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Abstract

Since the 2008 economic crisis, network research has become increasingly prominent in the world of finance. 
The complex interrelations and financial interdependencies formed among financial market participants have 
proved to be critical in times of crisis. In this paper, we explore the network properties of the Hungarian 
RTGS (VIBER) and also seek an answer to the question of whether the network properties of the system have 
changed over the long term across the time windows considered, and if so, to what extent. Furthermore, 
we identify systemically important participants using a variety of network theory tools. We also explore 
methodologies which – by providing new perspectives for monitoring the evolution of systemically important 
participants – may contribute to improving the effectiveness of oversight in Hungary. To identify systemically 
important participants, we apply four methodologies, namely: the LSI index, the model capturing the relation 
of eigenvector and betweenness, diffusion centrality, and the model exploring the effect of combining multiple 
nodes. In the Hungarian RTGS, two distinct groups emerge: the first is comprised of participants that play a 
key role in the transmission of liquidity (“core”), and the other is the cluster of periphery participants. As 
the composition of the core has remained virtually unchanged, it can be considered stable. While the risk of 
contagion arising from an operational disruption increased at both the individual and aggregated level during 
the period under review, it is also apparent that no such link exists in the graph the removal of which would 
ultimately cut the communication between the banks originally connected by it. The results of each indicator 
showed that there were no significant changes regarding the network properties across the three time windows, 
confirming the robustness of the network properties of the Hungarian RTGS and its stability over time.

Journal of Economic Literature (JEL) codes: D85, E42, E5, G2, G21, L14
Keywords: Hungarian RTGS (VIBER), network research, financial networks, graph theory, topology, centrality 
indices, systemically important financial institutions (SIFI)
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1 Introduction and motivation

Network theory provides us with a deeper understanding of financial networks. In everyday life, we encounter 
networks frequently. For instance, when we call someone’s number, we use our provider’s telecommunications 
network. In transportation, motorways also constitute a specific type of network system. In fact, even the 
human body itself is an extremely complex network. The formation of viruses also follows patterns that are 
characteristic of networks, as a result of which they are frequently analysed for prevention purposes, given 
the possibility that the identification of key actors (hosts) could be of critical importance in preventing viruses 
from spreading (An et al., 2016). Schweitzer et al. (2009) propose that the findings made in other disciplines 
and technological sectors (such as biology, telecommunications, health, etc.) with relevance to graph theory 
should also be used for the study of economic networks, arguing that the networks encountered in everyday 
life and those of financial markets share a number of similarities, and that the network structures occurring in 
various disciplines and specific economic processes follow a similar pattern, a similar “universality”. Interbank 
relations are also fat-tailed1 and scale-free,2 i.e. there are few banks connected to a very high number of other 
participants. Thus, presumably, banks engaged in similar investment behaviours are likely to end up in the same 
cluster. Similar regularities can also be found in other areas including international trade networks, regional 
investment and ownership networks (Schweitzer et al., 2009).

The 2008 economic crisis focused attention on the network properties of money markets, payment systems, 
and the analysis of systemically important participants. Over the past decades, economic processes have 
become extremely complex, and the interrelations between individual financial institutions have strengthened. 
Consequently, an incident (operational disruption, bankruptcy, etc.) occurring at one point in the system can 
spill over and impact the rest of its participants. The 2008 economic crisis also highlighted the fact that in 
order to maintain financial stability, there was a need to identify systemically important participants both in 
the economy and in the field of financial infrastructures. Having gained increased prominence over the past 
decades, the science of network research is highly instrumental in responding to that need. For example, the 
network analysis of money markets has demonstrated that it is not necessarily (only) turnover and bank size 
that matters when determining the importance of the credit institution concerned in terms of systemic risk. It is 
much rather the number and quality of linkages a given system participant has; or more precisely, the number 
of its outgoing and incoming links, and the significance of those links (Wright,3 2009). Other aspects may also 
become dominant, such as how active a system participant is on the FX swap market (Lublóy, 2006). Another 
key lesson learned from the crisis is that the financial institutions with the highest degree of connectivity 
require particular attention even in stable, “crisis-free” periods, and it is essential for them to be monitored and 
supervised closely. Banks of relative significance have been bailed out by governments in a number of cases in 
order to prevent the collapse of the banking system, imposing extreme burdens on central budgets. This was 
one of the reasons why, in the aftermath of the crisis, the identification of systemically important participants 
gained more significance (Berlinger et al., 2015b, with particular regard to the chapter Systemic Risks).

1  “Fat-tailed distributions”. The term refers to distributions where the probability of extreme events is higher than expected.
2  “The degree distribution of a random network follows a bell curve, telling us that most nodes have the same number of links, and nodes with a 

very large number of links don’t exist. (...) In contrast, the power law degree distribution of a scale-free network predicts that most nodes have 
only a few links, held together by a few highly connected hubs. (...) A random network has a characteristic scale in its node connectivity, embodied 
by the average node and fixed by the peak of the degree distribution. In contrast, the absence of a peak in a power-law degree distribution implies 
that in a real network there is no such thing as a characteristic node. We see a continuous hierarchy of nodes, spanning from rare hubs to the 
numerous tiny nodes. (...) The degree exponent for the scale free model is γ=3, i.e. the degree distribution follows P(k)~k–3.” (Barabási, 2014, pp. 
70–71., p. 88)

3  Among other sources, references are made in Wright’s work to Kimmo Soramäki, including Soramäki et al. (2006): The Topology of Interbank 
Payment Flows; and Soramäki et al. (2008): The Network Topology of CHAPS Sterling.
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Financial infrastructures are of particular relevance to the execution of payments. In order to function, all 
financial markets require financial infrastructures. They enable the execution of transactions conducted in the 
market, while their role in the effectiveness of monetary transmission is also unquestionable. In this paper, we 
primarily focus on the network properties of the Hungarian RTGS (VIBER4). It is operated by the MNB primarily 
for the settlement of large-value and time-critical financial transactions. The system provides for the settlement 
of the cash leg of forint-based money and capital market transactions and other urgent customer payments. 
Due to real time settlements, transactions are finally and irrevocably executed in central bank money when 
sufficient funds are available (no netting5).

We seek to find the answers to the principal questions of our paper by applying various network theory 
solutions. In this paper, our aim is to locate the clusters within the Hungarian RTGS and to identify critical actors 
that are systemically important in terms of the transmission of intraday liquidity. Additionally, by means of 
graph and network theory, we wish to describe the network properties of the RTGS, and the significant changes 
occurring in those properties between 2008 and 2016. Since the crisis, some participants have merged, others 
have exited the market or have been wound up, new participants entered, and the financial infrastructure 
technology has also developed considerably. Each of these changes may have had an effect on the network 
of payment systems. We use numerous methods to find the answers to the questions raised above. For 
instance, we use diffusion centrality6 to investigate the risk that a contagion emerging within the network 
may spill over. In terms of payment systems, this may be relevant from the perspective of how other system 
participants will be affected if a bank is faced with an operational risk (e.g. an operational disruption of the 
SWIFT messaging network prevents a given participant from submitting an item to the RTGS). This is notable 
since the RTGS network is a closed system. Despite each participant being connected to all others, in the 
event of the “drop-out” of a systemically important participant a contagion risk may arise. This is because 
an important system participant tends to receive liquidity from a large number of participants, while also 
transmitting significant amounts of liquidity to other participants. Banks expecting to receive liquidity from a 
critical participant encountering an operational disruption may not be able to access their funds in time. This 
results in uncertainty; and as they may also be concerned as to whether they are going to have enough liquidity 
by the end of the day to execute all of their payments, they will probably delay the initiation of their own 
payment transactions (Figure 1). A negative spiral is generated, which could ultimately result in a perceivable 
slow-down in payments. This is one of the reasons why it is necessary to identify systemically important 
payment participants. Using the methodologies described in this paper, it is possible to trace the position 
and relative importance of a system participant within the network, which could contribute to increasing 
the effectiveness of oversight. Additionally, based on the indicators applied, the central bank can determine 
whether it is required, in its capacity as the overseer of financial infrastructures, to take action to maintain 
the smooth operation of payment systems.

4  The Hungarian equivalent of real time gross settlement systems.
5  No netting means that a netting effect will not occur, i.e. the financing role of incoming items will not be taken into account.
6  See Section 4.3 for more details.
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This paper starts with a review of the relevant literature. Section 3 provides a description of the data considered, 
the time horizon, and the methodology used. Section 4 examines the general network properties of the 
Hungarian RTGS. Section 5 identifies systemically important participants. Finally, Section 6 provides a summary 
of the key messages and conclusions of the paper.

Figure 1
Contagion effect in the event of an operational disruption to an RTGS participant
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Source: Author’s compilation.
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2 Overview of the literature

The network properties of RTGS have been addressed by a number of authors. Countless authors have sought 
to explore the network of money markets, with particular regard to that of payment systems. Notably, Soramäki 
et al. (2014) explored the network properties of the South Korean RTGS in 2014. Using Craig and von Peter’s 
model,7 they identified the core and periphery banks. Then they applied another approach called SinkRank 
– previously developed by Soramäki – to locate systemically important participants. The SinkRank indicator 
models the movement of liquidity in the system. The faster a given participant receives a unit of liquidity, the 
higher its SinkRank value will be. So higher SinkRank value is assumed to represent higher “importance” for the 
participant. However, the authors found that neither the core-periphery model, nor the SinkRank can perfectly 
capture the property of the given system participant, that is, whether it has enough liquidity to continue the 
execution of payments and withstand any liquidity shocks during the day. To assess the payment capacity of a 
bank and to ensure that its liquidity position at any specific point in time can be monitored more accurately, 
the authors developed a new dynamic liquidity indicator, PS-LI,8 which enables real time oversight (Soramäki 
et al., 2014).

RTGS systems tend to have a hierarchical core–periphery structure. Of particular note is the work of León et 
al. (2014), who examined the network of the Colombian RTGS and identified systemically important participants 
using a combination of Craig and von Peter’s core–periphery methodology and LSI,9 an enhanced version of 
the HITS algorithm10 that builds on authority and hub centralities. Their analysis relied on transaction data for 
the unsecured interbank market and the repo market. They found the network of the Colombian RTGS to be 
of low density, i.e. that there was a far lower number of links connecting individual nodes than what could be 
implied by the number of nodes. Additionally, the system was found to be inhomogeneous, with a small number 
of strongly connected participants being large contributors to system turnover and the spread of liquidity, as 
opposed to the majority of participants, which were weakly connected and as such they qualified as peripheral 
participants, or “minor contributors”. The system is “hierarchical”, arranged into a core–periphery structure. 
The network is “ultra-small”,11 characterised by the small world12 property. On one hand, this is a positive 
feature since the short distances within the network greatly support the flow of liquidity in the system, while 
it could also have a negative effect in the event of a contagion (e.g. when a bank encounters an operational 
disruption) (León et al., 2014).

The Hungarian literature also incorporates a large number of papers pertaining to network theory, focusing 
partly on the analysis of unsecured interbank money markets, and partly on the analysis of the RTGS. Among 
Hungarian authors, of particular note are Berlinger et al. (2011), who examined the evolution of the network 
of the unsecured interbank forint market in the period between December 2002 and March 2009. They found 
that in the first half of the period, network properties remained stable, but from 2006–2007 onwards, major 
changes could be observed in some of the indicators: “borrower concentration increased, average closeness 
and average degree dropped, while the size of the network core also shrank”. By contrast, “before October 
2008 general market indicators (turnover, interest rate, etc.) provided virtually no indication of change. That 
is, credit institutions had already perceived the increasing credit risk before the crisis, and had become more 

7  Core–periphery model. Craig–von Peter (2010), in: Soramäki et al. (2014).
8  Payment System Liquidity Indicator
9  Liquidity Spreading Index, discussed in detail in Section 5.1.
10  Clustering procedure (Hyperlink-Induced Topic Search), see Sections 3.2 and 5.1 for details.
11  “ultra small networks (...) in which the average minimal number of links required to connect any two financial institutions (i.e. the mean geodesic 

distance) is particularly low (i.e. ~2)” (León et al., 2014).
12  “In networks exhibiting the »small world« property, the average shortest path between vertices is low relative to the size of the network” (Banai 

et al., 2013).
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selective as to which borrowers they would lend to” (Berlinger et al., 2011). A similar assessment was carried 
out by Berlinger and Daróczi (Berlinger–Daróczi, 2015). With specific regard to Hungarian payment systems, 
the work of Lublóy (2006) is of particular note, who examined the network topology of the Hungarian RTGS 
based on turnover data for June 2005. She found that there were no material changes in the most important 
centrality indices between individual days. Additionally, she found a mere 30% of all links to be constant, 
which, on the other hand, were used for the execution of 90% of all payment orders. In terms of specific days, 
the strongest or most important links would not necessarily be the same, but they would be “dominated” by 
the same small number of banks. Consequently, there was no meaningful change in the composition of the 
most central participants in June 2005. The Hungarian RTGS can be characterised by the presence of multiple 
liquidity centres. The participants with the strongest tendency towards contagion were not the ones with 
the largest total assets, but participants actively involved in the USD/HUF FX swap market either directly or 
indirectly (Lublóy, 2006).

Some authors analysed the FX swap market by means of network theory. While the previously mentioned 
papers primarily focused on the network properties of RTGS systems and unsecured interbank markets, the 
analysis by Banai et al. (2013) concentrated on the FX swap market. This is also what makes their paper 
particularly special, since both Hungarian and international literature on finance had offered network research 
addressing the two aforementioned areas, whereas no network approach had previously been used to analyse 
the FX swap market. The authors used data for the period between 2005 and 2012 to observe the properties 
and network characteristics of the FX swap market. They found that “since the second half of 2010, banks in 
the network periphery have gradually become disconnected”, and that “foreign participants are more selective 
of their counterparties than domestic ones, and the contrast has only become stronger since 2009” (Banai et 
al., 2013).

Based on conventional network theory indicators, Banai et al. (2014) developed a proprietary indicator for 
the identification of systemically important participants. They specifically propose an idea for identifying 
systemically important participants. Their goal was to create a tool that enabled systemically important 
participants to be identified efficiently. Based on the currently available tools of network theory, they developed 
the ACI,13 the operational efficiency of which they tested using FX swap market data. They found that under 
adverse market circumstances (when bid–ask spreads increased and liquidity became scarce), the ACI values 
of top participants dropped significantly. By contrast, during the intense period of the crisis, the ACI values of 
foreign participants increased considerably compared to domestic banks, which had not been typical in the 
pre-crisis period at all. Presumably, the foreign banks present in the region were making a positive contribution 
to the stability of the financial system. Subsequently, the difference between the ACI values of domestic and 
foreign banks readjusted to the levels seen before the crisis (Banai et al., 2014).

These examples show that network research with a financial focus has a wide range of literature both in 
Hungary and worldwide. Given the steady development in the methodology of network analysis, the number of 
such papers is expected to grow in the near future, which will hopefully support a more accurate understanding 
of the increasingly complex network of money markets.

13  Aggregated Centrality Index
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3 Data used, methodology description

3.1 DATA SPECIFICATION, TIME HORIZON

One of the objectives of this paper is to explore the long-term changes in the network characteristics of the 
Hungarian RTGS, which was carried out using the three time windows April 2008, April 2012 and April 2016. 
In part, the analysis aimed to assess whether the network properties of the Hungarian RTGS had changed over 
the long term and if so, to what extent. To this end, we chose the same month in 2008, 2012 and 2016. In all 
three years, we sought to select the “most neutral” month which was free of any extreme economic events that 
would be a shock to payment systems, was free of extraordinary seasonal effects in turnover (which is typical 
in the last months of the year as the holidays are approaching), and did not contain any bank holidays that 
would distort e.g. the number of business days. Regarding the timing of transactions we did not experience any 
abnormalities in the chosen months (there were no sudden intraday shifts to later or earlier hours). (Figure 2) 
We insisted on a single month in each year because the assessment of an entire year would have presumably 
involved a number of other effects, whereas a comparison of the same month in different years eliminates 
the variations resulting from the seasonality of payments during the year.

Figure 2
Timing of turnover in VIBER
(what portion of total daily turnover is completed until a specific point in time, 2008 – 2016)
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We used transaction-level data of VIBER turnover to conduct the analysis. For the analysis, we used the 
network derived from the transaction-level turnover data of the Hungarian RTGS operated by the MNB, taking 
into account all transaction types that can be submitted into the system,14 because we focus on payments 
liquidity in general. Since we wish to capture the aggregated network properties of the RTGS, we had to 
consider all transaction types. We considered daily gross turnovers, i.e. the amount transferred by Bank “A” 
to Bank “B” (based on transaction value) on one business day. Next, we removed the turnovers of smaller 
value (those below HUF 1 billion, which are less relevant in terms of the “movement” of payment liquidity 
at systemic level,15 but could distort the final outcomes), then aggregated the turnovers for the given month 
(monthly sum). Thus, the network links are weighted and the weight of each link is derived from the value of 
the turnover executed through it. As a starting point, we used this gross, month-specific, directed and weighted 
turnover matrix and adjusted it where necessary.

The other main objective of our analysis is the identification of systemically important participants. We are 
primarily interested in finding out which participants are the most important ones in the group of commercial 
banks, Hungarian branches and credit institutions. Therefore, to avoid any distortions, we disregarded 
institutions engaged in the operation of the payment system (which are more of a technical nature) and 
other special participants16 such as MNB, KELER, Hungarian State Treasury, Hungarian Post, and CLS.17 For the 
purpose of our analysis, we considered at the transaction level the related turnovers of the retail payment 
system (ICS18), operated by GIRO Zrt., which means that the time window of April 2016 also includes the sub-
network of the ICS in addition to the network of the Hungarian RTGS. Between 2008 and 2016, the number of 
participants in the payment system also changed; thus, following the aforementioned changes we analysed 
the payment networks of 30 participants for April 2008, 31 for April 2012, and 34 for April 2016.

3.2 METHODOLOGY

To identify participants that play a systemically important role in the redistribution of liquidity, we used 
four approaches based on network theory. To identify systemically important participants, we applied four 
methodologies that are covered widely in literature, namely: the LSI (Liquidity Spreading Index) based on the 
HITS algorithm, Conway’s model capturing the relation of eigenvector and betweenness, diffusion centrality, 
and the model exploring the effect of combining nodes (“kpset” algorithm).19

The HITS algorithm allows participants of the payment system to be grouped according to their relative 
importance in terms of the transmission of liquidity within the system. HITS is a search algorithm primarily 
for the evaluation of internet webpages to determine whether a specific page had a tendency to refer to other 
webpages (i.e. had high “hub” centrality), or conversely, the page in question was referenced by a large number 
of other pages (i.e. had high “authority” centrality). Good hubs (pages with high hub centrality) do not contain 
a large amount of data themselves, but collect countless references, “pointing to” pages which, with high 

14  The key transaction types in the Hungarian RTGS are as follows: MT103 (customer message): payments initiated and/or received by customers 
of direct and indirect VIBER participants. MT202 (interbank item): payments ordered by direct or indirect VIBER participants, when the 
beneficiary is a direct or indirect VIBER participant as well. CBACT: central bank transfers, manually entered items (i.e. extraordinary transactions 
received by the MNB e.g. on paper or by fax, and are therefore entered into the system manually). EXTACT: bankcard settlement (VISACARD and 
MASTCARD), placement of deposits, cash items (CASH). TPACT: includes the transactions executed in the RTGS on a DvP basis (SECURITy, REPO) 
related to the cash leg of securities clearing transactions, and the items required for the settlement and collection of multiple same-day clearing 
cycles in the ICS (IG2CCOLL).

15  They account for a mere 1-3% of the overall turnover of the Hungarian RTGS.
16  This means that we ignored the participants detailed here on both the debit and credit sides.
17  For the purpose of our analysis, we also ignored the related turnovers of Borgun, Euronet, O. F. Sz. Zrt. and Wirecard.
18  The ICS (Interbank Clearing System) is a gross payment system operated on a batched basis by GIRO Zrt., and is used primarily to clear small-

value credit transfers, collection orders and direct debit orders (e.g. utility bills), and payment transactions associated with other official 
transfer orders. The ICS operates two clearing modules: overnight clearing (InterGiro1, IG1), and multiple same-day clearing cycles (InterGiro2, 
IG2). The latter has been available to customers and credit institutions since July 2012, and initially cleared credit transfers in 5 cycles per day, 
which increased to 10 cycles per day as of 7 September 2015 (Bodnár et al., 2015).

19  For more details on the latter two, see An et al., 2016.
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authority scores, act as main sources of information.20 Owing to the ease of interpretation it affords, the HITS 
algorithm is a popular tool in network analysis, and although it is primarily used in information technology, it 
is also instrumental in generating useful results for networks of payment systems.

The algorithm itself generates two scores for each node: hub centrality and authority centrality. Let us denote 
a certain node as v, its hub centrality as h(v) and its authority centrality as a(v). Initially, we set  h(v)= a(v)=1 
for all nodes and we also know that v➞y meaning there is an existing link between nodes v and y.

h v( )← a y( )
v→y
∑

a v( )← h y( )
y→v
∑

Equation (1) indicates the hub score for v which equals the sum of authority scores of all the nodes v points to. 
If v points to nodes with high authority scores then v’s hub score also increases. Equation (2) works the exact 
opposite way. It indicates v’s authority score which equals the sum of hub scores of all the nodes pointing to v. 
This means that if v is linked to by good hubs, its authority score will be higher. Now the above equations are 
updated based on the recomputed hub scores, generating new authority scores and this iteration continues. 
Then we should convert equation (1) into a matrix-vector format. Let h–

>
 and a–> denote the vectors of all hub 

and all authority scores respectively. Let A denote the adjacency matrix of the network. If a cell of  Ai,j equals 
1 then there is indeed a link existing between nodes i and j, or 0 otherwise. Now we can rewrite the above 
equations the following way:

!
h← A!a

!a← AT
!
h

Where AT refers to the transposed version of A. Combining these equations we can rewrite them:
!
h← AAT

!
h

!a← ATA!a

Now we introduce the eigenvalue into the system (let’s denote the eigenvalue of AAT as λh and the eigenvalue of AT A 
as λa) and we are changing the symbol „ ➞” to „=”. Thus, we get the equation for eigenvectors of AAT and AT A,  
so that we could finally define the vectors of hub and authority scores.

!
h = 1

λh
AAT
!
h

!a = 1
λa

ATA!a

So the procedure is: following the calculation of AAT and AT A we compute their eigenvectors to form the vector 
of hub scores h–

>
 and authority scores a–>. (Manning et. al., 2008)

In terms of payments, this means that if a financial institution is a major liquidity provider, it should rather 
be regarded as a participant having hub centrality, whereas if it receives a great amount of liquidity then it is 
rather a participant having high authority (i.e. a liquidity “sink”). On this basis, any institution connected to 
the central bank or other important hub participants will be a good authority and any system participant that 
contributes to spreading liquidity may be treated as a good hub to a certain degree (León et al., 2014). Using 

20   Source: Website of the UCINET software package for the analysis of social network data. Website: http://www.analytictech.com/ucinet/help/
hs4200.htm 

http://www.analytictech.com/ucinet/help/hs4200.htm
http://www.analytictech.com/ucinet/help/hs4200.htm
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the method affords a relatively accurate understanding of the position and behaviour of specific participants 
within the system. It also helps us answering the question, to what extent does a certain participant actually 
contribute to the transmission of payment liquidity?

The applied algorithm assigned similar authority and hub scores to each bank in the system; participants 
having high authority and hub scores can be considered as key players in terms of spreading payment 
liquidity. We calculated authority and hub scores using the “authority_score” and “hub_score” functions of 
the R package called “igraph”.21 Based on the results of the algorithm, we can define which participants play 
an important role in the transmission of payment liquidity; and thus ultimately which participants comprise 
the network core and which ones should rather be considered as peripheral. For this purpose, we examine 
the value of hub and authority scores for each participant and also the relationship of these scores. System 
participants with low scores for both authority and hub centrality may be considered as peripheral. Participants 
with equally high authority and hub scores will be the critical banks that play a key role in the transmission of 
payment liquidity (León et al., 2014).

Based on the Liquidity Spreading Index, participants in the RTGS can be grouped into two clusters. We created 
the groups using the Liquidity Spreading Index (LSI) introduced by León et al. (2014), which builds on authority 
and hub scores. For a given system participant i, the LSI is calculated as follows:

LSIi =

autoritási ceralitási
autoritási centralitásii=1

n∑
⋅ hub centralitási

hub centralitásii=1

n∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

autoritási centralitási
autoritási centralitásii=1

n∑
⋅ hub centralitási

hub centralitásii=1

n∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟i=1

n

∑ 

Calculated for all system participants, the LSI will take the value of 1:

LSI = LSIi
i=1

n

∑ =1  

León argues that banks with the greatest contribution to the LSI will be the ones that are particularly important 
in terms of transmitting payment liquidity.

Applying Conway’s procedure we used the relationship of two classical centrality indices (betweenness and 
eigenvector centrality) to find the systemically important participants. (Conway, 2009). To this end, we will 
first provide a brief overview of these two network indicators. Betweenness measures the extent to which a 
given node within a network can be considered a “bottleneck” in terms of the circulation of payment liquidity 
within a day. Using betweenness to find critical actors can be helpful. The index itself refers to “the number of 
shortest paths that include a given vertex”. (Banai et al., 2013) Let us say we want to establish the shortest link 
between two nodes. In order to connect these, the link has to go through vertex ”X”. Betweenness basically 
measures the number of such links existing in the system that contain our vertex ”X”. The “betweenness” 
function of an R-package called “igraph” was used to calculate the index which works based on the algorithm 
suggested by Brandes (2001).22 In the case of a vertex v, betweenness is calculated as follows:

gij v( )
giji≠ j , i≠v , j≠v

∑  

21  For more details, see Csárdi et al. (2006).
22  For further information about the code applied, see Csárdi et. al. (2006).
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•   where i and j are randomly chosen nodes within the graph (i sender, j receiver)

•   gij=gji is the number of shortest paths between nodes i and j 

•   gij(v) is the number of shortest paths between nodes i and j which contain vertex v

High values indicate that a given node can reach others within a short distance or a given node lies on many 
shortest paths linking others in the system. Betweenness affords a more accurate understanding of which 
system participant can be considered as systemically important in terms of payment liquidity and it also helps 
identify the system participants for which it is critically important to meet their payment obligations without any 
disruptions. Although in an RTGS, any system participant can submit payment items to any other participant, 
operational issues encountered by such bottlenecks of high betweenness could pose a risk to the circulation of 
liquidity in the system. This may have a number of consequences: when the liquidity available is insufficient for 
the execution of payments in the case of system participants with high betweenness, they may use their credit 
facilities for a longer period within the day, accumulate a higher number and value of queued items, or worse, 
a gridlock may emerge. Hence the liquidity shortage of individual participants does not only affect the turnover 
of the RTGS, but may also have an impact on the execution of transactions cleared in the small-value (retail) 
payment system (ICS23), and may ultimately be felt even by the end users. Consequently, a participant with 
high betweenness may be systemically important regarding payment dynamics and the efficient redistribution 
of aggregated payment liquidity. That is why it is important to evaluate the results of betweenness (Figure 3). 
However, caution is warranted regarding these results, because it is possible that a high betweenness value is 
assigned to participants positioned at the periphery of the network. That is, their significance may be limited 
e.g. to the connection between two completely separated islands, which are peripheral anyway.

 

23  In the ICS, transactions are cleared and settled separately. The ICS “only” clears payments (it determines the payment position of each bank 
with the rest), whereas settlement (actual financial execution) is a responsibility of the MNB in its capacity as a settlement bank (Luspay et al., 
2014). To execute payments, in both the RTGS and the ICS participants use the same liquidity, comprised of their available account balances and 
the intraday credit lines provided against their security portfolios pledged to the MNB. In this way, when a bank has insufficient liquidity on its 
payment account in the RTGS, its items submitted through the ICS will also not be executed.

Figure 3
High and low betweenness values (schematic representation on the left); betweenness in relation to nodes X and Y 
(schematic representation on the right)

High betweenness Low betweenness

Y

X

Note:In the representation on the right, X has higher betweenness because compared to Y, it needs to be traversed by a greater number of shortest 
paths connecting node pairs. Author’s compilation. 
Source: Based on Tomson (2013) and Eaton (2013).
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Eigenvector centrality24 focuses on the role of a given node within the overall network, providing a more 
accurate picture compared to degree centrality. In network analyses, eigenvector centrality25 is a preferred 
indicator, which – compared to the rest of the network indicators – has the huge advantage that it focuses on 
the global role of a given node considering the entire graph and relies less on the local properties. The indicator 
is used to identify the “most central” participants within the network. Higher values may indicate a “more 
central” property of the participant concerned, i.e. that the given system participant is connected either to 
a large number of other nodes, or primarily to central participants, or both (León et al., 2014). Lower values 
indicate a more peripheral position of the node in the graph. In this way, the indicator may provide a more 
accurate understanding compared to degree, which is only concerned with the number of links to and from 
the given node. A participant with a high degree will not necessarily be assigned a high eigenvector centrality 
indicator and vice versa: a node with a high eigenvector score will not necessarily be of a high degree – in this 
case, it may only have a few counterparties, but will generate high turnover with them. To calculate eigenvector, 
we used the “evcent” function of the aforementioned R-package called “igraph”.26 In general, “let’s define a 
node’s centrality so that it is proportionate to the sum of its neighbours’ centralities depending on a proportion 
factor  so we get:”

vi = c Aij
Tv j

j
∑

•   where A indicates the adjacency matrix,

•     i and   j are random nodes within a network (  i sender,   j receiver)

•     c indicates a proportion factor

“Rewriting the above equation using matrix operations we get:

ATv = λv,

so the vector v including the centralities of the nodes is actually one of the eigenvectors of AT with λ eigenvalue” 
(Kiss, 2012).

Based on the relationship of betweenness and eigenvector centrality, inferences may be made about 
systemically important participants. According to Conway, the relationship of betweenness and eigenvector 
centrality can be approximated using a linear model, which means that every non-linear, extreme outlier may 
be considered as a key “actor”.27 Accordingly, we applied a linear model between the two variables. The R 
code we used was the following:

24  Partially based on the following website: Franceschet (2014).
25  Some internet search engines also use this indicator. It enables them to “score” the relative importance of a given webpage (e.g. according to 

the number of searches for the page, the number of clicks, etc.). See Bryan–Leise (2006).
26  For further information about the code applied, see Csárdi et. al. (2006).
27  For more information about the code applied, see Csárdi et. al. (2006) and Conway (2009).
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Although linearity between the two variables is not necessarily perfect, Conway holds that the method may 
point to the interesting participants in the system. Displaying the line derived from the linear model based on 
the relationship of betwenness and eigenvector centrality, the focus should be centred on the participants 
situated far from this benchmark reference line (i.e. the nodes ending up with high residual values).

Apart from the identification of systemically important participants, it is also important to see which 
participants may be the most affected by the spill-over effect of the liquidity risk resulting from operational 
incidents. Network theories based on diffusion models may be instrumental in cases where we want to know, 
for example, the speed at which a virus, a contagion, a unit of information, or an operational disruption at a 
participant in an RTGS could cause damage to the system. This is measured using diffusion centrality, which may 
also be construed as the probability of (liquidity) risk spilling over calculated for a given node. This indicator 
is also useful because conventional centrality indices are not necessarily capable of capturing the diffusion 
properties of a given node (Kang, 2012).

Diffusion centrality is a tool to measure the speed at which the liquidity risk resulting from an operational 
disruption at a specific participant in the Hungarian RTGS can spread, i.e. cause interruptions in payments 
within a certain timeframe. To use diffusion centrality, we used the “diffusion” algorithm of the R package 
called “keyplayer” developed by Weihua An and yu-Hsin Liu (An et al., 2016). The description of the package 
defines diffusion centrality as the speed at which a given node has the ability to disseminate information 
across the network. The authors relied on the formula developed by Banerjee et al. (2013), where the value 
of diffusion centrality is derived as the sum of rows in the following matrix:

S = pt

t=1

T

∑
•   where P indicates a probability matrix

•    t =1...T  refers to the number of iterations

•   matrix S measures the aggregated tendency for diffusion

So P indicates the probability matrix, and Pi,j measures the probability of reaching node j from node i. According 
to Banerjee’s original suggestion, P = q x g where q is the probability of transmission among nodes and g is 
the adjacency matrix. For the sake of simplicity, the package ”keyplayer” asks the user to input the probability 
matrix right at the beginning. We specified the probabilities in proportion to monthly gross turnovers. Thus, 
the larger the turnover executed between Participants “A” and “B”, presumably the higher the probability 
that an operational disruption of Participant “A” will have a major impact on Participant “B”, which relies on 
the payments to be received from Participant “A” regarding the execution of its payments. For these reasons, 
we used a weighted and directed adjacency matrix as our input. The components of the matrix S measure 
the aggregated tendency of reaching node j from node i through a set number of iterations, designated by T. 
The T value is a positive integer which can be interpreted as the elapsed time, i.e. the amount of time allowed 
for the dissemination of information (or the spread of liquidity risk resulting from an operational disruption) 
between two nodes. This could be a day, a week, a month or even 2 months; what matters is the amount of 
information passing through within a certain time frame. The interpretation of T always goes hand-in-hand 
with the input matrix used in the algorithm.28 Suppose, for instance, that a message may take 3 paths from a 
given node, which corresponds to having 3 probabilities, with T = 1. A sum of these probabilities will provide 
the diffusion centrality of a given node (in this case, its possible value will be between 0 and 3). This is what 
the matrix S registers and the sum of this matrix’s rows implies the ultimate importance of the given node 

28  Since the matrix covers one month, T = 1 will correspond to one month elapsed, T = 2 to two months elapsed, etc. However, the pattern of 
participants’ daily turnovers in the payment system does not particularly differ from the patterns of monthly turnovers (suppose participant “A” 
sends lots of payment transactions to participant “B” in a month, then chances are high that some turnover will also be generated only on one 
randomly chosen business day within this month, considering these two nodes), hence parameter T may also be construed as the unit of days 
elapsed. This simplification greatly facilitates the interpretation of results.
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for disseminating information. This value cannot tell why a particular node turned out to have high diffusion 
capacity: either because the given node has a large number of linkages or because it dispatched messages only 
via high-probability paths. Instead, it rather implies an aggregated strength, which has to do with the ability 
of a given node to spread risk. For each of our three time windows, we specified diffusion centralities for each 
node in the network. We assigned three values to parameter T (T=1, T=2, T=3; i.e. 1, 2 and 3 days elapsed, 
respectively). Using the diffusion centralities derived for individual T=1, T=2, T=3 units of time, we calculated 
growth rates,29 which we then compared to the outputs provided by LSI, separately designating each node 
according to its status of being critical or peripheral.

Due to the complex interrelations among banks, it is worth observing certain participants combined together 
as a group, rather than treating them independently, in isolation. This will afford an understanding of the 
combined impact of several system participants. The methods discussed previously primarily focused on 
individual nodes. However, in today’s advanced world of finance, owing to the interdependencies between 
individual credit institutions, investigating the influence of certain bank groups may also be critical. From an 
overseer perspective, it is imperative not to treat specific institutions independently in isolation, and instead 
it might be better to investigate several system participants combined into groups, because assessing these 
interrelations can be critical in analysing contagions. Thus, it may be appropriate to treat a group of properly 
selected nodes as one separate vertex within the network. It is plausible that the three most central nodes 
together constitute a group that no longer qualifies as particularly central, or conversely, a system participant 
that was previously thought to be weak and assumed to be peripheral under conventional methods of network 
theory, may even see its role within the network appreciate significantly. Consequently, the artificial combination 
of certain nodes may create groups within the network which can already be of risk to the overall system (e.g. 
in the course of an acquisition or a merger). This scenario is addressed by the “kpset” function of the R package 
“keyplayer” developed by Weihua An and yu-Hsin Liu (An et al., 2016), which basically works on the basis of a 
slightly modified version of the greedy algorithm suggested by Borgatti (2006). The idea is as follows:

Step 1. Select an initial set of nodes C. The residual set is denoted as R.

Step 2. Update set C.
1.  Let’s choose a node in set C. Swap it with a node in R (loop 1). Make the swap if it improves the score of 

the resulting C. The number of iterations is defined by the number of nodes in R.
2.  Repeat loop 1 for each node in C sequentially (loop 2). The number of iterations in loop 2 is defined by 

the number of nodes in C.
3.  Stop if (1) the change in C’s centrality score is smaller than a specified threshold or (2) if the process 

reaches a specified number of iterations.

Step 3. Return the final set C and its centrality score.

In their model, groups are selected through the optimisation of various centrality indicators. We opted for 
diffusion centrality, which is the indicator that can best capture the spread of liquidity risk resulting from a 
temporary operational disruption. The algorithm enables pre-setting the number of participants to be included 
in each group. For our analysis, we set groups of 3 and 5 institutions. Once that input has been provided, the 
model optimises iteratively until it finds the final cluster, respectively comprising 3 and 5 nodes, which ultimately 
has the highest diffusion centrality.

Section 4, which provides a general description of the network of the Hungarian RTGS, uses other concepts of 
network theory which are discussed in that Section.

29  The formula used: ((diff. centr. T = 3 / diff. centr. T = 2) + (diff. centr. T = 2 / diff. centr. T = 1)) / 2
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4 Network characteristics of the 
Hungarian RTGS

Table 1
Comparison of the network properties of RTGS systems
(averages, including standard deviations where possible)

Network 
properties

BOK-Wire+ 
(South Korea)

LVTS (Canada) TOP 
(Netherlands)

Fedwire (USA) VIBER 
(Hungary)

VIBER 
(Hungary)

VIBER 
(Hungary)

Period 2013 August
2004 April - 

2008 
December

2005 June - 
2006 May 2005 2008 April 2012 April 2016 April

Turnover 
(transaction 
value)

190 trillion 
KRW

25.4 trillion 
CAD (year)

584 million 
EUR 1.3 trillion USD 80 111 billion 

HUF*
62 219 billion 

HUF*
64 068 billion 

HUF*

Turnover 
(transaction 
volume)

11 672 4.4 million 
(year) 21 400 345 000 60 456 84 485 8 686 521**

Number of 
nodes 122 ± 5.9 14 155 5 086 ± 123 30 31 34

Number of 
edges 2 871 ± 471 N/A 1 182 76 614 ± 6 151 412 357 396

Connectivity 
(%) 18.1 ± 2.5 69.2 ± 3.3 7 0.3 ± 0.01 47.36 38.39 35.29

Degree 
(average) 45.4 ± 6.9 N/A 9 15.2 ± 0.8 7.85 ± 5.50 7.17 ± 5.32 9.05 ± 7.56

Maximum 
in-degree 84 ± 8 N/A N/A 2 097 ± 115 20 20 28

Maximum out-
degree 86 ± 10 N/A N/A 1 922 ± 121 19 20 32

Reciprocity (%) 58 ± 6.0 89.3 ± 2.5 63 21.5 ± 0.03 42.3 42.7 39.2

Characteristic 
path length 1.85 ± 0.05 1.31 ± 0.03 ~2.3 2.62 ± 0.02 1,59 1,66 1,69

Average 
eccentricity 2.9 ± 0.1 1.84 ± 0.07 ~3.3 4.67 ± 0.33 2.47 ± 0.50 2.5 ± 0.5 2.97 ± 0.3

Average 
diameter 3.8 ± 0.4 2.01 ± 0.07 N/A 6.6 ± 0.5 3 3 4

Clustering 
coefficient (%) 51.3 ± 1.7 84.3 ± 1.5 38 53.0 ± 1 54.1 49.7 46.1

Source: Soramäki et al. (2014) and MNB data.
* Excluding the related turnovers of the MNB, KELER, the Hungarian State Treasury, the Hungarian post, and other participants detailed in Section 3.1.
** Including the number of transactions resulting from the turnover of the retail payment system.
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In the following, an overview is provided of the network properties of the Hungarian RTGS based on network 
theory, examining the main changes that occurred to the network structure over the long run.

Network density of the Hungarian RTGS decreased over the long term. Connectivity (density) is examined 
over the entire network.30 A network will be fully connected (dense) when each of its nodes is connected to 
one another through a link. In such a graph, none of the nodes in the system is inaccessible, and all of the 
nodes are interconnected. In a disconnected graph however, there may be nodes in the system that are not 
connected to others. The density of the Hungarian RTGS decreased by 12 percentage points between 2008 and 
2016 (Table 1). This means that a smaller proportion of all potential links between network nodes was actually 
used in April 2016 (35% on average) compared to the previous 47%. In other words: the number of active links 
connecting individual nodes is smaller than what could otherwise be expected based on the number of nodes. 
This may be explained by the fact that the shares of many participants have been purchased throughout the 
examined time interval (e.g. by means of acquisition) or their system membership terminated, decreasing 
the number of active links. Another possible reason for the softening could be the presence of several system 
participants that used the Hungarian RTGS on only one or two business days in the examined time windows 
(examples include Bank 29 in April 2012, or Banks 38 and 39 in April 201631). Such participants are relatively 
distant from the centre of the network and are only loosely connected to the core through just one or two 
links, making them systemically less relevant (Figure 8, see below). Although only slightly, the number of 
system participants also increased between 2008 and 2016, which may also have contributed to lower density 
by increasing the number of potential links.

Based on international comparison, the network of the Hungarian RTGS is relatively dense (i.e. a significant 
portion of the potential interbank linkages are in fact active), which on one hand enables risks to be 
diversified, however, in terms of diffusing contagion, this property is much less ideal. Although the density 
of the Hungarian system declined between 2008 and 2016, it is still high compared to other systems’ values, 
exceeding the data for South Korea, the Netherlands and the US. This is not necessarily a disadvantage; it is 
a widely held view among network researchers that a dense network enables the risk of individual failure to 
be diversified. However, systemic risk could also increase significantly as the connectivity of specific nodes 
within the network becomes stronger, since the removal of whole groups from the network (instead of single 
nodes) may result in a less predictable and less stable system (when a large number of nodes “drop out” 
simultaneously from a relatively dense network) (Schweitzer et al., 2009). We further explore this phenomenon 
later in Section 5.4. One possible reason for the high density of the Hungarian RTGS on an international level 
is that it is much smaller compared to other systems (the number of its nodes varied between 30 and 34). 
Regarding these values, the Hungarian network is closest to the Canadian system with its 14 nodes, whereas 
in all the other systems a far higher number of participants (>100) operated in the periods considered (Table 
1). Hence, the low number of nodes can be associated with high density. Furthermore, compared to the other 
systems, the Hungarian RTGS is characterised by a lower characteristic path length (on average, it takes 1.6-1.7 
steps to move from one node to another), generally lower average eccentricity (the maximum number of steps 
required to move from one node to another in the system), and the average diameter of the graph is low. Due 
to the smaller dimensions, even the most strongly connected system participant has a relatively low degree. 
In 2016, a system participant received transactions from a maximum of 28 other system participants, and 
submitted transactions to 32 on a daily basis; these values are considerably lower compared to the systems of 
both South Korea and the US. Nevertheless, the number of possible connections increases at a rate of the size 
squared (Banai et al., 2015). Since the network of the Hungarian RTGS is dense, an operational disruption at a 
given participant may affect several system participants within the graph directly, which makes this property 
less ideal in terms of contagion.

30  With formula: number of active links betweennodes
number of all potencial links betweennodes  

31  The numbers indicate the anonymous reference numbers of the participants in the payment system.
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The clustering coefficient measures the tendency for “cliquishness” between the immediate neighbours 
of a given node, i.e. the probability that the direct counterparties of a given participant will transact with 
one another. The clustering coefficient measures the extent to which the immediate neighbours of a given 
node may be clustered. It shows how strongly connected the counterparties of a given node are, measuring 
the active links of all potential links between the neighbours of a given node. In other words, it specifies the 
probability of the neighbours of a given node being connected to one another (Figure 4) (Banai et al., 2013, 
p. 17). Using the analogy of social networks, if I have X number of friends and those friends are also friends 
with one another, then I will have a high clustering coefficient.

In the interval considered, apart from a slight decrease, there was no meaningful change in the global 
clustering coefficient for the network of the Hungarian RTGS, which points to the robustness of the system.32 

The global clustering coefficient of a network is derived as the average of the coefficients of the nodes it 
contains. An aggregated clustering coefficient of 0 indicates that the network does not contain any clusters, 
representing a “star” formation where a central participant is connected to a large number of nodes, which 
are not connected to one another (Figure 4, right pane). An aggregated indicator of 1 represents a single 
interconnected group where each node is connected to all other nodes. So the probability that two immediate 
neighbours of a given participant are also connected to each other is higher than what would be expected in 
the case of a random network (León et al., 2014). In other words, at the global level the clustering coefficient 
measures the tendency for “cliquishness”. Networks with high clustering coefficients may be considered robust, 
because they can absorb random shocks.33 In respect of the time windows considered, the clustering of the 
Hungarian RTGS network declined only slightly (by 8 percentage points), and its level is similar to that in other 
payment systems considered (46-53% in the observed period, see Table 1). This means that for any randomly 
selected node in the system, approximately half of the potential linkages between its neighbours were in fact 
active. Consequently, nodes (and their immediate neighbours) are mostly connected to one another, which is 
a property to be expected of an RTGS.

32  This paragraph is partially based upon Annenberg Learner’s website and Xrci (2014).
33  Stam’s (?) website.

Figure 4
Difference between nodes with high and low clustering coefficients (left pane); global clustering coefficient (right 
pane)

High clustering coefficient Low clustering coefficient Low global clustering coefficient 
(“star shape”)

High global clustering coefficient

Source: Left pane: author’s compilation. Source: Tompson (2013). Right pane: author’s compilation.
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There is virtually no link in the system the removal of which would cause a permanent breakdown in the 
circulation of payments between the two participants originally connected by this link (and would thus 
prevent liquidity from being rechannelled at the system level). What happens if a link connecting nodes “A” 
and “B” is removed from the system? Will this permanently terminate the connection between the two nodes 
(in other words: will this prevent liquidity from being rechannelled), or will there be an alternative path (e.g. 
through a third node “C”) that enables “A” to resume transactions with “B”?34 This is another way to measure 
the robustness of the network.35 The value obtained was 1.21% for April 2008, 2.8% for April 2012, and 2.27% 
for April 2016. Hence, the share of links in the entire graph the removal of which would cause a permanent 
breakdown in the circulation of payments between the nodes originally connected by them (and would thus 
prevent liquidity from being rechannelled at systemic level) is very low. Since an RTGS enables every participant 
to submit payment orders to all other participants, the drop-out of a single link will not necessarily terminate 
the connection permanently; there will always be an alternative path for the two nodes concerned to bypass 
the original link and transmit liquidity to each other indirectly. The low values confirm the robustness of the 
network.

34  A possible practical interpretation is as follows: suppose Bank “B” needs intraday funds urgently, because it seeks to take a secured loan from 
the central bank. In the default case, it would expect funds from Bank “A”, but Bank “A” is prevented due a communication error from submitting 
payments to Bank “B”. In this case, Bank “B” can contact a third system participant, “C”, which in turn will be able to submit payments to “B”, 
ultimately enabling “B” to finance its secured loan.

35  We calculated this using the results of the “fs” (“fraction of shortcuts in the graph”) output of the MatLab function “erange.m” in the Brain 
Connectivity Toolbox.

Figure 5
Possible payment scenarios between participants in the Hungarian RTGS

(3) a give noden only receives 
payment transactions from some 
participants, while it only sends 
to others

(1) a given node only has incoming links (2) a given node only has outgoing links

(4) a given node has at least one neighbour 
to whom it sends and from whom it receives 
payment transactions 
(reciprocal links and nodes)

Source: Author’s compilation. Case 4 represents the property of reciprocity.
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Reciprocity shows how stable certain business circles are within a system. In respect of a specific node, 
reciprocity shows the portion of the links connected to it that may be considered bi-directional, i.e. each party 
of the same edge both receives and submits payments to the other36 (Figure 5). Reciprocity provides answers 
to questions such as how a given participant in the Hungarian RTGS is related to its immediate neighbours, i.e. 
how constant specific business circles are. Do business relations tend to be fixed or variable? The example in 
Figure 6 shows that node “D” is directly connected to each of the nodes “A”, “B” and “C”. If “D” both received 
payments from and submitted payments to each of its nodes, this would represent 100% reciprocity from 
the perspective of node “D”. However, in our example, “D” submits and receives payments simultaneously 
through links to only two nodes, “B” and “C”. This amounts to four directed links, two in each direction, while 
“D” only receives transactions from “A”, without submitting any payments to it. Therefore, the reciprocity of 
“D” is derived as the ratio of the number of reciprocal links to the number of all links in the system: 4 / 6 = 
0.666, i.e. 67 per cent.

It is rare for a participant to act only as a “liquidity sink” or as a liquidity provider in a system. Between 
2008 and 2016, reciprocity did not change significantly, varying between 39% and 43% on an aggregate level. 
That is, from the perspective of any specific node, close to one-half of all links with the system participants 
connected to it are reciprocal, another indication of the robustness of the overall network, and of its stability 
over time.37 An even higher rate of reciprocity is observed for central participants, averaging between 76% and 
78% in all three time windows considered, as opposed to the readings of 36-39% for the periphery (Table 2, 
for further information on the central-periphery clustering, see Section 5.1). Therefore, participants selected 
from the centre of the network are more likely to include fixed counterparties, in their case the probability of 
establishing active bi-directional payment connections will also be higher compared to peripheral nodes. That 
is, compared to marginal participants, they have a greater proportion of immediate neighbours with which they 
both receive and submit payments to each other. In general, there is a minimal presence of “free riders” in the 
system, so the statement made by Lublóy that it is rare for a node to act only as a “liquidity sink” or only as a 
liquidity provider in respect of a given counterparty38 still stands after a decade. The high reciprocity observed 
at the centre of the network may be attributable to the presence of preferred business relationships, and to 

36  Source: Hanneman et al. (2005)
37  If the data included the turnovers of the MNB, KELER, the Hungarian State Treasury, the Hungarian post, and other participants detailed in 

Section 3.1, the value of reciprocity would likely be higher.
38  “In general, none of the banks can act as a “liquidity sink” (receive large amounts of payments without sending large amounts of payments) or 

as “liquidity treasure island” (send large amounts of payments without receiving large amounts of payments) – not even in the short run.” (Lublóy, 
2006, pp. 20–21.).

Figure 6
Reciprocity – an example

A

B

C

D

Source: Output generated using the BOF-PSS2 simulator.
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the fact that participants engaged in similar business activities are also likely to be strongly connected, e.g. 
banks playing an active role in the FX swap market will presumably trade with one another frequently and in 
large volumes, which could also lead to high reciprocity (Lublóy, 2006; Soramäki, 2014).

Table 2
Reciprocity values by system participant (April 2008, April 2012, April 2016)

Bank name Comment Reciprocity 
(2008 April)

Bank 1 Critical system participant in terms of the transmission of payment liquidity in all examined 3 
time windows (based on the LSI).

83.23%

Bank 2 Critical system participant in terms of the transmission of payment liquidity in all examined 3 
time windows (based on the LSI).

78.90%

Bank 3 Critical system participant in terms of the transmission of payment liquidity in all examined 3 
time windows (based on the LSI).

74.26%

Bank 4 Critical system participant in terms of the transmission of payment liquidity in 2008 (based on 
the LSI). Moved to the periphery in 2012 and 2016.

75.54%

Average reciprocity (critical participants) 77.98%

Average reciprocity (peripheral participants) 36.79%

Average reciprocity (the whole graph) 42.28%

Bank name Comment Reciprocity 
(2012 April)

Bank 1 Critical system participant in terms of the transmission of payment liquidity in all examined 3 
time windows (based on the LSI).

79.97%

Bank 2 Critical system participant in terms of the transmission of payment liquidity in all examined 3 
time windows (based on the LSI).

75.22%

Bank 3 Critical system participant in terms of the transmission of payment liquidity in all examined 3 
time windows (based on the LSI).

80.19%

Average reciprocity (critical participants) 78.46%

Average reciprocity (peripheral participants) 38.92%

Average reciprocity (the whole graph) 42.74%

Bank name Comment Reciprocity 
(2016 April)

Bank 1 Critical system participant in terms of the transmission of payment liquidity in all examined 3 
time windows (based on the LSI).

77.13%

Bank 2 Critical system participant in terms of the transmission of payment liquidity in all examined 3 
time windows (based on the LSI).

80.46%

Bank 3 Critical system participant in terms of the transmission of payment liquidity in all examined 3 
time windows (based on the LSI).

71.16%

Average reciprocity (critical participants) 76.25%

Average reciprocity (peripheral participants) 35.61%

Average reciprocity (the whole graph) 39.19%

Source: Author’s compilation based on MNB data, generated using the BOF-PSS2 simulator. Regarding the LSI-based central-periphery clustering, 
see Section 5.1 later.
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5 Identification of systemically 
important participants

5.1 LSI – ANALYSING THE TRANSMISSION OF PAYMENT LIQUIDITY

Transaction-level data of the Hungarian RTGS suggest that no single participant in the system could be 
considered as “central” by itself. Based on the LSI, two distinct clusters emerge. One is the group of system 
participants which are less significant in regards to the transmission of liquidity. They are peripheral banks for 
which the R algorithm has generated very low authority and hub scores, and consequently, low LSI values. It 
is also possible to distinguish a cluster of banks that plays an important role considering the redistribution of 
liquidity. This includes a small group of three (for 2008: four) participants with the highest authority and hub 
scores. These players also qualify as the participants with the highest turnovers. Together, they generated 
more than one-half (51-60%) of the total turnover in the months considered, contributing to some 75-85% of 
the total LSI. In general, there is no single actor that could be considered as “central”, instead there are more 
participants in the network that play key roles in terms of the redistribution of liquidity (Figure 7).

Between 2008 and 2016, no meaningful difference is found in the group of central participants. By 2016 the 
number of main spreaders had dropped slightly, corresponding to a minimal increase in concentration: while 
in April 2008 the core consisted of 4 participants, there were only 3 core participants in April 2016 and their 
relative ranking also changed slightly. Apparently, in 2008 each of the most important system participants had 
high but varying LSI values, as if four financial centres had been operating at that time, each with a different 
characteristic in terms of spreading liquidity. By 2012, peripheral participants appear to have been increasingly 
disconnected from the core, accompanied by a certain concentration within the core itself: Bank 1 had an 
extremely high LSI, followed by Banks 2 and 3, somewhat lagging behind, but with similarly high LSI scores. 
Between 2012 and 2016 the advantage of Bank 1 in spreading liquidity virtually evaporated; in the 3rd time 

Figure 7
LSI values at the level of system participants (April 2008, April 2012, April 2016)
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Source: Author’s compilation based on MNB data. The related calculations were carried out in R, using the “igraph” package.
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window each of the top three participants achieved similar LSIs and became more closely positioned to one 
another. Other than the above, no meaningful change can be observed concerning the central participants, 
and the group of three banks with the highest turnovers which also play a crucial role in terms of transmitting 
liquidity essentially remained the same (Bank 1, Bank 2 and Bank 3) (Figure 7).

Figure 8
Network structure of the Hungarian RTGS (April 2008–2012–2016)

Bank 29

Bank 39

Bank 38

Note: The nodes marked in red qualify as main spreaders based on the LSI, and those marked in white belong to the periphery. The diameter of 
each node is proportional with its credit and debit turnover, while the thickness of each link represents the corresponding gross turnover. The 
graph’s display is based on the output of the BOF-PSS2 simulator, the Fruchterman–Reingold algorithm has been applied.
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The prominent role of systemically important participants can also be captured based on their shares in 
total turnover. The significance of participants belonging to the core based on their LSIs is also apparent 
from the fact that some 25-40% of the total turnover is generated amongst them. Figure 8 also shows that 
system participants positioned at the centre of the network are connected through a higher number and 
thicker links compared to the periphery.39 About 20-25% of the payments generated by them are submitted to 
peripheral participants, and similar volume is observed in the opposite direction (periphery → main spreaders). 
To sum up, participants qualified as systemically important in the redistribution of liquidity based on their LSIs 
account for some four-fifths of the total turnover of the Hungarian RTGS (also taking into account the turnovers 
generated with the periphery). The remaining 15-25% of the total turnover is generated among peripheral banks 
(Figure 9).

The changes taking place at the level of participants during the period under review (the termination 
or establishment of direct membership of certain participants – that is, entering or exiting the network) 
primarily affected the periphery of the graph. The participants comprising the core of the RTGS remained 
essentially the same. We have previously noted that there was only a slight increase in concentration. In 
the period between 2008 and 2016, certain banks were acquired by or merged with other participants (e.g. 
participants 12, 15, 18, 21, 23, 27, 29, 34 and 35), Bank 12 had its direct membership terminated, whereas 
new participants entered the network (participants 31, 32, 37 and 38; see Figure 7). It is important to note 
that in reality a far greater number of changes occurred; however, as daily turnovers below HUF 1 billion are 
disregarded, the remaining movements of system participants are not relevant to our analysis. The point is that 
each of the above changes affected the periphery of the network. On those grounds, the network (particularly 
its core) is found to be stable and robust.

5.2 BETWEENNESS AND EIGENVECTOR CENTRALITY – THE CONWAY METHOD

The Conway analysis also shows that no single participant in the system could be considered as “central” by 
itself, instead there are several participants of similar importance. There is one particular actor who should 
be highlighted, due to its high betweenness it can be considered the “bottleneck” of the system in terms of 
payments. The Conway method produced similar results to those of the LSI algorithm. Participants with the 
highest model residuals – situated furthest from the reference line – are all crucial actors based on their LSIs 
regarding all 3 time windows (Figure 10, Table 3). Thus, there is no single prominent participant, and instead 
several system participants of similar importance operate in the Hungarian RTGS. Participant 7 is of special 
importance: it has a particularly high betweenness, i.e. it is located on a great number of shortest paths linking 

39  Just like in Japan, where “Financial institutions situated in the middle of the network structure hold more links than those institutions on the 
periphery of the network.” Inaoka (2004), cited by Lublóy (2006).

Figure 9
Distribution of turnover in the Hungarian RTGS system by LSI-based clustering
(April 2008, April 2012, April 2016)

Distribution of RTGS turnover
based on LSI, 2008 April
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Source: Author’s compilation based on MNB data.
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nodes in the network. This is probably owing to the fact that it transacts with a very high number of banks, 
submitting payments to an average 14 participants on any given business day in April 2008, 15 participants 
in April 2012 and 26 in April 2016, whereas an individual participant typically transacts with “only” 7-9 other 
participants on a daily basis, on average (Figure 10). We also realised that there is a 99% correlation coefficient 
between the turnover generated by participants and their eigenvector centrality. (However, obvious causality 
does not necessarily exist, and the correlation may be determined by a – probably unknown – third factor. For 
the purpose of this paper, this is not addressed in greater detail.) The point is that the ranking of individual 
nodes by eigenvector centrality largely corresponds to their ranking by RTGS turnover. 

Figure 10
Relationship of betweenness and eigenvector centrality for specific days 
(1 April 2008, 12 April 2012, 28 April 2016)

2 1 1

3

4 6

7

5

8

1214

44

10

9

13

23
17

16152128 23

19

23

4

9

5

8

13

7

22

1012

20
18

14
17

2833
16
21

1538

6

11

1

2 3

4
8

7

95

6

11
13

31261822 17
14

10

16 3025
3128

Ei
ge

nv
ec

to
r C

en
ta

lit
y

1.00

0.75

0.50

0.25

0.00
0 50 100

Betweenness Centrality
150

0.75
res

abs(res)

0.50
0.25
0.00
–0.25

0.2
0.4
0.6
0.8

Ei
ge

nv
ec

to
r C

en
ta

lit
y

1.00

0.75

0.50

0.25

0.00
0 30 60

Betweenness Centrality
12090

Ei
ge

nv
ec

to
r C

en
ta

lit
y

1.00

0.75

0.50

0.25

0.00
0 50 100

Betweenness Centrality
200150
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Participant 7, which has the highest betweenness, can be found on the right in each chart (highlighted in green).
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Table 3
Residuals of the top 6 players based on the linear model between 2 indices: betweenness and eigenvector centrality, 
also including the share of LSI

April 2008 Residuals (abs.) Contribution to LSI (%)

Bank 2 0.81 26%

Bank 1 0.74 28%

Bank 3 0.63 18%

Bank 4 0.30 13%

Bank 14 0.28 0.1%

Bank 12 0.26 0.4%

April 2012 Residuals (abs.) Contribution to LSI (%)

Bank 1 0.74 32%

Bank 22 0.36 0.0003%

Bank 3 0.36 20%

Bank 13 0.32 0.3%

Bank 2 0.31 21%

Bank 5 0.29 6%

April 2016 Residuals (abs.) Contribution to LSI (%)

Bank 1 0.80 25%

Bank 2 0.69 24%

Bank 3 0.69 26%

Bank 30 0.32 0.001%

Bank 16 0.28 0.023%

Bank 8 0.27 7%

Source: Based on MNB data.

5.3 CONTAGION ANALYSIS BASED ON DIFFUSION CENTRALITY

Previously, we mostly relied on indicators capturing static network properties. We applied a variety of 
methods to identify central participants that are systemically important. In the following, a contagion analysis 
is carried out, which relies on diffusion centrality. The final results are illustrated in Figure 11.

Figure 11
Relationship of diffusion growth and LSI scores
(April 2008, April 2012, April 2016)
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The speed of diffusion increased for the majority of critical and peripheral participants, indicating an increase 
in contagion risk over the long term both at individual and aggregated level. All participants qualified as critical 
based on their LSIs can be considered risky in terms of diffusion, and it is also notable here how close the core 
actors have become following 2008, as if they had formed one single money centre. Conversely, although 
marginal on an LSI basis, certain participants had very high diffusions. These latter are system participants for 
which an operational disruption could primarily emerge as a local problem (with operational incidents mainly 
causing difficulties for their immediate neighbours), while the significance of this is negligible for the overall 
network. One example is participant 12 in April 2008. It is ranked in the middle of the grid based on its LSI 
(with a mere 0.36% contribution to the total LSI), which makes it peripheral. So an operational disruption in its 
case would not result in a systemic problem and would, at most, cause interruptions for immediately adjacent 
participants with which it transacts on a daily basis, given its property as the third largest risk spreader in 
the average of 3 days (3 units of time) elapsed. Similar properties are found in case of participants 29 (April 
2012) and 38 (April 2016), both with LSI contributions converging to zero. Ranked higher on an LSI basis (and 
therefore important for the transmission of liquidity) but still peripheral, of particular note are participants 
5 and 6 (April 2008) with a combined LSI contribution of close to 10%, and participants 4, 5, 6, 8 and 9 (April 
2012 and 2016), with combined LSI contributions of 23% in April 2012, and 21% in April 2016. In their case, 
the impact of the spill-over of liquidity risk resulting from a potential operational disruption is relatively large 
in the average of 3 units of time, so the risk of potential contagion may be high. Considering their position as 
relatively important participants for the transmission of liquidity, a potential operational disruption in their 
case could cause significant risks both locally and systemically. It is also apparent that the diffusion centrality 
positions of most participants increased between 2008 and 2016, which means that for several participants, the 
risk of contagion may have become higher, with a greater speed of spreading liquidity risk. The change is also 
substantial at the systemic level: between 2008 and 2016, the speed of diffusion increased by approximately 
18% (Figures 11, 12).

Figure 12
Diffusion speed of liquidity risk at the level of individual banks
(April 2008, April 2016)
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Source: Author’s compilation based on MNB data. The figure represents the averages derived from the increments of diffusion centrality values 
obtained for parameters T=1, T=2 and T=3, for April 2008 and April 2016. The participants qualified as systemically important on an LSI basis in 
April 2016 are highlighted in red, and a heat map, generated on the basis of the LSI scores for April 2016, is shown in the upper end of the chart.
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5.4 SELECTING CENTRAL PARTICIPANTS BY COMBINING NODES IN THE 
NETWORK

The simultaneous drop-out of 3 or 5 system participants could carry higher risk than operational disruptions 
encountered individually by critical participants. However, each artificially selected group needs at least one 
critical participant that will ultimately amplify the contagion effect of its group, for all three time windows. 
Observing April 2008 data we can conclude the following. When participants 1, 29 and 30 are treated as a group 
(assuming their simultaneous drop-out following a hypothetical merger), the diffusion of liquidity risk resulting 
from its operational disruption – calculated over 3 units of time40 – will reach a level (2.96) that exceeds the 
values measured individually for participants 1, 29 and 30 (2.95, 1.56 and 1.04, respectively). When participants 
2, 29 and 30 are selected into a group, the diffusion of liquidity risk associated with this combined group will 
again exceed the values measured individually for each participant. Things look somewhat different if we modify 
the allowed number of participants that can be clustered; however, the results obtained using a 5-participant 
model will overall be similar to the previous model. Additionally, whether the model allows 3 or 5 participants, 
the artificially selected group will in both cases include at least one system participant that qualified as critical 
based on at least one of the previously detailed methodologies. On this basis, system participants 1 and 2 for 
April 2008 and April 2012 could be highlighted (they are also among the top 3 players generating the highest 
turnover in the RTGS). The rest of the participants which were included in the artificially created groups were 
originally peripheral based on the previous methods; so this basically means that their roles in the network 
have appreciated due to the groupings. For April 2016, we obtained similarly high contagion values due to the 
forced combination of certain nodes into a group; additionally, in groups of both 3 and 5, the high contagion 
power was primarily attributable to participant 2 (Table 4).

40  Based on the input matrix, this is one month, but could also be one day for greater ease of interpretation.
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Table 4
Diffusion centralities by bank for each iteration (T = 1, T = 2, T = 3), also indicating artificially selected groups of 
participants considered as central based on the kpset algorithm
(April 2008)

Bank name diffusion centrality 
(T=1)

diffusion centrality 
(T=2)

diffusion centrality 
(T=3)

growth of diffusion 
centrality  

(T = 1; T = 2; T = 3)

Bank 4 2.09 8.00 21.28 3.24

Bank 5 1.29 4.83 12.97 3.21

Bank 12 0.38 1.35 3.59 3.09

Bank 3 2.80 9.60 25.39 3.04

Bank 6 1.42 4.77 12.62 3.00

Bank 1 + Bank 25 + Bank 28 +  
Bank 29 + Bank 30

2.78 9.84 23.60 2.97

Bank 1 + Bank 29 + Bank 30 3.54 11.74 30.60 2.96

Bank 1 3.71 12.17 32.00 2.95

Bank 2 + Bank 29 + Bank 30 3.55 11.46 30.44 2.944

Bank 2 + Bank 27 + Bank 28 +  
Bank 29 + Bank 30

2.46 8.41 20.59 2.937

Bank 2 3.67 11.65 31.05 2.92

Bank 11 0.55 1.76 4.50 2.89

Bank 8 0.70 2.23 5.76 2.88

Bank 10 0.77 2.27 5.69 2.73

Bank 7 0.89 2.59 6.49 2.71

Bank 1 + Bank 27 + Bank 28 +  
Bank 29 + Bank 30

2.88 8.99 20.21 2.69

Bank 9 0.78 2.26 5.61 2.68

Bank 13 0.48 1.37 3.37 2.65

Bank 18 0.05 0.14 0.34 2.61

Bank 14 0.27 0.75 1.84 2.59

Bank 15 0.11 0.27 0.65 2.49

Bank 22 0.01 0.02 0.05 2.49

Bank 27 0.00 0.00 0.00 2.49

Bank 21 0.01 0.02 0.04 2.48

Bank 16 0.06 0.16 0.38 2.45

Bank 20 0.04 0.08 0.17 2.16

Bank 28 0.01 0.03 0.06 2.15

Bank 23 0.01 0.02 0.04 2.07

Bank 24 0.01 0.02 0.03 2.06

Bank 17 0.09 0.17 0.36 2.05

Bank 19 0.07 0.14 0.26 1.95

Bank 26 0.00 0.01 0.01 1.73

Bank 29 0.00 0.01 0.01 1.56

Bank 25 0.01 0.01 0.02 1.42

Bank 30 0.00 0.00 0.00 1.04

Source: Author’s compilation based on MNB data and R output. Values in red font colour refer to those system participants for which the kpset 
algorithm produced the available optimum at the indicated T parameter. In the case of the combined groups, the red squares indicate the core 
actors based on the LSI.
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Table 4 (continued from previous page)
Diffusion centralities by bank for each iteration (T = 1, T = 2, T = 3), also indicating artificially selected groups of 
participants considered as central based on the kpset algorithm
(April 2012)

Bank name diffusion centrality 
(T=1)

diffusion centrality 
(T=2)

diffusion centrality 
(T=3)

growth of diffusion 
centrality  

(T = 1; T = 2; T = 3)

Bank 29 0,00 0,00 0,00 3,47

Bank 9 1,00 4,19 10,96 3,41

Bank 16 0,03 0,13 0,37 3,30

Bank 5 1,54 5,66 15,00 3,16

Bank 6 0,81 2,99 7,87 3,15

Bank 12 0,36 1,31 3,47 3,15

Bank 2 + Bank 18 + Bank 19 +  
Bank 28 + Bank 29

2,78 10,34 26,51 3,14

Bank 8 1,11 4,00 10,50 3,12

Bank 2 + Bank 29 + Bank 32 2,91 10,61 27,26 3,11

Bank 4 1,80 6,38 16,88 3,09

Bank 2 3,00 10,76 27,77 3,09

Bank 11 0,37 1,28 3,35 3,03

Bank 31 0,09 0,32 0,84 3,00

Bank 3 3,05 10,22 26,45 2,97

Bank 1 4,40 13,14 35,14 2,83

Bank 1 + Bank 19 + Bank 28 4,11 12,35 32,52 2,82

Bank 10 0,50 1,50 3,89 2,80

Bank 13 0,44 1,35 3,43 2,79

Bank 7 1,25 3,76 9,55 2,78

Bank 22 0,02 0,04 0,11 2,77

Bank 20 0,08 0,24 0,59 2,72

Bank 24 0,00 0,01 0,03 2,72

Bank 14 0,22 0,62 1,57 2,68

Bank 17 0,28 0,80 1,96 2,64

Bank 1 + Bank 18 + Bank 19 +  
Bank 28  + Bank 29

2,99 8,19 18,31 2,49

Bank 26 0,02 0,05 0,11 2,29

Bank 28 0,01 0,03 0,07 2,18

Bank 19 0,04 0,09 0,20 2,18

Bank 15 0,04 0,08 0,17 2,04

Bank 33 0,00 0,01 0,02 2,04

Bank 32 0,01 0,01 0,02 2,01

Bank 34 0,00 0,00 0,01 1,98

Bank 30 0,03 0,05 0,10 1,88

Bank 25 0,01 0,01 0,02 1,73

Bank 18 0,02 0,03 0,05 1,63

Source: Author’s compilation based on MNB data and R output. Values in red font colour refer to those system participants for which the kpset 
algorithm produced the available optimum at the indicated T parameter. In the case of the combined groups, the red squares indicate the core 
actors based on the LSI.



IDENTIFICATION OF SySTEMICALLy IMPORTANT PARTICIPANTS

MNB OCCASIONAL PAPERS 132 • 2017 35

Table 4 (continued from previous page)
Diffusion centralities by bank for each iteration (T = 1, T = 2, T = 3), also indicating artificially selected groups of 
participants considered as central based on the kpset algorithm
(April 2016)

Bank name diffusion centrality 
(T=1)

diffusion centrality 
(T=2)

diffusion centrality 
(T=3)

growth of diffusion 
centrality  

(T = 1; T = 2; T = 3)

Bank 38 0,00 0,01 0,02 3,79

Bank 5 1,24 4,96 14,47 3,47

Bank 35 0,01 0,04 0,12 3,39

Bank 15 0,02 0,07 0,20 3,38

Bank 33 0,01 0,03 0,08 3,34

Bank 4 1,74 6,56 18,87 3,33

Bank 6 0,59 2,21 6,36 3,31

Bank 8 1,84 6,89 19,68 3,30

Bank 22 0,02 0,06 0,18 3,24

Bank 2 + Bank 19 + Bank 37 +  
Bank 38 + Bank 39

3,41 12,40 35,10 3,24

Bank 2 3,54 12,77 36,36 3,23

Bank 2 + Bank 19 + Bank 38 3,51 12,67 35,93 3,23

Bank 1 3,64 13,00 36,88 3,20

Bank 9 1,21 4,26 12,00 3,17

Bank 3 3,78 13,12 37,54 3,17

Bank 16 0,12 0,42 1,18 3,13

Bank 25 0,02 0,08 0,23 3,10

Bank 11 0,35 1,18 3,30 3,10

Bank 29 0,00 0,00 0,01 2,88

Bank 7 1,87 5,76 15,45 2,88

Bank 10 0,38 1,13 3,02 2,82

Bank 31 0,05 0,15 0,40 2,80

Bank 13 0,30 0,87 2,29 2,77

Bank 14 0,14 0,39 1,03 2,75

Bank 36 0,00 0,01 0,02 2,63

Bank 28 0,03 0,09 0,21 2,62

Bank 19 0,10 0,29 0,67 2,61

Bank 39 0,00 0,00 0,00 2,61

Bank 17 0,14 0,36 0,90 2,57

Bank 26 0,02 0,05 0,13 2,56

Bank 18 0,05 0,12 0,29 2,49

Bank 34 0,00 0,01 0,01 2,27

Bank 37 0,00 0,01 0,01 2,26

Bank 20 0,16 0,34 0,79 2,22

Bank 30 0,08 0,16 0,36 2,09

Bank 32 0,00 0,00 0,01 1,80

Source: Author’s compilation based on MNB data and R output. Values in red font colour refer to those system participants for which the kpset 
algorithm produced the available optimum at the indicated T parameter. In the case of the combined groups, the red squares indicate the core 
actors based on the LSI.
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5.5 SUMMARY – IDENTIFYING SYSTEMICALLY IMPORTANT PARTICIPANTS 
USING SPECIFIC METHODS

In the Hungarian RTGS, there is no one single central participant, instead there are several systemically 
important participants. We have produced a summary table that shows the most important participants 
based on various methods. (Table 5). It clearly presents that there is no one single participant, instead there 
are multiple, similarly important actors in the network. Also, different participants are indicated as “critical” 
depending on which model is applied. Obviously, there are partial overlaps between the individual results. It 
is important to note that it is not necessarily the participants with the highest shares of turnover that may be 
considered “critical”. For example, participant 7 featured the highest betweenness score in all three periods, 
meaning it lies on many of the shortest paths linking pairs of nodes in the system. The Hungarian RTGS has a 
hierarchical structure which can be typically clustered into 2 subsegments: core and periphery. The participants 
comprising the core essentially remained the same, with strong links to each other. The speed of diffusion 
increased for the majority of critical and peripheral participants, indicating an increase in contagion risk over the 
long term both at the level of individual banks and at the aggregated level. Among certain system participants, 
the degree of interrelations and financial interdependencies is also relevant (see the “grouping effect” columns). 
E.g. participant 2 was included in the artificially selected groups in all three time windows, whereas in April 
2008 and 2012, participant 1 had very high contagion power in the new combined group. Some participants 
had their direct membership in the Hungarian RTGS terminated between the time windows considered, and 
at the same time new banks also entered the system. The changes41 taking place at the level of participants 
during the period under review primarily affected the periphery of the graph, which is consistent with the 
findings of Lublóy (2006), i.e. the group of dominant and central participants remains relatively constant over 
the longer term.

 

 

 

41  Entries to and exits from the Hungarian RTGS at the level of individual participants.
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6 Summary

In this paper, we investigated the Hungarian RTGS (VIBER) by means of network theory. First, we examined the 
network characteristics of the system. We observed whether these properties have changed over the long term 
(comparing the time windows of April 2008, April 2012, and Aprils 2016), and if so, to what extent. Second, 
we identified systemically important participants using various network theory methodologies. We hope that 
our paper will contribute to increasing the effectiveness of carrying out the central bank’s oversight functions.

By international standards, the network of the Hungarian RTGS is relatively dense, which enables risks to be 
diversified on the one hand, although the same property is less ideal in terms of the diffusion of contagions. 
The level of the global clustering coefficient for the network of the Hungarian RTGS is similar to that in other 
payment systems considered (46-53% in the observed period), which means that for any randomly selected 
participant, approximately one-half of the potential linkages between its neighbours were in fact active. 
Consequently, banks (and their immediate “neighbours”) are mostly connected to one another, which is a 
property to be expected of an RTGS system. In the periods considered, apart from a slight decrease, the 
indicator has not shown any material changes which points to the robustness of the system.

Another way to measure the robustness of a network is to determine whether the drop-out of a single link 
would permanently terminate payments between the two nodes originally connected by it, or there would be 
an alternative path for these two nodes to bypass the defaulted link and resume communications with each 
other. The value obtained for April 2008 was 1.21%, which basically means that there was not a single link the 
removal of which would have terminated communications between the two banks originally connected by it 
and would therefore have posed a systemic risk in terms of rechannelling payment liquidity. The same figure 
was 2.8% for April 2012, and 2.27% for April 2016. These results also confirm the robustness of the network.

It is rare for a participant to act only as a “liquidity sink” or only as a liquidity provider in the system. A higher 
rate of reciprocity is observed for the “core” participants that play an important role in the transmission of 
liquidity, averaging between 76% and 78% in all three time windows considered, as opposed to the lower 
readings of 36-39% for the periphery. Therefore, participants randomly selected from the centre of the network 
are more likely to include fixed counterparties, and in their case the probability of the establishment of active 
bi-directional payment connections will also be higher compared to peripheral banks. Between 2008 and 2016, 
aggregated reciprocity did not change significantly, and varied between 39% and 43% on an aggregate level, 
which also points to the stability of the overall network.

Based on the LSI indicator, two distinct clusters emerge: the first is the group of participants that play a key role 
in the transmission of liquidity within the system, and the other is the cluster of peripheral participants. The 
financial centre within the network of the Hungarian RTGS consists of several elements rather than a single 
element. Between 2008 and 2016, no significant difference was found in the group of central participants. The 
banks comprising the core of the RTGS essentially remained the same, with only minor variations regarding 
their LSI-based rankings. Accordingly, the core of the network can be considered stable. Participants qualified 
as systemically important in the redistribution of liquidity based on their LSIs, account for some four-fifths of 
the total turnover of the Hungarian RTGS (also taking into account the turnovers generated with the periphery)

The remaining one-fifth of the total turnover of the RTGS is generated by peripheral banks. We also observed 
that the changes taking place at the level of participants during the period under review (that is, entering or 
exiting the network) primarily affected the periphery of the network.
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The Conway analysis also proved that no single participant in the system could be considered as “central” by 
itself, instead there are several participants of similar importance. Specifically, participant 7 could be highlighted, 
which, due to its high betweenness, can be considered as the “bottleneck” of the system in terms of payments 
regarding all three time windows. In other words, it lies on many of the shortest paths linking a large number 
of bank pairs in the system. This is explained by fact that it transacts with a very high number of system 
participants, submitting payments to an average 14 participants on any given business days in April 2008, 15 
participants in April 2012 and 26 in April 2016, whereas an individual participant typically transacts with “only” 
7-9 other participants on a daily basis, on average. So these features makes this a “bottleneck” node within 
the network and thus it deserves close attention as a result.

The speed of diffusion increased for the majority of critical and peripheral participants, indicating an increase in 
contagion risk over the long term at the level of individual banks. The growth is also substantial at the systemic 
level: between 2008 and 2016, the diffusion of liquidity risk increased by some 18% in the average of all nodes.

The risk of combined contagion of certain participants could be particularly high. From an overseer perspective, 
it is important not to treat specific institutions independently in isolation, but, as far as possible, to investigate 
several system participants combined into groups, because the level of complex financial interrelations among 
them may be absolutely critical when exploring systemic contagions. We found that the simultaneous drop-
out of 3 participants could already carry higher risk than operational disruptions individually encountered by 
critical banks. This could mean that a participant that was previously assumed to be marginal may even see its 
role within the network appreciate significantly. However, each artificially selected group needs at least one 
systemically important participant that will ultimately amplify the contagion effect of the group, for all three 
time windows considered. Therefore, otherwise holding a dominant position in the transmission of liquidity, 
participant 2 was included in the artificially selected groups (of both 3 and 5 participants) in all three time 
windows, whereas regarding the time windows of 2008 and 2012, participant 1 had very high contagion power.

As we have seen, the network of the Hungarian RTGS is rather concentrated, with 3 or 4 participants accounting 
for some 75-85% of the total LSI. For that reason, useful enhancements could be made to the findings of this 
analysis by examining the network of the payment system and systemically important participants on a subset 
excluding those 3 or 4 participants. Also, it might be wise to further include other markets into the scope of 
such analysis, e.g. the network of future / derivative products, etc.

The results of each indicator showed that there were no significant changes regarding the network properties 
across the 3 time windows, confirming the robustness of the Hungarian RTGS and its stability over time, 
which is presumably attributable to the fact that the structure of the sector has not changed significantly. 
The methods described in this paper enable the identification of the risky groups in the system, contributing 
to more effective daily oversight and ultimately to the maintenance of financial stability, which is one of the 
main tasks of the central bank.42

42  In the case of the Magyar Nemzeti Bank: “Pursuant to Act CXXXIX of 2013 on the Magyar Nemzeti Bank, the primary objective of Hungary’s 
central bank is to achieve and maintain price stability. One of the main responsibilities of the Magyar Nemzeti Bank (MNB) as set forth in the Act 
on the Magyar Nemzeti Bank is to promote the smooth execution of payments and to facilitate the reliable and efficient functioning of the 
payment and settlement systems. The smooth execution of payments and the reliable and efficient operation of payment and settlement systems 
are crucial for the execution of real economic and financial transactions.” (MNB, 2016).
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and Information Science. Source: http://www.algo.uni-konstanz.de/publications/b-fabc-01.pdf. Downloaded: 
1 June 2017.

Eaton, E. (2013): Lecture material on network centrality. Bryn Mawr College, CS 380. Course: Network 
Analysis. Source: http://cs.brynmawr.edu/Courses/cs380/spring2013/section02/slides/05_Centrality.pdf. 
Downloaded: 12 May 2016.

About reciprocity. Hanneman, R. A. – Riddle, M. (2005): Introduction to social network methods. Riverside, 
CA: University of California, Riverside. Lecture material. Source: http://faculty.ucr.edu/~hanneman/nettext/
C8_Embedding.html#reciprocity. Downloaded: 12 May 2016.

About density. Rosenblatt, G. (2013): What is Network Density – and How Do you Calculate It? Source: http://
www.the-vital-edge.com/what-is-network-density/. Downloaded: 12 May 2016.

About eigenvector centrality. 

Kiss, D. (2012): Application of PageRank. Source: http://web.cs.elte.hu/blobs/diplomamunkak/bsc_
matelem/2013/kiss_daniel.pdf. Downloaded: 12 May 2017.

Franceschet, M. (2014): lecture material. G. d’Annunzio University of Chieti-Pescara. Source: http://www.
sci.unich.it/~francesc/teaching/network/eigenvector.html. Downloaded: 12 May 2016.

Other:

Stam, C. J.: “Connected Brains: introduction to graph theory”. Source: http://home.kpn.nl/stam7883/graph_
introduction.html. Downloaded: 12 May 2016.

Website of the UCINET software package for the analysis of social network data. Source: http://www.
analytictech.com/ucinet/help/hs4200.htm. Downloaded: 12 May 2016.

https://www.learner.org/courses/mathilluminated/interactives/network/
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7.3 SOFTWARE AND SOURCES

A part of the MatLab functions used were taken from the following websites:

•   Brain Connectivity Toolbox. Source: https://sites.google.com/site/bctnet/measures/list. Downloaded: 12 
May 2016.

•   MIT Strategic Engineering. MatLab Tools for Network Analysis (2006–2011). Source: http://strategic.mit.edu/
downloads.php?page=matlab_networks. Downloaded: 12 May 2016.

Sources of code used in R:

•   Conway, D. (2009): Social Network Analysis in R. Sources: http://files.meetup.com/1406240/sna_in_R.pdf 
and https://www.youtube.com/watch?v=wcyxpXy1Uic. Downloaded: 12 May 2016.

•   Csárdi, G. – Nepusz, T. (2006): The igraph software package for complex network research. InterJournal, 
Complex Systems 1695. http://igraph.org. Functions used: hub_score and authority_score.

•   Dr. Daizaburo Shizuka’s website. Shizuka Lab, School of Biological Science, University of Nebraska-Lincoln. 09. 
Edgelists with edge values. Source: http://www.shizukalab.com/toolkits/sna/weighted-edgelists. Downloaded: 
12 May 2016.

•   An, W. – Liu, y. H. (2016): keyplayer: Locating Key Players in Social Networks. R package version 1.0.3. Source: 
https://CRAN.R-project.org/package=keyplayer. Downloaded: 12 May 2016. More details on the “keyplayer” 
package developed by the authors: An, W. – Liu, y. H. (2016): keyplayer: An R Package for Locating Key 
Players in Social Networks. Source: https://journal.r-project.org/archive/2016-1/an-liu.pdf. Downloaded: 
19 September 2016.

BOF-PSS2 documentation:

•   Bank of Finland: BOF-PSS2 documentation. Source: https://www.suomenpankki.fi/globalassets/en/
rahoitusjarjestelman_vakaus/bof-pss2/documentation/bof-pss2_usermanual_600.pdf. Downloaded: 12 
May 2016
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