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Abstract

This paper studies asset markets where Knightian uncertainty about the fundamentals can be

mitigated through costly information acquisition. In these markets, investors' information choices

can be strategic complements, resulting in multiple equilibria, history-dependent prices, and large

price swings occurring after small changes in uncertainty. Our model makes a number of predictions

about the market response to uncertainty shocks, including crashes, followed by sustained rallies

and price overshoots, and switches in information regimes, which the model generates due to the

information complementarities. Our model highlights uncertainty as a new channel for episodes

of extreme price volatility and media frenzies.
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1. Introduction

One standard assumption in �nancial economics is that rational decision makers are able to �gure

out the probability distribution of the events that a�ect asset prices. \Ambiguity," or Knightian

uncertainty, is an alternative way to describe the information context where agents operate. In a

world of Knightian uncertainty, some events cannot be assigned an obvious probability distribution.

The literature on the impact of Knightian uncertainty and ambiguity aversion on asset prices is

expanding at a fast pace (e.g., Epstein and Wang, 1994, 1995; Uppal and Wang, 2003; Maenhout,

2004; Cao, Wang and Zhang, 2005; Caballero and Krishnamurthy, 2008; Epstein and Schneider,

2008; Hansen and Sargent, 2008; Leippold, Trojani and Vanini, 2008; Ozsoylev and Werner, 2008;

Anderson, Ghysels and Juergens, 2009; Caskey, 2009; Easley and O'Hara, 2009; Gagliardini, Porchia

and Trojani, 2009; Bossaert, Ghirardato, Guarneschelli and Zame, 2010; Epstein and Schneider,

2010). Two standard assumptions in this literature are that (i) investors are symmetrically informed

about the asset payo�s or that, alternatively, (ii) investors with less information do not attempt

to resolve their uncertainty by learning from the observed price or do not consider a market for

information.

In this paper, we consider a market where investors are ex-ante uninformed about the expected

value of the asset fundamentals, and display ambiguity aversion: in formulating decisions about port-

folio holdings and information acquisition, agents fear extreme events and worst-case scenarios. Our

departure from the previous analyses of Knightian uncertainty in �nancial markets and macroeco-

nomics is the assumption that the very same agents might resolve their ambiguity, by purchasing

information. Those who indeed do so, pay a (constant) cost, as in Grossman and Stiglitz (1980).

Those who choose to remain uninformed, instead, cannot entirely resolve their uncertainty about the

fundamentals, even after having learned about the equilibrium asset price.

In this market, the value of information is higher than in markets without ambiguity, such as that

in Grossman and Stiglitz (1980). In spite of this property, we show that agents who are informed

and agents who remain uninformed and, hence, ambiguity averse, coexist, in equilibrium. In fact,

we show that a multiplicity of equilibria may occur, as a result of strategic complementarities in the

process of information acquisition: the larger the mass of informed agents, the higher the incentives

to become informed. Complementaries in information acquisition are at the root of many interesting

properties our model generates, such as non-Markovian prices, market crashes and varying levels of

informational e�ciency, including media frenzies, media neglects, and episodes of extreme volatility.

These properties are, of course, in common with other models that feature strategic complementar-

ities in information acquisition (e.g., Froot, Scharfstein and Stein, 1992; Veldkamp, 2006; Barlevi
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and Veronesi, 2000, 2008; Chamley, 2008; Garc��a and Strobl, 2008; Hellwig and Veldkamp, 2009).

However, the economic rationale behind our results is quite distinct.

In a market with aversion towards uncertainty, information acquisition is driven by two opposing

forces. On the one hand, there is a standard strategic substitutability e�ect, by which an increase

in the number of informed agents leads to more informative prices, which reduces the incentives to

acquire information. On the other hand, it is well-known since at least Dow and Werlang (1992) that

in the presence of uncertainty aversion, there is an interval of prices within which the agents neither

buy nor sell short the asset. In our model, the price distribution is determined in equilibrium, and so is

the extent of the agent's market participation. When nobody purchases information, the probability

the price falls in the non-participation region is necessarily zero, as the uninformed investors always

have to trade to clear the market. This probability is, instead, positive in the presence of informed

investors, who step in to clear the market when the uninformed do not trade. Accordingly, in the

equilibrium of our model, the extent of market participation of the uninformed investors decreases

as the mass of informed agents increases. This reduced market participation leads asset prices to be

misaligned from the fundamentals, even more so than in markets without ambiguity, to the entire

bene�t of the informed agents. Therefore, in the presence of ambiguous fundamentals: (i) information

is more valuable than in a market without ambiguity; and (ii) as the mass of informed agents increases,

investors buy information that others have, to avoid being hurt from reduced market participation.

The asset price swings our model generates, arise as the outcome of a coordination problem.

Consider an asset market where uncertainty about the fundamentals is small. In this market, the

incentives to become informed are low, and so is the number of informed agents. Next, suppose that

uncertainty increases. For example, some exogenous developments might lead to widen the set of

possible scenarios a�ecting the asset expected payo�s. As the market undergoes such developments,

the number of agents who purchase information may stay constant or increase in a continuous fashion,

but only up to some critical point, where the market for information enters a media frenzy: the number

of agents who desire to acquire information becomes suddenly very high. The critical point occurs

precisely when information complementarities kick in: as the number of informed agents increase,

information becomes more desirable, to an extent where the market experiences a change in regime

characterized by a jump in the number of informed investors. In this new, informationally more

e�cient market, the uncertainty premium is much lower, and the asset price promptly increases as a

result, although then, it may precipitate again, following an uncertainty shrinkage su�ciently large

to trigger new information complementarities where information is not desirable by any agent, and

the market for information dries up. The market we analyze, then, may be cycling around media

frenzies, media neglects, and discrete price changes, as a result of changes in uncertainty.
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A multi-period extension of our model suggests an explanation for the rebounds and overshoots

we observe in the data. The explanation combines the information demand channel of our basic model

with a friction in the market for information. After an uncertainty shock, the market crashes: although

agents rush to acquire new information, the market for information cannot entirely satisfy the new

demand but with some delay, which leads to a sudden, but temporary, increase in the uncertainty

premium induced by the uninformed investors. But as soon as information delays are absorbed,

strategic complementarities channel a sustained process of information acquisition, leading to a rapid

reduction in the uncertainty premium and, then, a substantial market rally. Our model predicts price

overshoots, again, precisely because of the information complementarities: whilst information delays

dissipate and demand for new information is satis�ed, the market leans towards a new regime, where

the asset price is informationally more e�cient and, hence, even higher than before the shock.

The paper is organized as follows. In the next section, we develop the model. Section 3 describes

the process of information acquisition and Section 4 analyzes the properties of the model, such as

information complementarities, multiple equilibria and price swings. Section 5 presents the multi-

period market. Section 6 concludes. The Appendices contain details omitted from the main text.

2. Model

2.1. Agents and assets

We consider a market for a risky asset, with payo� equal to f = � + �, where � � N (�; !�) and

� � N (0; !�). As in Grossman and Stiglitz (1980), the market is populated by a continuum of agents,
with a fraction � of informed agents and a fraction of 1 � � of uninformed agents. Informed agents
observe � at cost c > 0. The asset supply is z � N (�z; !z) and prevents information to be fully

revealed in equilibrium. A riskless asset is also available for trading, which is in perfectly elastic

supply, and yields a rate of return equal to zero. All agents have negative exponential utility, with

constant absolute risk aversion � .

Our point of departure from Grossman and Stiglitz (1980) is the assumption that all agents are

ex-ante uncertain about the expected value of the fundamentals. Although they are unable to assess

what � is, they believe it belongs to some interval, � 2 [�; ��]; where for some �� � 0, we assume

that � = �0� 1
2�� and �� = �0+

1
2��. We set �0 = 0. The length of this interval, ��, measures the

degree of ambiguity that the investors face in the market. We assume that agents display ambiguity

aversion in that they have maxmin expected utility, as formalized by Gilboa and Schmeidler (1989)

(see below). We initially take the value of � as given, although a fundamental purpose of the paper
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is to determine this value endogenously, as a result of the information acquisition process. In Section

4, we comment on a variant of the model solved in Appendix C, where uncertainty about � cannot

be resolved, in that paying a cost c > 0 would only lead to shrink the degree of ambiguity from ��

to ���, with � 2 (0; 1).

2.2. Informed agents

By observing the realization of �, informed agents resolve their ambiguity straight away, and choose

portfolio holdings so as to maximize,

vI (�) = E
�
�e��WI

�� �; p� ;
where WI = (f � p)xI � c, p is the observed asset price and, �nally, xI is the asset demand, given
by:

xI (�; p) =
E (f j �; p)� p
�V ar (f j �; p) =

� � p
�!�

:

Naturally, while informed agents are able to dissipate their uncertainty about �, they cannot elim-

inate risk: conditionally upon �, the fundamentals, f , are still normally distributed with expectation

� and variance !�, as in Grossman and Stiglitz (1980).

2.3. Uninformed agents

The uncertainty about the expected value of the fundamentals, �, leads the uninformed agents to

choose portfolio holdings, so as to maximize,

vU (p) = min
�
E�
�
�e��WU

�� p� = �e�� min� E�(WU jp)+ 1
2
�2var(WU jp); (1)

where WU = (f � p)xU , xU is the asset demand, and E� (�) is de�ned to be the expectation op-
erator taken under the assumption E (�) = �. The criterion underlying Eq. (1) is the celebrated

maxmin expected utility representation of aversion to Knightian uncertainty, introduced by Gilboa

and Schmeidler (1989).

We conjecture that for every pair (�; z), the equilibrium price function is P (�; z). We look for

an equilibrium in which the uninformed agents sell the asset when the price is su�ciently high and

buy the asset when the price is su�ciently low, in a sense to be made precise below. As we shall

show, this search process leads to a simpler problem, in which the uninformed agents' concern is to
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determine the expectation of the fundamentals in the states of nature in which they buy and sell.

Accordingly, let us introduce the following notation,

Ebuy (f jP (�; �) = p) � E� (f jP (�; �) = p) ; Esell (f jP (�; �) = p) � E�� (f jP (�; �) = p) :

We conjecture that the solution to the uninformed agents' problem is,

xU (p; P (�; �)) =

8>>>>>>>>>><>>>>>>>>>>:

Ebuy (f jP (�; �) = p)� p
�V ar (f jP (�; �) = p) ; for p < Ebuy (f jP (�; �) = p)

0; for p 2
�
Ebuy (f jP (�; �) = p) ; Esell (f jP (�; �) = p)

�
Esell (f jP (�; �) = p)� p
�V ar (f jP (�; �) = p) ; for p > Esell (f jP (�; �) = p)

(2)

In words, the uninformed agents do not participate in the market if the observed equilibrium price

does not take a su�ciently favorable value. This value has to be such that the agents believe that in

the worst-case scenario, they can actually make pro�ts, on \average." In particular, the uninformed

agents enter the market as buyers (sellers) when the price realization, p, is less (larger) than the

agents' worst-case scenario expectation of the asset value, conditional upon p. Hence, the decision

to participate involves a �xed-point problem, in which the expectation of the asset value, conditional

on the price realization, is equal to the very same price realization, in equilibrium,

Ebuy
�
f jP (�; �) = p

�
= p and Esell (f jP (�; �) = �p) = �p: (3)

The uninformed agents do not participate in the asset market if the equilibrium price realization, p,

is such that p 2 [p; �p]. Naturally, the cuto�s p and �p are endogenous, and we shall verify that in
equilibrium, they satisfy p < �p.

2.4. Equilibrium

We conjecture that the equilibrium price function is, P (�; z) = P (s (�; z)), where s (�; z) is the

compound signal, de�ned as,

s (�; z) =
�

�!�
� � (z � �z) : (4)
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From the market clearing condition,

(1� �)xU (p; P (�)) + �xI (�; p) = z; (5)

we easily see that the compound signal is observationally equivalent to the equilibrium price. There-

fore, the equilibrium in this market is also one in which uninformed agents condition the expectation

of the asset value on the compound signal.

We have:

Proposition I. The equilibrium price is piecewise linear in the compound signal,

P (s) =

8>>>>><>>>>>:

a+ bs; for s < s

a+
�!�
�
s; for s 2 [s; �s]

�a+ bs; for s > �s

(6)

for some constants a; �a; a; b given in Appendix A. The threshold values for the compound signal, s; �s,

satisfy:

s =
�

�!�
�+

!s
!z
�z; �s� s = �

�!�
��;

where !s is the variance of s in Eq. (4). Finally, we have that p < �p, where the expressions for p

and �p are given in the Appendix A.

Figure 1 depicts the equilibrium price in Proposition I. The solid line is the price schedule arising

in the presence of ambiguity, �� > 0. The dashed line is the benchmark price in the Grossman

and Stiglitz (1980) model. In the top panel, the proportion of informed agents is � = 0:2, while in

the bottom panel, � = 0:5. In equilibrium, the uninformed agents' portfolio choice, as formalized in

Eq. (2), reects the expected returns in the worst-case scenarios: the uninformed agents buy when

s < s (sell when s > �s), but less aggressively than they would do in the absence of ambiguity. Such

a pessimistic behavior leads to a price lower (higher) than the benchmark for low (high) realizations

of the compound signal, s. As the proportion of informed agents, �, increases, the price impact of

uninformed (and ambiguity averse) agents is reduced, and so is the extent of this price impact, as

illustrated by Figure 1.

When the compound signal, s, lies within the range [s; �s], the uninformed agents do not participate

in the market. Proposition I tells us that the non-participation region, �s�s, is proportional to the size
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of the ambiguity in the market, ��. The proportionality factor, �
�!�
, is the total risk-bearing capacity

of the informed agents, de�ned as the mass of informed agents, �, times their trading aggressiveness,
1
�!�
. As the informed risk-bearing capacity increases, prices move towards fundamentals. It now takes

more extreme realizations of the compound signal, s, for prices to be favorable enough and induce

uninformed agents to trade, in equilibrium. Therefore, the non-participation region widens.

The non-participation region is proportional to �� for the following reasons. Consider the com-

parative statics of a change in � and ��. If � increases, Ebuy (f jP (�; �) = p) increases as well, for
each price realization p, but then the threshold equilibrium price at which the agent does not buy

the asset, p, has to increase, by the �xed point problem de�ned by Eqs. (3). This requires that s

increase. A similar reasoning leads to the conclusion that as �� decreases, �s does necessarily have to

decrease as well.

Finally, this market exhibits a feature about the information transmitted by the price. By ob-

serving the price, the uninformed investors learn about the fundamentals, in that they experience a

reduction in their initial uncertainty about the expected payo�s:

0 < E�� (f jP (�) = p)� E� (f jP (�) = p) < E�� (f)� E� (f) � ��� �; (7)

for each price realization p (see Appendix A). However, such a shrinkage in uncertainty is incomplete,

as the �rst inequality in (7) reveals. In other words, the price does not reveal all the information

informed investors have, only a portion of it.
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Figure 1. This picture depicts the equilibrium asset price in Proposition I, as a function of the

compound signal, s. Both panels compare the price function with the Grossman-Stiglitz linear

function (the dashed line), which arises in the absence of ambiguity in the market, �� = 0. The

region delimited by the vertical dashed lines is where ambiguity averse agents do no participate.

Parameters values are �� = 2, !� = !� = !z = � = 1, and �z = 0. In the top panel, the

proportion of informed agents, � = 0:2, and in the bottom panel, � = 0:5.
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3. Information acquisition

This section analyzes how ambiguity a�ects the incentives to acquire fundamental information, and

solve for the endogenous fraction of informed agents, �. As in Grossman and Stiglitz (1980), all

agents need to evaluate ex-ante expected utilities, before deciding whether to become informed or

not. However, the process of information acquisition di�ers from that in Grossman and Stiglitz, in

that all agents are ex-ante ambiguity averse, which leads them to assess future events at the worst-case

scenarios.

3.1. Uninformed agents

The ex-ante expected utility for a would-be uninformed agent is:

UU (�) = min
�
E� [vU (s (�; z))] ; (8)

where vU (s) is the interim utility for the uninformed agents, de�ned as

vU (s) = �e��CU (s); CU (s) = min
�
E� (WU j s)�

1

2
�var (WU j s) :

By Eq. (4), the compound signal s is normally distributed, with mean �s (�) and variance !s, where,

�s (�) �
�

�!�
�:

In Appendix B, we provide a closed-form expression for the unconditional expectation of the interim

utility:

E� [vU (s)] =

Z 1

�1
vU (t) d� (t;�s (�) ; !s) ;

where � (�;�; !) denotes the cumulative function of a normal variate with mean � and variance !.
Figure 2 depicts the interim utility, vU (s), and the density function d� of the compound signal, s.

The interim utility achieves its minimum in the non-participation region, where the interim certainty

equivalent CU (s) is at at zero. Moreover, it is monotonically increasing, and symmetric, as the
compound signal moves away from the non-participating thresholds s and �s. The next proposition

provides the solution to the problem in Eq. (8):

Proposition II. Let �z � 0. Then, the ex-ante expected utility of the uninformed agents, UU (�; �),
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is minimized at,

�U (�) = min

�
�!�
�

!s
!z
�z; ��

�
:

5 0 5
1

0.8

0.6

0.4

0.2

0

0.2

0.4

s

Choice of the uninformed agents

Interim uti l i ty
Probability density

Figure 2. This picture depicts the identi�cation and assessment of the worst-case scenario made

by uninformed agents. The worst-case scenario occurs over the non-participation region, [s; �s],

where the interim utility attains its minimum. Accordingly, the interim utility is given the largest

probability weight at ŝ = 1
2 (s+ �s). The vertical dashed line connects the probability density to

the interim utility at the point ŝ. Parameters values are �� = 2, !� = !� = !z = � = 1, � = 0:1,

and �z = 1. The resulting value of ŝ is 1:01.

The economic mechanism underlying Proposition II is the following. The uninformed agents

attach the largest probability to the occurrence of the worst events, and choose � in such a way that

the expected value of the signal, �s (�), is as close as possible to the midpoint in the non-participation

region, ŝ = 1
2 (s+ �s). Naturally, �U (�) is increasing in the average asset supply, �z: following an

increase in �z, for markets to clear, the probability the uninformed agents enter as buyers (sellers)

must increase (decrease) and as a result, the non-participation region shifts to the right.
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3.2. Informed agents

The ex-ante expected utility for a would-be informed agent is,

UI (c; �) = min
�
E� [vI (�; s (�; z))] ; (9)

where vI (�; s) is the interim utility for any informed agent, de�ned as

vI (�; s) = �e��(CI(�;s)�c); CI (�; s) =
1

2

(� � P (s))2

�!�
;

and the equilibrium price, P (s), is as in Eqs. (6) of Proposition I.

In Appendix B, we provide a closed-form expression for the unconditional expectation of the

interim utility,

E� [vI (�; s (�; z))] = e
�c
r

!�
! f js

� E� [�vI (s;�)] ; (10)

where ! f js denotes the variance of the fundamentals, f , conditional on the compound signal s, and

�vI (s;�) is some negative function de�ned in Appendix B.

3.3. The value of information

An equilibrium with endogenous information acquisition is de�ned in the usual way, as the fraction

of informed agents, �� 2 [0; 1], that makes any agent ex-ante indi�erent whether to be informed or
not, UI (c; ��) = UU (��), or,1

UI (c; ��)
UU (��)

= e�c
r

!�
! f js| {z }

Grossman-Stiglitz e�ect

�
E�I [�vI (s;�)]

E�U [vU (s)]| {z }
Ambiguity aversion e�ect

= 1; (11)

where �I and �U solve the two problems in Eqs. (8) and (9).

The left hand side of Eq. (11) is the value of information, evaluated at ��. It is the product of two

terms. The �rst term is the usual value of information in the Grossman and Stiglitz (1980) model,

the benchmark without ambiguity, �� = 0. It summarizes the usual trade-o� between the cost of

acquiring information and its bene�ts, in terms of the informational advantage over the uninformed

1Non-interior equilibria are de�ned in the usual way, as �� = 0 such that UI (c; 0) < UU (0) and �� = 1 such that
UI (c; 1) > UU (1).
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fringe. The e�ect of ambiguity on the incentives to acquire fundamental information is captured by

the additional term in Eq. (11), which we label \ambiguity aversion e�ect." The next proposition

relates ambiguity to the value of information:

Proposition III. Let �� > 0. Then, the ratio
E�I [�vI(s;�)]

E�U [vU (s)]
in Eq. (11) is less then one. That is,

information is more valuable in a market with ambiguous fundamentals (�� > 0) than in a market

without ambiguity (�� = 0).

The additional bene�ts of collecting fundamental information, due to the presence of ambiguous

fundamentals, can be better understood by comparing the welfare of both types of agents to a bench-

mark without ambiguity. First, for any realization of the fundamentals, uninformed agents trade

lower quantities than if there was no ambiguity (or if they were ambiguity neutral), as explained

in Section 2. Therefore, by giving up investment opportunities, uninformed agents experience lower

expected utility. Such a welfare reduction is actually reinforced from an ex-ante perspective: while

assessing the outcomes arising from being uninformed at the trading stage, agents attach the largest

probability weight to those future states in which participation is the lowest, as formalized in Propo-

sition II and illustrated in Figure 2.

Second, informed investors bene�t from the price impact of uninformed ambiguity-averse investors,

as illustrated in Figure 1: they can buy at lower prices and sell at higher prices, thus making higher

pro�ts.

Since the value of information increases in the presence of ambiguity, we immediately obtain the

following result on the amount of resources spent on collecting information:

Corollary 1. Information is purchased by more agents in the presence of ambiguity than in markets

without ambiguity.

4. Information complementarities, multiple equilibria and price

swings

Complementarities in information acquisition arise when the incentives to acquire information become

stronger with the size of informed agents. This section analyzes conditions leading to this situation,

and their implications for the asset price.
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4.1. Complementarities in information acquisition

The following proposition identi�es su�cient conditions under which ambiguity leads to complemen-

tarities in the process of information acquisition:

Proposition IV. Let �� > 0. Then, there exists a level of the average asset supply ��z > 0, such

that there are complementarities in information acquisition for all �z > ��z.

As the fraction of informed agents � increases, there are two opposing forces that a�ect the incen-

tives to acquire information. The �rst relates to the standard strategic substitutability e�ect, which

is well-known since Grossman and Stiglitz (1980): more informed trading increases price e�ciency,

which reduces the informational advantage of the informed agents above the uninformed. This e�ect

is still present in our model, as the �rst term in Eq. (11) is monotonically increasing in �. Our anal-

ysis uncovers a second e�ect, speci�c to ambiguity, and captured by the second term in Eq. (11): the

volume of uninformed trading decreases with the mass of informed agents, which makes uninformed

agents worse o�, ex-ante. Proposition IV shows that the ambiguity aversion e�ect may dominate

the strategic substitutability e�ect, thereby generating strategic complementarities in the process of

information acquisition.

The role the average asset supply, �z, plays in generating these information complementarities is

subtle. First, note that the informed agents' ex-ante utility is also decreasing in �, as a reduction in

the mass of uninformed agents reduces the extent of the price impact informed agents bene�t from

(see Figure 1). This e�ect might counter-balance the net e�ect of an increase in � on relative welfare,

but it becomes less relevant for larger values of the average asset supply. Consider, for example, the

case in which the market is only populated by uninformed investors, in which case the pricing e�ect

of ambiguity aversion is the highest. If the asset supply is su�ciently high, on average, agents will

be buyers most of the time. With uninformed investors holding the positive supply and being price

setters, prices reect an ambiguity premium: low expected payo�s, �, translate into low prices. The

worst-case scenario for an agent considering, ex-ante, to become informed, then, is that the expected

payo�s are indeed low (i.e. �I = �), so that the perceived ambiguity premium (and the bene�ts from

it) vanish. If the ex-ante perceived ambiguity premium is low to start with, then, as � increases, the

shrinkage in the ex-ante utility of the informed investors is weak, compared to the loss in the ex-ante

utility of the uninformed. As a result, the ambiguity aversion e�ect in Eq. (11) strengthens with �

when �z is large enough, thereby channelling information complementarities.

Do these results arise by the assumption that informed agents resolve all of their ambiguity? It
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is not the case. In Appendix C, we consider a model where uncertainty cannot be resolved: paying a

cost c > 0 leads informed agents to reduce their ambiguity from �� to ���, with � 2 (0; 1). We show
that complementarities in information acquisition arise even in this case. This result sheds further

light on our �ndings: because the Grossman and Stiglitz (1980) framework can only lead to strategic

substitutability in information acquisition, then, clearly, information complementarities arise in our

model because agents are heterogeneous in their ambiguity towards fundamentals.

4.2. Multiple equilibria, crashes and rebounds

Information complementarities may lead to multiple equilibria. As an illustration, Figure 3 displays

the value of information, as a function of �, obtained for two degrees of ambiguity, ��.2 The solid

line, which corresponds to �� = 1, leads to three equilibria. Two of these, �� = �U and �
� = �S ,

are interior equilibria: the leftmost equilibrium (�U ) is unstable, and the rightmost (�S) is stable.

The third, and stable, equilibrium is that with �� = 0. As �� increases, the value of information

increases, for each �, and shifts the leftmost (unstable) equilibria to the left, and the rightmost

(stable) equilibria to the right. When �� is su�ciently high, there remains one equilibrium only, and

stable. The dashed line in Figure 3, which corresponds to �� = 1:30, depicts an example of such a

situation.

Figure 4, right panel, depicts the unconditional expectation of the equilibrium price, assuming

the asset is in positive supply, as a function of the size of ambiguity, when the proportion of agents

who acquire information is determined endogenously, as in the left panel. A negative price, i.e. a

price discount, reects the positive expected return that is required by the agents to hold the asset.

The �gure shows how, for low levels of ambiguity, when the economy is in its \media neglect" regime,

an increase in �� leads to a larger price discount, as the price reects the possible occurrence of

increasingly more severe worst-case scenarios. As the size of ambiguity gets su�ciently large, and

the economy shifts to its \media frenzy" regime, more investors purchase information. This jump in

the size of informed agents implies a discrete reduction both in the price impact related to ambiguity

aversion and in the conditional risk perceived by the market, reducing the price discount. As a

consequence, the average price jumps up. Moreover, within this regime, the equilibrium fraction

of informed agents increases with the size of ambiguity, such that higher values of �� lead to a

lower price discount. Therefore, our model predicts a non-monotonic relation between the degree of

Knightian uncertainty and uncertainty premia. Furthermore, the price inherits the same properties

as those featured by the proportion of informed agents: it exhibits path-dependence and di�erent

2Note that due to negative exponential utility, lower values of the ratio in Eq. (11) mean higher values of information.
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jump sizes, according to whether the size of ambiguity is increasing or decreasing.

U S
0.2 0.4 0.6 0.8

0.95

1.00

1.05

1.10

Value of information

Complementarities in information acquisitionand multiple equilibria

Figure 3. This picture depicts the value of information, UI(c;�)UU (�) , as a function of the fraction of

informed agents, �, for a given cost of information, c. Parameters values are !� = !� = !z = � =

�z = 1, and c = 0:5. The solid (dashed) line is the value of information for �� = 1 (�� = 1:30).

Figure 4 (left panel) depicts the proportion of agents who acquire information, as a function of

the size of ambiguity, ��. We can interpret changes in �� as those that result in a repetition of two-

period markets, as we further elaborate in the next section. When ambiguity is low, say �� = 0:5,

the market is in its \media neglect" regime. If ambiguity increases, say to 1.30, the proportion of

agents who become informed increases by a discrete change: from zero, to nearly 75%, a \media

frenzy" regime. As �� decreases back to, say, 0:8, the market for information precipitates again.

The model, then, generates path-dependence: for any size of ambiguity �� between the two vertical

dashed lines, the number of informed agents can be either zero or strictly positive, according to the

previous values of ��. Accordingly, given that the value of information increases with ��, the jump

size in the proportion of informed agents is larger when we head towards times of higher uncertainty

than when we move back to times of decreased uncertainty.
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Figure 4. Media frenzies, media neglects, and market crashes and rebounds. Parameters values

are !� = !� = !z = � = �z = 1, and c = 0:5.

5. Multi-period market

5.1. Information and equilibrium

We consider a sequence of two-period markets, in which the asset payo� as of time t is ft = �t + �t,

where �t denotes its \persistent" component,

�t+1 = (1� ��)�t + ���t + ���t�t+1; (12)
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and �t and �t are both independent and identically distributed with �t � N (0; !�) and �t � N (0; 1),
�� is the persistence parameter, and �� is the instantaneous volatility of �t+1=�t. Finally, �t is

independent and identically drawn from some distribution with support [��; �]. As in the static case

we denote �� = ��� �.
In Appendix D, we show that the equilibrium price is the same as that in Eq. (6) of Proposition

I, with some time-varying coe�cients and with var (�t+1j �t) = �2��
2
t replacing !�, and var (stj �t) =

�2t
�2!�

!��
2
� + �

2
z replacing !s. Finally, in the presence of multiple equilibria, we rely on the following

selection criterion: if ��t�1 is a stable equilibrium at time t; then ��t = �
�
t�1; otherwise �

�
t is selected

to be the stable equilibrium closest to the ��t�1:

5.2. Predictions

5.2.1. Price dynamics

We compare the price dynamics to those predicted by the Grossman and Stiglitz (multi-period)

market, arising when �� = 0. To make the comparison meaningful, we �x the information cost c for

our model and, then, search for the information cost in the Grossman-Stiglitz market such that the

average value of information equals the corresponding value in the market with ambiguity, over all

the simulations. Moreover, to avoid additional volatility in the price, we center the ambiguity size,

��, around �t, and set �t = 1.

Figure 5 shows that the prices in the market with ambiguity are more volatile than those without.

The rationale underlying the price swings in this �gure relate to the information complementarities our

model generates. An increase in the value of the fundamentals, �t, leads to an increased conditional

variance, var (�t+1j �t) = �2��
2
t , which ultimately results in a higher value of information, an e�ect

similar to that in Veldkamp (2006). In our model, information complementarities arise when the

increase in �t reaches a critical value such that the agents coordinate to switch from an equilibrium

with information neglects to one with information frenzies, similarly as for the comparative statics of

Figure 3 relating to changes in ��.
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Figure 5. Bold solid line: the price in a market with ambiguity. Solid line: the price in market

without ambiguity. Parameter values are �z = 1, � = 2:5, !z = 0:25
2, !� = 0:30

2, �� = 0:95, and

�� = 0:10, �� = 0:5= (1� ��). The cost of information in the market with ambiguity is c = 0:164,
and in the market without ambiguity is c = 0:155. These values guarantee the average value of

information is the same in the two markets.

Our model predicts that the price overshoots the benchmark without ambiguity. These overshoots

arise as during information neglects, the price falls substantially, due to ambiguity discounts, while

during information frenzies, the price increases for the opposite reason. The downward overshoots

are quite peculiar to our model: no model is known to display information complementarities that

produce such downward overshoots.

5.2.2. The impact of an uncertainty shock

What is the price impact of an uncertainty shock? We address this issue by assuming uncertainty

is a persistent process subject to jumps: once an uncertainty shock hits the market, it is absorbed
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gradually, such that uncertainty reverts to its long-run value ��,

��t+1 =
�
1� ���

�
��+ �����t + ���Jt+1; (13)

where ��� is the persistence parameter, and Jt is the uncertainty shock, which is independent and

identically binomially distributed with a \small" frequency p. The parameter ��� de�nes the size

of the uncertainty shock. We assume ��t is observed at time t prior to the trading stage but after

information choices are made.
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Figure 6. Equilibrium price and information response to an uncertainty shock. The top panels

depict the price response to an uncertainty shock; the bottom panels depict the endogenous infor-

mation response to an uncertainty shock (bottom left) and the uncertainty shock (bottom right).

Dotted-dashed lines: price response in a market without information (top panels). Solid (dashed)

lines: price and information response in a market with endogenous information acquisition and

information stickiness for c = 0:192 (c = 0:191). Other parameter values are as in Figure 5 except
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� = 2, � = 90%, and the parameters governing the dynamics of ambiguity in Eq. (13) �xed at

�� = 5, ��� = 0:75, ��� = 12, and p = 1%.

We consider a market where successive generations of traders work in long-lived �nancial insti-

tutions. Traders have a one-period investment horizon, and trade a short-lived asset, a claim to the

dividend process with the persistent component in Eq. (12). We assume that �nancial institutions

entertain long-term information contracts, in that in each period, these contracts can only be dis-

solved with some probability 1� �. Moreover, we assume the market of information is sticky on the
upside as well, in that it takes time for this market to entirely absorb new demand for information

and that as a result, new contracts can only be purchased with some probability 1��. To summarize,
every trader in his generation initially inherits the information choice (whether to purchase costly

information or not) of the preceding trader he replaces. However, every new trader might success-

fully be satis�ed with his information choice. In each period, then, only a fraction (1� �) of the new
(positive or negative) demand for information is satis�ed:

�t � �t�1 = (1� �) (��t � �t�1) ; (14)

where ��t denotes the fraction of agents who would become informed in the absence of any friction.

Figure 6 displays shows the model's predictions about the impact of an uncertainty shock. In the

top panels, we compare the price response in the market with ambiguity but with uninformed agents,

with the response in the market with endogenous information acquisition, assuming the market for

information is sticky, with �t as in Eq. (14), and � = 90%. An uncertainty shock has an immediate

negative price impact on both markets: the market crashes, as the agents are caught by surprise

by the uncertainty shock and, then, demand, suddenly, a sizeable ambiguity premium. In a market

where agents cannot acquire information, the uncertainty shock is absorbed, but only gradually as

uncertainty itself (bottom-right panel) exogenously reverts to its long-run value. In a market with

endogenous information acquisition, instead, the agents' incentives to purchase information lead them

to remove the ambiguity premium occurred after the uncertainty shock. As a consequence, the asset

price recovers quickly. In fact, the price overshoots, as it becomes more informative than it was prior to

the uncertainty shock and uncertainty is (endogenously) removed faster than in the no information

case. In the top-right panel, with a lower cost of information, the market is \trapped" in a new

equilibrium regime in which information demand remains positive even after uncertainty resolves. In

such a new regime, more e�cient prices sustain persistently higher asset valuations.
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Would these model's implications help explain the actual market response to an uncertainty shock?

Figure 7 depicts the impulse-response function of the aggregate stock market to an uncertainty shock,

estimated through a VAR model including monthly stock returns and a series of uncertainty shocks,

from January 1957 to December 2008. Stock returns are those based upon the Fama and French

(1993) market benchmark, and uncertainty shocks are those identi�ed by Bloom (2009), which we

use to de�ne a time series which takes a value equal to one during the month when the shock took

place, and zero otherwise. We control these estimates for the economic conditions under which the

uncertainty shocks occurred, by feeding the VAR with the corporate spread and the term spread

(de�ned as in Fama and French, 1989) and the dividend yield, as well as the recession indicator

calculated by the National Bureau of Economic Research. In Appendix D, we provide details about

the VAR methodology we employ, and a disaggregated description of the uncertainty shocks and

subsequent market developments.

0 2 4 6 8 10 12 14 16
0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8
Stock market response to an uncertainty shock

Im
pa

ct
 o

n 
m

a
rk

et
 re

tu
rn

 (i
n 

%
)

Months after the shock

Figure 7. This picture depicts the response of the aggregate stock market to an uncertainty

shock. The solid line is the �rst moment of the posterior distribution of the orthogonalized impulse-

response function of the market to an uncertainty shock. Dashed lines are one standard-error bands

around the response, constructed through the second moments of the posterior impulse-response
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function.

The clear pattern emerging from Figure 7 is that the aggregate stock market plummets after

an uncertainty shock, although, then, it rebounds rapidly and overshoots for several months. A

simple explanation for these rallies is that uncertainty resolves quickly. However, anecdotal evidence

suggests uncertainty shocks persist for more than just two or three months. Moreover, a mere

exogenous reduction in uncertainty by itself seems unlikely to generate price overshoots. Our model

o�ers an alternative explanation, based on a sustained information acquisition process, resulting from

an higher value of information due to the uncertainty shock. Our model actually predicts two possible

outcomes, as explained: one, where prices return to their level before the shock, as in the top-left

bottom of Figure 6, and a second, where information acquisition leads to a change in information

regime, with a boosted stock market. These two outcomes might account for uncertainty episodes

exerting di�erent market impacts, which are documented in Appendix D, on top of the average impact

as summarized by the estimated impulse-response function in Figure 7.

6. Conclusion
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Appendices

Appendix A: Proofs for Section 2

Proof of Proposition I. By the market clearing condition, Eq. (5), the equilibrium price arising when the
uninformed agents do not participate is:

P (s) = ��!�
�
�z +

�!�
�
s;

which is the second line in Eqs. (6). Next, we compute the uninformed agents' expectation of the asset

payo�, in the states of nature in which these agents participate. Using !s =
�

�
!��

�2
!� + !z, straight forward

computations leave:

Ebuy (f jS = s) =
�2!2�!z

�2!� + �2!2�!z
�+

��!�!�

�2!� + �2!2�!z
s (A1)

Esell (f jS = s) =
�2!2�!z

�2!� + �2!2�!z
��+

��!�!�

�2!� + �2!2�!z
s (A2)

Next, we plug Eqs. (A1)-(A2) into the demand schedule, Eq. (2), replace the result into the market clearing
condition, Eq. (5), conjecture the piece-wise linear price function in Eqs. (6), and solve for undetermined
coe�cients, obtaining,

a =
��2�z�!�!� +

�
� (1� �)!� � �z�!� (!� + !�)

�
�2!z!�

�2!� + ��2!�!z!� + �2!z!2�

�a = a+
�� (1� �) �2!z!2�

�2!� + ��2!�!z!� + �2!z!2�

a = ��!�
�
�z

b =

�
�!� + !z�

2!� (!� + !�)
�
�!�

�2!� + ��2!�!z!� + �2!z!2�

Finally, we determine the threshold for the compound signal, s and �s. We use the cuto� conditions in Eq.
(3). As for s, consider the �rst equation, Ebuy

�
f jP (�; �) = p

�
= p. For s � s, the conjectured price function

is linear in s. Therefore, we solve for p by equivalently solving for s in the following condition,

Ebuy (f jS = s) = p = a+ bs;

where Ebuy (f jS = s) is given by Eq. (A1), and the second equality holds by the �rst line of the conjectured
price function in Eqs. (6). We do the same to determine �s, by solving,

Esell (f jS = �s) = �p = �a+ b�s;
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where Esell (f jS = �s) is given by Eq. (A2). The expressions for s and �s given in Proposition I then follow by
simple computations. Finally, we need to compute the threshold prices �p and p. We plug Eqs. (A1)-(A2) into
Eq. (3), use the price function in Eqs. (6), and obtain,

p = �+
�!�
�!�!z

�z; �p = ��+
�!�
�!�!z

�z:

The previous expressions con�rm that p < �p. �

Proof of Eq. (7). Follows by Eqs. (A1)-(A2). �

Appendix B: Proofs for Section 3

Remark on notation. To alleviate the notation, we �x � (�) � � (�; 0; 1).

Derivation of the utilities for the would-be uninformed and informed agents.

Would-be uninformed agents. By Eqs. (A1)-(A2), we have,

xU (s) =

8>>>>>>>>>><>>>>>>>>>>:

Ebuy (f j s)� P (s)
�! f js

=
�

�! f js
(s� s) ; for s < s

0; for s 2 [s; �s]

Esell (f j s)� P (s)
�! f js

=
�

�! f js
(�s� s) ; for s > �s

where ! f js is the variance of f conditional on s, P (s) is the equilibrium price in Eqs. (6) of Proposition I,
and:

! f js = !� +
!z!�
!s

; � =
�3!z!

3
�

�
�2!� + �

2!z!
2
� + �

2!z!�!�
��

�2!� + ��2!z!�!� + �2!z!2�
� �
�2!� + �2!z!2�

� : (A3)

Accordingly, the interim utility is,

vU (s) = �e��CU (s) =

8>>>>>>>>>><>>>>>>>>>>:

� exp
�
�1
2

�2

! f js
(s� s)2

�
; for s < s

�1; for s 2 [s; �s]

� exp
�
�1
2

�2

! f js
(s� �s)2

�
; for s > �s

(A4)
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Integrating over the distribution of the compound signal, s, leaves

E� [vU (s)] = �
Z 1

�1
e��CU (t)d� (t;�s (�) ; !s) �

X
`2fbuy;np;sellg

J`�;

where

Jbuy� = �
Z s

�1
e��CU (t)d� (t;�s (�) ; !s) ;

Jnp� = �
Z �s

s

d� (t;�s (�) ; !s) ;

J sell� = �
Z 1

�s

e��CU (t)d� (t;�s (�) ; !s) :

A direct computation of these integrals yields,

Jbuy� = �� exp
 
� �

2 (s� �s (�))
2

2
�
! f js + �

2!s
�!�� �

p
!s
(s� �s (�))

�
;

Jnp� = �
�
�

�
�s� �s (�)p

!s

�
� �

�
s� �s (�)p

!s

��
;

J sell� = �� exp
 
� �

2 (�s� �s (�))
2

2
�
! f js + �

2!s
�!�1� �� �

p
!s
(�s� �s (�))

��
;

where,

� =

s
! f js

! f js + �
2!s

: �

Would-be informed agents. Let � �js (�) and ! �js denote the conditional expectation and variance of � given s,
which are easily shown to be:

� �js (s;�) =
�2!2�!z

�2!� + �2!2�!z
�+

��!�!�

�2!� + �2!2�!z
s; ! �js =

!z!�
!s

: (A5)

We have,

E� [vI (�; s (�; z))] = e
�c

Z 1

�1
E� [vI (�; s)j s] d� (s;�s (�) ; !s) (A6)

where,

E� [vI (�; s)j s] = e�c
Z 1

�1
vI (�; s) d�(�;� �js (s;�) ; ! �js):
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Computing the integrals yields,

E� [vI (�; s)j s] = �e�c
r

!�
! f js

exp

0B@�1
2

�
� �js (s;�)� P (s)

�2
! f js

1CA ; (A7)

where P (s) is the equilibrium price in Eqs. (6) of Proposition I. Replacing P (s) and the expression for
� �js (s;�) in Eq. (A5) into Eq. (A7), leaves:

E� [vI (�; s)j s] = e�c
r

!�
! f js

�vI (s;�) ; (A8)

where, for ŝ = 1
2 (s+ �s) and � de�ned as in Eq. (A3),

�vI (s;�) =
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!21A ; for s > �s

(A9)

and
�̂ =

�!�!z
�!s

:

Finally, substituting Eq. (A8) into Eq. (A6), and integrating, leaves Eq. (10) in the main text, with

E� [�vI (s;�)] =
X

`2fbuy;np;sellg

I`�;

where,
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Isell� = �� exp
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Proof of Proposition II. We claim that �s = ŝ � 1
2 (s+ �s), or equivalently, that for all � > 0,

���UU � �
Z 1

�1
vU (s)��' (s) ds > 0; (A10)

where ��' (s) � ' (s; ŝ; !s)� ' (s; ŝ+ �; !s), and '
�
�; �; �2

�
denotes the Normal density function, with mean

� and variance �2. Note that the function vU (s) in Eq. (A4) is symmetric about ŝ, so that Proposition II
follows once, we show that the inequality in (A10) holds true for all � > 0.

We have:

��' (s) =

(
f
�
s� ŝ� 1

2�
�
� 0 for all s 2

�
�1; ŝ+ 1

2�
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2�� s
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�

where we have de�ned:
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(x� 1
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:

Next, de�ne the two functions,

h1 (s) �

8<: e
� 1
2

�2

! fjs
(s�s)2

for all s 2 (�1; s]

1 for all s 2
�
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�
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(
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�
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�

e
� 1
2

�2

! fjs
(s��s)2

for all s 2 (�s;1]

In terms of h1 and h2, we have, �vU (s) = h1 (s) Ifs�ŝ+ 1
2 �g + h2 (s) Ifs�ŝ+ 1

2 �g, where If�g denotes the
indicator function, and the expression for ��UU in (A10) is,

���UU =
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2 �

�1
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ŝ+

1

2
�� s

�
ds

=

Z ŝ+ 1
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where the second equality follows by the symmetry of vU (s) about ŝ. �
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Proof of Proposition III. Consider the indi�erence condition in Eq. (11). We wish to show that for �� > 0,

UI (c; �)
UU (�)

< e�c
r

!�
! f js

:

Because E�I [�vI (s;�)] and E�U [vU (s)] are both strictly negative, the previous inequality holds true if:

E�I [�vI (s;�)] > E�U [vU (s)] ; (A11)

where we de�ne, as in the main text:

�I 2 argmin
�
E� [�vI (s;�)] ; �U 2 argmin

�
E� [vU (s)] :

To show that (A11) is true, suppose the contrary, i.e. that:

E�I [�vI (s;�)] � E�U [vU (s)] : (A12)

By direct comparison of Eq. (A4) and Eq. (A9), we have that 0 > �vI (s; �) � vU (s) for all � 2
�
�; ��

�
, and

s 2 R, the second inequality being strict on some open set in R. As a consequence, we must have the inequality,
E�I [�vI (s;�)] > E�I [vU (s)] which, combined with (A12), yields,

E�I [vU (s)] < E�I [�vI (s;�)] � E�U [vU (s)] ;

contradicting that �U minimizes E� [vU (s)]. �

Proof of Corollary 1. Let ��(��) solve the indi�erence condition:

UI (c; �)
UU (�)

= 1:

Assume now that ��(0) � ��(��), for some �� > 0. By Proposition III, this cannot be the case as we would
have

UI (c; ��(��))
UU (��(��))

< 1: �

Proof of Proposition IV. We wish to show that

UI (c; 0)
UU (0)

>
UI (c; 1)
UU (1)

;

or
I0
J0
J1
I1
>

s
! f js;�=0

! f js;�=1
; (A13)
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where ! f js;�=0 = lim�!0 ! f js, ! f js;�=1 = lim�!1 ! f js, and,

I�� = lim
�!��

X
`2fbuy;np;sellg

I`�I ; J�� = lim
�!��

X
`2fbuy;np;sellg

J`�U ; �� 2 f0; 1g :

We now proceed with determining I�� and J�� for �� 2 f0; 1g, and for �z su�ciently large. Then, we shall
prove that (A13) holds true for �z su�ciently large. We shall need the results recorded in the next two lemmas.

Lemma 1. There exists a �̂z > 0 such that for all �z � �̂z, we have that argmin�
�
Ibuy� + Isell�

�
= �:

Proof. We have,
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where c0 =
�
1 + �2!f!s

�� 1
2 . It is easy to show that � 7! Ibuy� is increasing. We are left to show that with �z

su�ciently large, we have that � 7! Isell� is increasing as well. We have,
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This expression is positive for all �z : �!f�z � (��� �) � 0, which it does when �z � ��
�!f

. �

Lemma 2. There exists a ��z > 0 such that for all �z � ��z we have that argmin�
�
Jbuy� + Jnp� + J sell�

�
= ��:

Proof. Follows directly by Proposition II, once we set ��z =
�!z
�!�!s

��. �

We are now ready to compute I0, J0, I1 and J1.
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� As for I0, note that, clearly, I0 = min�(Ibuy� +Isell� ). Therefore, by Lemma 1, and a simple computation,
we have that for all �z � �̂z, and with �̂z as in the proof of Lemma 1,

I0 = Ibuy� + Isell�

= �c0

"
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2
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2
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2
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2
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!
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�
��z +���!zp

!z
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�#
;

where the second equality follows by a simple computation.

� As for J0 and I1, it is easily seen that J0 and I1 are independent of �. They are,
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;

where c1 =
�
1 + �2!z!�

�� 1
2 and c2 = �

2!z!
2
� + !�.

� As for J1 we have, by Lemma 2 and a direct computation, that for all �z � ��z, where ��z is as in Lemma
2,
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for some constants �0 > 0, �2 > 0, �1, �3, �4 independent of �z.

We are now ready to show that the inequality in (A13) holds true. Consider the following ratios:
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where J1 is as in Eq. (A14). We claim that,

lim
�z!1

I0
J0

= 1; lim
�z!1

I1
J1

= 0:

The �rst limit holds by the property of the cumulative distribution function, and by the L'Hôpital's rule. To
show that the second limit holds, note that by the expression for J1 in Eq. (A14), we only need to show that
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34



which is easily seen to be true. �

Appendix C: Partial resolution of Knightian uncertainty

We consider a model where a mass (1� �) of uninformed agents correctly believe that �0 2 [�; ��], as in the
main model. The informed agents, however, by paying a cost c > 0, resolve only a fraction (1� �) of their
uncertainty: upon paying c, they would correctly believe that �0 2 [��; ���], with � 2 (0; 1). We assume, as
usual, that �0 = 0. By arguments similar to that we used to solve for the main model, we are looking for
an equilibrium piecewise linear price function. Let s = � (z � �z). We conjecture, and verify, that there are
three threshold values of the signal, say s, s� and �s, which lead to identify four regions of the equilibrium price
schedule, as in Figure A.1: two regions where everyone trades, which occur whenever the signal is low, s � s
(in which case everyone is buyer) or high s � �s (in which case everyone is seller); and two regions where only
the informed agents trade, either as buyers, when s 2 (s; s�), or as sellers, when s 2 (s�; �s).

s ss
0.5 0.0 0.5 1.0

S

6

4

2

0

2

4

6

P rice

Equilibrium Price

Figure A.1. The equilibrium price schedule in a market with partial resolution of Knightian
uncertainty. Parameter values are � = 0:5, � = 2, !f = !z = 1; � = 0:2; �� = �� = 5 and �z = 0.
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The price schedule is:

P (s) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

a1 +
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�a1 +
1

�
s; for s � �s

where � = 1
�(!�+!�)

, a1 = � (1� � (1� �))� 1
��z, �a1 = �� (1� � (1� �))�

1
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1
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1
���z,

and the signal thresholds are given by:

s = �� (1� �)�+ �z; s� = �z; �s = �� (1� �) ��+ �z:

Lengthy computations lead to the following expressions for the ex-ante utilities. The ex-ante utilities of
the uninformed agents are:
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and � = �2!f . The ex-ante utilities of the informed agents are, instead,
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Figure A.2 illustrates how strategic complementarities and multiple equilibria might arise in this model of
partial resolution of uncertainty.

S U

0.0 0.2 0.4 0.6 0.8 1.0
0.7

0.8

0.9

1.0

1.1
Value of information

Complementarities in information acquisition and multipleequilibria

Figure A.2. The value of information in a market with partial resolution of Knightian uncertainty,
as a function of the fraction of the informed agents, �. Parameter values are as in Figure A.1,
with the exception of the average asset supply, �z, which equals 4. The solid (dashed) line depicts
the value of information when �� = 10 (�� = 10:5).

The value of information, arising for �� = 10 (the solid line), leads to three equilibria: two of these are
interior, �� = �S (stable) and �

� = �U (unstable); the third one is that with �
� = 1 (stable). Increasing ��

to 10:5 leads to a unique equilibrium, that with �� = 1.

Appendix D: Details for the multi-period market and VAR estimates of Section 5
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Multi-period market. The equilibrium price in this market is the same as that in Eq. (6) of Proposition I,
with (at; �at; bt; �t; st; �

p
t
; ��pt ) replacing (a; �a; b; �; s; �; ��), where:

st =
�t�t+1
�!�

� (zt � �z) ; �pt = (1� ��)
�
�0 �

1

2
��t

�
+ ���t; ��pt � �pt = (1� ��)��t:

Description of data and VAR methodology. The impulse-response function in Figure 7, and the con�-
dence bands around it, relate to a VAR(6) model with two endogenous variables: (i) the series of aggregate
stock market returns of Fama and French (1993), and (ii) a series of uncertainty shocks, de�ned to be always
zero, except during the month when an uncertainty event takes place, in which case the shock series equals
one. All data are monthly, and span the period from January 1957 to December 2008. The uncertainty shock
series is the \�rst volatility" event series identi�ed by Bloom (2009) (Table A.1, p. 676). It equals one on
the �rst months a stock market volatility index (de�ned below) is higher than two standard deviations above
the Hodrick-Prescott detrended (with parameter 129,600) mean of the same volatility series. As regards the
sampling period 1986-2008, the stock market volatility series is the CBOE VXO index of implied volatility
for one month at-the-money options on the S&P100. As for the 1957-1985 period, when the CBOE index is
not available, stock market volatility is de�ned as the monthly standard deviation of the daily returns on the
S&P500 index, normalized to have the same mean and standard deviation of the VXO index for the period
1986-2008. Table A.1 contains a description of the uncertainty events, as well as the market returns during
and after the events.

Table A.1. Stock market developments after an uncertainty shock.
months after the event

Date Event 0 +1 +2 +3 +4 +5 +6

October 1962 Cuban missile crisis �0.04 10.81 0.96 4.93 �2.42 3.06 4.49
November 1963 Assassination of JFK �0.82 1.88 2.28 1.46 1.45 0.17 1.48
August 1966 Vietnam buildup �7.95 �1.12 3.78 1.35 0.22 8.12 0.73
May 1970 Cambodia and Kent State �6.96 �5.69 6.9 4.47 4.21 �2.28 4.58
December 1973 OPEC I, Arab-Israel War 0.52 �0.19 �0.35 �2.9 �5.35 �4.95 �2.89
September 1974 Franklin National �11.78 16.05 �4.64 �3.4 13.58 5.41 2.61
November 1978 OPEC II 2.68 0.99 4.18 �3.41 5.75 0.05 �2.18
March 1980 Afghanistan, Iran hostages �13.23 3.97 5.2 3.16 6.41 1.72 2.21
August 1982 Monetary cycle turning point 11.14 1.17 11.27 4.56 0.78 3.51 2.41
October 1987 Black Monday �23.14 �7.58 6.64 4.2 4.71 �2.1 0.64
September 1990 Gulf War I �5.98 �1.93 6.00 2.35 4.39 7.10 2.45
November 1997 Asian Crisis 2.66 1.31 0.02 6.93 4.74 0.66 �2.98
September 1998 Russian, LTCM default 5.92 7.12 5.89 5.93 3.48 �4.16 3.36
September 2001 9/11 terrorist attack �9.43 2.58 7.71 1.63 �1.75 �2.31 4.34
July 2002 Worldcom and Enron �8.26 0.66 �10.14 7.36 6.01 �5.44 �2.44
February 2003 Gulf War II �1.63 0.93 8.18 6.26 1.53 2.24 2.42
August 2007 Credit Crunch 0.74 3.77 2.26 �5.27 �0.71 �6.44 �2.33

Each of the two equations of the VAR(6) is also fed by the current values of (i) the corporate spread,
de�ned as the di�erence between the baa industrial bond yield and the ten year Government bond yield;
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(ii) the term spread, de�ned as the di�erence between the ten year government bond yield and the yield on
three month Treasury Bills; (iii) the price-dividend ratio on the S&P500 index; (iv) the National Bureau of
Economic Research recession indicator. All data are collected from the Global Financial Data database, with
the exception of the Fama and French market returns, which are taken from Kenneth French webpage.

We compute the �rst two moments of the posterior distribution of the impulse-response function in the
VAR, by simulations. First, we simulate the VAR coe�cients, drawing them from a normal distribution
centered at the point coe�cient estimates, and variance-covariance matrix equal to S 
 (X|X)�1, where
X is the matrix containing the series of exogenous variables and the lagged endogenous variables, and S is
the variance-covariance matrix of the VAR residuals, assumed to have a Normal-inverse Wishart posterior

distribution, S�1 � Wishart
�
(T Ŝ)�1; T � P

�
, and Ŝ is the point estimate of S, T is the sample size and

P is the dimension of each series in X. For each simulation, we compute the impulse-response function of
stock market returns to a one standard deviation change in the uncertainty series, and aggregate across 5000
simulations to calculate the cross-sectional average and standard errors used to produce the market responses
in Figure 7.

39


