεY ∗,t+1 − Zσ

β2
−
Cσ

β




+RyEtεY,t+1 +Ry∗EtεY ∗,t+1




0 =




ρC∗−1




Cσ + CAEt




ασ · 0 + α (Rσ +RAΩA +RyεY,t+1 +Ry∗εY ∗,t+1)+

(A+ Y − C)
βεY ∗,t+1 − Zσ

β2
−
Cσ

β




+ (Cy − 1)EtεY,t+1 + (Cy∗ − 1)EtεY ∗,t+1


 · 0

+Rσ +RAEt




ασ · 0 + α (Rσ +RAΩA +RyεY,t+1 +Ry∗εY ∗,t+1)+

(A+ Y − C)
βεY ∗,t+1 − Zσ

β2
−
Cσ

β




+RyEtεY,t+1 +Ry∗EtεY ∗,t+1




,

and
0 = −βρC−1Cσ + Zσ+

+ β


ρC−1




Cσ + CyEtεY,t+1 + Cy∗EtεY ∗,t+1+

CA

(
ασ · 0 + α (Rσ +RAΩA +RεEtεY,t+1 +Rε∗EtεY ∗,t+1)

+ (A+ Y − C)
βEtεY ∗,t+1−Zσ

β2 − Cσ

β

)

+ EtεY ∗,t+1




0 = βρC∗−1Cσ + Zσ+

− β


ρC∗−1




Cσ + (Cy − 1)EtεY,t+1 + (Cy∗ − 1)EtεY ∗,t+1+

CA

(
ασ · 0 + α (Rσ +RAΩA +RεEtεY,t+1 +Rε∗EtεY ∗,t+1)

+ (A+ Y − C)
βEtεY ∗,t+1−Zσ

β2 − Cσ

β

)

+ EtεY ∗,t+1


 .Provided CA, Cy, Cy∗ are well de�ned, and given that

rx,t =

Z∗
t−1

Zt−1

Yt

Mt

−
Y ∗
t

M∗
t

Z∗
t−1implies RA = 0 and Ry = −Ry∗ = β−1, the last two equations at σ = 0 furthersimplify:

0 = Zσ + βρC−1CA

(
ασ · 0 + αRσ − (A+ Y − C)

Zσ

β2
−
Cσ

β

)

0 = Zσ − βρC∗−1CA

(
ασ · 0 + αRσ − (A+ Y − C)

Zσ

β2
−
Cσ

β

)
.Clearly these two equations imply that Zσ = 0, and αβRσ = Cσ, provided ασis well-de�ned. 15



To verify the assumption on ασ, and ompute Rσ and Cσ we need to onsiderthe two portfolio Euler equations. Provided again CA, Cy, Cy∗ are well de�ned,when evaluated at σ = 0 they simplify to:
0 = ασ · 0 +Rσ +

Et (εY,t+1 − εY ∗,t+1)

β

0 = ασ · 0 +Rσ +
Et (εY,t+1 − εY ∗,t+1)

β
,

[
0
0

]
=

[
0
0

]
ασ +

[
1
1

]
Rσ.If ασ is to be well de�ned, given that it is multiplied by 0, the last two terms haveto be equal to 0 as well (see Judd and Guu, 2001 ). Intuitively, the only waythe derivative ασ an be well de�ned is if it is the solution of the indeterminateform 0

0
, whih an be dealt with using l'Hospital's rule. Then it must be thease that Rσ = 0, and thus it is also Cσ = 0.We still wish to try to determine the steady state portfolio alloation αas a funtion of unertainty σ. The ondition above ensuring the existene of

ασ de�nes a andidate bifuration point at σ = 0, as the portfolio alloationfrom determinate beomes indeterminate � the number of solutions for α forthe �rst order onditions hanges as σ inreases from 0. The broad idea ofbifuration analysis is to provide onditions to �nd a point where the branh ofinteresting (e.g. unique) solutions to a system of equations rosses the "trivial"branh of (indeterminate) solutions, at whih point the nontrivial solution anbe haraterized as an impliit funtion of an underlying parameter (e.g. σ), forwhih a Taylor series approximation an be found. In order to do so, followingJudd and Guu, we substitute a seond order expansion of rx,t+1 in σ in the twoportfolio equations:
0 = Et

{
C

−ρ
t+1

[(
β−1 (εY,t+1 − εY ∗,t+1) +Rσ

)
σ +

1

2
R (σ) σ2

]}

0 = Et

{(
Yt+1 + Y ∗

t+1 − Ct+1

)−ρ
[(
β−1 (εY,t+1 − εY ∗,t+1) +Rσ

)
σ +

1

2
R (σ)σ2

]}
;whereR (σ) represents the risk premium of the domesti bond relative to the for-eign bond and is thus a funtion of σ. This substitution � assuming a quadratigauge funtion in the perturbation parameter σ, see Judd (1998), Ch. 15 �ensures that the �rst two onditions of Theorem 4 in Judd and Guu for theexistene of a bifuration point in R

n are satis�ed, namely that:
Hz (z0, σ = 0) = 02x2

Hσ (z0, σ = 0) = 02x1,where z = [R (σ) , α (·, σ)] and the (analyti) funtion H (·) is de�ned by the twoportfolio �rst order onditions. This theorem ensures the existene of two im-pliit funtionsR (σ) 6= 0 and α (·, σ) 6= 0 for σ 6= 0, suh that lim
σ→0

α (·, σ) = α (0)16



is well de�ned. Furthermore, these funtions are analyti and an be approxi-mated by a Taylor series. In order, to see this, dividing for, and di�erentiatingwith respet to σ, now yields
Hαασ +HRRσ +Hσ = 0 (19)that is,

0 = −ρβ−1C−1Et




 CAασ · 0 + β−1CA

(
α (εY,t+1 − εY ∗,t+1)+
(A+ Y − C) εY ∗,t+1

)

+CyεY,t+1 + Cy∗εY ∗,t+1


 (εY,t+1 − εY ∗,t+1)




+
1

2
(σRσ + R)

0 = ρβ−1C∗−1Et




 CAασ · 0 + β−1CA

(
α (εY,t+1 − εY ∗,t+1)+
(A+ Y − C) εY ∗,t+1

)

+ (Cy − 1) εY,t+1 + (Cy∗ − 1) εY ∗,t+1


 (εY,t+1 − εY ∗,t+1)




+
1

2
(σRσ + R) ,where

Hα (α,R, σ = 0) = 0 · CA

[
−ρβ−1C−1

ρβ−1C∗−1

]

HR (α,R, σ = 0) =
1

2

[
0
0

]
,and

Hσ (α,R, σ = 0) = 02x1

=




−ρβ−1C−1Et




 β−1CA

(
α (εY,t+1 − εY ∗,t+1)+
(A+ Y − C) εY ∗,t+1

)

+CyεY,t+1 + Cy∗εY ∗,t+1


 (εY,t+1 − εY ∗,t+1)




ρβ−1C∗−1Et




 CAασ · 0 + β−1CA

(
α (εY,t+1 − εY ∗,t+1) +
(A+ Y − C) εY ∗,t+1

)

+ (Cy − 1) εY,t+1 + (Cy∗ − 1) εY ∗,t+1


 (εY,t+1 − εY ∗,t+1)







+ 1
2Rde�nes the bifuration point in the unknowns R (0) and α (0) . It is worth-while to notie that this expression e�etively amounts to taking a seond orderTaylor approximation of the portfolio equations, as required by the general so-lution approah disussed in the previous setion, and also by Devereux andSutherland.Taking the di�erene of the two equations to get rid of R we have:

0 = Et


C−1


 CA

(
α (εY,t+1 − εY ∗,t+1)+
(A+ Y − C) εY ∗,t+1

)

+βCyεY,t+1 + βCy∗εY ∗,t+1


 (εY,t+1 − εY ∗,t+1)


+

Et


C∗−1


 CA

(
α (εY,t+1 − εY ∗,t+1)+
(A+ Y − C) εY ∗,t+1

)

+β (Cy − 1) εY,t+1 + β (Cy∗ − 1) εY ∗,t+1


 (εY,t+1 − εY ∗,t+1)


 .17



Under the same assumptions as in Devereux-Sutherland of a symmetri steadystate (C = C∗) and unorrelated shoks the above expression simpli�es to:
0 = 2CAα

(
σ2
Y,t+1 + σ2

Y ∗,t+1

)
+ β

(
(2Cy − 1)σ2

Y,t+1 − (2Cy∗ − 1)σ2
Y ∗,t+1

)
,whih allows to express steady state α as a funtion of the �rst order approxi-mation of the onsumption deision rule:

α = −β
(2Cy − 1)σ2

Y,t+1 − (2Cy∗ − 1)σ2
Y ∗,t+1

2CA

(
σ2
Y,t+1 + σ2

Y ∗,t+1

)
.

.Solving for α thus requires knowledge of the poliy funtions for onsumptionand exess returns up to �rst order. The last step is to verify that the Jaobian
Hσ(α,R) (α (σ) ,R (σ) , σ = 0) is nonsingular, as required by Theorem 4 in Juddand Guu. Here it is easy to verify that this ondition is met by di�erentiating
Hσ (α,R, σ) above to obtain:

Det
(
Hσ(α,R) (α (0) ,R (0) , 0)

)
=

∣∣∣∣∣∣∣

−ρ
CA

β2C

(
σ2
Y,t+1 + σ2

Y ∗,t+1

)
1
2

ρ
CA

β2C

(
σ2
Y,t+1 + σ2

Y ∗,t+1

)
1
2

∣∣∣∣∣∣∣
6= 0if CA 6= 0.Finally, to show that the solution is exatly the same as in Devereux-Sutherland we need to derive CA, Cy, Cy∗ . This an be done easily by dif-ferentiating the system F (C (·) , Z (·) , α (·) , R (·) , σ) with respet to At, yt and

y∗t , to obtain:
CA = 1 − β

1 − βζy

β
Cy =

1 − ζy

2
+

1 − β

β

1 − βζy

β
Cy∗ =

1 − ζy

2
.The following two observations are in order. First, while the portfolio al-loation does not appear in the above solutions, this will not generally be thease and the �rst order approximation will depend on the steady state value of

α. Seond, the (unknown) �rst order approximation terms of the portfolio allo-ation rule (αA, αy, αy∗) all appear multiplied by 0, as in the ase of ασ above.Thus, they will also be well de�ned if, loosely speaking, they are expressed asa solution of the indeterminate form 0

0
. In turn, it an be shown that this on-dition will be always satis�ed by the solutions of the unknown derivatives ofthe other deision rules (C (·) , Z (·) , R (·)) , obtained by standard perturbationsmethods based on di�erentiation of F (C (·) , Z (·) , α (·) , R (·) , σ) .We are now in a position to solve for α; for instane, assuming σ2

Y,t+1 =

σ2
Y ∗,t+1 as in Devereux and Sutherland (2008), the ounterpart of the expression18



in their Setion 4.1.2 obtains:
α

β
= −

Cy − Cy∗

2 (1 − β)
= −

1

2 (1 − βζy)
.To summarize, in this setion we have shown that the method by Juddand Guu, based on a rigorous appliation of bifuration tehniques, an beextended to dynami eonomies, allowing to determine the steady state portfo-lio alloation as a funtion of the �rst order terms of onsumption deisionrules and exess returns. For a spei� dynami eonomy also studied byDevereux and Sutherland (2008) we have formally shown the oinidene of thesolutions under the two approahes. This is due to the fat that the key on-dition used to solve for the portfolio alloation is exatly the same momentondition, obtained from a seond order Taylor approximation of the portfolioequations by Devereux and Sutherland, and from the use of a quadrati gaugein the same set of equations by Judd and Guu. The use of a seond order Tay-lor expansion or a quadrati gauge in a perturbation approah amount to thesame thing. In both ases the Bifuration Theorem allows us to say whether asolution exists at a seond order of approximation.5 Steady-state portfoliosIn this setion we show how the near-stohasti steady-state optimal portfoliosolution of Devereux and Sutherland (2008) an be generalized to the ase ofmore than two-agents (and more than two assets).18Under some general onditions, Devereux and Sutherland show that sine ex-peted exess returns are equal to zero up to �rst order, the term k−1∑

i=1

α
j
i,t−1 (ri,t − rB,t)will only be a funtion of the unexpeted shoks in the approximate solutionaround the steady state � in the ase of our model eonomy, the vetor ofinnovations of exogenous proesses ε. Moreover, they show that in the ase of2 ountries the steady state optimal portfolio will be impliitly de�ned by thefollowing moment onditions obtained by taking a seond order approximationof the portfolio �rst order onditions around a non-stohasti steady state:

Et−1 [(C1,t − C2,t) rx,i,t] = 0,where rx,i,t = ri,t− rB,t, i = 1...k− 1. Under the assumption of homoshedastishoks, the above onditions will be the same for any period. Devereux and Sutherland(2008) show that the term k−1∑
i=1

α
j
i,t−1 (ri,t − rB,t) an be replaed with the aux-iliary i.i.d. variable ξt, so that a solution for the approximated equilibriumaround the non stohasti steady state will yield poliy rules for the vetor of18From now on variables will denote log-deviations from their steady-state value, exept fornet wealth (W ) and individual assets (α) whih are measured relative to output.19



exess returns rx,t and for ∆t = (C1,t − C2,t) whih will be funtions of ξt andinnovations εt.19Sine ξt ≈ α′rx,t, where α denotes the steady-state value of αt, the auxiliaryvariable ould be substituted out yielding expressions in terms of fundamentalsinnovations for ∆t = D̃εt and rx,t = R̃εt. Formally,20
R̂x,t = R1ξt +R2εt

∆t = d1ξt +D2εt,so that substituting out ξt and re-arranging yields
R̃ = (I −R1α

′)
−1
R2

D̃ = d1α
′ (I −R1α

′)
−1
R2 +D2Then the above time-invariant portfolio moment onditions will amount tothe following matrix equation:

0︸︷︷︸
k×1

= R̃ΣD̃′

︸ ︷︷ ︸
(k×1)(e×e)(e×1)

(20)impliitly de�ning the steady-state unknown elements of the vetor α, represent-ing the gross holdings of foreign assets and liabilities for ountry 1, exludingthe referene asset. The position of the latter will be derived from the assumedlevel of steady state net foreign assets � we will assume throughout that thisis zero for all ountries.Equation (20) an be easily solved for α, i.e.21
α = (R2ΣD

′
2R

′
1 − d1R2ΣR

′
2)

−1
(R2ΣD

′
2) .In the ase of more than two agents, to take into aount the e�ets of assetreturns on the wealth distribution aross agents, we will have to keep trak ofthe holdings of n-1 agents, and inlude the relevant moment onditions fromtheir portfolio optimization problems. For eah n-1 ouple of agents it is moreonvenient to write the moment onditions as

0︸︷︷︸
1×k

= D̃i
′

ΣR̃′

︸ ︷︷ ︸
(1×e)(e×e)(e×k)

0 =


 Di

1︸︷︷︸
1×(n−1)

α′

︸︷︷︸
(n−1)×k

(I −R1α
′)
−1

︸ ︷︷ ︸
k×k

R2︸︷︷︸
k×e

+ Di
2︸︷︷︸

1×e




′

ΣR′
2

(
(I −R1α

′)
−1
)′
,19The marginal utility di�erential ∆ will also be a funtion of state variables, like the wealthdistribution.20∆t would depend also on state variables. This term, though, would drop out in the rossprodut with rx,t.21In deriving this expression we have made use of the fat that “

(I −R1α
′)

−1
”′

α ≡

α
“
(I − α′R1)−1

”′

. 20



where as indiated above, α is now a k× (n−1) matrix. Rearranging the aboveexpression yields:
(
Di

2RR1 −Di
1

)
︸ ︷︷ ︸

1×(n−1)

α′

︸︷︷︸
(n−1)×k

= Di
2︸︷︷︸

1×e

R︸︷︷︸
e×k

,where R ≡ ΣR′
2 (R2ΣR

′
2)

−1
.Colleting all the onditions yields the following system:




(
D1

2RR1 −D1
1

)...(
Di

2RR1 −Di
1

)...(
Dn−1

2 RR1 −Dn−1
1

)




︸ ︷︷ ︸
(n−1)×(n−1)

α′ =




D1
2...

Di
2...

Dn−1
2




︸ ︷︷ ︸
(n−1)×e

R︸︷︷︸
exk

,

or
Ω︸︷︷︸

(n−1)×(n−1)

α′ = D̃′
2︸︷︷︸

(n−1)×e

R︸︷︷︸
e×k

,where Ω ≡ D̃2 (I ⊗RR1) − D̃1, D̃2 ≡
[
D1′

2 . . . Di′
2 . . . Dn−1′

2

] and
D̃′

1 ≡
[
D1′

1 . . . Di′
1 . . . Dn−1′

1

].A solution for the steady state portfolio is given by
α′ = Ω−1D̃′

2R.Notie that with two agents the above formula yields
α′ = −

(D2ΣR
′
2) (R2ΣR

′
2)

−1

(
d1 − (D2ΣR′

2) (R2ΣR′
2)

−1
R1

) ,whih an be shown to be equal to the expression derived by Devereux and Sutherland(2008).6 Portfolio dynamisWe are now in the position to solve for the portfolio dynamis. We �rst presentthe ase of two agents and one asset to re-ast the Devereux and Sutherland(2007a) result into our notation. The multiple-agent multiple-asset ase will bea straightforward extension.
21



6.1 The two-agents one-asset aseDevereux and Sutherland (2007a) show that in order to obtain a seond-orderaurate solution for the portfolio dynamis, one has to take a third order ap-proximation of the onsumption Euler equation of eah agent.22 In partiular,with referene to their equation (26) we have
Et

[
−ρ
(
Ct+1 − C∗

t+1

)
rx,t+1 +

ρ2

2

(
C2
t+1 − C

∗,2
t+1

)
rx,t+1 −

ρ

2

(
Ct+1 − C∗

t+1

) (
r21,t+1 − r22,t+1

)]
= 0(21)In order to evaluate this expression we need the solution for onsumptionand the return on the assets at most to the seond order of auray.As shown in Lombardo and Sutherland (2007) the seond order solution forthe onsumption di�erential between the two agents an be written as

(C − C∗) =

First order part︷ ︸︸ ︷
D1ξ +D2ε+D3z

+D0 +D4vec (εε′) + z′D̂5ε+D6vec (zz′)︸ ︷︷ ︸Seond order part (22)and
rx =

�rst order part︷ ︸︸ ︷
R1ξ +R2ε

+E [rx] −R4
−→
Σ +R4vec (εε′) + z′R̂5ε+R6vec (zz′)︸ ︷︷ ︸Seond order part (23)where all the variables have the same timing, −→

Σ = E [vec (εε′)], and where
z′ = [xt, st+1]; xt being the e × 1 vetor of shoks and st the l × 1vetor ofendogenous state variables.23Devereux and Sutherland (2007a), show that the portfolio dynamis an bedesribed as a linear transformation of the state variables, i.e.

αt−1 = γ′ zt (24)where γ in this ase is a (l + e) × 1 vetor of oe�ients to be determined.The seond order approximation of the budget onstraint of eah agent(equation (2)) generates a term in the ross produt of the portfolio and the22This subsetion does not add anything to Devereux and Sutherland (2007a) exept repro-duing their alulations using matrix notation in plae of tensor notation.23See the Appendix for a seond-order state-spae representation of the solution. Thematries in equations (22) and (23) orrespond to transformations of the rows of the P matriesgiven in the Appendix. Notie that, up to seond order, R0 = E [rx]−R3z−R4
−→
Σ−R6vec (zz′)and that, sine up to �rst order rx is i.i.d., R3z = 0. Notie also that it is possible to re-writeterms like R5vec (εz′) as z′R̂5ε. See the Appendix for further details. The arrows denotevetorization. 22



exess returns: αt−1rx,t. Following Devereux and Sutherland (2007a), we anexpress this produt as an i.i.d. variable
ξt+1 ≡ αtrx,t+1 = γzt+1rx,t+1 (25)Sine this relation involves only �rst order variables, we an use the �rst orderpart of equation (23) in the latter expression to get (dropping time subsripts)

ξ = γ′zR2ε = R2εz
′γ (26)Replae this into (22) and (23)

(C − C∗) = D0 +D1z
′γR2ε+D2ε+D3z

+D4
−→εε + z′D̂5ε+D6

−→zz (27)and
rx = E [rx] −R4

−→
Σ +R1z

′γR2ε+R2ε

+R4
−→εε + z′R̂i5ε. (28)As this expression involves �rst order terms in C and r1,2we need the �rstorder solution to these variables, i.e.

C = CH2 ε+ CH3 z C∗ = CF2 ε+ CF3 z

r1 = RH2 ε+RH3 z r2 = RF2 ε+RF3 zwhere by the i.i.d.nature of rx must be that RF3 = RH3 .Taking ross-produts of these equations we have, e.g.
C2 =

(
CH2 ⊗ CH2

)−→εε +
(
CH3 ⊗ CH3

)−→zz +
[(
CH2 ⊗ CH3

)
+
(
CH3 ⊗ CH2

)
Pv
]−→εz(29)where Pv is a vetor-permutation matrix. For onveniene we re-write theseross produts as

C2 = CH2⊗2
−→εε + CH3⊗3

−→zz + CH2⊗3
−→εz C∗,2 = CF2⊗2

−→εε + CF3⊗3
−→zz + CF2⊗3

−→εz
r21 = RH2⊗2

−→εε +RH3⊗3
−→zz +RH2⊗3

−→εz r22 = RF2⊗2
−→εε +RF3⊗3

−→zz +RF2⊗3
−→εzand

C2 − C∗,2 = CH−F
2⊗2

−→εε + CH−F
3⊗3

−→zz + CH−F
2⊗3

−→εzand
r21 − r

∗,2
2 = RH−F

2⊗2
−→εε +RH−F

2⊗3
−→εzwhere we have de�ned e.g. CH−F

2⊗2 ≡
(
CH2⊗2 − CF2⊗2

).Consider one addendum of equation (21) at a time (and abstrat from the
ρ oe�ient for the time being), i.e.
D0rx +D1z

′γR2εrx +D2εrx +D3zrx +D4
−→εεrx + z′D̂5εrx +D6

−→zzrx (30)23



(
CH−F

2⊗2
−→εε + CH−F

3⊗3
−→zz + CH−F

2⊗3
−→εz
)

× ε′R′
2 (31)

(D2ε+D3z) ×
(
RH−F

2⊗2
−→εε +RH−F

2⊗3
−→εz
)′ (32)Let's start with equation (30). Reall that to �rst order rx = R2ε, while, toa �rst order C − C∗ = CH−F

2 ε+ CH−F
3 zNotie that sine D2εε

′R′
2 = 0, and assuming that third moments of theshoks are zero, the (onditional on time t) expeted value of equation (30)redues to (omitting the expetation operator)

[
R2εε

′R′
2D1z

′ γ + z′D̂5εε
′R′

2

]
+
(
z′R̂5εε

′D′
2

)
+

+D2εE [rx] +

(
E [rx] −

(−→
Σ
)′
R′

4 + (−→εε)
′
R′

4

)
(D3z)Notie that

(
E [rx] −

(−→
Σ
)′
R′

4 + (−→εε)
′
R′

4

)
(D3z) = (E [rx]) (D3z)Furthermore notie that the sum of the seond order expansion of the Eulerequations we an derive an expression for E [rx]. So for, say the home ountry,have

C−ρβ

(
r̂1 − r̂2 +

1

2
r̂21 −

1

2
r̂22

)
− ρβC−ρ

(
Ĉ
)

(r̂1 − r̂2) = 0.Adding this to the foreign ounterpart yields,
E [rx] =

ρ

2
E
[(
CH2 + CF2

)
εε′R′

2 +
(
CH3 + CF3

)
zε′R′

2

]
−

1

2

(
RH−F

2⊗2
−→εε +RH−F

2⊗3
−→εz
)implying that

(E [rx]) (D3z) = ρ
(
CH2
)
[D3zΣR

′
2] −

1

2
RH−F

2⊗2
−→εεD3zand that

D2εE [rx] = ρ
(
CH3 + CF3

)
zR2εε

′D′
2−

1

2
D2ε

(
RH−F

2⊗3
−→εz
)

= −
1

2
D2ε

(
RH−F

2⊗3
−→εz
)

= 0where we have used the fat that
D2ε

(
RH−F

2⊗3
−→εz
)

= D2ε
(
RH2 εε

′RH2 −RF2 εε
′RF2

)
= D2εR

H
2 εε

′R′
2 = 0and that that D3z is a salar and that (CH2 + CF2

)
ΣR′

2 = 2CH2 ΣR′
2 +D2ΣR

′
2.24



the �rst addendum of equation (21) gives24
Et

[
R2εε

′R′
2D1z

′ γ + z′D̂5εε
′R′

2

]
+

(
z′R̂5εε

′D′
2

)
+ ρ

(
CH2
)
[D3zΣR

′
2] −

1

2
RH−F

2⊗2
−→εεD3zAs for the seond addendum one an show that it redues to

R2εε
′ (z′ ⊗ I)

′ (
CH−F

2⊗3

)′
= 2R2ε

[(
CH2 εz

′CH′
3

)
−
(
CF2 εz

′CF ′
3

)] (33)
= 2CH2 D3zΣR

′
2And for the third have

(
RH−F

2⊗2
−→εε
)
(D3z) +D2εε

′ (z′ ⊗ I)
′ (
RH−F

2⊗3

)′where
D2εε

′ (z′ ⊗ I)
′ (
RH−F

2⊗3

)′
= 2 D2ε

[
RH2 εz

′RH′
3 − RF2 εz

′RF ′
3

]

= 2D2εε
′RH′

2 z′RH′
3 −D2εε

′RH2 z
′RF ′

3

= 2D2εε
′RH′

2 z′ [R′
3] = 0and (

RH−F
2⊗2

−→εε
)
(D3z) =

[
RH2 εε

′RH′
2 −RF2 εε

′RF ′
2

]
(D3z)Taking all terms together yields

−Et

[
R2εε

′R′
2D1z

′ γ + z′D̂5εε
′R′

2

]
+

−
(
z′R̂5εε

′D′
2

)
− ρ

(
CH2
)
[D3zΣR

′
2] +

1

2
RH−F

2⊗2
−→εεD3z +

ρ
[
CH2 D3zΣR

′
2

]
+

−
1

2

[(
RH−F

2⊗2

)−→εε (D3z)
]Simplifying gives

Etz
′
{[
γR2ΣR

′
2D1 + D̂5ΣR

′
2

]
+
(
R̂5ΣD

′
2

)}
= 0This must be valid for all possible z i.e.

{[
γR2ΣR

′
2D1 + D̂5ΣR

′
2

]
+
(
R̂5ΣD

′
2

)}
= 0or

γ = −
D̂5ΣR

′
2 + R̂5ΣD

′
2

R2ΣR′
2D1whih is the formula derived in Devereux and Sutherland (2007a).24Notie that D2εε

′R′

2 = 0 implies that D2εε
′RH′

2 = D2εε
′RF ′

2 and that CH
2 εε′R′

2 =
CF

2 εε
′R′

2. 25



6.2 Two-agents multiple-assets aseIn order to extend the result of Devereux and Sutherland (2007a) to the multiple-asset ase we notie that αt and rx,t are now k − 1 vetors.Now we have k − 1 di�erent Euler equations, one for asset
(C − C∗) = D0 +D1ξ +D2ε+D3z

+D4vec (εε′) + z′D̂5ε+D6vec (zz′) (34)and, for the i− th asset
rx,i = E [rx] −Ri4

−→
Σ +Ri1ξ +Ri2ε

+Ri4vec (εε′) + z′R̂i5ε+Ri6vec (zz′) (35)The �rst order solution to the vetor of exess returns an be written as
rx = R2︸︷︷︸

(k−1)×e

ε (36)where R′
2 =

[
R

1,′
2 . . . R

k−1,′
2

]
. Then the ross-produt of assets and their exessreturn an still be written as

ξ1×1 = z′γR2ε (37)where γ is a l× (k − 1) matrix of oe�ients.Then, by analogy with the results shown earlier we have
Etz

′
{[
γR2εε

′R
i,′
2 D1 + D̂5εε

′R
i,′
2

]
+
(
R̂i5εε

′D′
2

)}
= 0or using the fat that

(
R̂i5εε

′D′
2

)
= vec

(
I R̂i5εε

′D′
2

)
= (D2εε

′ ⊗ Il×l) vec
(
R̂i5

) (38)
Etz

′
{[
γR2εε

′R
i,′
2 D1 + D̂5εε

′R
i,′
2

]
+ (D2εε

′ ⊗ Il×l) vec
(
R̂i5

)}

︸ ︷︷ ︸
l×1

= 0s×1This must be valid for all possible z i.e.
{[
γR2ΣR

i,′
2 D1 + D̂5ΣR

i,′
2

]
+ (D2Σ ⊗ Il×l) vec

(
R̂i5

)}

︸ ︷︷ ︸
l×1

= 0s×1...{[
γR2ΣR

k−1,′
2 D1 + D̂5ΣR

k−1,′
2

]
+ (D2Σ ⊗ Il×l) vec

(
R̂k−1

5

)}

︸ ︷︷ ︸
l×1

= 0s×126



stak olumn wise all the k − 1 onditions and get
{[
γR2ΣR

′
2D1 + D̂5ΣR

′
2

]
+ (D2Σ ⊗ Il×l)R

′
5,l·e×(k−1)

}

︸ ︷︷ ︸
l×k−1

= 0s×k (39)or
γ = −

[
D̂5ΣR

′
2 + (D2Σ ⊗ Il×l)R

′
5,l·e×(k−1)

]
(R2ΣR

′
2D1)

−16.3 The multiple-agents multiple-assets aseNotie that now we have n− 1 i.i.d. terms
ξ
j
1×1 = α′

jrx : j = 1 . . . n− 1where αj and rx are (k − 1) × 1.Furthermore, now we have k − 1 di�erent equations for the assets exessreturn and n− 1 for the onsumption di�erentials.Our solution strategy is to �nd the optimal portfolio ondition agent-by-agent and then stak them together to solve the simultaneous portfolio problem.The ounterpart of the optimal portfolio ondition as found in the previoussetion (equation (39)) is the following for agent i
Et

[
D
i,1
1 γ1R2εε

′R2 + · · · +D
i,n−1
1 γn−1R2εε

′R2 + D̂i
5εε

′R′
2 +

(
Di

2Σ ⊗ Il×l
)
R′

5

]

︸ ︷︷ ︸
l×(k−1)

= 0where Di,j
1 is a salar, γj is a l × (k − 1) matrix (j = 1 . . . (n− 1)).More ompatly we an write

Di
1



γ1...
γ2


 = −

[
Di

5ΣR
′
2 + Di

2R
′
5,l·e×(k−1)

]
(R2ΣR

′
2)

−1where Di
1 ≡

[
D
i,1
1 Il×l . . .D

i,2
1 Il×l

], Di
2 ≡

(
Di

2Σ ⊗ Il×l
) and Di

5 = D̂i
5.We an stak these equations (for agent i = 1 . . . (n− 1)) row by row to get

D1



γ1...
γ2


 = −

[
D5ΣR

′
2 + D2R

′
5,l·e×(k−1)

]
(R2ΣR

′
2)

−1where D1is (n− 1) · l × (n− 1) · l . Then have


γ1...
γ2


 = −D−1

1

[
D5ΣR

′
2 + D2R

′
5,l·e×(k−1)

]
(R2ΣR

′
2)

−1 (40)27



7 Appliation 1: Monetary shoks and optimalportfolio hoie in a three-ountry model withnominal bondsIn this setion we apply our formulae for the solution of the optimal port-folio to a three-ountry version of the endowment-eonomy model used byDevereux and Sutherland (2008, 2007a).The model onsists of three symmetri eonomies populated by identialagents having preferenes and onstraints as desribed by equations (1) and (2).These agents an only trade in three nominal bonds. Money and endowments,in eah ountry, follow an exogenous AR(1) proess. Pries are determined bya simple equation of exhange i.e.25
Pi,t Yi,t = Mi,t (41)where i = {a, b, c} denotes the ountry. Table 1 reports the non-linear model.The variane of the stohasti innovations is denoted by σY,i and σM,i, i =

{a, b, c}.7.1 Steady-state portfolioThis model remains su�iently simple to allow for an analytial representationof the solution for the steady-state portfolio. For the sake of omparison, thesteady-state portfolio for the two-ountry two-bonds version of our model isgiven by
α = −

1

2

1

(1 − βζY )

(
σa,Y + σb,Y

σa,Y + σb,Y + σa,M + σb,M

) (42)For the three-ountry ase the solution will be a 2 × 2 matrix. The rows of
α orrespond to ountry a and c respetively and the olumns orrespond tothe bonds issued in the urreny of the ountry a and c respetively. Country
b is the referene ountry and its position an be inferred in relation to thenet-wealth of ountry a and c.Extending the results of Devereux and Sutherland (2008) we an show thatin the ase of our three-ountry three-bond model we have2625Here veloity is set to 1. Alternatively we ould have assumed a onstant money supplyand a stohasti veloity (money demand shoks). The results would be the same.26One an show that

R1 =

»
0 0
0 0

–
R2 =

»
−1 1 0 −1 1 0
0 1 −1 −1 0 1

–

D1 = ρ(1 − β)

»
2 1
1 2

–
D2 = ρ

1−β
1−β ζY

»
0 0 0 −1 1 0
0 0 0 −1 0 1

–Notie that in this model the risk-aversion parameter ρ anels out in the formula for theportfolio. 28



αD = 3 [(σM,a + σY,a) ((σM,b + σY,b) + (σM,c + σY,c)) + (σM,b + σY,b) (σM,c + σY,c)] (1 − ζY β)(43)
αN1,1 = −2 (σM,b + σY,c + σM,c + σY,b)σY,a + (σM,c + 2σY,c) σY,b + σM,bσY,c(44)
αN1,2 = ((2σM,b + σY,c + σY,b)σY,a + σM,a (σY,c − σY,b) + (σY,b + σM,b)σY,c)(45)

αN2,2 = − (σM,b + 2 (σY,c + σY,b))σY,a+(σM,a + 2σY,c)σY,b+2 (σM,a + σM,b)σY,c(46)
αN2,1 = ((σY,a + 2σM,b + σY,b)σY,c + σM,c (σY,a − σY,b) + (σY,b + σM,b)σY,a)(47)and

αi,j =
αNi,j

αD
(48)In the speial ase of idential varianes aross ountries we have

α =
σY

3 (σM + σY ) (1 − ζY β)

[
−2 1
1 −2

] (49)This is to say that, eah ountry splits its portfolio in a short position in domestiassets and a long position (of equal amount) in foreign assets. The foreignposition is then equally divided among the foreign-urreny bonds.In the speial ase of the referene ountry (ountry b) having zero varianeof endowment and poliy, we obtain
α =

1

3




−2
σY,a

(σM,a + σY,a) (1 − ζY β)

σY,c

(σM,c + σY,c) (1 − ζY β)
σY,a

(σM,a + σY,a) (1 − ζY β)
−2

σY,c

(σM,c + σY,c) (1 − ζY β)


 (50)The portfolio that we obtain for generi varianes highlights an importantdi�erene between the two-ountry two-asset model and the three-ountry three-asset version. In partiular, the general ase highlight the interdependenebetween the di�erent types of risk. In the two-ountry version (Cf. equation(42)) the risk assoiated with monetary poliy a�ets the total portfolio holding:in the limit, as either of the monetary poliy varianes goes to in�nity, the grosspositions are run to zero.This is not the ase for the three-ountry model. For example, one an showthat

lim
σM,1→∞

αi,j =





0 if j = 1
1

3

σY,c − σY,b

(1 − ζY β) (σY,b + σY,c + σM,b + σM,c)
if i = 1

−
1

3

2σY,c + σY,b

(1 − ζY β) (σY,b + σY,c + σM,b + σM,c)
otherwise(51)29



so that all ountries would still hold gross positions in the bonds issued in theurrenies of the ountries with �nite varianes. Notie though, that there is anasymmetry between these holdings: The holding α1,2 (i.e. ountry a's holdingof bonds in ountry c's urreny) would be zero if the other two ountries (band c) experiene the same degree of endowment volatility. In other words,as the monetary poliy of a ountry beomes too volatile, this ountry wouldhold nominal foreign assets only to the extent that they an hedge the foreignrelative risk: going short (long) in ountry c (b) urreny if the its endowmentis less (more) volatile than ountry b's (c's). Country c on the ontrary wouldhave non-zero positions in ountry c's and ountry b's urreny (going short inthe �rst and long in the seond).27More in general, these results show that in this simple model no ountry goeslong in its own urreny. The position in the foreign asset will instead dependon the relative volatility of the foreign ountries and on the domesti volatilityof monetary poliy.Finally, if monetary poliy is perfetly orrelated aross ountries, the port-folio redues to
α =

1

3 (ζY β − 1)

[
−2 1
1 −2

] (52)independently of the variane of the endowments. This result highlights thefat that it is not the absolute volatility of monetary poliy that matters forportfolio alloation but rather its volatility relative to that of other ountries'monetary poliies.7.2 Portfolio DynamisAn analytial desription of the dynami properties of the optimal portfoliowould be too involved to o�er (new) useful insights.28 In this setion, therefore,we give numerial examples of the dynami response of the portfolio to shoks.As benhmark parameterization we use the following values:Desription Symbol ValueDisount fator β 0.98Risk aversion ρ 1Persistene of money shok ζM{a,b,c}
0.6Persistene of output shok ζY{a,b,c}
0.9Variane of shoks σY,M{a,b,c}
1As disussed earlier, the dynamis of the portfolio, up to seond order ofauray, an be desribed as a linear mapping from exogenous and endogenousstate variables.27One an show that ∂α1,2

∂σM,a
< 0, ∂α2,1

∂σM,c
< 0, ∂α2,1

∂σM,a
S 0 depending on the relative size ofthe varianes.28Devereux and Sutherland (2007a) derive the analytial response oe�ients of the optimalportfolio, up to the underlying varianes and for a unit degree of risk aversion. Their solutionis insightful as it separates the portfolio level-e�et indued by net-wealth movements, fromthe hedging e�et due to exogenous shoks. 30



As is apparent from the analysis of Devereux and Sutherland (2007a), hangesin the portfolio omposition should be interpreted as deriving from two mainfators: The level e�et and the hedging e�et.29 The latter re�ets hanges inthe sensitivity, to shoks, of the ross-ountry onsumption di�erential. A givenhange in expeted returns must bring about an equal hange in the marginalutility of the trading ountries. As utility is onave, hanges in marginal utilityan only be brought about by large hanges in onsumption when the level ofonsumption is high. At high levels of onsumption the ovariane of the returnsand relative onsumption is larger (other things equal), thus inreasing hedgingmotives.The level e�et is due to the fat that inreases in net-wealth, other thingsequal, translate into inreases in holdings of all bonds. For example, in ourmodel a positive money supply shok in ountry a improves its net-wealth posi-tion. Therefore, the share of all urrenies in ountry a's portfolio inreases (inpartiular αt,(1,i) − α1,i = 0.94).30 The opposite is true for the other ountries,whih experiene a net-wealth deterioration.Upon a domesti endowment shok in ountry a, the share of domesti ur-reny in ountry a's portfolio dereases (by −2.0857) while the share of foreignurreny bonds in ountry a's portfolio is redued (by−0.0871 per foreign ur-reny). After the �rst period the shares inrease monotonially. The responseof the portfolio derives from the ombined e�et of the desire to reinfore thehedging position (as relative onsumption has inreased) and a hange in net-wealth.Figure 1 shows the response to ountry a's endowment shok of ountry a'sholding of ountry a's urreny bond and of ountry c's urreny bond (theresponse of home net-wealth is also shown). Figure 2 shows the response to thesame shok of ountry c's portfolio.7.2.1 Net-wealth persistene and portfolio adjustmentThe permanent e�et of the shoks, due to inomplete markets and to approxi-mation of the model around the non-stohasti steady-state, seems to ontraditthe statement that there is a unique steady-state portfolio. Under the alternativeassumption that there are only endowment shoks, we would reprodue ompletemarkets, so that the optimal hoie of the portfolio omposition would make themodel stationary.31 A way to evaluate the sensitivity of the model to the unitroot under the inomplete market assumption, would be to adopt the suggestionby Shmitt-Grohé and Uribe (2003) for small open eonomy models.32 One ofthe solution that these authors onsider is to impose that the agents disountfator is a funtion of deviations of (ountry-wide) onsumption from the steady29This deomposition is also emphasized by Van Winoop and Tille (2007) and referred toas portfolio growth and portfolio realloation, respetively.30We return in the next setion to the problem non-stationarity of the responses.31This fat is used, for example, by Engel and Matsumoto (2008) to derive the optimalportfolio omposition under omplete-markets.32Another way to eliminate the unit root would be to assume that agents die with a positiveprobability. This solution is adopted, for example, by Van Winoop and Tille (2007).31



state value. We speify the disount fator as βt = β (ct − c̄) = (1 + ct− c)(−ψ).Under this assumption, the size of the largest root lying within the unit irleis inversely proportional to ψ. 33In this model, the steady-state portfolio is una�eted by this modi�ation.34The dynamis of the portfolio, instead, is a�eted by ψ. The response of theportfolio to any shok is smaller (in absolute terms) and shorter lived the largeris ψ. In the speial ase of i.i.d. shoks (and for monetary shoks in general), theonly dynamis imparted to the portfolio is the endogenous dynamis derivingfrom the evolution of net wealth. In this ase, for example, a positive endowmentshok in ountry a indues a urrent aount surplus and, therefore, an inreasein the net-foreign-asset position of this ountry. So, despite a redution inholding of own-urreny bonds on impat (due to the temporary inrease insensitivity of onsumption di�erentials), after the �rst period the inrease inwealth implies an inrease in holding of all types of bonds for as long as wealthis above the steady-state level. In the extreme ase of a one-period-lived net-wealth inrease, the portfolio would return to its steady state after one period.7.3 WelfareIt is easy to use the solution for the optimal portfolio to ompute ountries'respetive welfare. It is important to notie, �rst, that the dynami behaviorof the portfolio, up to seond order, does not have onsequenes for aggregatewelfare, when the latter is measured using the expeted (onditional or not)life-time utility of the households. This is beause the only plae where theportfolio dynamis appears, is the budget onstraint of the households. Thereit shows up lagged (i.e. the amount that is arried over from last period) andmultiplied by exess returns. Sine exess returns are i.i.d. up to �rst order,the onditional expetation of this produt must be zero.35On the ontrary, the steady-state omposition of the portfolio has importante�ets on welfare. The following Table reports the welfare gains (in steady-stateonsumption units) for eah ountry in adopting the optimal portfolio relativeto the ase of one single bond (of the referene ountry b).3633It should be notied that our stohasti disount fator does not a�et the degree ofrelative risk aversion. The disount fator is a funtion of aggregate onsumption so that
−
U ′′C

U ′
= ρ. Nevertheless, the sensitivity of aggregate onsumption di�erentials, in generaland even at �rst order, is a�eted by the stohasti disount fator. Hene, the sensitivity ofthe portfolio to ψ is not simply due to the redution is persistene of net wealth.A better way to eliminate the unit root would be to evaluate the model around a point thattakes into aount the role of risk (see Ljungqvist and Sargent (2000, h. 14)). This solutionis not trivial and we leave it to future researh.34While we don't have a symboli representation of this ase, numerial experiments showedthat the matries D1and D2 that enter the formula for the steady-state portfolio depend ψ.As is happens for the parameter of risk aversion, though, ψ anels out (see footnote 26).35This implies that to appreiate welfare gains from portfolio dynamis we need to look atorder of approximation higher than seond for welfare.36The in�nite disounted sum of the onditional mean of the period utility is re-saled by

(1 − β). 32



Country a Country b Country cWelfare gain 18.29% 35.24% 18.29%The table shows that, as should be expeted, all ountries experiene awelfare improvement when the steady-state portfolio is hosen optimally. It isalso evident that the gain is larger for ountry b. This an be rationalized byonsidering that in the single-bond ase, ountry a and ountry c run a positivenet-wealth position on average (up to seond order of auray). This meansthat they must have a long position in the foreign asset (ountry b's urrenybond). Although quantitatively di�erent, this is the position that they hold inthe three-bond ase. Country b, on the ontrary does not have the possibilityof going long in foreign urreny.377.4 Some impliations for exhange rate regimesThis example, although admittedly quite simpli�ed, allows nevertheless to makean interesting point related to the literature on urreny union, preisely thebranh spurred by Neumeyer (1998). His paper shows, in a two-ountry model,that to the extent that having an independent urreny expands the set ofassets trades thus fostering international risk sharing, the osts of having asuboptimally volatile monetary poliy will not be enough to establish a monetaryunion.Neumeyer's argument emerges learly from the solution for optimal portfolioalloation in the two ountry ase. The ost from lak of diversi�ation entailedby setting up a monetary union an be mathed only by an independent mone-tary poliy with an arbitrarily large volatility of shoks � in both ases agentswill be fored to hold a zero equilibrium position in both urrenies.It is lear however that a world eonomy with several ountries may sub-stantially alter this result, as foregoing monetary independene will redue onlysome of the diversi�ation opportunities provided by nominal state unontingentassets, rather than all of them, as in the ase of two ountries only.Ravenna (2005) and Cler et al. (2008) also show that imperfet monetarypoliy redibility or lak of ommitment possibilities at the national level angenerate positive gains from joining a urreny union.38 Also in these ases,the balane of pros and ons of pegging the urreny ould be tilted againstthe urreny union if exhange rates an be used to hedge idiosynrati risks.In a multi-ountry ontext, though, eah ountry might need to have aessonly to a subset of independent urrenies to �nd the urreny union attrative.In a multi-ountry ontext, it might be that if a subset of urrenies remainsindependent, the gain from joining the urreny union might be positive. This37The two-ountry version of this model gives the opposite result: i.e. the referene ountry(b) has a smaller gain from portfolio diversi�ation. Indeed in this ase, in expetations,ountry a takes a very large short position in the foreign urreny, while the optimal portfoliopresribes a long position.38See also Giavazzi and Pagano (1988). 33



raises strategi issues, sine the optimal urreny area would have fewer membersthan existing ountries.It would be straightforward to extend the model desribed above, for in-stane by inluding an endogenous ost of monetary poliy volatility beyondthat implied by the presene of nominal bonds, so as to provide a formal anal-ysis of these trade-o�s.8 Appliation 2: A two-ountry model with eq-uities and bondsFor the seond appliation we use a two-ountry version of the model used inDedola and Straub (2008) (see Table 2 in the Appendix).This model is a simple extension of the previous model. Now there are onlytwo ountries. Eah ountry's total inome is omposed of an endowment (asin the previous setion) and of a dividend stream. Only laims on the dividendstream an be traded. The model allows for home-bias in onsumption (denotedby µ) and partial substitutability of domesti and foreign goods (elastiity de-noted by θ). In this model we introdue the stohasti disount fator disussedin the previous setion.Benhmark parameterizationOur benhmark parameterization displays the following valuesDesription Symbol Value(Non-Stohasti) Disount Fator β 0.98Elastiity of Substitution θ 3Home Bias in Consumption µ 0.8Risk Aversion ρ 2Persistene of the Shoks ζ 0.5Elastiity of Stohasti Disount Fator ψ 0Furthermore, we assume that the share of dividends in total inome is 15%.8.1 Steady-State portfolioThere are two main points that we want to make in relation to the steady-stateportfolio. The �rst is that, ontrary to the previous appliation, the persisteneof the net-wealth deviation from steady state has e�ets on the steady stateportfolio. The seond is that when we allow only for dividend and endowmentshoks we have the result of perfet equity home bias only when this two shokshave idential persistene.
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8.1.1 Net-Wealth persisteneFigure 3 shows that introduing dividend shoks and equities alongside bondsgenerates a steady-state e�et of the stohasti disount fator. It is lear thoughthat the sensitivity of the portfolio to ψ is relatively small so that even quantita-tively the steady-state results are independent of the persistene of net-wealth.8.1.2 Persistene of the shoks and equity home biasCoeurdaier et al. (2007), in a two-period two-ountry endowment model, showthat full home-equity bias an be produed, for example, when only output andredistributive shoks are present. By setting to zero the variane of the monetaryshoks in our model, perfet home-bias in equities holds only in the speialase of equal persistene of the dividend and endowment shoks (although theyan have di�erent variane). The persistene of the shoks, as disussed inthe previous appliation, is important. For example, preditable hanges inendowments, a�et the sensitivity of onsumption di�erential to shoks. Onlywhen dividend and endowment shoks are equally persistent, the home equityprovides a perfet hedge one bonds insure against exhange rate risk.39Figure 6 shows the portfolio of ountry a for di�erent relative values ofthe endowment and dividend shok. For equities the shares are shown: i.e. 1means that 100% of the equities are held by ountry a. For this example, thepersistene of the dividend shok is �xed at 0.5 and we vary the persistene ofthe endowment shok. We see that when the endowment shok is less persistentthan the dividend shok, ountry a holds less than 100% of domesti equitiesand holds a positive share of foreign equities.40 When endowment shoks aremore persistent than dividend shoks, ountry a goes short in foreign equitiesand long in domesti equities.8.2 Portfolio dynamisUsing equation (40) we an derive the response of bonds and equities to theexogenous shoks of the model. Figures (4) and (5) show the response of ountry
a's portfolio to a domesti dividend shok and to a domesti endowment shok,respetively, in the �omplete-market� ase: i.e. when only these two soures ofrisk are present and the two shoks are equally persistent.The steady-state portfolio of this partiular ase displays a short positionin home urreny bonds and full equity home bias.41 After either of the twoshoks has hit the eonomy net-wealth falls and so do all the gross positions.The persistene of these hanges is entirely ditated by the persistene of theshoks. Furthermore the hange in value of the equity positions is due to the39See (Engel and Matsumoto, 2008) for a disussion on the role of bonds in insuring againstthe exhange rate risk.40Short selling of equities is not ruled out.41This orresponds to the point ζY · ζ−1

D
= 1 of Figure (6).35



hange in their prie (as opposed to hange in shares).42These Figures also show an important results of the omplete-market ase:If the agents hoose the optimal steady-state portfolio, the portfolio dynamisis mean-reverting.43If we introdue monetary shoks along side the dividend and endowmentshoks we reprodue the inomplete-market ase. Now the optimal steady-state portfolio is ontingent on the existene of a further soure of risk. Itsomposition, therefore, di�ers from the omposition of the optimal portfoliounder omplete-markets: e.g. ountry a goes short in domesti urreny bondsand in foreign equities. It goes long on domesti equities.44The portfolio dynamis in this ase shows non-stationarity, as is evident fromFigures (7) and (8). In this partiular ase, net-wealth improves after a dividendor endowment shok. In the short run holding of domesti assets inreases whileholding of foreign assets falls.9 Appliation 3: The Ramsey optimal poliy ina two-ountry stiky-prie model with bondsIn this setion we show an example of a model in whih the portfolio shares enterthe model also not multiplied by the exess return, and in partiular multipliedby a variable that is not i.i.d.. This fat violates the neessary onditions for theappliation of the tehnique suggested by Devereux and Sutherland (2008) andby Van Winoop and Tille (2007). We use here the stiky-prie two-ountrymodel presented in Benigno and Benigno (2006), extended by introduing twobonds, one per urreny and two shoks per ountry: a ost-push shok and aprodutivity shok. We don't give here all the details of the model as we onlyneed to fous on few dimensions of it. 4542As the model is written in the Appendix, the share of ountry a's equities held by ountry
a's households is α2

Za
− 1 and their share of ountry b's equities is α3

Zb
.43It is important to stress that if the steady-state portfolio is not optimal, either of theseshoks would produe a permanent departure of net-wealth from the steady-state value. Hav-ing assumed equal persistene of the shoks is irrelevant for this result.44In partiular, the value of the portfolio is α =

ˆ
−0.2135 0.3870 −0.3870

˜, where theelements of α orrespond to domesti bonds, home equities and foreign equities, respetively.45The reader should refer to Benigno and Benigno (2006) for details. In essene the modelis a two-ountry prodution eonomy with labor as only fator of prodution, pries set à laCalvo (1983) and Dixit-Stiglitz onsumption aggregators. The point we want to make hereis to show that our tehnique an solve this type of models. This is true independently ofthe spei� values assigned to the parameters of the model. Nevertheless, in the partiularase studied here we assume a probability of not adjusting pries of 0.8; disount fator of
0.99 (quarterly frequeny); intra-temporal elastiity of substitution (ross-ountry) of 1.5;mark-up of 1.11 subsidized with a tax (not ruial for the results); elastiity of intertemporalsubstitution of 1 and elastiity of labor supply of 1. We assume that government spending iszero and that the shoks have a oe�ient of autoorrelation of 0.9. The size of the variane isidential for all shoks and the absolute value of these varianes is not relevant for our resultsas ondition (18) makes lear. 36



In partiular, the Ramsey (ooperative) poliy problem an be desribed as
max

Yt,αt,rx,t,Y
∗
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∞∑
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∗
t+1, Y

∗
t−1, rx,t, rx,tαt−1, εt

)
= 0 (54)where β is the disount fator, U (·) are the utility funtions of the representativeagents of eah ountry, n is the size of the �rst ountry (home) and 1−n is thesize of the seond ountry (foreign), Ct is onsumption, Lt is labor (asterisksdenoting foreign variables), εt is the vetor of all the shoks while the vetors

Yt and Y ∗
t ontain all the variables of the model, exluding portfolio shares(αt) and exess real returns (rx,t). The funtion F (·) ontains all the �rst-order onditions of the agents' optimization problem as well as the resouresonstraints. In partiular, F (·) ontains a subset of e�ient portfolio onditionsthat is linearly independent (This is justi�ed by the onstrained quali�ationrequirement in the Kuhn-Tuker Theorem (e.g. Sundaram (1996)).46The Ramsey optimal poliy is desribed by the set of FOCs for the prob-lem (53)-(54). In partiular, among these we have two onditions that relatespei�ally to the portfolio problem, namely

Frx,t
(·) = · · · + λBC,tαt−1 + · · · = 0 (55)and

Fαt
(·) = EtβλBC,t+1rx,t+1 = 0 (56)where λBC,t is the Lagrange multiplier assoiated with the net-saving equationof the form (2). The seond equation has exatly the form of the orthogonalityondition (3).It is possible to show that in general, in a symmetri (non-stohasti) steadystate equilibriumλBC = 0.47 In this ase the dynamis of α is not determi-nate to �rst order of approximation. More in general though, this exampleshows that the dynamis of the portfolio would be determinate to �rst orderwhenever a poliy maker sets its poliy by solving an optimization problemsubjet to the deentralized-eonomy onstraints and if λBC 6= 0. Here weonly fous on the symmetri ase. Even in this ase, though, we annot applyDevereux and Sutherland (2008) tehnique as λBC,t is not an i.i.d. variable.46Abstrating from the portfolio alloation (e.g. setting α to any onstant value), afterremoving one of the portfolio e�ieny onditions and after inluding a desription of themonetary poliy, this model ould be solved with standard methods as done for example inBenigno and Benigno (2006).47Consider the abstrat poliy problem of transferring dW units of wealth from the homeagent to the foreign agent for onsumption purposes, then the total di�erentiation of theLagrange equation around the steady state, i.e. 0.5U ′ (C) dC+0.5U (C∗) dC∗ +λBCdW = 0,would imply λBC = 0 as dW = −dC = dC∗. One an easily see that in general, withasymmetri steady states, we would have λBC 6= 0.37



Intuitively, notie that the poliymaker's FOC with respet to the net-wealth
Wt+1 would be the usual Euler equation, i.e. λBC,t = EtβλBC,t+1r1,t+1, andwould have the same stohasti properties of the marginal utility of onsump-tion.Using the general e�ieny ondition (equation (18)) we an derive numer-ially the optimal portfolio.We �rst onsider the ase of perfet spanning only two produtivity shoks.Due to the absene of monetary-poliy trade o�s, PPI stability is the opti-mal poliy, as disussed, among others, by Benigno and Benigno (2006) and byDevereux and Sutherland (2007b) in relation to portfolio hoies. In this asewe an ompare the optimal portfolio alloation under PPI-stability obtainedusing the Devereux and Sutherland tehnique with the one obtained under theRamsey poliy using our algorithm. We �nd that the optimal holdings of do-mesti bonds, for our benhmark parameterization, are equal to α0 = 2.29358under both, the Ramsey and the PPI-stability poliies. This is reassuring aswe know that the PPI-stability poliy reprodues the �rst-best alloation whihshould be ahieved by the Ramsey poliymaker as well.The seond ase refers to omplete spanning but only two mark-up shoks.In this ase PPI-stability is no longer the optimal monetary poliy. Underthis poliy the optimal portfolio is again α0 = 2.29358 as mark-up shoks andprodutivity shoks have idential maroeonomi onsequenes.48 Under theRamsey optimal poliy, instead, the optimal portfolio requires α0 = 6.39368.We an see that the optimal poliy indues a larger holding of domesti bonds.The �nal ase we onsider is that of inomplete spanning: all four shoks arepresent. In this ase, the portfolio under PPI-stability is unhanged as havingfour shoks of this type amounts to taking a multiple of the variane of eitherof the pairs of shoks onsidered separately. Under the Ramsey poliy, instead,the optimal portfolio requires α0 = 2.56435, whih is loser to the one obtainedwith tehnology shoks.Finally, it should be notied that in all these ases the home agent goes longin bonds denominated in domesti urreny. When we ompute the optimalportfolio under a simple Taylor rule, we obtain the opposite result: i.e. agentsgo short in the bonds denominated in their own urreny. We an see thatboth of the poliies onsidered above, PPI-stability and Ramsey poliy, makethe return of the foreign assets omove positively with home GDP.10 ConlusionsIn this paper we have shown how to use standard perturbation methods to solvefor asset market alloations in a general lass of inomplete market eonomieswith multiple agents and assets, in whih portfolio hoies are indeterminate48The di�erene between these two shoks is that the tehnology shok shifts the aggregatedisutility funtion of labor in a way that ompensate the �utuations in labor supply. Themark-up shoks generates �utuations in the labor supply that are not ompensated by shiftsin the aggregate disutility of labor. 38



in the absene of unertainty. This lass of eonomies is more general thanthat analyzed by existing ontributions suh as Devereux and Sutherland (2008,2007a) or Van Winoop and Tille (2007), and is relevant in a number of inter-esting problems, for instane in solving for Ramsey optimal poliies with mul-tiple agents and assets under inomplete markets. Di�erently from Devereuxand Sutherland, our general solution does not provide losed-form solutions butrequires iterative methods, exept in partiularly simple ases.We provide an appliation of our methods by solving for the optimal nominalbond portfolio under Ramsey monetary poliy in a anonial 2-ountry eonomywith Calvo priing and tehnology and mark-up shoks.As a further ontribution, we have also lari�ed the link between the Devereux-Sutherland solution methods and the asymptoti approah proposed by Juddand Guu 2001) to deal with bifurations arising in stati portfolio problems,showing that the two approahes rest on the same formal generalization of theImpliit Funtion Theorem provided by Bifuration Theory.Finally, we have shown how to use simple matrix algebra to extend the losedform solutions developed by Devereux and Sutherland (2008, 2007a) to solvefor asset market equilibrium with more than two agents and, onerning theirdynamis, also more than two assets, for the ase in whih portfolio alloationsonly appear multiplied by exess returns. Our extension is based on the fat thatthe optimal portfolio omposition for eah agent must be solved simultaneouslywith the portfolio of the other agents. Re-writing the (seond-order aurate)state-spae solution of the model in a partiular matrix form, it is then possibleto stak all agents' portfolio problem together, obtaining a simple linear systemof equations. This is then solved with a standard matrix inversion.Using our algebra it is straightforward to ompute the optimal portfolio withany number of agents and assets. We show this by means of two appliationswidely disussed in the literature. The �rst onsists of a three-ountry nominal-bond endowment eonomy. This appliation o�ers interesting insights on theportfolio omposition that annot be seen in a two-ountry setup. For exam-ple, assuming zero initial net-foreign-asset positions, an in�nite variane of themonetary shok of one ountry would redue all bond holdings to zero in thetwo-ountry model. In the three-ountry model, on the ontrary, this in�niterisk assoiated with one partiular urreny will only eliminate the bond holdingin that urreny for all ountries.The seond appliation onsists of a two-ountry model with trade in equitiesand bonds. This is a workhorse model for studying equity-home-bias issues.Solving for the optimal portfolio under omplete markets (i.e. as many shoksas assets) we show that equity home bias is optimal only in a partiular ase:i.e. when all shoks are equally persistent. The relative persistene of theshoks, therefore, is an important determinant of the portfolio omposition.Extending the model to an inomplete-market setup generates non-stationarityin the eonomi dynamis. By introduing a stohasti disount fator, andusing our generalized portfolio solution, we an assess the e�et of the unit-root in net-wealth on the portfolio omposition. We show that the results arequalitatively unhanged. 39



Our generalized portfolio solution an be used to address a number of inter-esting questions in open and losed eonomy models with multiple agents andassets.AppendixThe three-ountry modelThe following list de�nes the notation used for the variables of the model. Table1 reports the non-linear equations of the three-ountry model.49List of VariablesConsumption CMoney MEndowment YConsumer Pries PReturn on Bond rNominal prie of Bond ZNet Wealth W

49A (+1) denotes next period value of a variable. A (−1) denotes previous period value.40



Table 1: The non-linear three-ountry modelTable 1: The non-linear three-ountry modelAsset Choie First Order Conditioins
(Ca(+1))

−ρ
(ra(+1) − rb(+1)) = 0

(Cc(+1))
−ρ

(rc(+1) − rb(+1)) = 0Real Return on Bonds (de�nition)
ra = 1

PZa(−1)

rb = 1
PbZb(−1)

rc = 1
PcZc(−1) Euler Equations (Priing of Bonds)

Za (Ca)
−ρ

= β (Ca(+1))−ρ

P (+1)

Zb (Cb)
−ρ

= β (Cb(+1))−ρ

Pb(+1)

Zc (Cc)
−ρ

= β (Cc(+1))−ρ

Pc(+1)Resoure and Budget Constraints
Ca + Cb + Cc = eYc + eYa + eYb

Wa = rbWa(−1) + eYa − Ca + eξa + α1,1 (ra − rb) + α1,2 (rc − rb)
Wc = rbWc(−1) + eYc − Cc + eξc + α2,1 (ra − rb) + α2,2 (rc − rb)Quantity Equations
eMa = PeYa

eMb = Pbe
Yb

eMc = Pce
Yc Auxiliary Equations

dra = ra − rb
drc = rc − rb
dCa = Ca − Cb
dCc = Cc − Cb Exogenous Shoks (variables in logs)
Ya = ζYa

Ya(−1) + εYa

Yb = ζYb
Yb(−1) + εYb

Yc = ζYc
Yc(−1) + εYc

Ma = ζMa
Ma(−1) + εMa

Mb = ζMb
Mb(−1) + εMb

Mc = ζMc
Mc(−1) + εMc

ξa = εξa

ξc = εξcContinued on next page . . .
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The two-ountry modelFor this model we use the same notation used for the three-ountry model, forthe variables that are present in both models. The following lists the remainingvariables. Table 2 reports the non-linear equations of the two-ountry model.50Other Variables in the Two-Country ModelDividend DPrie of Equities ZPrie of Bonds QReturn on Bond rbReturn on Equities rePrie of Domesti Goods PYReal Exhange Rate RERDemand of Country i for Goods of Country j Ci,jStohasti disount fator β (C)

50A (+1) denotes next period value of a variable. A (−1) denotes previous period value.42



Table 2: The non-linear two-ountry modelTable 2: The non-linear two-ountry modelResoure and Budget Constraint
Wa = Wa(−1) rbb + PY,a (Ya +Da) − Ca + eξ+

α_1 (rba − rbb) + α_2 (rea − rbb) + α_3 (reb − rbb)
eYa + eDa = Cb,a + Ca,a
eYb + eDb = Ca,b + Cb,bAsset Choie First Order Condition
(rba(+1) − rbb(+1)) (Ca(+1))

−ρ
= 0

(reb(+1) − rbb(+1)) (Ca(+1))−ρ = 0

(rea(+1) − rbb(+1)) (Cb(+1))
−ρ

= 0Real Return on Bonds (de�nition)
rba = 1

PaQa(−1)

rbb = RER
PbQb(−1) Euler Equations (Priing of Bonds)

(Ca)
−ρ

= β(Ca)β (Ca(+1))−ρ

Pa(+1)Qa

(Cb)
−ρ

RER
= β(Cb)β (Cb(+1))−ρ

Pb(+1)Qb Quantity Equations
eMa

Pa
= PY,a

(
eYa + eDa

)

eMb

Pb
=

PY,b(eYb+eDb)
RER CES Aggregator and Demands

Ca =
(
µθ

−1

(Ca,a)
θ−1

θ + (1 − µ)
θ−1

(Ca,b)
θ−1

θ

) θ
θ−1

Cb =
(
µθ

−1

(Cb,b)
θ−1

θ + (1 − µ)
θ−1

(Cb,a)
θ−1

θ

) θ
θ−1

1 =
(
µ (PY,a)

1−θ
+ (1 − µ) (PY,b)

1−θ
)(1−θ)−1

Ca,b = (1 − µ) (PY,b)
−θ
Ca

Cb,a = (1 − µ)
(
PY,a

RER

)−θ
Cb

Cb,b = µ
(
PY,b

RER

)−θ
CbReal Return on Assets (de�nition)

rea =
PY,ae

Da+Za

Za(−1)

reb =
PY,be

Db+Zb

Zb(−1) Auxiliary Equations
rxb = rba − rbb
rxe1 = rea − rbb
rxe2 = reb − rbb
cd = Ca − Cb −

RER
ρContinued on next page . . . 43



Table 2 � ContinuedStohasti Disount Fator
β (Ca) = (Ca)

−ψ

β (Cb) = (Cb)
−ψExogenous Shoks (variables in logs)

Da = ζD Da(−1) + εDa

Db = ζD Db(−1) + εDb

Ya = ζY Ya(−1) + εYa

Yb = ζY Yb(−1) + εYb

Ma = ζM Ma(−1) + εMa

Mb = ζM Mb(−1) + εMb

ξ = εξContinued on next page . . .
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Cross produt notationNotie that the solution equation of eah variable has a term of the form (e.g.for equation 1)
z′A1ε = ε′A′

1zThis an be written as
(z′ ⊗ ε′) vec (A′

1) = vec (A′
1)

′
(z ⊗ ε)Therefore, staking eah equation on top of the other would have



vec (A′

1)
′...

vec (A′
n)

′




︸ ︷︷ ︸
A

(z ⊗ ε) = Avec (εz′) .Other Kroneker rules
ǫ⊗ r′x = εr′x

vec (εz′) ε′ = (z ⊗ Im×m) εε′and also
εvec (εz′)

′
= εε′ (z ⊗ Im×m)

′Shift of endogenous state variablesThe solution we are interested in is a funtion of the ross produts of thestate vetor z′t = [xt−1, st], suh that Etzt+1 = zt+1. Some solution algorithmswould deliver a solution in terms of the state vetor ẑ′t = [xt, st]. For example,as shown in Lombardo and Sutherland (2007) have
st = F1xt−1 + F2st−1 + F3Vt−1 + F4Σ (57)
ct = P1xt + P2st + P3Vt + P4Σ (58)
Vt = Φ̃Vt−1 + Γ̃ ε̃t + Ψ̃ξ̃t (59)
xt = N xt−1 + εt (60)
s
f
t = F1xt−1 + F2s

f
t−1 (61)
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where Vt = (ẑt ⊗ ẑt) and ξ̃t = (ẑt−1 ⊗ εt), or
ẑt ≡

[
xt
st

]
=

[
N 0
F1 F2

] [
xt−1

st−1

]
+

[
0
F3

]
Vt−1 +

[
0
F4

]
Σ +

[
I

0

]
εt(62)

ct =
[
P1P2

]
ẑt + P3 (ẑt ⊗ ẑt) + P4Σ (63)

(ẑt ⊗ ẑt) = Φ̃ (ẑt−1 ⊗ ẑt−1) + Γ̃ ε̃t + Ψ̃ (ẑt−1 ⊗ εt) (64)
s
f
t = F1xt−1 + F2s

f
t−1 (65)Say that we want to express ct in terms of zt. Then we should reognize that

ẑt =

[
N 0
0 I

]

︸ ︷︷ ︸
U1

zt +

[
I

0

]

︸ ︷︷ ︸
U2

εt (66)Then replaing this in equation (63) we have
ct =

[
P1P2

]
U1zt +

[
P1P2

]
U2ε (67)

+ P3 ((U1zt + U2ε) ⊗ (U1zt + U2ε)) + P4Σ (68)Then, noting that for given matries A, B, C and D we have
(A+B) ⊗ (C +D) = (A⊗ C) + (A⊗D) + (B ⊗ C) + (B ⊗D)we an rewrite

ct =
[
P1P2

]
U1zt +

[
P1P2

]
U2ε+ P4Σ (69)

+ P3 ((U1zt ⊗ U1zt) + (U1zt ⊗ U2ε))

+ P3 ((U2ε⊗ U1zt) + (U2ε⊗ U2ε))or
ct =

[
P1P2

]
U1zt +

[
P1P2

]
U2ε+ P4Σ (70)

+ P3 (U1 ⊗ U1) (zt ⊗ zt) + P3 [(U1 ⊗ U2) + (U2 ⊗ U1)Pv] (zt ⊗ ε)

+ P3 (U2 ⊗ U2) (εt ⊗ εt)where Pv is a vetor permutation matrix suh that Pv (zt ⊗ εt) = (εt ⊗ zt) =
vec (ztε

′
t).With referene to the portfolio solutions given in the text, notie that D5 =

P3 (iC , :) [(U1 ⊗ U2) + (U2 ⊗ U1)Pv] where iC indiates here the row orrespond-ing to the onsumption di�erential. SimilarlyR5 = P3 (ir, :) [(U1 ⊗ U2) + (U2 ⊗ U1)Pv]where ir indexes the row orresponding to the exess return.If the state-spae solution was given in terms of P3vech (ẑtẑ
′
t), then anuse the matrix Lh suh that Lhvech (·) = vec (·), to have P3vech (ẑtẑ

′
t) =

P3L
hvec (ẑtẑ

′
t). 46



Finally notie that the solution for the dynamis of the portfolio is given by
αt = γ′zt+1

zt+1 =

[
I 0
F1 F2

]
ẑt +

[
0
F1

]
εt (71)
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Figure 1: Response of ountry a's portfolio to ountry a's endowment shok
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