
Solving for Optimal Portfolio Dynami
 Choi
eswith Multiple Agents and Multiple Assets: Anasymptoti
 approa
h with some open e
onomyappli
ations∗(PRELIMINARY AND INCOMPLETE)Lu
a Dedola Giovanni LombardoECB and CEPR ECBAugust 21, 2009Abstra
tIn this paper we present methods to solve for asset allo
ations in dy-nami
 in
omplete market e
onomies, in whi
h the impa
t of portfolio
hoi
es goes beyond the 
ases studied in the perturbation literature sofar (e.g. Devereux and Sutherland (2008, 2007a), Van Win
oop and Tille(2007) and Judd and Guu (2001)). For instan
e, this more general 
aseis relevant in 
hara
terizing Ramsey optimal poli
ies with multiple agentsand assets under in
omplete markets. We also 
larify the link between theDevereux-Sutherland solution methods and the asymptoti
 approa
h pro-posed by Judd and Guu to deal with bifur
ations arising in stati
 portfolioproblems. Finally, we extend the solution te
hnique proposed by Devereuxand Sutherland, by allowing more than two agents (and multiple assets)in dynami
 in
omplete markets e
onomies.We present three open-e
onomy appli
ations of our methods. First,we solve the portfolio problem in a simple three-
ountry three-bond nom-inal e
onomy for whi
h we 
an �nd analyti
al results for the steady-stateportfolio. This solution shows that relative risk 
an have 
ompositionale�e
ts on the portfolio that would not exist in a two-
ountry model, withpotentially interesting impli
ations for the study of the intera
tions be-tween optimal ex
hange rate regimes and portfolio allo
ation. In ourse
ond appli
ation, we solve for the 
ountry portfolios dynami
s in re-sponse to sho
ks in a simple two-
ountry model with both equities andnominal bonds, studying how home equity bias rea
ts to sho
ks. In ourthird and last appli
ation we solve for the optimal nominal bond portfo-lio under Ramsey monetary poli
y in a 
anoni
al 2-
ountry model with
∗The views expressed in this paper do not ne
essarily represent the view of the EuropeanCentral Bank. 1



Calvo pri
ing, and te
hnology and mark-up sho
ks, with both 
ompleteand in
omplete markets.
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1 Introdu
tionAnalyses of asset markets equilibrium in dynami
 in
omplete market e
onomiesare very di�
ult, and there are very few 
ases that 
an be solved exa
tly forequilibrium pri
es and quantities. The di�
ulty arises from the fa
t that port-folio 
hoi
es are indeterminate in the absen
e of un
ertainty. Sin
e standardmethods to solve for dynami
 e
onomies use the nonsto
hasti
 steady state asthe starting point of approximation, they 
annot be readily applied to theseproblems.In two important re
ent papers, Devereux and Sutherland have derivedthe optimal portfolio 
omposition for dynami
 ma
ro models with two agents(Devereux and Sutherland, 2007a, 2008). They show that using standard �rst-order solution te
hniques it is possible to determine the �near-sto
hasti
� optimalportfolio allo
ation around whi
h the non-linear dynami
 model 
an be approx-imated. Furthermore they show that using simple se
ond order approximationte
hniques, it is possible to 
hara
terize the dynami
s of this portfolio, up to�rst order of a

ura
y. Van Win
oop and Tille (2007) propose iterative te
h-niques to solve for the optimal portfolio based on the same prin
iples inspiringthe work of Devereux and Sutherland.In this paper we extend their results along several dimensions. First, weextend these methods to solve for dynami
 problems in whi
h portfolio allo
a-tions are still indeterminate in the nonsto
hasti
 steady state, but relaxing theassumption that these allo
ations only appear multiplied by ex
ess returns. Thelatter assumption is ne
essary for the solution te
hnique suggested by Devereuxand Sutherland and by Tille and van Win
oop.1 The more general 
ase 
ouldbe shown to be relevant in a number of important problems, for instan
e if oneis interested in solving for Ramsey optimal poli
ies with multiple agents andassets under in
omplete markets. The Devereux and Sutherland solution doesnot 
over this 
lass of interesting problems. We show how to solve this moregeneral 
lass of models using iterative methods, providing an appli
ation to theoptimal nominal bond portfolio under Ramsey monetary poli
y in a 
anoni
al2-
ountry e
onomy with Calvo pri
ing and te
hnology and mark-up sho
ks.In deriving these results, we provide a further 
ontribution by 
larifyingthe link between the Devereux-Sutherland methodology and the asymptoti
approa
h proposed by Judd and Guu (2001), in whi
h bifur
ation te
hniques(BT) are used to address the failure of the impli
it fun
tion theorem (IFT)when perturbations methods are applied to approximate the solutions to stati
portfolio problems with small risks. We show that the two approa
hes share thesame formal foundations. Importantly, also in the Judd-Guu 
lass of problems,portfolio allo
ations only appear multiplied by ex
ess returns.Finally, we derive 
losed form solutions for the 
lass of e
onomies studied byDevereux and Sutherland in the 
ase of more than two agents, and also morethan two assets, for the dynami
s. We derive these solutions with a relatively1For example �The only two ways that portfolio shares enter model equations are (i)through the return on the overall portfolio and (ii) through asset demand.� Assumption1 in Van Win
oop and Tille (2007). 4




ompa
t matrix algebra, whi
h should fa
ilitate the generation of 
omputer
odes. A number of important questions 
an be properly addressed only with amulti-
ountry model, espe
ially 
on
erning the links between �nan
ial globaliza-tion and monetary poli
y. For example, a large literature has addressed the ques-tion of optimal ex
hange rate regimes and optimum 
urren
y areas. The typi
altrade-o� emphasized by this literature is that between independently 
hoosingimperfe
t stabilization poli
ies and gaining 
redibility by pegging the ex
hangerate to the 
urren
y of a better managed e
onomy (e.g. Giavazzi and Pagano(1988), Ravenna (2005) and Cler
 et al. (2008)). Neumeyer (1998) has showedthat eliminating 
urren
ies 
an amount to redu
ing assets (if nominal assetswere available) and 
ould, therefore, redu
e the amount of risk sharing among
ountries. While in a two-
ountry model 
hoosing to peg the ex
hange rateamounts to eliminating all possibilities to hedge risk by holding foreign 
ur-ren
y nominal bonds, in a multi-
ountry model this need not be the 
ase, aslong as some 
urren
ies remain independent. Furthermore, the hedging role ofthe ex
hange rate 
ould generate strategi
 motives in de
iding the admissionof new members in a 
urren
y union or in de
iding whether to join an existing
urren
y union.Using our solutions for optimal steady-state and dynami
 portfolio allo
a-tions for multiple agents and assets, we analyze two simple models. The �rstis a three-
ountry, three-bond endowment e
onomy model, with monetary andendowment sho
ks. We show that having more than two agents 
an generateportfolio 
ompositions that are ruled out in the two-
ountry setup. For example,as the varian
e of the monetary poli
y sho
ks of one 
ountry be
omes in�nitelylarge, all 
ountries will still hold a nontrivial portfolio of bonds in the other two
urren
ies. On the 
ontrary, in the two-
ountry model the optimal portfoliowould display zero holding of all bonds. This result is potentially relevant forthe literature analyzing the intera
tions between optimal ex
hange rate regimesunder in
omplete markets, as it suggests that two 
ountries might �x their bilat-eral ex
hange rate while allowing a �oat with respe
t to other third 
ountries,thereby preserving the diversi�
ation opportunities provided by a su�
ientlylarge set of nominal assets.The se
ond appli
ation 
onsists of a two-
ountry model with trade in equitiesand bonds and with money, endowment and dividend sho
ks. With this modelwe 
an address the question of equity home bias. We show that the long-runequity position is a�e
ted by the relative persisten
e of dividend and endowmentsho
ks. In the spe
ial 
ase of equal persisten
e of dividend and endowmentsho
ks, and without monetary sho
ks, we 
an produ
e perfe
t equity home-bias(e.g. as dis
ussed in Coeurda
ier et al. (2007)). In addition, we also study thedynami
 responses of equity and bond holdings in response to sho
ks, with both
omplete and in
omplete markets.In the 
omplete-market 
ase the wealth distribution is stationary. In gen-eral, though, net-wealth (and real allo
ations) is not stationary when the modelis approximated around the non-sto
hasti
 steady state under in
omplete mar-kets. In prin
iple this 
ould obs
ure the interpretation of the long-run portfolio
ompositions. Nevertheless, we show that introdu
ing a sto
hasti
 dis
ount5



fa
tor, as dis
ussed in S
hmitt-Grohé and Uribe (2003), we 
an eliminate thenon-stationarity without altering the main results, for reasonable parameteriza-tion of the dis
ount fa
tor.Finally, the third appli
ation shows that the solution proposed by Devereux and Sutherland(2008, 2007a) 
annot be applied to an interesting 
lass of models, in
luding mod-els with Ramsey poli
ymakers. We show that the general solution te
hnique,nevertheless, allows us to 
hara
terize the portfolio also in this broader 
lass ofmodels. We apply the general solution to the 
anoni
al two-
ountry model withsti
ky pri
es used among others by Benigno and Benigno (2006). We show thatwhen there are only produ
tivity sho
ks, PPI-stability 
oin
ides with the opti-mal Ramsey monetary poli
y also in terms of optimal portfolio allo
ation. Inthe presen
e of mark-up sho
ks, the Ramsey poli
y indu
es a di�erent portfolioallo
ation than the one obtained under the PPI-stability poli
y.Other papers dis
uss the derivation of optimal portfolios in open-e
onomymodels. Coeurda
ier et al. (2008) �nd a 
losed form solution for a two 
ountrymodel with trade in sto
ks and bonds. Their analysis is 
lose to the workof Heath
ote and Perri (2007) by showing that equity home bias 
an be theresult of optimal hedging of idiosyn
rati
 risk. Their derivation of the portfoliosolution is based on the assumption of 
omplete markets and, therefore, di�ersfrom ours.Van Win
oop and Tille (2007) propose a solution method for optimal port-folios that is equivalent to that dis
ussed in Devereux and Sutherland (2007a,2008). Our derivation of the 
losed form solution di�ers substantially fromtheirs. Di�erent is also the derivation of the optimal portfolio obtained byEvans and Hnatkovska (2007). These authors also apply approximation meth-ods to 
ompute the optimal (dynami
) portfolio in DSGE models with multi-ple assets. Nevertheless they 
ombine dis
rete-time perturbation methods with
ontinuous-time approximation methods in order to 
hara
terize the portfolio.2Engel and Matsumoto (2006) and Engel and Matsumoto (2008) in parti
-ular, show that pri
e sti
kiness is an important determinant of the portfolio
omposition. Considering di�erent assumptions regarding the 
urren
y used insetting pri
es (i.e. lo
al 
urren
y vs. produ
ers' 
urren
y) they show (analyti-
ally) that ex
hange rate risk is the most important determinant of the portfolio
omposition when pri
es are sti
ky. In this 
ontext only a small trade in equitiesis ne
essary alongside trade in bonds to repli
ate 
omplete markets.The rest of the paper is organized as follows. Se
tion 2 de�nes the referen
emodel that we are going to solve.3 Se
tion 3 suggests an algorithm to solve forthe optimal portfolio when the 
onditions ne
essary for Devereux-Sutherlandmethod do not apply. Se
tion 4 
ompares the asymptoti
 solution method ofJudd and Guu with that proposed by Devereux and Sutherland. Se
tion 5derives the optimal portfolio with multiple agents and multiple assets in thenear-sto
hasti
 steady state. Se
tion 6 derives the optimal portfolio dynami
s.2A 
ontinuous-time two-
ountry model is used by Pavlova and Rigobon (2008) to solve theportfolio problem. These authors stress the importan
e of in
luding optimal portfolio de
isionsin open e
onomy models in order to understand the dynami
s of the 
urrent a

ount.3A more general model will be dis
ussed further below.6



The following two se
tions dis
uss appli
ations of our formulae. In parti
ular,Se
tion 7 derives the optimal bond portfolio in a three-
ountry endowment e
on-omy. Se
tion 8 derives the optimal equity and bond portfolio in a two-
ountryendowment e
onomy. Se
tion 9 applies the general solution te
hnique to a two-
ountry model with sti
ky pri
es and Ramsey optimal monetary poli
y. Se
tion10 
on
ludes.2 The referen
e model and the indetermina
y ofthe portfolioLet's assume, for the sake of 
on
reteness, that there are n 
ountries and kassets internationally traded.4 Ea
h 
ountry is populated by a representativehousehold with the following utility fun
tion (here for 
ountry j)
Ut = Et

∞∑

τ=t

βτ−t [u (Cj,τ ) + v (·)] , (1)where C is 
onsumption and v (·) refers to terms not relevant for our analysis.The budget 
onstraint agent j is of the type
Wj,t =

k−1∑

i=1

α
j
i,t−1

(
r
j
i,t − r

j
B,t

)
+ (Yj,t) + r

j
B,tWj,t−1 − Cj,τ , (2)where, following Devereux and Sutherland (2008), αi,t denotes thequantity of the parti
ular asset i and Wj,t denotes the net assetholding so that k∑

i=1

α
j
i,t = Wj,t. We denote by rji,t the real return onthe asset i and by rjB,t the return on the referen
e asset, in termsof the 
onsumption basket of agent j, so that rjx,i,t ≡ (

r
j
i,t − r

j
B,t

)measures the ex
ess return of asset i relative to the referen
e asset
B. Yt measures output.The �rst order 
onditions for the 
hoi
e of the assets 
an be written as

Et

[
u′
(
C
j
t+1

)
r
j
i,t+1

]
= Et

[
u′
(
C
j
t+1

)
r
j
B,t+1

]
; i = 1 . . . k − 1 and j = 1 . . . n.(3)For 
on
reteness assume that the e
onomies are subje
t to e independent(but possibly serially 
orrelated) sho
ks. We denote the innovations to thissho
ks with the e× 1 ve
tor εt.The set of equations (3) des
ribe the 
ondition governing the optimal 
hoi
eof portfolio. In a non-sto
hasti
 equilibrium all these 
onditions imply that all4Noti
e that n 
ould be larger or smaller than k. For example, a multi-
ountry model withonly nominal bonds would admit as many distin
t assets as independent 
urren
ies.7



real return are identi
al. Therefore, agents are indi�erent about the 
ompositionof their portfolio in a world without risk. Likewise, to a �rst order of approx-imation, 
ertainty equivalen
e holds and these 
onditions imply that ex-anteall returns are identi
al. Therefore, agents are indi�erent about the 
omposi-tion of their portfolio in a world of 
ertainty equivalen
e. Only when 
ertaintyequivalen
e does not hold, i.e. at higher orders of approximation, equations (3)provide 
onditions to determine the demand for assets.This indetermina
y of the portfolio 
onstitutes a serious problem for thesolution of DSGE models using standard perturbation methods. These methods,generally require us to take an approximation around the non-sto
hasti
 steadystate. A point in whi
h the portfolio is indeterminate.Judd (1998) and Judd and Guu (2001) have suggested asymptoti
 methodsto address portfolio indetermina
y in a stati
 setting, while Devereux and Sutherland(2008) have developed a 
onvenient te
hnique to derive the solution for a large
lass of intertemporal models. These two approa
hes are 
ompared in Se
tion4. Before dis
ussing the details of these te
hniques it is important noti
ing thatequations (3) 
an be used to assess whether any proposed portfolio allo
ation isindeed optimal from the agent's point of view. In the following se
tion we exploitthis fa
t in proposing a solution for a larger 
lass of models than those studiedby Devereux and Sutherland (2008) or by Van Win
oop and Tille (2007).3 Finding a solution when the portfolio entersthe model in a more general formIn this se
tion we dis
uss a more general solution for the optimal steady-state portfolio when portfolio shares do not enter the model only as multi-plied by the ex
ess return, but are still indeterminate in the non-sto
hasti
steady state. The property that the portfolio only multiplies ex
ess returns isa ne
essary 
ondition for the appli
ation of the solution method suggested byDevereux and Sutherland (2008) and by Van Win
oop and Tille (2007). The
ondition guarantees that i) to �rst-order of approximation of the system theportfolio enters the model only as a 
onstant and, ii) one 
an 
on�ate this 
on-stant in the auxiliary i.i.d. term in the Devereux and Sutherland (2008) solutionte
hnique.5In general, when the portfolio produ
es externalities, it might not be possibleto satisfy 
onditions i) or ii) or both. For example, 
onsider the solution to theoptimal Ramsey monetary poli
y problem. The portfolio 
hoi
e will a�e
t thepoli
ymaker FOCs in a way that violates 
ondition i) or ii).5The 
ontribution of these papers is not limited to the proposed solution te
hnique. Theyalso highlight the point that simple approximation methods 
an be used to evaluate themoment 
onditions derived from the optimal portfolio 
hoi
e. Neither of these papers, though,hints at the fa
t that simple approximation methods 
an be used to solve the portfolio problemin a larger 
lass of models. See next se
tion for further details.8



E
onomi
 models with standard portfolio problems produ
e singular Ja
o-bian matri
es (Judd and Guu, 2001). This is due to the fa
t that ea
h agents'FOC for the 
hoi
e of a parti
ular asset is not linearly independent relative tothe FOC of the other agents: to �rst order (i.e. linearly) they all impose thatexpe
ted ex
ess returns be zero. Judd and Guu (2001), show that in this 
aseone 
an still use perturbation methods and resort to the bifur
ation theoremto �nd a solution to the portfolio problem. In essen
e this amounts to �ndinghigher-order approximations of the optimality 
onditions for whi
h the portfo-lio 
hoi
e 
eases to be indeterminate. The optimal portfolio will then be theportfolio that satis�es those optimality 
onditions at the appropriate level ofapproximation.This is the 
ase for equations 3, des
ribing the optimal 
hoi
e of portfolioshares. In parti
ular, if we have k assets and n agents we must ex
lude k− 1×
n − 1 equations. So, for example, with two assets and two agents we 
an onlyin
lude the FOC for the 
hoi
e of one portfolio share (one asset) for only oneof the agents. Noti
e also that the FOC for the 
hoi
e of net-wealth (the wholeportfolio) is in
luded for ea
h of the agents.6The FOC for the 
hoi
e of a parti
ular asset i and agent j are of the form

EtU
′(Cjt+1)rx,t+1 = 0 (4)We have argued that k− 1×n− 1 of these equations are linearly dependent. Inwhat follows we will refer to these 
onditions as moment 
onditions.For 
larity and 
omparability we distinguish two 
ases: First, the 
ase inwhi
h the portfolio enters the model multiplied by variables that are zero inthe non-sto
hasti
 steady-state, whether they are i.i.d or not;7 Se
ond, the
ase in whi
h neither 
ondition i) nor 
ondition ii) hold. With referen
e toJudd and Guu (2001) we denote these two 
ases as Zero Ja
obian and SingularJa
obian respe
tively.3.1 Zero Ja
obian 
aseIn this 
ase the elements of the Ja
obian matrix of the dynami
 system asso
i-ated to the portfolio elements are exa
tly zero.8In order to 
hara
terize the 
onstant 
omponent of the portfolio (the zero-order portfolio) we need to evaluate equation (4) to se
ond order. From Jin and Judd(2002) and Judd (1998) we know that in order to evaluate this se
ond-order mo-ment 
ondition we need to evaluate ea
h variable up to �rst order. To this orderof approximation, the portfolio elements enter the model only through equation(2) as 
onstants.96See any of our appli
ations.7I.e. 
ondition i) holds but 
ondition ii) might not hold.8In the example in the next se
tionthis will amount to blo
k-partitioning the Ja
obianmatrix into a zero sub-matrix and a full-rank matrix.9Noti
e furthermore that premium implied by the moment 
ondition up to se
ond order is
onstant, so up to this order there is no in
entive for the agents to alter the portfolio shares.9



Furthermore, if we want to solve for the �rst order portfolio dynami
s, weneed to evaluate equation (4) at least to third order. To evaluate the moment
onditions up to third order su�
es to evaluate its determinant variables up tose
ond order. To this order of approximation, the portfolio elements are timevarying.10In the following se
tion we make 
lear how this des
ription of the solutiontranslates in the singular-perturbation approa
h used by Judd and Guu (2001).A 
on
eptually simple solution te
hnique, hen
e, 
onsists of repla
ing theredundant moment 
ondition with the linear equation
αi,t = αi,0 +Azt (5)and then of sear
hing the unknown 
oe�
ient α0 and elements of the ve
tor Aof the portfolio that satisfy the moment 
ondition:11

{α0, A} = argmin

{[(
EtU

′(Cjt+1)rx,t+1

)∣∣∣
III−order

]2}where X |III−order denotes the third-order Taylor expansion of X . In theparti
ularly simple 
ase of the Zero Ja
obian we 
an re
ursively break this prob-lem into i) sera
hing for α0 using the se
ond-order a

urate moment 
onditionand ii) sear
hing for the elements of A using the third-order a

urate moment
ondition.12As an illustration, here we des
ribe the simple 
ase of the zero-order portfo-lio.The se
ond order approximation of equation(s) (3), whi
h (in log-deviationterms) yields
Et
U ′′(Cj0)

U ′(Cj0)
C
j
0Ĉ

j
t+1r̂xt+1 + r̂sxt+1 +

1

2
r̂x

2
t+1 + O

(
‖ε3‖

)
= 0 (6)where the the term r̂sxt+1 would need to be evaluated using a se
ond-orderapproximation to its poli
y fun
tion.Taking the di�eren
e of ea
h of the 
onditions that have been ex
ludedfrom the solution of the DSGE model with respe
t to any of the 
orresponding
onditions in
luded in the solution (e.g. the one for 
ountry z) yields 13

Et

(
U ′′(Cj0)

U ′(Cj0)
C
j
0Ĉ

j
t+1 −

U ′′(Cz0 )

U ′(Cz0 )
Cz0 Ĉ

z
t+1 − Q̂

jz
t+1

)
r̂xt+1 = 0 (7)10Noti
e also that to this order of approximation the premium is also time varying.11This is in essen
e what is suggested by Van Win
oop and Tille (2007). They do not
onsider the Singular Ja
obian 
ase.12Obviously, if one is only interested in the zero-order portfolio only i) should be 
arriedout.13The obje
tive is to get rid of variables that require se
ond order solutions, i.e. the linearterm in crxt+1. 10



where Q̂jzt+1 is the real ex
hange rate. This will allow us to obtain a system of
n− 1× k− 1 equations that we 
an solve for the n− 1× k− 1 asset shares usingsimply a �rst-order approximation to the poli
y fun
tions.For the sake of simpli
ity de�ne a new variable

dCt =

(
U ′′(Ci0)

U ′(Ci0)
Ci0Ĉ

i
t −

U ′′(Cz0 )

U ′(Cz0 )
Cz0 Ĉ

z
t − Q̂

jz
t+1

)
. (8)Condition (7) 
an then be simply re-written as

EtdCt+1r̂x,t+1 = 0 (9)To this purpose we need to extra
t from the state-spa
e representation theequations relative to the variables dCt and r̂x,t+1. Re
all that the state-spa
esolution to �rst order 
an be written as
st = F1xt−1 + F2st−1 (10)
yt = P1xt + P2st

xt = N xt−1 + εtwhere, for the sake of simpli
ity we represent all variables (exogenous, statesand 
ontrols) in the ve
tor yt. Then we have that
yt = P1Nxt−1 + P2st + P1εt (11)and

yt+1 = Θ1xt−1 + Θ2st + Θ3εt + P1εt+1 (12)
Θ = (P1N + P2F1)N (13)

Θ2 = P2F2 (14)
Θ3 = (P2F1 + P1) (15)Denote the position of the variables dCt in the ve
tor yt by jdC and the positionof the variable r̂xt by jrx. We know that arbitrage 
onditions imply that14
yt(jrx) = P1(jrx ,:)εt (16)Then we 
an write 
ondition (9) as

Ety(jdc)y(jrx)
′ = Et

(
Θ1(dC,:)xt−1 + Θ2(dC,:)st + Θ3(dC,:)εt + P1(dC,:)εt+1

)
ε′t+1P

′
1(jrx,:)

= 0(17)whi
h, after simplifying redu
es to
Ety(jdc)y(jrx)

′ = P1(dC,:)ΣP
′
1(jrx,:)

= 0 (18)14Following Matlab syntax, a � :� denotes all the elements along that parti
ular dimension.E.g. M(i,:) denotes the row i of matrix M . 11



We noti
e that the matrix P1will be a fun
tion of the steady state portfolioshares, as 
ondition (18), in general, would be satis�ed only by the optimalportfolio. Therefore, to solve for the optimal portfolio we need simply to solve
ondition (18). While in parti
ularly simple 
ases this 
ould be done analyti
ally,in general we would need numeri
al methods to solve this equation.15We apply this te
hnique to the simple bond-e
onomymodel of Devereux and Sutherland(2008) for whi
h we 
an also 
ompute the solution using their method.16 Fig-ure 9 shows the residual of equation (18) as a fun
tion of the portfolio share
α0. The optimal portfolio share found by Devereux and Sutherland (2008) is at
α0 = −2.11864.3.2 Singular Ja
obianIf to �rst order of approximation the dynami
 
omponent of the portfolio doesnot vanish (i.e. αt is not multiplied by zero in the steady state), the zero-orderportfolio and the �rst-order portfolio must be solved jointly. Further below wewill show that it is still 
onvenient to break the moment 
ondition into twoparts: i) the se
ond-order a

urate moment 
ondition (Ω2) and ii) the third-order a

urate moment 
ondition, 
onditional on the se
ond-order 
onditionbeing satis�ed (Ω3). In general we must use numeri
al methods to solve the�xed-point problem: 




α0 = α (A)
A = A (α0)
Ω2

2 + Ω2
3 = 0A way to pro
eed is:1. for initial guess A(0) use �rst-order solution of the model to sear
h for α(1)

0until Ω2

(
A(0), α(1)

)
= 02. use se
ond-order solution of the model to sear
h forA(1) until Ω3

(
A(1), α(1)

)
=

03. Continue until α(n+1)
0 = α(n)Noti
e that Ω2 amounts to 
ondition (20) while Ω3 amounts to the term insquare bra
kets in 
ondition (31), derived further below.15With referen
e to the simple model studied in the next se
tion and inDevereux and Sutherland (2008), we would �nd that

P1(dC,:) = (1 − β)
h

2α+ β
1−βζy

, 2α + β
1−βζy∗

iand
P1(jrx,:) =

ˆ
1, −1

˜so that under Σ =

»
σ2

y 0
0 σ2

y

– and ζy = ζy∗ we would have α = −
β

2 (1 − βζy)
.16Re
all that this model is a spe
ial 
ase of our three-
ountry model displayed in the Ap-pendix. 12



4 Comparing the Devereux and Sutherland andJudd and Guu solution methodsThe solution methods used so far for the steady-state portfolio allo
ation are
onstru
ted without expli
it relian
e on the Impli
it Fun
tion and Bifur
a-tion Theorems�(hen
eforth IFT and BF respe
tively) Devereux and Sutherland(2008). On the 
ontrary, Judd and Guu (2001) the foundation of the solutionproposed by Judd and Guu (2001).17 In this se
tion we show that we 
an followthe same approa
h used in Judd and Guu (2001) to the simple dynami
 modelstudied in Devereux and Sutherland (2008). In this way we are able to highlightthe strong link between the two solution te
hniques. In doing so we extend thesolution in Judd and Guu (2001) for the stati
 asset market equilibrium to adynami
 framework. In the pro
ess, we spell out the mathemati
al 
onditionsstressed by these outhors that are needed to ensure that the above system ofequations yields a well de�ned solution.Judd and Guu (2001) argue that the IFT 
annot be used to approximate as-set market equilibria be
ause in the absen
e of un
ertainty all assets are perfe
tsubstitutes, implying a 
ontinuum of equilibrium portfolio allo
ations. Hen
e,they resort to bifur
ation methods to 
ompute asset allo
ations for small devi-ations from the deterministi
 e
onomy ("small risks").We start by 
onsidering the simple e
onomy in Devereux and Sutherlandin whi
h there are only two agents and two nominal bonds, for whi
h the �rstorder 
onditions 
hara
terizing the portfolio 
hoi
e are given by:
0 = Et

[
(Ct+1)

−ρ
rx,t+1

]

0 = Et

[(
Yt+1 + Y ∗

t+1 − Ct+1

)−ρ
rx,t+1

]
,where therefore rx,t+1 is a s
alar and we have used the e
onomy resour
e 
on-straint to substitute out 
onsumption of the foreign agent, C∗. The other equi-17For example, �Our solution approa
h relies on �rst-order and se
ond-order approximationsof the model, rather than the Impli
it Fun
tion and Bifur
ation Theorems, but the under-lying theory des
ribed by Judd and Guu (2001) is appli
able to our equilibrium solution�(Devereux and Sutherland, 2008, page 3)

13



librium 
onditions are
0 = C

−ρ
t Z∗

t − βEt

{
C

−ρ
t+1

Y ∗
t+1

M∗
t+1

}

0 = (Yt + Y ∗
t − Ct)

−ρ
Z∗
t − βEt

{(
Yt+1 + Y ∗

t+1 − Ct+1

)−ρ Y ∗
t+1

M∗
t+1

}

At+1 = (At + Yt − Ct)
Y ∗
t+1

M∗
t+1Z

∗
t

+ αtrx,t+1

rx,t =

Z∗
t−1

Zt−1

Yt

Mt

−
Y ∗
t

M∗
t

Z∗
t−1

lnYt+1 = yt+1 = ζyyt + σεY,t+1

lnY ∗
t+1 = y∗t+1 = ζyy

∗
t + σεY ∗,t+1,where Zt is the nominal pri
e of the bond and where we have substituted out thepri
e level in terms of the quantity equation, and de�ned (total �nan
ial) wealthfor the domesti
 agent At as in Lu
as (1982) � note in
identally that this isan analyti
ally more 
onvenient expression than the one used by Devereux andSutherland in terms of net savings:

Wt = Wt−1
Y ∗
t

Z∗
t−1

+ αt−1rx,t + Yt − Ct,

At = (Wt + Yt − Ct) .Following Judd (1998) and S
hmitt-Grohé and Uribe (2004), the de
isionrules solving the above equilibrium 
onditions, 
an be generally expressed asfun
tions of exogenous (yt, y∗t ) and endogenous states (At), and the perturbationparameter σ :

Ct = C (At, yt, y
∗
t ;σ)

Z∗
t = Z (At, yt, y

∗
t ;σ)

rx,t = R (At, yt, y
∗
t ;σ)

αt = α (At, yt, y
∗
t ;σ)

At+1 = Ω (At, yt, y
∗
t ;σ) ,The four �rst order 
onditions thus de�ne a fun
tional equation F (C (·) , Z (·) , α (·) , R (·) , σ) =

0. However, sin
e they hold for any value of α in the nonsto
hasti
 steady state(σ = 0), we 
annot dire
tly apply the impli
it fun
tion theorem (IFT) to 
hara
-terize the de
ision rules as it is 
ustomary in the perturbation approa
h � e.g.S
hmitt-Grohé and Uribe (2004) and Lombardo and Sutherland (2007). To seethis, di�erentiate both the portfolio and non portfolio equations in F (·) with
14



respe
t to σ:
0 =




−ρC−1




Cσ + CAEt




ασ · 0 + α (Rσ +RAΩA +RyεY,t+1 +Ry∗εY ∗,t+1) +

(A+ Y − C)
βεY ∗,t+1 − Zσ

β2
−
Cσ

β




+CyEtεY,t+1 + Cy∗EtεY ∗,t+1


 · 0

+Rσ +RAEt




ασ · 0 + α (Rσ + RAΩA +RyεY,t+1 +Ry∗εY ∗,t+1)+

(A+ Y − C)
βεY ∗,t+1 − Zσ

β2
−
Cσ

β




+RyEtεY,t+1 +Ry∗EtεY ∗,t+1




0 =




ρC∗−1




Cσ + CAEt




ασ · 0 + α (Rσ +RAΩA +RyεY,t+1 +Ry∗εY ∗,t+1)+

(A+ Y − C)
βεY ∗,t+1 − Zσ

β2
−
Cσ

β




+ (Cy − 1)EtεY,t+1 + (Cy∗ − 1)EtεY ∗,t+1


 · 0

+Rσ +RAEt




ασ · 0 + α (Rσ +RAΩA +RyεY,t+1 +Ry∗εY ∗,t+1)+

(A+ Y − C)
βεY ∗,t+1 − Zσ

β2
−
Cσ

β




+RyEtεY,t+1 +Ry∗EtεY ∗,t+1




,

and
0 = −βρC−1Cσ + Zσ+

+ β


ρC−1




Cσ + CyEtεY,t+1 + Cy∗EtεY ∗,t+1+

CA

(
ασ · 0 + α (Rσ +RAΩA +RεEtεY,t+1 +Rε∗EtεY ∗,t+1)

+ (A+ Y − C)
βEtεY ∗,t+1−Zσ

β2 − Cσ

β

)

+ EtεY ∗,t+1




0 = βρC∗−1Cσ + Zσ+

− β


ρC∗−1




Cσ + (Cy − 1)EtεY,t+1 + (Cy∗ − 1)EtεY ∗,t+1+

CA

(
ασ · 0 + α (Rσ +RAΩA +RεEtεY,t+1 +Rε∗EtεY ∗,t+1)

+ (A+ Y − C)
βEtεY ∗,t+1−Zσ

β2 − Cσ

β

)

+ EtεY ∗,t+1


 .Provided CA, Cy, Cy∗ are well de�ned, and given that

rx,t =

Z∗
t−1

Zt−1

Yt

Mt

−
Y ∗
t

M∗
t

Z∗
t−1implies RA = 0 and Ry = −Ry∗ = β−1, the last two equations at σ = 0 furthersimplify:

0 = Zσ + βρC−1CA

(
ασ · 0 + αRσ − (A+ Y − C)

Zσ

β2
−
Cσ

β

)

0 = Zσ − βρC∗−1CA

(
ασ · 0 + αRσ − (A+ Y − C)

Zσ

β2
−
Cσ

β

)
.Clearly these two equations imply that Zσ = 0, and αβRσ = Cσ, provided ασis well-de�ned. 15



To verify the assumption on ασ, and 
ompute Rσ and Cσ we need to 
onsiderthe two portfolio Euler equations. Provided again CA, Cy, Cy∗ are well de�ned,when evaluated at σ = 0 they simplify to:
0 = ασ · 0 +Rσ +

Et (εY,t+1 − εY ∗,t+1)

β

0 = ασ · 0 +Rσ +
Et (εY,t+1 − εY ∗,t+1)

β
,

[
0
0

]
=

[
0
0

]
ασ +

[
1
1

]
Rσ.If ασ is to be well de�ned, given that it is multiplied by 0, the last two terms haveto be equal to 0 as well (see Judd and Guu, 2001 ). Intuitively, the only waythe derivative ασ 
an be well de�ned is if it is the solution of the indeterminateform 0

0
, whi
h 
an be dealt with using l'Hospital's rule. Then it must be the
ase that Rσ = 0, and thus it is also Cσ = 0.We still wish to try to determine the steady state portfolio allo
ation αas a fun
tion of un
ertainty σ. The 
ondition above ensuring the existen
e of

ασ de�nes a 
andidate bifur
ation point at σ = 0, as the portfolio allo
ationfrom determinate be
omes indeterminate � the number of solutions for α forthe �rst order 
onditions 
hanges as σ in
reases from 0. The broad idea ofbifur
ation analysis is to provide 
onditions to �nd a point where the bran
h ofinteresting (e.g. unique) solutions to a system of equations 
rosses the "trivial"bran
h of (indeterminate) solutions, at whi
h point the nontrivial solution 
anbe 
hara
terized as an impli
it fun
tion of an underlying parameter (e.g. σ), forwhi
h a Taylor series approximation 
an be found. In order to do so, followingJudd and Guu, we substitute a se
ond order expansion of rx,t+1 in σ in the twoportfolio equations:
0 = Et

{
C

−ρ
t+1

[(
β−1 (εY,t+1 − εY ∗,t+1) +Rσ

)
σ +

1

2
R (σ) σ2

]}

0 = Et

{(
Yt+1 + Y ∗

t+1 − Ct+1

)−ρ
[(
β−1 (εY,t+1 − εY ∗,t+1) +Rσ

)
σ +

1

2
R (σ)σ2

]}
;whereR (σ) represents the risk premium of the domesti
 bond relative to the for-eign bond and is thus a fun
tion of σ. This substitution � assuming a quadrati
gauge fun
tion in the perturbation parameter σ, see Judd (1998), Ch. 15 �ensures that the �rst two 
onditions of Theorem 4 in Judd and Guu for theexisten
e of a bifur
ation point in R

n are satis�ed, namely that:
Hz (z0, σ = 0) = 02x2

Hσ (z0, σ = 0) = 02x1,where z = [R (σ) , α (·, σ)] and the (analyti
) fun
tion H (·) is de�ned by the twoportfolio �rst order 
onditions. This theorem ensures the existen
e of two im-pli
it fun
tionsR (σ) 6= 0 and α (·, σ) 6= 0 for σ 6= 0, su
h that lim
σ→0

α (·, σ) = α (0)16



is well de�ned. Furthermore, these fun
tions are analyti
 and 
an be approxi-mated by a Taylor series. In order, to see this, dividing for, and di�erentiatingwith respe
t to σ, now yields
Hαασ +HRRσ +Hσ = 0 (19)that is,

0 = −ρβ−1C−1Et




 CAασ · 0 + β−1CA

(
α (εY,t+1 − εY ∗,t+1)+
(A+ Y − C) εY ∗,t+1

)

+CyεY,t+1 + Cy∗εY ∗,t+1


 (εY,t+1 − εY ∗,t+1)




+
1

2
(σRσ + R)

0 = ρβ−1C∗−1Et




 CAασ · 0 + β−1CA

(
α (εY,t+1 − εY ∗,t+1)+
(A+ Y − C) εY ∗,t+1

)

+ (Cy − 1) εY,t+1 + (Cy∗ − 1) εY ∗,t+1


 (εY,t+1 − εY ∗,t+1)




+
1

2
(σRσ + R) ,where

Hα (α,R, σ = 0) = 0 · CA

[
−ρβ−1C−1

ρβ−1C∗−1

]

HR (α,R, σ = 0) =
1

2

[
0
0

]
,and

Hσ (α,R, σ = 0) = 02x1

=




−ρβ−1C−1Et




 β−1CA

(
α (εY,t+1 − εY ∗,t+1)+
(A+ Y − C) εY ∗,t+1

)

+CyεY,t+1 + Cy∗εY ∗,t+1


 (εY,t+1 − εY ∗,t+1)




ρβ−1C∗−1Et




 CAασ · 0 + β−1CA

(
α (εY,t+1 − εY ∗,t+1) +
(A+ Y − C) εY ∗,t+1

)

+ (Cy − 1) εY,t+1 + (Cy∗ − 1) εY ∗,t+1


 (εY,t+1 − εY ∗,t+1)







+ 1
2Rde�nes the bifur
ation point in the unknowns R (0) and α (0) . It is worth-while to noti
e that this expression e�e
tively amounts to taking a se
ond orderTaylor approximation of the portfolio equations, as required by the general so-lution approa
h dis
ussed in the previous se
tion, and also by Devereux andSutherland.Taking the di�eren
e of the two equations to get rid of R we have:

0 = Et


C−1


 CA

(
α (εY,t+1 − εY ∗,t+1)+
(A+ Y − C) εY ∗,t+1

)

+βCyεY,t+1 + βCy∗εY ∗,t+1


 (εY,t+1 − εY ∗,t+1)


+

Et


C∗−1


 CA

(
α (εY,t+1 − εY ∗,t+1)+
(A+ Y − C) εY ∗,t+1

)

+β (Cy − 1) εY,t+1 + β (Cy∗ − 1) εY ∗,t+1


 (εY,t+1 − εY ∗,t+1)


 .17



Under the same assumptions as in Devereux-Sutherland of a symmetri
 steadystate (C = C∗) and un
orrelated sho
ks the above expression simpli�es to:
0 = 2CAα

(
σ2
Y,t+1 + σ2

Y ∗,t+1

)
+ β

(
(2Cy − 1)σ2

Y,t+1 − (2Cy∗ − 1)σ2
Y ∗,t+1

)
,whi
h allows to express steady state α as a fun
tion of the �rst order approxi-mation of the 
onsumption de
ision rule:

α = −β
(2Cy − 1)σ2

Y,t+1 − (2Cy∗ − 1)σ2
Y ∗,t+1

2CA

(
σ2
Y,t+1 + σ2

Y ∗,t+1

)
.

.Solving for α thus requires knowledge of the poli
y fun
tions for 
onsumptionand ex
ess returns up to �rst order. The last step is to verify that the Ja
obian
Hσ(α,R) (α (σ) ,R (σ) , σ = 0) is nonsingular, as required by Theorem 4 in Juddand Guu. Here it is easy to verify that this 
ondition is met by di�erentiating
Hσ (α,R, σ) above to obtain:

Det
(
Hσ(α,R) (α (0) ,R (0) , 0)

)
=

∣∣∣∣∣∣∣

−ρ
CA

β2C

(
σ2
Y,t+1 + σ2

Y ∗,t+1

)
1
2

ρ
CA

β2C

(
σ2
Y,t+1 + σ2

Y ∗,t+1

)
1
2

∣∣∣∣∣∣∣
6= 0if CA 6= 0.Finally, to show that the solution is exa
tly the same as in Devereux-Sutherland we need to derive CA, Cy, Cy∗ . This 
an be done easily by dif-ferentiating the system F (C (·) , Z (·) , α (·) , R (·) , σ) with respe
t to At, yt and

y∗t , to obtain:
CA = 1 − β

1 − βζy

β
Cy =

1 − ζy

2
+

1 − β

β

1 − βζy

β
Cy∗ =

1 − ζy

2
.The following two observations are in order. First, while the portfolio al-lo
ation does not appear in the above solutions, this will not generally be the
ase and the �rst order approximation will depend on the steady state value of

α. Se
ond, the (unknown) �rst order approximation terms of the portfolio allo-
ation rule (αA, αy, αy∗) all appear multiplied by 0, as in the 
ase of ασ above.Thus, they will also be well de�ned if, loosely speaking, they are expressed asa solution of the indeterminate form 0

0
. In turn, it 
an be shown that this 
on-dition will be always satis�ed by the solutions of the unknown derivatives ofthe other de
ision rules (C (·) , Z (·) , R (·)) , obtained by standard perturbationsmethods based on di�erentiation of F (C (·) , Z (·) , α (·) , R (·) , σ) .We are now in a position to solve for α; for instan
e, assuming σ2

Y,t+1 =

σ2
Y ∗,t+1 as in Devereux and Sutherland (2008), the 
ounterpart of the expression18



in their Se
tion 4.1.2 obtains:
α

β
= −

Cy − Cy∗

2 (1 − β)
= −

1

2 (1 − βζy)
.To summarize, in this se
tion we have shown that the method by Juddand Guu, based on a rigorous appli
ation of bifur
ation te
hniques, 
an beextended to dynami
 e
onomies, allowing to determine the steady state portfo-lio allo
ation as a fun
tion of the �rst order terms of 
onsumption de
isionrules and ex
ess returns. For a spe
i�
 dynami
 e
onomy also studied byDevereux and Sutherland (2008) we have formally shown the 
oin
iden
e of thesolutions under the two approa
hes. This is due to the fa
t that the key 
on-dition used to solve for the portfolio allo
ation is exa
tly the same moment
ondition, obtained from a se
ond order Taylor approximation of the portfolioequations by Devereux and Sutherland, and from the use of a quadrati
 gaugein the same set of equations by Judd and Guu. The use of a se
ond order Tay-lor expansion or a quadrati
 gauge in a perturbation approa
h amount to thesame thing. In both 
ases the Bifur
ation Theorem allows us to say whether asolution exists at a se
ond order of approximation.5 Steady-state portfoliosIn this se
tion we show how the near-sto
hasti
 steady-state optimal portfoliosolution of Devereux and Sutherland (2008) 
an be generalized to the 
ase ofmore than two-agents (and more than two assets).18Under some general 
onditions, Devereux and Sutherland show that sin
e ex-pe
ted ex
ess returns are equal to zero up to �rst order, the term k−1∑

i=1

α
j
i,t−1 (ri,t − rB,t)will only be a fun
tion of the unexpe
ted sho
ks in the approximate solutionaround the steady state � in the 
ase of our model e
onomy, the ve
tor ofinnovations of exogenous pro
esses ε. Moreover, they show that in the 
ase of2 
ountries the steady state optimal portfolio will be impli
itly de�ned by thefollowing moment 
onditions obtained by taking a se
ond order approximationof the portfolio �rst order 
onditions around a non-sto
hasti
 steady state:

Et−1 [(C1,t − C2,t) rx,i,t] = 0,where rx,i,t = ri,t− rB,t, i = 1...k− 1. Under the assumption of homos
hedasti
sho
ks, the above 
onditions will be the same for any period. Devereux and Sutherland(2008) show that the term k−1∑
i=1

α
j
i,t−1 (ri,t − rB,t) 
an be repla
ed with the aux-iliary i.i.d. variable ξt, so that a solution for the approximated equilibriumaround the non sto
hasti
 steady state will yield poli
y rules for the ve
tor of18From now on variables will denote log-deviations from their steady-state value, ex
ept fornet wealth (W ) and individual assets (α) whi
h are measured relative to output.19



ex
ess returns rx,t and for ∆t = (C1,t − C2,t) whi
h will be fun
tions of ξt andinnovations εt.19Sin
e ξt ≈ α′rx,t, where α denotes the steady-state value of αt, the auxiliaryvariable 
ould be substituted out yielding expressions in terms of fundamentalsinnovations for ∆t = D̃εt and rx,t = R̃εt. Formally,20
R̂x,t = R1ξt +R2εt

∆t = d1ξt +D2εt,so that substituting out ξt and re-arranging yields
R̃ = (I −R1α

′)
−1
R2

D̃ = d1α
′ (I −R1α

′)
−1
R2 +D2Then the above time-invariant portfolio moment 
onditions will amount tothe following matrix equation:

0︸︷︷︸
k×1

= R̃ΣD̃′

︸ ︷︷ ︸
(k×1)(e×e)(e×1)

(20)impli
itly de�ning the steady-state unknown elements of the ve
tor α, represent-ing the gross holdings of foreign assets and liabilities for 
ountry 1, ex
ludingthe referen
e asset. The position of the latter will be derived from the assumedlevel of steady state net foreign assets � we will assume throughout that thisis zero for all 
ountries.Equation (20) 
an be easily solved for α, i.e.21
α = (R2ΣD

′
2R

′
1 − d1R2ΣR

′
2)

−1
(R2ΣD

′
2) .In the 
ase of more than two agents, to take into a

ount the e�e
ts of assetreturns on the wealth distribution a
ross agents, we will have to keep tra
k ofthe holdings of n-1 agents, and in
lude the relevant moment 
onditions fromtheir portfolio optimization problems. For ea
h n-1 
ouple of agents it is more
onvenient to write the moment 
onditions as

0︸︷︷︸
1×k

= D̃i
′

ΣR̃′

︸ ︷︷ ︸
(1×e)(e×e)(e×k)

0 =


 Di

1︸︷︷︸
1×(n−1)

α′

︸︷︷︸
(n−1)×k

(I −R1α
′)
−1

︸ ︷︷ ︸
k×k

R2︸︷︷︸
k×e

+ Di
2︸︷︷︸

1×e




′

ΣR′
2

(
(I −R1α

′)
−1
)′
,19The marginal utility di�erential ∆ will also be a fun
tion of state variables, like the wealthdistribution.20∆t would depend also on state variables. This term, though, would drop out in the 
rossprodu
t with rx,t.21In deriving this expression we have made use of the fa
t that “

(I −R1α
′)

−1
”′

α ≡

α
“
(I − α′R1)−1

”′

. 20



where as indi
ated above, α is now a k× (n−1) matrix. Rearranging the aboveexpression yields:
(
Di

2RR1 −Di
1

)
︸ ︷︷ ︸

1×(n−1)

α′

︸︷︷︸
(n−1)×k

= Di
2︸︷︷︸

1×e

R︸︷︷︸
e×k

,where R ≡ ΣR′
2 (R2ΣR

′
2)

−1
.Colle
ting all the 
onditions yields the following system:




(
D1

2RR1 −D1
1

)...(
Di

2RR1 −Di
1

)...(
Dn−1

2 RR1 −Dn−1
1

)




︸ ︷︷ ︸
(n−1)×(n−1)

α′ =




D1
2...

Di
2...

Dn−1
2




︸ ︷︷ ︸
(n−1)×e

R︸︷︷︸
exk

,

or
Ω︸︷︷︸

(n−1)×(n−1)

α′ = D̃′
2︸︷︷︸

(n−1)×e

R︸︷︷︸
e×k

,where Ω ≡ D̃2 (I ⊗RR1) − D̃1, D̃2 ≡
[
D1′

2 . . . Di′
2 . . . Dn−1′

2

] and
D̃′

1 ≡
[
D1′

1 . . . Di′
1 . . . Dn−1′

1

].A solution for the steady state portfolio is given by
α′ = Ω−1D̃′

2R.Noti
e that with two agents the above formula yields
α′ = −

(D2ΣR
′
2) (R2ΣR

′
2)

−1

(
d1 − (D2ΣR′

2) (R2ΣR′
2)

−1
R1

) ,whi
h 
an be shown to be equal to the expression derived by Devereux and Sutherland(2008).6 Portfolio dynami
sWe are now in the position to solve for the portfolio dynami
s. We �rst presentthe 
ase of two agents and one asset to re-
ast the Devereux and Sutherland(2007a) result into our notation. The multiple-agent multiple-asset 
ase will bea straightforward extension.
21



6.1 The two-agents one-asset 
aseDevereux and Sutherland (2007a) show that in order to obtain a se
ond-ordera

urate solution for the portfolio dynami
s, one has to take a third order ap-proximation of the 
onsumption Euler equation of ea
h agent.22 In parti
ular,with referen
e to their equation (26) we have
Et

[
−ρ
(
Ct+1 − C∗

t+1

)
rx,t+1 +

ρ2

2

(
C2
t+1 − C

∗,2
t+1

)
rx,t+1 −

ρ

2

(
Ct+1 − C∗

t+1

) (
r21,t+1 − r22,t+1

)]
= 0(21)In order to evaluate this expression we need the solution for 
onsumptionand the return on the assets at most to the se
ond order of a

ura
y.As shown in Lombardo and Sutherland (2007) the se
ond order solution forthe 
onsumption di�erential between the two agents 
an be written as

(C − C∗) =

First order part︷ ︸︸ ︷
D1ξ +D2ε+D3z

+D0 +D4vec (εε′) + z′D̂5ε+D6vec (zz′)︸ ︷︷ ︸Se
ond order part (22)and
rx =

�rst order part︷ ︸︸ ︷
R1ξ +R2ε

+E [rx] −R4
−→
Σ +R4vec (εε′) + z′R̂5ε+R6vec (zz′)︸ ︷︷ ︸Se
ond order part (23)where all the variables have the same timing, −→

Σ = E [vec (εε′)], and where
z′ = [xt, st+1]; xt being the e × 1 ve
tor of sho
ks and st the l × 1ve
tor ofendogenous state variables.23Devereux and Sutherland (2007a), show that the portfolio dynami
s 
an bedes
ribed as a linear transformation of the state variables, i.e.

αt−1 = γ′ zt (24)where γ in this 
ase is a (l + e) × 1 ve
tor of 
oe�
ients to be determined.The se
ond order approximation of the budget 
onstraint of ea
h agent(equation (2)) generates a term in the 
ross produ
t of the portfolio and the22This subse
tion does not add anything to Devereux and Sutherland (2007a) ex
ept repro-du
ing their 
al
ulations using matrix notation in pla
e of tensor notation.23See the Appendix for a se
ond-order state-spa
e representation of the solution. Thematri
es in equations (22) and (23) 
orrespond to transformations of the rows of the P matri
esgiven in the Appendix. Noti
e that, up to se
ond order, R0 = E [rx]−R3z−R4
−→
Σ−R6vec (zz′)and that, sin
e up to �rst order rx is i.i.d., R3z = 0. Noti
e also that it is possible to re-writeterms like R5vec (εz′) as z′R̂5ε. See the Appendix for further details. The arrows denoteve
torization. 22



ex
ess returns: αt−1rx,t. Following Devereux and Sutherland (2007a), we 
anexpress this produ
t as an i.i.d. variable
ξt+1 ≡ αtrx,t+1 = γzt+1rx,t+1 (25)Sin
e this relation involves only �rst order variables, we 
an use the �rst orderpart of equation (23) in the latter expression to get (dropping time subs
ripts)

ξ = γ′zR2ε = R2εz
′γ (26)Repla
e this into (22) and (23)

(C − C∗) = D0 +D1z
′γR2ε+D2ε+D3z

+D4
−→εε + z′D̂5ε+D6

−→zz (27)and
rx = E [rx] −R4

−→
Σ +R1z

′γR2ε+R2ε

+R4
−→εε + z′R̂i5ε. (28)As this expression involves �rst order terms in C and r1,2we need the �rstorder solution to these variables, i.e.

C = CH2 ε+ CH3 z C∗ = CF2 ε+ CF3 z

r1 = RH2 ε+RH3 z r2 = RF2 ε+RF3 zwhere by the i.i.d.nature of rx must be that RF3 = RH3 .Taking 
ross-produ
ts of these equations we have, e.g.
C2 =

(
CH2 ⊗ CH2

)−→εε +
(
CH3 ⊗ CH3

)−→zz +
[(
CH2 ⊗ CH3

)
+
(
CH3 ⊗ CH2

)
Pv
]−→εz(29)where Pv is a ve
tor-permutation matrix. For 
onvenien
e we re-write these
ross produ
ts as

C2 = CH2⊗2
−→εε + CH3⊗3

−→zz + CH2⊗3
−→εz C∗,2 = CF2⊗2

−→εε + CF3⊗3
−→zz + CF2⊗3

−→εz
r21 = RH2⊗2

−→εε +RH3⊗3
−→zz +RH2⊗3

−→εz r22 = RF2⊗2
−→εε +RF3⊗3

−→zz +RF2⊗3
−→εzand

C2 − C∗,2 = CH−F
2⊗2

−→εε + CH−F
3⊗3

−→zz + CH−F
2⊗3

−→εzand
r21 − r

∗,2
2 = RH−F

2⊗2
−→εε +RH−F

2⊗3
−→εzwhere we have de�ned e.g. CH−F

2⊗2 ≡
(
CH2⊗2 − CF2⊗2

).Consider one addendum of equation (21) at a time (and abstra
t from the
ρ 
oe�
ient for the time being), i.e.
D0rx +D1z

′γR2εrx +D2εrx +D3zrx +D4
−→εεrx + z′D̂5εrx +D6

−→zzrx (30)23



(
CH−F

2⊗2
−→εε + CH−F

3⊗3
−→zz + CH−F

2⊗3
−→εz
)

× ε′R′
2 (31)

(D2ε+D3z) ×
(
RH−F

2⊗2
−→εε +RH−F

2⊗3
−→εz
)′ (32)Let's start with equation (30). Re
all that to �rst order rx = R2ε, while, toa �rst order C − C∗ = CH−F

2 ε+ CH−F
3 zNoti
e that sin
e D2εε

′R′
2 = 0, and assuming that third moments of thesho
ks are zero, the (
onditional on time t) expe
ted value of equation (30)redu
es to (omitting the expe
tation operator)

[
R2εε

′R′
2D1z

′ γ + z′D̂5εε
′R′

2

]
+
(
z′R̂5εε

′D′
2

)
+

+D2εE [rx] +

(
E [rx] −

(−→
Σ
)′
R′

4 + (−→εε)
′
R′

4

)
(D3z)Noti
e that

(
E [rx] −

(−→
Σ
)′
R′

4 + (−→εε)
′
R′

4

)
(D3z) = (E [rx]) (D3z)Furthermore noti
e that the sum of the se
ond order expansion of the Eulerequations we 
an derive an expression for E [rx]. So for, say the home 
ountry,have

C−ρβ

(
r̂1 − r̂2 +

1

2
r̂21 −

1

2
r̂22

)
− ρβC−ρ

(
Ĉ
)

(r̂1 − r̂2) = 0.Adding this to the foreign 
ounterpart yields,
E [rx] =

ρ

2
E
[(
CH2 + CF2

)
εε′R′

2 +
(
CH3 + CF3

)
zε′R′

2

]
−

1

2

(
RH−F

2⊗2
−→εε +RH−F

2⊗3
−→εz
)implying that

(E [rx]) (D3z) = ρ
(
CH2
)
[D3zΣR

′
2] −

1

2
RH−F

2⊗2
−→εεD3zand that

D2εE [rx] = ρ
(
CH3 + CF3

)
zR2εε

′D′
2−

1

2
D2ε

(
RH−F

2⊗3
−→εz
)

= −
1

2
D2ε

(
RH−F

2⊗3
−→εz
)

= 0where we have used the fa
t that
D2ε

(
RH−F

2⊗3
−→εz
)

= D2ε
(
RH2 εε

′RH2 −RF2 εε
′RF2

)
= D2εR

H
2 εε

′R′
2 = 0and that that D3z is a s
alar and that (CH2 + CF2

)
ΣR′

2 = 2CH2 ΣR′
2 +D2ΣR

′
2.24



the �rst addendum of equation (21) gives24
Et

[
R2εε

′R′
2D1z

′ γ + z′D̂5εε
′R′

2

]
+

(
z′R̂5εε

′D′
2

)
+ ρ

(
CH2
)
[D3zΣR

′
2] −

1

2
RH−F

2⊗2
−→εεD3zAs for the se
ond addendum one 
an show that it redu
es to

R2εε
′ (z′ ⊗ I)

′ (
CH−F

2⊗3

)′
= 2R2ε

[(
CH2 εz

′CH′
3

)
−
(
CF2 εz

′CF ′
3

)] (33)
= 2CH2 D3zΣR

′
2And for the third have

(
RH−F

2⊗2
−→εε
)
(D3z) +D2εε

′ (z′ ⊗ I)
′ (
RH−F

2⊗3

)′where
D2εε

′ (z′ ⊗ I)
′ (
RH−F

2⊗3

)′
= 2 D2ε

[
RH2 εz

′RH′
3 − RF2 εz

′RF ′
3

]

= 2D2εε
′RH′

2 z′RH′
3 −D2εε

′RH2 z
′RF ′

3

= 2D2εε
′RH′

2 z′ [R′
3] = 0and (

RH−F
2⊗2

−→εε
)
(D3z) =

[
RH2 εε

′RH′
2 −RF2 εε

′RF ′
2

]
(D3z)Taking all terms together yields

−Et

[
R2εε

′R′
2D1z

′ γ + z′D̂5εε
′R′

2

]
+

−
(
z′R̂5εε

′D′
2

)
− ρ

(
CH2
)
[D3zΣR

′
2] +

1

2
RH−F

2⊗2
−→εεD3z +

ρ
[
CH2 D3zΣR

′
2

]
+

−
1

2

[(
RH−F

2⊗2

)−→εε (D3z)
]Simplifying gives

Etz
′
{[
γR2ΣR

′
2D1 + D̂5ΣR

′
2

]
+
(
R̂5ΣD

′
2

)}
= 0This must be valid for all possible z i.e.

{[
γR2ΣR

′
2D1 + D̂5ΣR

′
2

]
+
(
R̂5ΣD

′
2

)}
= 0or

γ = −
D̂5ΣR

′
2 + R̂5ΣD

′
2

R2ΣR′
2D1whi
h is the formula derived in Devereux and Sutherland (2007a).24Noti
e that D2εε

′R′

2 = 0 implies that D2εε
′RH′

2 = D2εε
′RF ′

2 and that CH
2 εε′R′

2 =
CF

2 εε
′R′

2. 25



6.2 Two-agents multiple-assets 
aseIn order to extend the result of Devereux and Sutherland (2007a) to the multiple-asset 
ase we noti
e that αt and rx,t are now k − 1 ve
tors.Now we have k − 1 di�erent Euler equations, one for asset
(C − C∗) = D0 +D1ξ +D2ε+D3z

+D4vec (εε′) + z′D̂5ε+D6vec (zz′) (34)and, for the i− th asset
rx,i = E [rx] −Ri4

−→
Σ +Ri1ξ +Ri2ε

+Ri4vec (εε′) + z′R̂i5ε+Ri6vec (zz′) (35)The �rst order solution to the ve
tor of ex
ess returns 
an be written as
rx = R2︸︷︷︸

(k−1)×e

ε (36)where R′
2 =

[
R

1,′
2 . . . R

k−1,′
2

]
. Then the 
ross-produ
t of assets and their ex
essreturn 
an still be written as

ξ1×1 = z′γR2ε (37)where γ is a l× (k − 1) matrix of 
oe�
ients.Then, by analogy with the results shown earlier we have
Etz

′
{[
γR2εε

′R
i,′
2 D1 + D̂5εε

′R
i,′
2

]
+
(
R̂i5εε

′D′
2

)}
= 0or using the fa
t that

(
R̂i5εε

′D′
2

)
= vec

(
I R̂i5εε

′D′
2

)
= (D2εε

′ ⊗ Il×l) vec
(
R̂i5

) (38)
Etz

′
{[
γR2εε

′R
i,′
2 D1 + D̂5εε

′R
i,′
2

]
+ (D2εε

′ ⊗ Il×l) vec
(
R̂i5

)}

︸ ︷︷ ︸
l×1

= 0s×1This must be valid for all possible z i.e.
{[
γR2ΣR

i,′
2 D1 + D̂5ΣR

i,′
2

]
+ (D2Σ ⊗ Il×l) vec

(
R̂i5

)}

︸ ︷︷ ︸
l×1

= 0s×1...{[
γR2ΣR

k−1,′
2 D1 + D̂5ΣR

k−1,′
2

]
+ (D2Σ ⊗ Il×l) vec

(
R̂k−1

5

)}

︸ ︷︷ ︸
l×1

= 0s×126



sta
k 
olumn wise all the k − 1 
onditions and get
{[
γR2ΣR

′
2D1 + D̂5ΣR

′
2

]
+ (D2Σ ⊗ Il×l)R

′
5,l·e×(k−1)

}

︸ ︷︷ ︸
l×k−1

= 0s×k (39)or
γ = −

[
D̂5ΣR

′
2 + (D2Σ ⊗ Il×l)R

′
5,l·e×(k−1)

]
(R2ΣR

′
2D1)

−16.3 The multiple-agents multiple-assets 
aseNoti
e that now we have n− 1 i.i.d. terms
ξ
j
1×1 = α′

jrx : j = 1 . . . n− 1where αj and rx are (k − 1) × 1.Furthermore, now we have k − 1 di�erent equations for the assets ex
essreturn and n− 1 for the 
onsumption di�erentials.Our solution strategy is to �nd the optimal portfolio 
ondition agent-by-agent and then sta
k them together to solve the simultaneous portfolio problem.The 
ounterpart of the optimal portfolio 
ondition as found in the previousse
tion (equation (39)) is the following for agent i
Et

[
D
i,1
1 γ1R2εε

′R2 + · · · +D
i,n−1
1 γn−1R2εε

′R2 + D̂i
5εε

′R′
2 +

(
Di

2Σ ⊗ Il×l
)
R′

5

]

︸ ︷︷ ︸
l×(k−1)

= 0where Di,j
1 is a s
alar, γj is a l × (k − 1) matrix (j = 1 . . . (n− 1)).More 
ompa
tly we 
an write

Di
1



γ1...
γ2


 = −

[
Di

5ΣR
′
2 + Di

2R
′
5,l·e×(k−1)

]
(R2ΣR

′
2)

−1where Di
1 ≡

[
D
i,1
1 Il×l . . .D

i,2
1 Il×l

], Di
2 ≡

(
Di

2Σ ⊗ Il×l
) and Di

5 = D̂i
5.We 
an sta
k these equations (for agent i = 1 . . . (n− 1)) row by row to get

D1



γ1...
γ2


 = −

[
D5ΣR

′
2 + D2R

′
5,l·e×(k−1)

]
(R2ΣR

′
2)

−1where D1is (n− 1) · l × (n− 1) · l . Then have


γ1...
γ2


 = −D−1

1

[
D5ΣR

′
2 + D2R

′
5,l·e×(k−1)

]
(R2ΣR

′
2)

−1 (40)27



7 Appli
ation 1: Monetary sho
ks and optimalportfolio 
hoi
e in a three-
ountry model withnominal bondsIn this se
tion we apply our formulae for the solution of the optimal port-folio to a three-
ountry version of the endowment-e
onomy model used byDevereux and Sutherland (2008, 2007a).The model 
onsists of three symmetri
 e
onomies populated by identi
alagents having preferen
es and 
onstraints as des
ribed by equations (1) and (2).These agents 
an only trade in three nominal bonds. Money and endowments,in ea
h 
ountry, follow an exogenous AR(1) pro
ess. Pri
es are determined bya simple equation of ex
hange i.e.25
Pi,t Yi,t = Mi,t (41)where i = {a, b, c} denotes the 
ountry. Table 1 reports the non-linear model.The varian
e of the sto
hasti
 innovations is denoted by σY,i and σM,i, i =

{a, b, c}.7.1 Steady-state portfolioThis model remains su�
iently simple to allow for an analyti
al representationof the solution for the steady-state portfolio. For the sake of 
omparison, thesteady-state portfolio for the two-
ountry two-bonds version of our model isgiven by
α = −

1

2

1

(1 − βζY )

(
σa,Y + σb,Y

σa,Y + σb,Y + σa,M + σb,M

) (42)For the three-
ountry 
ase the solution will be a 2 × 2 matrix. The rows of
α 
orrespond to 
ountry a and c respe
tively and the 
olumns 
orrespond tothe bonds issued in the 
urren
y of the 
ountry a and c respe
tively. Country
b is the referen
e 
ountry and its position 
an be inferred in relation to thenet-wealth of 
ountry a and c.Extending the results of Devereux and Sutherland (2008) we 
an show thatin the 
ase of our three-
ountry three-bond model we have2625Here velo
ity is set to 1. Alternatively we 
ould have assumed a 
onstant money supplyand a sto
hasti
 velo
ity (money demand sho
ks). The results would be the same.26One 
an show that

R1 =

»
0 0
0 0

–
R2 =

»
−1 1 0 −1 1 0
0 1 −1 −1 0 1

–

D1 = ρ(1 − β)

»
2 1
1 2

–
D2 = ρ

1−β
1−β ζY

»
0 0 0 −1 1 0
0 0 0 −1 0 1

–Noti
e that in this model the risk-aversion parameter ρ 
an
els out in the formula for theportfolio. 28



αD = 3 [(σM,a + σY,a) ((σM,b + σY,b) + (σM,c + σY,c)) + (σM,b + σY,b) (σM,c + σY,c)] (1 − ζY β)(43)
αN1,1 = −2 (σM,b + σY,c + σM,c + σY,b)σY,a + (σM,c + 2σY,c) σY,b + σM,bσY,c(44)
αN1,2 = ((2σM,b + σY,c + σY,b)σY,a + σM,a (σY,c − σY,b) + (σY,b + σM,b)σY,c)(45)

αN2,2 = − (σM,b + 2 (σY,c + σY,b))σY,a+(σM,a + 2σY,c)σY,b+2 (σM,a + σM,b)σY,c(46)
αN2,1 = ((σY,a + 2σM,b + σY,b)σY,c + σM,c (σY,a − σY,b) + (σY,b + σM,b)σY,a)(47)and

αi,j =
αNi,j

αD
(48)In the spe
ial 
ase of identi
al varian
es a
ross 
ountries we have

α =
σY

3 (σM + σY ) (1 − ζY β)

[
−2 1
1 −2

] (49)This is to say that, ea
h 
ountry splits its portfolio in a short position in domesti
assets and a long position (of equal amount) in foreign assets. The foreignposition is then equally divided among the foreign-
urren
y bonds.In the spe
ial 
ase of the referen
e 
ountry (
ountry b) having zero varian
eof endowment and poli
y, we obtain
α =

1

3




−2
σY,a

(σM,a + σY,a) (1 − ζY β)

σY,c

(σM,c + σY,c) (1 − ζY β)
σY,a

(σM,a + σY,a) (1 − ζY β)
−2

σY,c

(σM,c + σY,c) (1 − ζY β)


 (50)The portfolio that we obtain for generi
 varian
es highlights an importantdi�eren
e between the two-
ountry two-asset model and the three-
ountry three-asset version. In parti
ular, the general 
ase highlight the interdependen
ebetween the di�erent types of risk. In the two-
ountry version (Cf. equation(42)) the risk asso
iated with monetary poli
y a�e
ts the total portfolio holding:in the limit, as either of the monetary poli
y varian
es goes to in�nity, the grosspositions are run to zero.This is not the 
ase for the three-
ountry model. For example, one 
an showthat

lim
σM,1→∞

αi,j =





0 if j = 1
1

3

σY,c − σY,b

(1 − ζY β) (σY,b + σY,c + σM,b + σM,c)
if i = 1

−
1

3

2σY,c + σY,b

(1 − ζY β) (σY,b + σY,c + σM,b + σM,c)
otherwise(51)29



so that all 
ountries would still hold gross positions in the bonds issued in the
urren
ies of the 
ountries with �nite varian
es. Noti
e though, that there is anasymmetry between these holdings: The holding α1,2 (i.e. 
ountry a's holdingof bonds in 
ountry c's 
urren
y) would be zero if the other two 
ountries (band c) experien
e the same degree of endowment volatility. In other words,as the monetary poli
y of a 
ountry be
omes too volatile, this 
ountry wouldhold nominal foreign assets only to the extent that they 
an hedge the foreignrelative risk: going short (long) in 
ountry c (b) 
urren
y if the its endowmentis less (more) volatile than 
ountry b's (c's). Country c on the 
ontrary wouldhave non-zero positions in 
ountry c's and 
ountry b's 
urren
y (going short inthe �rst and long in the se
ond).27More in general, these results show that in this simple model no 
ountry goeslong in its own 
urren
y. The position in the foreign asset will instead dependon the relative volatility of the foreign 
ountries and on the domesti
 volatilityof monetary poli
y.Finally, if monetary poli
y is perfe
tly 
orrelated a
ross 
ountries, the port-folio redu
es to
α =

1

3 (ζY β − 1)

[
−2 1
1 −2

] (52)independently of the varian
e of the endowments. This result highlights thefa
t that it is not the absolute volatility of monetary poli
y that matters forportfolio allo
ation but rather its volatility relative to that of other 
ountries'monetary poli
ies.7.2 Portfolio Dynami
sAn analyti
al des
ription of the dynami
 properties of the optimal portfoliowould be too involved to o�er (new) useful insights.28 In this se
tion, therefore,we give numeri
al examples of the dynami
 response of the portfolio to sho
ks.As ben
hmark parameterization we use the following values:Des
ription Symbol ValueDis
ount fa
tor β 0.98Risk aversion ρ 1Persisten
e of money sho
k ζM{a,b,c}
0.6Persisten
e of output sho
k ζY{a,b,c}
0.9Varian
e of sho
ks σY,M{a,b,c}
1As dis
ussed earlier, the dynami
s of the portfolio, up to se
ond order ofa

ura
y, 
an be des
ribed as a linear mapping from exogenous and endogenousstate variables.27One 
an show that ∂α1,2

∂σM,a
< 0, ∂α2,1

∂σM,c
< 0, ∂α2,1

∂σM,a
S 0 depending on the relative size ofthe varian
es.28Devereux and Sutherland (2007a) derive the analyti
al response 
oe�
ients of the optimalportfolio, up to the underlying varian
es and for a unit degree of risk aversion. Their solutionis insightful as it separates the portfolio level-e�e
t indu
ed by net-wealth movements, fromthe hedging e�e
t due to exogenous sho
ks. 30



As is apparent from the analysis of Devereux and Sutherland (2007a), 
hangesin the portfolio 
omposition should be interpreted as deriving from two mainfa
tors: The level e�e
t and the hedging e�e
t.29 The latter re�e
ts 
hanges inthe sensitivity, to sho
ks, of the 
ross-
ountry 
onsumption di�erential. A given
hange in expe
ted returns must bring about an equal 
hange in the marginalutility of the trading 
ountries. As utility is 
on
ave, 
hanges in marginal utility
an only be brought about by large 
hanges in 
onsumption when the level of
onsumption is high. At high levels of 
onsumption the 
ovarian
e of the returnsand relative 
onsumption is larger (other things equal), thus in
reasing hedgingmotives.The level e�e
t is due to the fa
t that in
reases in net-wealth, other thingsequal, translate into in
reases in holdings of all bonds. For example, in ourmodel a positive money supply sho
k in 
ountry a improves its net-wealth posi-tion. Therefore, the share of all 
urren
ies in 
ountry a's portfolio in
reases (inparti
ular αt,(1,i) − α1,i = 0.94).30 The opposite is true for the other 
ountries,whi
h experien
e a net-wealth deterioration.Upon a domesti
 endowment sho
k in 
ountry a, the share of domesti
 
ur-ren
y in 
ountry a's portfolio de
reases (by −2.0857) while the share of foreign
urren
y bonds in 
ountry a's portfolio is redu
ed (by−0.0871 per foreign 
ur-ren
y). After the �rst period the shares in
rease monotoni
ally. The responseof the portfolio derives from the 
ombined e�e
t of the desire to reinfor
e thehedging position (as relative 
onsumption has in
reased) and a 
hange in net-wealth.Figure 1 shows the response to 
ountry a's endowment sho
k of 
ountry a'sholding of 
ountry a's 
urren
y bond and of 
ountry c's 
urren
y bond (theresponse of home net-wealth is also shown). Figure 2 shows the response to thesame sho
k of 
ountry c's portfolio.7.2.1 Net-wealth persisten
e and portfolio adjustmentThe permanent e�e
t of the sho
ks, due to in
omplete markets and to approxi-mation of the model around the non-sto
hasti
 steady-state, seems to 
ontradi
tthe statement that there is a unique steady-state portfolio. Under the alternativeassumption that there are only endowment sho
ks, we would reprodu
e 
ompletemarkets, so that the optimal 
hoi
e of the portfolio 
omposition would make themodel stationary.31 A way to evaluate the sensitivity of the model to the unitroot under the in
omplete market assumption, would be to adopt the suggestionby S
hmitt-Grohé and Uribe (2003) for small open e
onomy models.32 One ofthe solution that these authors 
onsider is to impose that the agents dis
ountfa
tor is a fun
tion of deviations of (
ountry-wide) 
onsumption from the steady29This de
omposition is also emphasized by Van Win
oop and Tille (2007) and referred toas portfolio growth and portfolio reallo
ation, respe
tively.30We return in the next se
tion to the problem non-stationarity of the responses.31This fa
t is used, for example, by Engel and Matsumoto (2008) to derive the optimalportfolio 
omposition under 
omplete-markets.32Another way to eliminate the unit root would be to assume that agents die with a positiveprobability. This solution is adopted, for example, by Van Win
oop and Tille (2007).31



state value. We spe
ify the dis
ount fa
tor as βt = β (ct − c̄) = (1 + ct− c)(−ψ).Under this assumption, the size of the largest root lying within the unit 
ir
leis inversely proportional to ψ. 33In this model, the steady-state portfolio is una�e
ted by this modi�
ation.34The dynami
s of the portfolio, instead, is a�e
ted by ψ. The response of theportfolio to any sho
k is smaller (in absolute terms) and shorter lived the largeris ψ. In the spe
ial 
ase of i.i.d. sho
ks (and for monetary sho
ks in general), theonly dynami
s imparted to the portfolio is the endogenous dynami
s derivingfrom the evolution of net wealth. In this 
ase, for example, a positive endowmentsho
k in 
ountry a indu
es a 
urrent a

ount surplus and, therefore, an in
reasein the net-foreign-asset position of this 
ountry. So, despite a redu
tion inholding of own-
urren
y bonds on impa
t (due to the temporary in
rease insensitivity of 
onsumption di�erentials), after the �rst period the in
rease inwealth implies an in
rease in holding of all types of bonds for as long as wealthis above the steady-state level. In the extreme 
ase of a one-period-lived net-wealth in
rease, the portfolio would return to its steady state after one period.7.3 WelfareIt is easy to use the solution for the optimal portfolio to 
ompute 
ountries'respe
tive welfare. It is important to noti
e, �rst, that the dynami
 behaviorof the portfolio, up to se
ond order, does not have 
onsequen
es for aggregatewelfare, when the latter is measured using the expe
ted (
onditional or not)life-time utility of the households. This is be
ause the only pla
e where theportfolio dynami
s appears, is the budget 
onstraint of the households. Thereit shows up lagged (i.e. the amount that is 
arried over from last period) andmultiplied by ex
ess returns. Sin
e ex
ess returns are i.i.d. up to �rst order,the 
onditional expe
tation of this produ
t must be zero.35On the 
ontrary, the steady-state 
omposition of the portfolio has importante�e
ts on welfare. The following Table reports the welfare gains (in steady-state
onsumption units) for ea
h 
ountry in adopting the optimal portfolio relativeto the 
ase of one single bond (of the referen
e 
ountry b).3633It should be noti
ed that our sto
hasti
 dis
ount fa
tor does not a�e
t the degree ofrelative risk aversion. The dis
ount fa
tor is a fun
tion of aggregate 
onsumption so that
−
U ′′C

U ′
= ρ. Nevertheless, the sensitivity of aggregate 
onsumption di�erentials, in generaland even at �rst order, is a�e
ted by the sto
hasti
 dis
ount fa
tor. Hen
e, the sensitivity ofthe portfolio to ψ is not simply due to the redu
tion is persisten
e of net wealth.A better way to eliminate the unit root would be to evaluate the model around a point thattakes into a

ount the role of risk (see Ljungqvist and Sargent (2000, 
h. 14)). This solutionis not trivial and we leave it to future resear
h.34While we don't have a symboli
 representation of this 
ase, numeri
al experiments showedthat the matri
es D1and D2 that enter the formula for the steady-state portfolio depend ψ.As is happens for the parameter of risk aversion, though, ψ 
an
els out (see footnote 26).35This implies that to appre
iate welfare gains from portfolio dynami
s we need to look atorder of approximation higher than se
ond for welfare.36The in�nite dis
ounted sum of the 
onditional mean of the period utility is re-s
aled by

(1 − β). 32



Country a Country b Country cWelfare gain 18.29% 35.24% 18.29%The table shows that, as should be expe
ted, all 
ountries experien
e awelfare improvement when the steady-state portfolio is 
hosen optimally. It isalso evident that the gain is larger for 
ountry b. This 
an be rationalized by
onsidering that in the single-bond 
ase, 
ountry a and 
ountry c run a positivenet-wealth position on average (up to se
ond order of a

ura
y). This meansthat they must have a long position in the foreign asset (
ountry b's 
urren
ybond). Although quantitatively di�erent, this is the position that they hold inthe three-bond 
ase. Country b, on the 
ontrary does not have the possibilityof going long in foreign 
urren
y.377.4 Some impli
ations for ex
hange rate regimesThis example, although admittedly quite simpli�ed, allows nevertheless to makean interesting point related to the literature on 
urren
y union, pre
isely thebran
h spurred by Neumeyer (1998). His paper shows, in a two-
ountry model,that to the extent that having an independent 
urren
y expands the set ofassets trades thus fostering international risk sharing, the 
osts of having asuboptimally volatile monetary poli
y will not be enough to establish a monetaryunion.Neumeyer's argument emerges 
learly from the solution for optimal portfolioallo
ation in the two 
ountry 
ase. The 
ost from la
k of diversi�
ation entailedby setting up a monetary union 
an be mat
hed only by an independent mone-tary poli
y with an arbitrarily large volatility of sho
ks � in both 
ases agentswill be for
ed to hold a zero equilibrium position in both 
urren
ies.It is 
lear however that a world e
onomy with several 
ountries may sub-stantially alter this result, as foregoing monetary independen
e will redu
e onlysome of the diversi�
ation opportunities provided by nominal state un
ontingentassets, rather than all of them, as in the 
ase of two 
ountries only.Ravenna (2005) and Cler
 et al. (2008) also show that imperfe
t monetarypoli
y 
redibility or la
k of 
ommitment possibilities at the national level 
angenerate positive gains from joining a 
urren
y union.38 Also in these 
ases,the balan
e of pros and 
ons of pegging the 
urren
y 
ould be tilted againstthe 
urren
y union if ex
hange rates 
an be used to hedge idiosyn
rati
 risks.In a multi-
ountry 
ontext, though, ea
h 
ountry might need to have a

essonly to a subset of independent 
urren
ies to �nd the 
urren
y union attra
tive.In a multi-
ountry 
ontext, it might be that if a subset of 
urren
ies remainsindependent, the gain from joining the 
urren
y union might be positive. This37The two-
ountry version of this model gives the opposite result: i.e. the referen
e 
ountry(b) has a smaller gain from portfolio diversi�
ation. Indeed in this 
ase, in expe
tations,
ountry a takes a very large short position in the foreign 
urren
y, while the optimal portfoliopres
ribes a long position.38See also Giavazzi and Pagano (1988). 33



raises strategi
 issues, sin
e the optimal 
urren
y area would have fewer membersthan existing 
ountries.It would be straightforward to extend the model des
ribed above, for in-stan
e by in
luding an endogenous 
ost of monetary poli
y volatility beyondthat implied by the presen
e of nominal bonds, so as to provide a formal anal-ysis of these trade-o�s.8 Appli
ation 2: A two-
ountry model with eq-uities and bondsFor the se
ond appli
ation we use a two-
ountry version of the model used inDedola and Straub (2008) (see Table 2 in the Appendix).This model is a simple extension of the previous model. Now there are onlytwo 
ountries. Ea
h 
ountry's total in
ome is 
omposed of an endowment (asin the previous se
tion) and of a dividend stream. Only 
laims on the dividendstream 
an be traded. The model allows for home-bias in 
onsumption (denotedby µ) and partial substitutability of domesti
 and foreign goods (elasti
ity de-noted by θ). In this model we introdu
e the sto
hasti
 dis
ount fa
tor dis
ussedin the previous se
tion.Ben
hmark parameterizationOur ben
hmark parameterization displays the following valuesDes
ription Symbol Value(Non-Sto
hasti
) Dis
ount Fa
tor β 0.98Elasti
ity of Substitution θ 3Home Bias in Consumption µ 0.8Risk Aversion ρ 2Persisten
e of the Sho
ks ζ 0.5Elasti
ity of Sto
hasti
 Dis
ount Fa
tor ψ 0Furthermore, we assume that the share of dividends in total in
ome is 15%.8.1 Steady-State portfolioThere are two main points that we want to make in relation to the steady-stateportfolio. The �rst is that, 
ontrary to the previous appli
ation, the persisten
eof the net-wealth deviation from steady state has e�e
ts on the steady stateportfolio. The se
ond is that when we allow only for dividend and endowmentsho
ks we have the result of perfe
t equity home bias only when this two sho
kshave identi
al persisten
e.
34



8.1.1 Net-Wealth persisten
eFigure 3 shows that introdu
ing dividend sho
ks and equities alongside bondsgenerates a steady-state e�e
t of the sto
hasti
 dis
ount fa
tor. It is 
lear thoughthat the sensitivity of the portfolio to ψ is relatively small so that even quantita-tively the steady-state results are independent of the persisten
e of net-wealth.8.1.2 Persisten
e of the sho
ks and equity home biasCoeurda
ier et al. (2007), in a two-period two-
ountry endowment model, showthat full home-equity bias 
an be produ
ed, for example, when only output andredistributive sho
ks are present. By setting to zero the varian
e of the monetarysho
ks in our model, perfe
t home-bias in equities holds only in the spe
ial
ase of equal persisten
e of the dividend and endowment sho
ks (although they
an have di�erent varian
e). The persisten
e of the sho
ks, as dis
ussed inthe previous appli
ation, is important. For example, predi
table 
hanges inendowments, a�e
t the sensitivity of 
onsumption di�erential to sho
ks. Onlywhen dividend and endowment sho
ks are equally persistent, the home equityprovides a perfe
t hedge on
e bonds insure against ex
hange rate risk.39Figure 6 shows the portfolio of 
ountry a for di�erent relative values ofthe endowment and dividend sho
k. For equities the shares are shown: i.e. 1means that 100% of the equities are held by 
ountry a. For this example, thepersisten
e of the dividend sho
k is �xed at 0.5 and we vary the persisten
e ofthe endowment sho
k. We see that when the endowment sho
k is less persistentthan the dividend sho
k, 
ountry a holds less than 100% of domesti
 equitiesand holds a positive share of foreign equities.40 When endowment sho
ks aremore persistent than dividend sho
ks, 
ountry a goes short in foreign equitiesand long in domesti
 equities.8.2 Portfolio dynami
sUsing equation (40) we 
an derive the response of bonds and equities to theexogenous sho
ks of the model. Figures (4) and (5) show the response of 
ountry
a's portfolio to a domesti
 dividend sho
k and to a domesti
 endowment sho
k,respe
tively, in the �
omplete-market� 
ase: i.e. when only these two sour
es ofrisk are present and the two sho
ks are equally persistent.The steady-state portfolio of this parti
ular 
ase displays a short positionin home 
urren
y bonds and full equity home bias.41 After either of the twosho
ks has hit the e
onomy net-wealth falls and so do all the gross positions.The persisten
e of these 
hanges is entirely di
tated by the persisten
e of thesho
ks. Furthermore the 
hange in value of the equity positions is due to the39See (Engel and Matsumoto, 2008) for a dis
ussion on the role of bonds in insuring againstthe ex
hange rate risk.40Short selling of equities is not ruled out.41This 
orresponds to the point ζY · ζ−1

D
= 1 of Figure (6).35




hange in their pri
e (as opposed to 
hange in shares).42These Figures also show an important results of the 
omplete-market 
ase:If the agents 
hoose the optimal steady-state portfolio, the portfolio dynami
sis mean-reverting.43If we introdu
e monetary sho
ks along side the dividend and endowmentsho
ks we reprodu
e the in
omplete-market 
ase. Now the optimal steady-state portfolio is 
ontingent on the existen
e of a further sour
e of risk. Its
omposition, therefore, di�ers from the 
omposition of the optimal portfoliounder 
omplete-markets: e.g. 
ountry a goes short in domesti
 
urren
y bondsand in foreign equities. It goes long on domesti
 equities.44The portfolio dynami
s in this 
ase shows non-stationarity, as is evident fromFigures (7) and (8). In this parti
ular 
ase, net-wealth improves after a dividendor endowment sho
k. In the short run holding of domesti
 assets in
reases whileholding of foreign assets falls.9 Appli
ation 3: The Ramsey optimal poli
y ina two-
ountry sti
ky-pri
e model with bondsIn this se
tion we show an example of a model in whi
h the portfolio shares enterthe model also not multiplied by the ex
ess return, and in parti
ular multipliedby a variable that is not i.i.d.. This fa
t violates the ne
essary 
onditions for theappli
ation of the te
hnique suggested by Devereux and Sutherland (2008) andby Van Win
oop and Tille (2007). We use here the sti
ky-pri
e two-
ountrymodel presented in Benigno and Benigno (2006), extended by introdu
ing twobonds, one per 
urren
y and two sho
ks per 
ountry: a 
ost-push sho
k and aprodu
tivity sho
k. We don't give here all the details of the model as we onlyneed to fo
us on few dimensions of it. 4542As the model is written in the Appendix, the share of 
ountry a's equities held by 
ountry
a's households is α2

Za
− 1 and their share of 
ountry b's equities is α3

Zb
.43It is important to stress that if the steady-state portfolio is not optimal, either of thesesho
ks would produ
e a permanent departure of net-wealth from the steady-state value. Hav-ing assumed equal persisten
e of the sho
ks is irrelevant for this result.44In parti
ular, the value of the portfolio is α =

ˆ
−0.2135 0.3870 −0.3870

˜, where theelements of α 
orrespond to domesti
 bonds, home equities and foreign equities, respe
tively.45The reader should refer to Benigno and Benigno (2006) for details. In essen
e the modelis a two-
ountry produ
tion e
onomy with labor as only fa
tor of produ
tion, pri
es set à laCalvo (1983) and Dixit-Stiglitz 
onsumption aggregators. The point we want to make hereis to show that our te
hnique 
an solve this type of models. This is true independently ofthe spe
i�
 values assigned to the parameters of the model. Nevertheless, in the parti
ular
ase studied here we assume a probability of not adjusting pri
es of 0.8; dis
ount fa
tor of
0.99 (quarterly frequen
y); intra-temporal elasti
ity of substitution (
ross-
ountry) of 1.5;mark-up of 1.11 subsidized with a tax (not 
ru
ial for the results); elasti
ity of intertemporalsubstitution of 1 and elasti
ity of labor supply of 1. We assume that government spending iszero and that the sho
ks have a 
oe�
ient of auto
orrelation of 0.9. The size of the varian
e isidenti
al for all sho
ks and the absolute value of these varian
es is not relevant for our resultsas 
ondition (18) makes 
lear. 36



In parti
ular, the Ramsey (
ooperative) poli
y problem 
an be des
ribed as
max

Yt,αt,rx,t,Y
∗

t

Et

∞∑

i=0

βi
{
nU (Ct+i, Lt+i) + (1 − n)U

(
C∗
t+i, L

∗
t+i

)} (53)subje
t to
EtF

(
Yt, Yt+1, Yt−1, Y

∗
t , Y

∗
t+1, Y

∗
t−1, rx,t, rx,tαt−1, εt

)
= 0 (54)where β is the dis
ount fa
tor, U (·) are the utility fun
tions of the representativeagents of ea
h 
ountry, n is the size of the �rst 
ountry (home) and 1−n is thesize of the se
ond 
ountry (foreign), Ct is 
onsumption, Lt is labor (asterisksdenoting foreign variables), εt is the ve
tor of all the sho
ks while the ve
tors

Yt and Y ∗
t 
ontain all the variables of the model, ex
luding portfolio shares(αt) and ex
ess real returns (rx,t). The fun
tion F (·) 
ontains all the �rst-order 
onditions of the agents' optimization problem as well as the resour
es
onstraints. In parti
ular, F (·) 
ontains a subset of e�
ient portfolio 
onditionsthat is linearly independent (This is justi�ed by the 
onstrained quali�
ationrequirement in the Kuhn-Tu
ker Theorem (e.g. Sundaram (1996)).46The Ramsey optimal poli
y is des
ribed by the set of FOCs for the prob-lem (53)-(54). In parti
ular, among these we have two 
onditions that relatespe
i�
ally to the portfolio problem, namely

Frx,t
(·) = · · · + λBC,tαt−1 + · · · = 0 (55)and

Fαt
(·) = EtβλBC,t+1rx,t+1 = 0 (56)where λBC,t is the Lagrange multiplier asso
iated with the net-saving equationof the form (2). The se
ond equation has exa
tly the form of the orthogonality
ondition (3).It is possible to show that in general, in a symmetri
 (non-sto
hasti
) steadystate equilibriumλBC = 0.47 In this 
ase the dynami
s of α is not determi-nate to �rst order of approximation. More in general though, this exampleshows that the dynami
s of the portfolio would be determinate to �rst orderwhenever a poli
y maker sets its poli
y by solving an optimization problemsubje
t to the de
entralized-e
onomy 
onstraints and if λBC 6= 0. Here weonly fo
us on the symmetri
 
ase. Even in this 
ase, though, we 
annot applyDevereux and Sutherland (2008) te
hnique as λBC,t is not an i.i.d. variable.46Abstra
ting from the portfolio allo
ation (e.g. setting α to any 
onstant value), afterremoving one of the portfolio e�
ien
y 
onditions and after in
luding a des
ription of themonetary poli
y, this model 
ould be solved with standard methods as done for example inBenigno and Benigno (2006).47Consider the abstra
t poli
y problem of transferring dW units of wealth from the homeagent to the foreign agent for 
onsumption purposes, then the total di�erentiation of theLagrange equation around the steady state, i.e. 0.5U ′ (C) dC+0.5U (C∗) dC∗ +λBCdW = 0,would imply λBC = 0 as dW = −dC = dC∗. One 
an easily see that in general, withasymmetri
 steady states, we would have λBC 6= 0.37



Intuitively, noti
e that the poli
ymaker's FOC with respe
t to the net-wealth
Wt+1 would be the usual Euler equation, i.e. λBC,t = EtβλBC,t+1r1,t+1, andwould have the same sto
hasti
 properties of the marginal utility of 
onsump-tion.Using the general e�
ien
y 
ondition (equation (18)) we 
an derive numer-i
ally the optimal portfolio.We �rst 
onsider the 
ase of perfe
t spanning only two produ
tivity sho
ks.Due to the absen
e of monetary-poli
y trade o�s, PPI stability is the opti-mal poli
y, as dis
ussed, among others, by Benigno and Benigno (2006) and byDevereux and Sutherland (2007b) in relation to portfolio 
hoi
es. In this 
asewe 
an 
ompare the optimal portfolio allo
ation under PPI-stability obtainedusing the Devereux and Sutherland te
hnique with the one obtained under theRamsey poli
y using our algorithm. We �nd that the optimal holdings of do-mesti
 bonds, for our ben
hmark parameterization, are equal to α0 = 2.29358under both, the Ramsey and the PPI-stability poli
ies. This is reassuring aswe know that the PPI-stability poli
y reprodu
es the �rst-best allo
ation whi
hshould be a
hieved by the Ramsey poli
ymaker as well.The se
ond 
ase refers to 
omplete spanning but only two mark-up sho
ks.In this 
ase PPI-stability is no longer the optimal monetary poli
y. Underthis poli
y the optimal portfolio is again α0 = 2.29358 as mark-up sho
ks andprodu
tivity sho
ks have identi
al ma
roe
onomi
 
onsequen
es.48 Under theRamsey optimal poli
y, instead, the optimal portfolio requires α0 = 6.39368.We 
an see that the optimal poli
y indu
es a larger holding of domesti
 bonds.The �nal 
ase we 
onsider is that of in
omplete spanning: all four sho
ks arepresent. In this 
ase, the portfolio under PPI-stability is un
hanged as havingfour sho
ks of this type amounts to taking a multiple of the varian
e of eitherof the pairs of sho
ks 
onsidered separately. Under the Ramsey poli
y, instead,the optimal portfolio requires α0 = 2.56435, whi
h is 
loser to the one obtainedwith te
hnology sho
ks.Finally, it should be noti
ed that in all these 
ases the home agent goes longin bonds denominated in domesti
 
urren
y. When we 
ompute the optimalportfolio under a simple Taylor rule, we obtain the opposite result: i.e. agentsgo short in the bonds denominated in their own 
urren
y. We 
an see thatboth of the poli
ies 
onsidered above, PPI-stability and Ramsey poli
y, makethe return of the foreign assets 
omove positively with home GDP.10 Con
lusionsIn this paper we have shown how to use standard perturbation methods to solvefor asset market allo
ations in a general 
lass of in
omplete market e
onomieswith multiple agents and assets, in whi
h portfolio 
hoi
es are indeterminate48The di�eren
e between these two sho
ks is that the te
hnology sho
k shifts the aggregatedisutility fun
tion of labor in a way that 
ompensate the �u
tuations in labor supply. Themark-up sho
ks generates �u
tuations in the labor supply that are not 
ompensated by shiftsin the aggregate disutility of labor. 38



in the absen
e of un
ertainty. This 
lass of e
onomies is more general thanthat analyzed by existing 
ontributions su
h as Devereux and Sutherland (2008,2007a) or Van Win
oop and Tille (2007), and is relevant in a number of inter-esting problems, for instan
e in solving for Ramsey optimal poli
ies with mul-tiple agents and assets under in
omplete markets. Di�erently from Devereuxand Sutherland, our general solution does not provide 
losed-form solutions butrequires iterative methods, ex
ept in parti
ularly simple 
ases.We provide an appli
ation of our methods by solving for the optimal nominalbond portfolio under Ramsey monetary poli
y in a 
anoni
al 2-
ountry e
onomywith Calvo pri
ing and te
hnology and mark-up sho
ks.As a further 
ontribution, we have also 
lari�ed the link between the Devereux-Sutherland solution methods and the asymptoti
 approa
h proposed by Juddand Guu 2001) to deal with bifur
ations arising in stati
 portfolio problems,showing that the two approa
hes rest on the same formal generalization of theImpli
it Fun
tion Theorem provided by Bifur
ation Theory.Finally, we have shown how to use simple matrix algebra to extend the 
losedform solutions developed by Devereux and Sutherland (2008, 2007a) to solvefor asset market equilibrium with more than two agents and, 
on
erning theirdynami
s, also more than two assets, for the 
ase in whi
h portfolio allo
ationsonly appear multiplied by ex
ess returns. Our extension is based on the fa
t thatthe optimal portfolio 
omposition for ea
h agent must be solved simultaneouslywith the portfolio of the other agents. Re-writing the (se
ond-order a

urate)state-spa
e solution of the model in a parti
ular matrix form, it is then possibleto sta
k all agents' portfolio problem together, obtaining a simple linear systemof equations. This is then solved with a standard matrix inversion.Using our algebra it is straightforward to 
ompute the optimal portfolio withany number of agents and assets. We show this by means of two appli
ationswidely dis
ussed in the literature. The �rst 
onsists of a three-
ountry nominal-bond endowment e
onomy. This appli
ation o�ers interesting insights on theportfolio 
omposition that 
annot be seen in a two-
ountry setup. For exam-ple, assuming zero initial net-foreign-asset positions, an in�nite varian
e of themonetary sho
k of one 
ountry would redu
e all bond holdings to zero in thetwo-
ountry model. In the three-
ountry model, on the 
ontrary, this in�niterisk asso
iated with one parti
ular 
urren
y will only eliminate the bond holdingin that 
urren
y for all 
ountries.The se
ond appli
ation 
onsists of a two-
ountry model with trade in equitiesand bonds. This is a workhorse model for studying equity-home-bias issues.Solving for the optimal portfolio under 
omplete markets (i.e. as many sho
ksas assets) we show that equity home bias is optimal only in a parti
ular 
ase:i.e. when all sho
ks are equally persistent. The relative persisten
e of thesho
ks, therefore, is an important determinant of the portfolio 
omposition.Extending the model to an in
omplete-market setup generates non-stationarityin the e
onomi
 dynami
s. By introdu
ing a sto
hasti
 dis
ount fa
tor, andusing our generalized portfolio solution, we 
an assess the e�e
t of the unit-root in net-wealth on the portfolio 
omposition. We show that the results arequalitatively un
hanged. 39



Our generalized portfolio solution 
an be used to address a number of inter-esting questions in open and 
losed e
onomy models with multiple agents andassets.AppendixThe three-
ountry modelThe following list de�nes the notation used for the variables of the model. Table1 reports the non-linear equations of the three-
ountry model.49List of VariablesConsumption CMoney MEndowment YConsumer Pri
es PReturn on Bond rNominal pri
e of Bond ZNet Wealth W

49A (+1) denotes next period value of a variable. A (−1) denotes previous period value.40



Table 1: The non-linear three-
ountry modelTable 1: The non-linear three-
ountry modelAsset Choi
e First Order Conditioins
(Ca(+1))

−ρ
(ra(+1) − rb(+1)) = 0

(Cc(+1))
−ρ

(rc(+1) − rb(+1)) = 0Real Return on Bonds (de�nition)
ra = 1

PZa(−1)

rb = 1
PbZb(−1)

rc = 1
PcZc(−1) Euler Equations (Pri
ing of Bonds)

Za (Ca)
−ρ

= β (Ca(+1))−ρ

P (+1)

Zb (Cb)
−ρ

= β (Cb(+1))−ρ

Pb(+1)

Zc (Cc)
−ρ

= β (Cc(+1))−ρ

Pc(+1)Resour
e and Budget Constraints
Ca + Cb + Cc = eYc + eYa + eYb

Wa = rbWa(−1) + eYa − Ca + eξa + α1,1 (ra − rb) + α1,2 (rc − rb)
Wc = rbWc(−1) + eYc − Cc + eξc + α2,1 (ra − rb) + α2,2 (rc − rb)Quantity Equations
eMa = PeYa

eMb = Pbe
Yb

eMc = Pce
Yc Auxiliary Equations

dra = ra − rb
drc = rc − rb
dCa = Ca − Cb
dCc = Cc − Cb Exogenous Sho
ks (variables in logs)
Ya = ζYa

Ya(−1) + εYa

Yb = ζYb
Yb(−1) + εYb

Yc = ζYc
Yc(−1) + εYc

Ma = ζMa
Ma(−1) + εMa

Mb = ζMb
Mb(−1) + εMb

Mc = ζMc
Mc(−1) + εMc

ξa = εξa

ξc = εξcContinued on next page . . .
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The two-
ountry modelFor this model we use the same notation used for the three-
ountry model, forthe variables that are present in both models. The following lists the remainingvariables. Table 2 reports the non-linear equations of the two-
ountry model.50Other Variables in the Two-Country ModelDividend DPri
e of Equities ZPri
e of Bonds QReturn on Bond rbReturn on Equities rePri
e of Domesti
 Goods PYReal Ex
hange Rate RERDemand of Country i for Goods of Country j Ci,jSto
hasti
 dis
ount fa
tor β (C)

50A (+1) denotes next period value of a variable. A (−1) denotes previous period value.42



Table 2: The non-linear two-
ountry modelTable 2: The non-linear two-
ountry modelResour
e and Budget Constraint
Wa = Wa(−1) rbb + PY,a (Ya +Da) − Ca + eξ+

α_1 (rba − rbb) + α_2 (rea − rbb) + α_3 (reb − rbb)
eYa + eDa = Cb,a + Ca,a
eYb + eDb = Ca,b + Cb,bAsset Choi
e First Order Condition
(rba(+1) − rbb(+1)) (Ca(+1))

−ρ
= 0

(reb(+1) − rbb(+1)) (Ca(+1))−ρ = 0

(rea(+1) − rbb(+1)) (Cb(+1))
−ρ

= 0Real Return on Bonds (de�nition)
rba = 1

PaQa(−1)

rbb = RER
PbQb(−1) Euler Equations (Pri
ing of Bonds)

(Ca)
−ρ

= β(Ca)β (Ca(+1))−ρ

Pa(+1)Qa

(Cb)
−ρ

RER
= β(Cb)β (Cb(+1))−ρ

Pb(+1)Qb Quantity Equations
eMa

Pa
= PY,a

(
eYa + eDa

)

eMb

Pb
=

PY,b(eYb+eDb)
RER CES Aggregator and Demands

Ca =
(
µθ

−1

(Ca,a)
θ−1

θ + (1 − µ)
θ−1

(Ca,b)
θ−1

θ

) θ
θ−1

Cb =
(
µθ

−1

(Cb,b)
θ−1

θ + (1 − µ)
θ−1

(Cb,a)
θ−1

θ

) θ
θ−1

1 =
(
µ (PY,a)

1−θ
+ (1 − µ) (PY,b)

1−θ
)(1−θ)−1

Ca,b = (1 − µ) (PY,b)
−θ
Ca

Cb,a = (1 − µ)
(
PY,a

RER

)−θ
Cb

Cb,b = µ
(
PY,b

RER

)−θ
CbReal Return on Assets (de�nition)

rea =
PY,ae

Da+Za

Za(−1)

reb =
PY,be

Db+Zb

Zb(−1) Auxiliary Equations
rxb = rba − rbb
rxe1 = rea − rbb
rxe2 = reb − rbb
cd = Ca − Cb −

RER
ρContinued on next page . . . 43



Table 2 � ContinuedSto
hasti
 Dis
ount Fa
tor
β (Ca) = (Ca)

−ψ

β (Cb) = (Cb)
−ψExogenous Sho
ks (variables in logs)

Da = ζD Da(−1) + εDa

Db = ζD Db(−1) + εDb

Ya = ζY Ya(−1) + εYa

Yb = ζY Yb(−1) + εYb

Ma = ζM Ma(−1) + εMa

Mb = ζM Mb(−1) + εMb

ξ = εξContinued on next page . . .
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Cross produ
t notationNoti
e that the solution equation of ea
h variable has a term of the form (e.g.for equation 1)
z′A1ε = ε′A′

1zThis 
an be written as
(z′ ⊗ ε′) vec (A′

1) = vec (A′
1)

′
(z ⊗ ε)Therefore, sta
king ea
h equation on top of the other would have



vec (A′

1)
′...

vec (A′
n)

′




︸ ︷︷ ︸
A

(z ⊗ ε) = Avec (εz′) .Other Krone
ker rules
ǫ⊗ r′x = εr′x

vec (εz′) ε′ = (z ⊗ Im×m) εε′and also
εvec (εz′)

′
= εε′ (z ⊗ Im×m)

′Shift of endogenous state variablesThe solution we are interested in is a fun
tion of the 
ross produ
ts of thestate ve
tor z′t = [xt−1, st], su
h that Etzt+1 = zt+1. Some solution algorithmswould deliver a solution in terms of the state ve
tor ẑ′t = [xt, st]. For example,as shown in Lombardo and Sutherland (2007) have
st = F1xt−1 + F2st−1 + F3Vt−1 + F4Σ (57)
ct = P1xt + P2st + P3Vt + P4Σ (58)
Vt = Φ̃Vt−1 + Γ̃ ε̃t + Ψ̃ξ̃t (59)
xt = N xt−1 + εt (60)
s
f
t = F1xt−1 + F2s

f
t−1 (61)
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where Vt = (ẑt ⊗ ẑt) and ξ̃t = (ẑt−1 ⊗ εt), or
ẑt ≡

[
xt
st

]
=

[
N 0
F1 F2

] [
xt−1

st−1

]
+

[
0
F3

]
Vt−1 +

[
0
F4

]
Σ +

[
I

0

]
εt(62)

ct =
[
P1P2

]
ẑt + P3 (ẑt ⊗ ẑt) + P4Σ (63)

(ẑt ⊗ ẑt) = Φ̃ (ẑt−1 ⊗ ẑt−1) + Γ̃ ε̃t + Ψ̃ (ẑt−1 ⊗ εt) (64)
s
f
t = F1xt−1 + F2s

f
t−1 (65)Say that we want to express ct in terms of zt. Then we should re
ognize that

ẑt =

[
N 0
0 I

]

︸ ︷︷ ︸
U1

zt +

[
I

0

]

︸ ︷︷ ︸
U2

εt (66)Then repla
ing this in equation (63) we have
ct =

[
P1P2

]
U1zt +

[
P1P2

]
U2ε (67)

+ P3 ((U1zt + U2ε) ⊗ (U1zt + U2ε)) + P4Σ (68)Then, noting that for given matri
es A, B, C and D we have
(A+B) ⊗ (C +D) = (A⊗ C) + (A⊗D) + (B ⊗ C) + (B ⊗D)we 
an rewrite

ct =
[
P1P2

]
U1zt +

[
P1P2

]
U2ε+ P4Σ (69)

+ P3 ((U1zt ⊗ U1zt) + (U1zt ⊗ U2ε))

+ P3 ((U2ε⊗ U1zt) + (U2ε⊗ U2ε))or
ct =

[
P1P2

]
U1zt +

[
P1P2

]
U2ε+ P4Σ (70)

+ P3 (U1 ⊗ U1) (zt ⊗ zt) + P3 [(U1 ⊗ U2) + (U2 ⊗ U1)Pv] (zt ⊗ ε)

+ P3 (U2 ⊗ U2) (εt ⊗ εt)where Pv is a ve
tor permutation matrix su
h that Pv (zt ⊗ εt) = (εt ⊗ zt) =
vec (ztε

′
t).With referen
e to the portfolio solutions given in the text, noti
e that D5 =

P3 (iC , :) [(U1 ⊗ U2) + (U2 ⊗ U1)Pv] where iC indi
ates here the row 
orrespond-ing to the 
onsumption di�erential. SimilarlyR5 = P3 (ir, :) [(U1 ⊗ U2) + (U2 ⊗ U1)Pv]where ir indexes the row 
orresponding to the ex
ess return.If the state-spa
e solution was given in terms of P3vech (ẑtẑ
′
t), then 
anuse the matrix Lh su
h that Lhvech (·) = vec (·), to have P3vech (ẑtẑ

′
t) =

P3L
hvec (ẑtẑ

′
t). 46



Finally noti
e that the solution for the dynami
s of the portfolio is given by
αt = γ′zt+1

zt+1 =

[
I 0
F1 F2

]
ẑt +

[
0
F1

]
εt (71)
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