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Abstract

This paper invesƟgates the effects of contagion in interbank lending networks. I introduce a newmeasure basedon theharmonic
distance of Acemoglu et al. (2015b) and, moƟvated by their theoreƟcal results, compare it to well-known centrality measures
already applied in the systemic risk literaturewhich do not take into account the structure of a contagionmechanism. I derive an
explicit formula of size-adjusted harmonic distances and extend it with the usage of liquid assets for a heterogeneous banking
system. The simulaƟon results on scale-free and complete networks do not confirm that this newdistancewould performbeƩer
than ”off-the-shelf” measures but its performance becomes similar to the best known measures in case of averaged networks
which are applied in central banking analysis. This newmeasure is capable of idenƟfying systemically important insƟtuƟons and
its Ɵme variaƟon is also presented in an interbank network. I also test for the scale-free property of the Hungarian interbank
lending network and besides, network measures as systemic risk indicators are analyzed on Hungarian data.

JEL: D85, E44, G01, G21, G28, L14.

Keywords: systemic risk, financial networks, interbank contagion, macroprudenƟal regulaƟon.

Összefoglaló

A tanulmány a bankközi hitelezési hálózatok fertőzési hatásaival foglalkozik. Bemutat egy hálózaƟ fontosságot mérő mutatót
Acemoglu et al. (2015b) harmonikus távolság fogalma alapján, majd – előbbi szerzők elméleƟ eredményei által moƟválva –
az irodalomban közismert centralitási mutatókhoz hasonlítja azt. Megadja a méreƩel korrigált harmonikus távolságok explicit
formáját, és kiterjeszƟ azt likvid eszközök használatával heterogén bankrendszer esetében. A szimulált skálafüggetlen és teljes
hálózatokon végzeƩ vizsgálatok alapján a mutatószám a közismert mutatóknál nem teljesít jobban, a jegybankok elemzésében
gyakran használt átlagolt hálózatoknál pedig a harmonikus távolságok teljesítménye a legjobb ismert mutatókéhoz hasonló. Az
új mérőszám felhasználható a rendszerszinten jelentős intézmények azonosítására. A tanulmány bemutatja a vizsgált mutatók
időbeli fejlődését a magyar bankközi hálózaton, ellenőrzi a hálózat skálafüggetlenségét, valamint prezentálja az időbeli fejlődés
alapján a hálózaƟ mutatók rendszerkockázaƟ indikátorba való lehetséges implementálását.
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1 IntroducƟon

Though the analysis of interbank contagion and the effect of insƟtuƟonal failures on a financial system dates back to 2001,
when the seminal paper of Eisenberg and Noe (2001) was published, the interest in this topic flared up aŌer the global financial
crisis, when AIG was bailed out due to its global systemic importance. Possible asset side channels of contagion are numerous
and can be categorized into two main sets: direct effects and indirect effects. The most well-known direct effect is interbank
lending while indirect effects are channelled through asset prices. Possible liability side contagion channels are different types
of bank runs (Upper, 2011).

In data one can scarcely encounter interbank contagions since insƟtuƟons in distress are usually bailed out or are rescued by
senior creditors. To overcome this fact, empirical researchers use simulated data or assume extreme stress events to real data.

Regulatory response to system-wide stress events has been the intense development of macroprudenƟal policy as micropru-
denƟal intervenƟons were unable to miƟgate risks. To see this in the case of interbank contagion, it is enough to recognize
that the interbank network is unknown from an individual bank’s balance sheet. From the point of view of individual insƟtu-
Ɵons, they are suscepƟble to counterparty risk. They only quanƟfy their partners default but do not deal with their own role
in the financial system. Systemic risk analysis tackles this flaw as its objecƟve funcƟon is the stability of the whole financial sys-
tem. MacroprudenƟal tools aim to increase the resilience of financial insƟtuƟons with liquidity regulaƟons, improved capital
requirements, and further targeted measures in order to achieve higher loss absorbing capaciƟes in the financial system.

A financial insƟtuƟon is referred to as systemically important (SIFI) if its default could trigger a system-wide stress. Imposing
higher capital requirements on insƟtuƟons based on their interbank exposures and interconnectedness is assumed to improve
financial stability and decrease social costs of a banking crisis. This idea is in the spirit of the assessment methodology for SIFIs
proposed by the Basel CommiƩee on Banking Supervision. Thus interbank contagion and interconnectedness is a typical focal
point of SIFIs as confirmed in the following citaƟon:

”The difficult task before market parƟcipants, policymakers, and regulators with systemic risk responsibilaƟes such as the Fed-
eral Reserve is to find ways to preserve the benefits of interconnectedness in financial markets while managing the potenƟally
harmful side effects” Yellen (2013)

The risks of interconnectedness arise mostly in case of unsecured debt contracts: though financial insƟtuƟons also conclude
repo transacƟons, these are subject to a lesser degree of counterparty risk as they are secured by collateral. Therefore, the
lack of repayment does not entail as high losses as an unsecured contract. One of the first papers that deal with bank inter-
connectedness through unsecured debt networks of financial insƟtuƟons is the toy model of Allen and Gale (2000). They find,
similarly to Freixas et al. (2000), that more diversified interbank liabiliƟes lead to a more resilient system to the default of any
bank. However, others argue that an increase in the number of interconnecƟons leads to an increase in the probability of crisis
(Vivier-Lirimont, 2006). These fundamental papers aim to study the stability of the whole network but it is also a key ques-
Ɵon how a large insƟtuƟon influences systemic stability. As Borgaƫ (2005) pointed out, when choosing and applying so-called
centrality measures we need to idenƟfy and invesƟgate the process taking place in the network and the role of insƟtuƟons in
the network. For the quanƟficaƟon of network systemic importance, Baƫston et al. (2012) propose a measure deepening the
idea of eigenvector centrality excluding walks from the network in which one or more nodes are repeated. Soramäki and Cook
(2013) also propose an algorithm for idenƟfying systemically important insƟtuƟons. Alter et al. (2015) and Fink et al. (2015) em-
pirically find that eigenvector and Bonacich centrality are key measures of systemic importance. This is theoreƟcally confirmed
in Acemoglu et al. (2015a) while the same authors Acemoglu et al. (2015b) propose a new noƟon of distance called harmonic
distance between banks which measures the possibility of contagion: ”bank closest to all others according to our harmon-
ic distance measure that may be too-interconnected-to-fail” Acemoglu et al. (2015b) and ”systemic importance of a financial
insƟtuƟon is captured via its harmonic distance to other banks, suggesƟng that this new noƟon of network distance should fea-
ture in theoreƟcally-moƟvated policy analyses” Acemoglu et al. (2015b). Alter et al. (2015) invesƟgate centrality based capital
allocaƟons in the German banking system. Fink et al. (2015) propose a framework to measure capital losses (BSLoss) to the
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INTRODUCTION

banking system as the cost of interconnectedness and find high correlaƟon between the costs and certain centrality measures.
However, the so-called SIFI scores, the official measure for assessing systemically important financial insƟtuƟons, have low
correlaƟon. This underpins the invesƟgaƟon of centrality measures.

The goal of this paper is to measure the performance and behaviour of harmonic distance by quanƟfying systemic importance
of insƟtuƟons in case of individual defaults. A default of a liquidity providing insƟtuƟon may also give rise to liquidity shortage
in the system as a whole. I do not intend to invesƟgate this situaƟon; on the other hand, I would like to deal with the case when
a bank triggers a cascade only if it cannot meet its obligaƟons.

The rest of this paper is structured as follows. In SecƟon 2 I introduce the basic notaƟons and centrality measures that have
been used to measure systemic importance in networks. In SecƟon 3 I refresh the underlying network equilibrium model of
interbank payments and its generalized form. In SecƟon 4 I summarize the main contribuƟons of the two papers of Acemoglu
et al. (2015a); Acemoglu et al. (2015b) that are related to the measurement of systemic importance of financial insƟtuƟons
and as an own result I propose an explicit formula for their measure harmonic distance. In SecƟon 5 I extend the definiƟon of
harmonic distance withmore flexible scaling of heterogeneous banks. In SecƟon 6 I elaborate the problem of weakly connected
networks and harmonic distances, introduce a generaƟon process of arƟficial interbank networks and present the calculaƟon of
implied losses when a bank defaults. The co-movement of these implied losses and systemic importancemeasures are analyzed
in SecƟon 7, while SecƟon 8 as an important result tests for the scale-free property of the Hungarian interbank lending network,
demonstrates the behaviour of thesemeasures in Ɵme and last but not least, shows an applicaƟon for systemic stress indicaƟon.
An explanaƟon of results is presented in SecƟon 9. SecƟon 10 concludes.
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2 Basic notaƟons and centrality
measures

A network can be represented by a graph of verƟces and edges G(V, E). Two verƟces are neighbours if there exists an edge
connecƟng them. N(i) is the set of neighbours of vertex i. I will alternaƟvely call verƟces nodes. In case of financial networks
nodes are financial insƟtuƟons and edges represent liability connecƟons among them. I will represent networks in the com-
mon way: the undirected adjacency matrix contains the undirected existence of connecƟons among insƟtuƟons as indicators,
directed edges are represented in the directed adjacency matrix in the same way. In the presence of edge weights, indicators
are subsƟtuted by real numbers, and I obtain the undirected weighted and directed weighted matrices of financial networks.

Figure 1
The aggregated Hungarian interbank lending network in 2015

Centrality measures are used to quanƟfy the importance of a node in a network. Several measures have been introduced in
the literature, from natural ideas to more complicated ones. In the following I summarize some of the most frequently used
centraliƟes and the connecƟons between them.
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BASIC NOTATIONS AND CENTRALITY MEASURES

In the undirected adjacency network represented by matrix 𝐀, for a given node i the degree is the number of nodes that are
linked to i, i.e. the sum of rows of the adjecency matrix:

di ୀ
n


jస1

ai,j ୀ (𝐀 ⋅ 𝟏)i,

where themulƟplicaƟon by a vector of ones takes the sumof rows of the precedingmatrix. In the undirected, weighted network
𝐖 for a given node i the weighted degree is the sum of the weights of edges that are connected to node i,

wi ୀ
n


jస1

wi,j ୀ (𝐖 ⋅ 𝟏)i.

Note that both degrees are the (weighted) number of steps from node i while a step is a special path of length 1. The number
of steps of any length will come up at Bonacich centrality.

In the undirected network𝐖 the closeness of node i is given by the reciprocal of the maximal distance from all nodes in the
network,

ci ୀ
1

୫ୟ୶j d(i, j)
,

where d(i, j) denotes distance between node i and j, i.e. the minimum length of paths between them. IntuiƟvely, the closeness
of a node is high if its distance from other nodes is low, therefore it is close to all verƟces in the network.

Betweenness is the number of shortest paths that contain a given node i. Paths of length 1 are excluded.

Let vi denote the eigenvector centrality of node i which is implicitly defined by

vi ୀ
1
ఒ 

j∈N(i)
vj,

that is, the importance of a node is proporƟonal to the sum of importances of its neighbours. With the help of the adjacency
matrix,

vi ୀ
1
ఒ 

j∈N(i)
vj ୀ

1
ఒ 

j

ai,j ⋅ vj,

which in matrix notaƟon becomes𝐀⋅𝐯 ୀ ఒ⋅𝐯, thus 𝐯 is an eigenvector of matrix𝐀. As one needs 𝐯 to be elementwise posiƟve,
one chooses the eigenvector corresponding to the maximal eigenvalue. The Perron – Frobenius Theorem (see Appendix A for
the exact statement) guarantees that the chosen vector is elementwise posiƟve.

Bonacich centrality (Bonacich, 1987; Bonacich and Lloyd, 2001) is based on the idea of eigenvector centrality but has two
flexibility parameters ఈ and ఉ,

bi(ఈ, ఉ) ୀ
j

ఈ ା ఉ ⋅ ai,j ⋅ bj(ఈ, ఉ),

which in matrix notaƟon aŌer rearranging turns into

𝐛(ఈ, ఉ) ୀ ఈ ⋅ (𝐈 ି ఉ𝐀)ష1 ⋅ 𝟏. (1)
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Note that for the special case ఈ ୀ 0, ఉ ୀ 1/ఒ in the definiƟon Bonacich centrality is equal to eigenvector centrality and
equaƟon (1) is applicable only for ఈ ஷ 0 and ఉ ழ 1. Let 𝐁 ୀ (𝐈 ିఉ𝐀)ష1 ୀ bi,j. This centrality has an important interpretaƟon.
By using the Neumann series representaƟon of 𝐁,

𝐛(ఈ, ఉ) ୀ ఈ ⋅
ಮ


kస0

ఉk𝐀k ⋅ 𝟏.

If one looks at ఉ ழ 1 as a probability, bi is the expected number of paths from node i if every step has a probability ఉ. From
this point of view, Bonacich centrality is a closeness measure. Moreover, also a generalizaƟon of degree as being the expected
number of paths of any length from the corresponding node. Choosing ఈ ୀ ఉ is a special case also called Katz centrality.

Lemma 1 ((Bonacich and Lloyd, 2001)). Eigenvector centrality is proporƟonal to a limit of Bonacich centrality:

୪୧୫
ഁ→൬ 1

ഊ1
൰ష
(1 ି ఉఒ1) ⋅ 𝐛(1, ఉ) ∝ 𝐯,

where ఒ1 is the largest eigenvalue of 𝐀.

For proof, see Appendix A.

All centraliƟes are normed to range between 0 and 1. Degree centrality is divided by the complete network’s number of edges,
n ⋅ (n ି 1)/2, weighted degree is divided by the sum of repayments in the whole network, closeness is between 0 and 1 by
definiƟon, betweenness is divided by the maximum number of shortest paths in a complete network, (n ି 1) ⋅ (n ି 2)/2.
Eigenvector centrality is divided by the 2-norm of the eigenvector.

At this point I refer to the paper of Alter et al. (2015) to emphasize the empirical usefulness of eigenvector centrality. They
are invesƟgaƟng capital requirements in a way of capital reallocaƟon in the German banking system with their main focus on
interbank contagion and correlated credit exposures of financial insƟtuƟons. In case of defaults, individual bankruptcy costs are
proporƟonal to total assets. Themain goal is to compare two types of capital allocaƟons. The first one focuses only on individual
porƞolio risk (VaR approach, benchmark), while the second one also takes into account the bank’s interconnectedness through
interbank loans. In the laƩer case, the (VaR) benchmark capital requirement is reduced with a fixed fracƟon. The aggregate
reducƟon is reallocated among banks according to their centrality (several centraliƟes are tested) in the interbank network.
Their main contribuƟon is that they find adjacency eigenvector centrality the best measure as its expected bankruptcy cost is
about 14 percent lower than in the benchmark case for the opƟmal reducƟon.

Fink et al. (2015) in their stress test setup, model the credit quality channel of interbank contagion. They mimic the capital
management of a bank by regressing its Tier 1 capital raƟo on the debtors’ PDs. Also, the change in the creditor banks’ capital
raƟo changes its own PD. Themodel is very flexible in defining the default event and balance sheet losses are sensiƟve to smaller
shocks of a bank. Their related finding is that the measure of total balance sheet losses during a contagion mechanism highly
correlates with eigenvector-like measure Bonacich centrality.

10 MNB WORKING PAPERS 1 • 2017



3 Model setup

In this secƟon I introduce the theoreƟcal framework of Acemoglu et al. (2015a); Acemoglu et al. (2015b), which are fundamental
papers in the understanding of how Ɵme-invariant financial networks work. I start from a more general representaƟon of the
so called generalized economic networks, the special case of which is financial contagion in interbank networks.

3.1 GENERALIZED ECONOMIC NETWORKS

Let N be an economy of n agents {1, 2, … , n}. An agent i has a state xi (xi ∈ ℝ, i ∈ N) which can be output, investment or
liabiliƟes. For an f conƟnuous and increasing funcƟon let

xi ୀ fቌ
n


jస1

wi,j ⋅ xj ା ఌiቍ , (2)

which shows that states are interdependent due to strategic reasons, technology constraints or contractual obligaƟons. They
call f the interacƟon funcƟon which captures the interacƟon between the agents of the economy, ఌi are i.i.d. agent-level shocks
with mean 0 and variance ఙ2. wi,j is the sensiƟvity of agent i to the state of agent j. Let𝐖 ୀ {wi,j}ni,jస1 denote the matrix of
sensiƟviƟes. They naturally assume that rows sum up to 1, i.e. ∑n

jస1 wi,j ୀ 1.

The economy is said to be in an equilibrium state if for a given realizaƟon of shocks (ఌ1, ఌ2, … , ఌn) equaƟon (2) holds simulta-
neously for all i. They prove that equilibrium exists and is unique with the method of fixed point iteraƟon.

Themacro state of the economy is y ୀ g (h(x1) ା h(x2) ା … ା h(xn)), where g is the aggregaƟon funcƟon. (g, h ∶ ℝ → ℝ)

3.2 FINANCIAL CONTAGION

The phenomenon of financial contagion is a special case of the above general setup (next to several others in Acemoglu et al.
(2015a)). Agents are banks and the connecƟons are unsecured debt contracts. For the sake of simplicity each bank i’s total
claim size is క and the weight of it on bank j is wi,j, therefore the claim on bank j is wi,j ⋅ క. Assume that𝐖 is doubly stochasƟc,
that is ∑n

jస1 wi,j ୀ ∑n
iస1 wi,j ୀ 1. This ensures equal total claim size for all banks i.

AŌer the realizaƟon of a shock ఌi, banks have to pay back their loans. A bank defaults if it can’t meet its liabiliƟes. If yi,j is the
repayment of a loan from j to i, the cash flow of bank i is given by

ci ୀ ei ା
n


jస1

yi,j ା ఌi,

where e is outside assets. If ci ஹ క, bank i can meet its liabiliƟes and therefore yj,i ୀ wj,i ⋅ క for all j. Otherwise, if 0 ழ ci ழ క
the bank defaults and the creditors are repaid only ci proporƟonally, yj,i ୀ wj,i ⋅ ci. Thus an implicit equaƟon can be set up:

yj,i ୀ ୫୧୬ቐwj,i ⋅ ቌei ା
n


kస1

yi,k ା ఌiቍ ,wj,i ⋅ కቑ

శ

,

where [⋅]శ ୀ ୫ୟ୶{⋅, 0}. Summing up all over j and defining yi ୀ ∑n
jస1 yj,i as the total repayments of bank i one gets
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yi ୀ ୫୧୬ቐቌei ା
n


kస1

yi,k ା ఌiቍ , కቑ

శ

ୀ ୫୧୬ቐቌei ା
n


kస1

wi,k ⋅ yk ା ఌiቍ , కቑ

శ

.

From this equaƟon system it is easy to see that for the interacƟon funcƟon f(x) ୀ [୫୧୬{x ା e, క}]శ, financial contagion is a
special case of generalized economic networks.

Figure 2
The graph of f(x) ୀ [୫୧୬{x ା e, క}]శ for posiƟve liquid assets e

ߦ െ ݁ െ݁ݔ

݂ ݔ
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4 Model implicaƟons

This secƟon contains some main results of Acemoglu et al. (2015a); Acemoglu et al. (2015b) about the effect of shocks on
agents and macro state, and a new measure called harmonic distance for financial contagion. I also present some addiƟonal
theoreƟcal results on a more general size-adjusted harmonic distance.

4.1 SERIES EXPANSION

It is natural quesƟon how a shock to agent p affects the state of agent i, therefore one is interested in the value of ങxi
ങഄp

The
authors examine the case of small shocks, smooth interacƟon and aggregaƟon funcƟons then apply Taylor expansion around
the point 0. By simply differenƟaƟng equaƟon (2),

డxi
డఌp

ୀ fᇲ ቌ
n


jస1

wi,j ⋅ xj ା ఌiቍ ⋅ ቌ
n


jస1

wi,j ⋅
డxi
డఌp

ା 𝟏{p ୀ i}ቍ .

EvaluaƟng at ఌT ୀ (ఌ1, … , ఌn) ୀ 𝟎 and rearranging the equaƟon leads to the linear approximaƟon

డ𝐱
డఌp

ቤ
ഄస𝟎

ୀ fᇲ(0) ⋅ (𝐈 ି fᇲ(0) ⋅ 𝐖)ష1 ⋅ 𝐞p, (3)

where ep is the vector of zeros with one at the pth coordinate. Note that (𝐈 ି fᇲ(0) ⋅ 𝐖)ష1 is a very similar matrix to that in
equaƟon (1) with ఈ ୀ ఉ ୀ fᇲ(0), A ୀ W and thus equaƟon (3) is

డ𝐱
డఌp

ቤ
ഄస𝟎

ୀ ఈ ⋅ 𝐁 ⋅ 𝐞p,

or equivalently

డxi
డఌp

ቤ
ഄస𝟎

ୀ ఈ ⋅ bi,p.

EquaƟon (3) is a simple differenƟal equaƟon system for vector x. One can check that the soluƟon is

xi ୀ ఈ ⋅
n


pస1

bi,p ⋅ ఌp ∀i

or 𝐱 ୀ ఈ ⋅ 𝐁 ⋅ ఌ ୀ fᇲ(0) ⋅ (𝐈 ି fᇲ(0) ⋅ 𝐖)ష1 ⋅ ఌ.

Further quesƟon is the macro state of the economy depending on a shock to agent p. By differenƟaƟng y one similarly gets

డy
డఌp

ୀ gᇲ(h(x1) ା … ା h(xn)) ⋅
n


iస1

hᇲ(xi) ⋅
డxi
డఌp

,

which aŌer evaluaƟng at ఌ ୀ 𝟎 and using equaƟon (3) yields

డy
డఌp

ቤ
ഄస𝟎

ୀ gᇲ(0) ⋅ hᇲ(0)
n


iస1

ఈ ⋅ bi,p. (4)
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Note that ∑n
iస1 bi,p is the sum of the pth column of matrix 𝐁. The soluƟon of differenƟal equaƟons (4) gives the linear approxi-

maƟon of the macro state:

y ୀ fᇲ(0) ⋅ gᇲ(0) ⋅ hᇲ(0)
n


pస1

n


iస1

bi,p ⋅ ఌp.

At this point one is able to shed light on the opƟmality of adjacency eigenvector centrality in the empirical work of Alter et al.
(2015). In case of the symmetric adjacency matrix (𝐀 ୀ 𝐀T) and seƫng f(x) ୀ g(x) ୀ h(x) ୀ x (meaning ఈ ୀ ఉ ୀ 1), the
macro state of the economy is linearly approximated by

y ୀ
n


pస1

n


iస1

bi,p ⋅ ఌp.

Therefore the marginal effect on the macro state of a small shock to bank p is

డy
డఌp

ୀ
n


iస1

bi,p ୀ (𝐁T ⋅ 𝟏)p

Furthermore, if 𝐀 ୀ 𝐀T then 𝐁 ୀ 𝐁T and what one gets is exactly the Bonacich centrality vector 𝐛(ఈ, ఉ) for ఈ ୀ ఉ ୀ 1.
Though 𝐛(ఈ, ఉ) is not defined for ఉ ୀ 1, a limit of it exists as shown below with the help of Lemma 2.

Lemma 2. The largest eigenvalue of a stochasƟc matrix is 1.

For proof, see Appendix A.

This Lemma together with Lemma 1 leads to the fact that

୪୧୫
ഁ→1ష

(1 ି ఉ) ⋅ 𝐛(1, ఉ) ∝ 𝐯,

i.e. for a doubly stochasƟc matrix eigenvector is indeed a quasi-opƟmal measure of macro state (or in the case of capital allo-
caƟon, aggregate loss) in the presence of small shocks and linear interacƟon funcƟon. Moreover, there is theoreƟcal evidence
Acemoglu et al. (2015a) that for any interacƟon funcƟon, an agent with higher Bonacich centrality may propagate negaƟve
shocks more extensively which is closely related to the idenƟficaƟon and assessment of systemically important insƟtuƟons.
This result holds only for the first order approximaƟon. If one takes the second order approximaƟon of the macro state (sim-
ilarly to the first order Taylor expansion above), another centrality measure can catch the extent of shock propagaƟon ability,
the standard deviaƟon of the pth column of matrix 𝐁, which they call concentraƟon centrality.

4.2 SIZE-ADJUSTED HARMONIC DISTANCE

In fact, contagion interacƟons are not linear and a second order approximaƟon may not be eligible (indeed, the special interac-
Ɵon funcƟon depicted on Figure 2 cannot be approximated by a quadraƟc funcƟon). One have to rely on the special interacƟon
funcƟon defined in SubsecƟon 3.2. Acemoglu et al. (2015b) deeply analyze stability in financial networks in case of idenƟcal
insƟtuƟons. They show that as long as the size of a negaƟve shock is below a certain threshold, less fragility is obtained by a
more equal distribuƟon of interbank liabiliƟes. This phenomenon changes if the size of shock is above this threshold. On the
contrary, they show that a more equal distribuƟon may increase the number of defaults. The authors present a new noƟon of
distance called harmonic distance building on mean hiƫng Ɵme, an exisƟng concept of the theory random walks on graphs,
or more generally Markov chains. Mean hiƫng Ɵme of a random walk on a graph from vertex i to j is the expected number of
steps of a random walk from i unƟl it reaches j. It is easy to see that the recursive equaƟon (5) for harmonic distance is exactly
the same concept for financial networks. For further knowledge on random walks on graphs or Markov chains, see the survey
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of Lovász (1993) or the book of Levin et al. (2009). Note that harmonic distance is not a distance in a mathemaƟcal way because
it is not symmetric.

The size-adjusted harmonic distance from bank i to bank j is given by

hi,j ୀ ఏi ା
kಯj

ቆ
yi,k
yk
ቇ ⋅ hk,j,

with the restricƟon that hi,i ୀ 0, where yi,k is again the liability of i to k, while yi is total repayments of i, ఏi is the scaling factor
of liabiliƟes and liquid assets such that ఏi ⋅ y ୀ yi. By choosing y ୀ 1, the definiƟon becomes

hi,j ୀ yi ା
kಯj

ቆ
yi,k
yk
ቇ ⋅ hk,j, (5)

which representaƟon will suggest an extension of this definiƟon in the next secƟon. The intuiƟve meaning of this definiƟon
is the following. In case of the default of bank i, losses of yi are generated to its neighbours. One can think of ൬ yi,k

yk
൰ as the

probability of shock propagaƟon towards node k, and from k to j the distance is recursively defined.

If I set yi ୀ 1 for all i, harmonic distance becomes exactly the same as the mean hiƫng Ɵme of a Markov chain. It is shown that
if a bank j defaults all other banks also default if and only if their harmonic distance from j is smaller than a specific threshold
(ProposiƟon 8). The counterpart of this statement (ProposiƟon 12) is that if yi ஷ 1, all other banks other than j also default if and
only if their harmonic distance from j is smaller than the given threshold. This implies that banks that are closer in harmonic
distance to the defaulted bank are more vulnerable to distress. Since the original definiƟon is recursive, it is not useful for
empirical invesƟgaƟons, the following proposiƟon gives the explicit formula of harmonic distance of any two banks aŌer the
introducƟon of some technical notaƟons.

Let 𝐘 ୀ {yi,j}
n
i,jస1 ୀ {yi}

n
iస1, i.e. the elements of the ith row are the total liabiliƟes of i. Denote the probability of shock

propagaƟon matrix as 𝐐 ୀ ൛qi,kൟ
n

i,kస1 ୀ ൜ yi,k
yk
ൠ
n

i,kస1
. Let𝐌 ୀ ି(∑n

iస1 yi) ⋅ ൬𝐈 ି 𝐐 ା 1
∑n

iస1 yi
⋅ 𝐘൰

ష1
and the matrix 𝐃 the columns of

which are 𝐝i ୀ ି𝐯0 ⋅
mi,i
v0,i
൨, where 𝐯0 is the eigenvector corresponding to eigenvalue 0 of matrix (𝐈 ି 𝐐). 𝐃 will be responsible

for the diagonal restricƟon of harmonic distances.

ProposiƟon 1. The matrix 𝐇 ୀ {hi,j}ni,jస1 of pairwise size-adjusted harmonic distances is explicitly given by

𝐇 ୀ ିቌ
n


iస1

yiቍ ⋅ ቆ𝐈 ି 𝐐 ା 1
∑n

iస1 yi
⋅ 𝐘ቇ

ష1

ା 𝐃,

if and only if there is no non-borrowing node in the directed network.

For proof, see Appendix A.
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5 Extended harmonic distance

This secƟon presents a new extension of the original definiƟon of harmonic distance. Results and calculaƟons remain very
similar. The problem with the original definiƟon is that liquid assets are scaled with the same scaling factor ఏi as total liabiliƟes
for bank i. Having seen in the definiƟon of equaƟon (5), it is straighƞorward to take a further step in the usage of the scaling
factor. Thus I define the extended harmonic distance as

hi,j ୀ ei ା
kಯj

ቆ
yi,k
yk
ቇ ⋅ hk,j, (6)

with the restricƟon that hi,i ୀ 0 for all i. Now ei is the liquidity surplus or liquid assets of bank i. With the help of this definiƟon,
the following statement holds the proof of which closely follows the proof of ProposiƟon 12 in Acemoglu et al. (2015b).

ProposiƟon 2. Suppose that bank j is hit with a negaƟve shock ఌ வ ∑n
iస1 ei. Then

1. bank j defaults

2. all other banks also default if and only if hi,j ழ yi for all i.

For proof, see Appendix A.

This proposiƟon very similarly states that if bank j is hit with a large enough shock it immediately defaults. Its default triggers
a cascade of defaults to all other banks in the network if and only if the harmonic distances of the others is below their total
liabiliƟes. This version of the statement is quite clear and intuiƟve but it sƟll remains an open quesƟon what happens when
these specific condiƟons do not hold exactly.

Note that ProposiƟon 1 remains valid for the calculaƟon of extended harmonic distance by changing matrix 𝐘with 𝐄where the
ith row of 𝐄 is (ei, … , ei).

ProposiƟon 3. The matrix 𝐇 ୀ {hi,j}ni,jస1 of pairwise size-adjusted harmonic distances is explicitly given by

𝐇 ୀ ିቌ
n


iస1

eiቍ ⋅ ቆ𝐈 ି 𝐐 ା 1
∑n

iస1 ei
⋅ 𝐄ቇ

ష1

ା 𝐃,

if and only if there is no non-borrowing node in the directed network.

For proof, see Appendix A.

Now one is able to calculate pairwise harmonic distances and is moƟvated by ProposiƟon 2 to esƟmate systemic importance
with the help of these distances. Though it is shown in Acemoglu et al. (2015b) that the sum of harmonic distances from bank
i to all other nodes is constant, it only holds when total repayments are idenƟcal. Given this and the fact that banks that are
closer in harmonic distance to the defaulted bank are more vulnerable it is straighƞorward to calculate ∑n

iస1 hi,j as a measure
of network systemic importance of bank j which is the sum of the jth column of matrix 𝐇. One could argue that any change
in ∑n

iస1 hi,j is only due to the changes of insƟtuƟon sizes. One can simply check that networks with idenƟcal total transacƟon
volumes produce different harmonic distances, furthermore, when total liabiliƟes of nodes are heterogenized in the same way
but with different transacƟon structures, ∑n

iస1 hi,j behaves differently again.

One can see from the definiƟon that increasing the size of liabiliƟes leads to an increase in harmonic distances. However, one
can control for this kind of change with the help of ProposiƟon 2. It states that all other banks than j default if and only if hi,j ழ yi
for all i. To get rid of insƟtuƟon sizes, these condiƟons can be rearranged to hi,j

yi
ழ 1 for all i. This transformaƟon will also be

applied in SubsecƟon 8.3 when I analyze the Ɵme evoluƟon of harmonic distances in a real life financial network.
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6 ArƟficial interbank networks

This secƟon is related to the interbank networks that I will compare systemic importance measures on. AŌer disclosing some
technical difficulƟes and their soluƟon in SubsecƟon 6.1, I turn to the generaƟon process of arƟficial interbank networks in
SubsecƟon 6.2. In the lack of empirical liquidity defaults, I generate arƟficial payment networks having similar network topology
to an interbank network. I follow the method of Soramäki and Cook (2013). The reason one chooses to generate large numbers
of networks from the same family of graphs is that robustness of results is guaranteed only in this case, while real life networks
change in Ɵme. AŌer obtaining a network, I calculate the payment equilibrium and induce individual defaults in the system.

6.1 DEALING WITH WEAKLY CONNECTED NETWORKS, ABSORBING AND
TRANSIENT NODES

I restrict the analysis to weakly connected networks, where any node can be reached on an undirected path from any node.
In the proof of ProposiƟon 1 and 3, I used that the sum of a column of 𝐐 is 1 but it does not hold if there is an absorbing
state because the elements of the corresponding column are 0. This also moƟvates the analysis of absorbing and transient
nodes separately. Two nodes are strongly connected if they are reachable from one another on a directed path. In the strongly
connected component, any two nodes are strongly connected. In this subsecƟon I assume that there is only one strongly
connected component (SCC). If there exists a node which cannot be reached from the strongly connected component but can
reach the SCC, it is said to be transient. Nodes that can be reached from the SCC nodes are called absorbing nodes. It is easy
to verify that absorbing nodes cannot reach transient nodes otherwise absorbing nodes would also be strongly connected.
Furthermore, transient nodes may reach absorbing nodes directly. See Figure 3 for demonstraƟon.

Figure 3
A decomposed weakly connected network and the usefulness (dashed blue) of ProposiƟon 1 and 3

SCC

Transient component
Absorbing component

Proposition 1

From the above consideraƟons, it is clear that

ytransient,SCC ୀ ytransient,absorbing ୀ ySCC,absorbing ୀ 0.

To overcome the usefulness of ProposiƟon 1 and stay between the strongly connectedness assumpƟons of Acemoglu et al.,
I add virtual payments of 1 unity of money to all possible directed edges, that is, I add the adjacency matrix of a complete
directed network to the original payment network, i.e. yᇲi,j ୀ yi,j ା 1 for all i, j. This operaƟon is rather technical because the
raƟo of virtual payments to real payments is below 10ష9 therefore contagion will not take effect through virtual edges and
strictly viewing equaƟon (5), only the negligible virtual outpayments of absorbing nodes will have effect on harmonic distances.
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6.2 AN EXTENDED BARABÁSI – ALBERT NETWORK ALGORITHM

Soramäki and Cook (2013) use an extended version of preferenƟal aƩachment algorithm by Albert and Barabási (2002). While
the original algorithm aƩaches new edges to the network undirectedly, one needs directed edges and edge weights also. Note
that the algorithm in Soramäki and Cook (2013) does not guarantee that newly added nodes are connecƟng to the exisƟng
network and therefore at terminaƟon the number of borrowing or lending banks can bemuch smaller than the desired number,
n. I modify their algorithm so that it terminates only if I have the saƟsfactory number of acƟve nodes in the network. In the
following pseudo-code, n is the total desired number of banks, n0 is the iniƟal number of banks in the network. ఈ is the
preferenƟal aƩachment parameter which can be interpreted as a kind of gravity parameter: a higher value of ఈ increases the
likelihood of connecƟng to already exisƟng nodes having more connecƟons. m is the number of edges aƩached at an iteraƟon
step. hi will be the ”strength” of node i which determines the probability of being selected as an endpoint of an edge.

In words, the algorithm works as follows. It starts with n0 iniƟal banks in the network, adds a new node at every iteraƟon
step and connects m directed edges by selecƟng the starƟng point (sender) and ending point (receiver) of the directed edge
(payment) with probability proporƟonal to the exisƟng nodes’ relaƟve strength in the network. The algorithm terminates if
there are n acƟve banks in the network sending or receiving payments. It is possible that there will be more than 1 connected
components.

FOR i ୀ 1..n0 (add iniƟal banks/nodes)

SET hi ୀ 1

END FOR

SET active ୀ 0 (iniƟal number of acƟve banks in the network)

SET k ୀ n0 ା 1 (first new bank)

WHILE active ழ n

FOR l ୀ 1..m (average number of payments per bank)

SELECT random sender i ∈ {1, … , k} such that bank i has the probability hi
∑l hl

of

SET hi ୀ hi ା ఈ (update preferenƟal aƩachment strength)

SELECT random receiver j ∈ {1, … , k} such that bank j has the probability hj
∑l hl

of being selected as recipient of the payment

SET hj ୀ hj ା ఈ (update preferenƟal aƩachment strength)

SET yj,i ୀ yj,i ା 1 (create payment/link)

END FOR

IF k ஸ n SET hk ୀ 1 AND SET k ୀ k ା 1 (create new bank/node)

SET active as the number of nodes sending or receiving any payments

END WHILE

Furthermore, I need edge weights, i.e. values of repayments. Following again Soramäki and Cook (2013), I set values propor-
Ɵonally to the minimum of in-degree and out-degree of an edge and the number of payments yj,i (which are understood as
mulƟple edges in the network) mulƟplied by a random variable drawn from a log-normal distribuƟon:

edgeweight ୀ ୫୧୬(indegree, outdegree) ⋅ ୣ୶୮(N(0, 1))
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I also need an operaƟng cash flow for all banks in the network high enough so that there is no default in the baseline payment
equilibrium. The cash flow vector 𝐞 ୀ c ⋅ (𝐲 ି 𝐐 ⋅ 𝐲), c ஹ 1 is a suitable choice as the incoming payments 𝐐 ⋅ 𝐲 together with
liquid assets 𝐞 will be at least the amount of outgoing payments 𝐲.

6.3 COMPLETE NETWORKS

To cross-check with BA network results, I also examined complete networks and set edge weights in a randomized manner
similar to the BA network:

edgeweight ୀ ఒ ⋅ ୣ୶୮(N(0, 1)).

6.4 PAYMENT EQUILIBRIUM

The payment equilibrium vector is the vector of outgoing payments that saƟsfies

𝐱∗ ୀ [୫୧୬{𝐐𝐱∗ ା 𝐞, 𝐲}]శ ,

where 𝐱∗ ∈ ℋ ୀ ∏n
iస1 ൣ0, yi൧ is the Cartesian product of closed intervals. Defining the mapping ∶ ℋ → ℋ,

(𝐱∗) ୀ [୫୧୬{𝐐𝐱∗ ା 𝐞, 𝐲}]శ ,

where the minimum operaƟon (and also the maximum below) is element-wise in a vector. The payment equilibrium or clearing
vector is 𝐱∗ ୀ (𝐱∗) and individual payments are given by x∗i,j ୀ qi,j ⋅ x∗j . This payment equilibrium is exactly the same as in
Eisenberg and Noe (2001), therefore one is able to implement their ficƟƟous default algorithm which is more deeply analyzed
and extended with fire sales in Ceccheƫ et al. (2016). Following them, there exists a unique greatest clearing vector 𝐱∗, that is,
𝐱∗ ୀ (𝐱∗) and if 𝐱 ୀ (𝐱) then 𝐱∗ ஹ 𝐱. Let us denote the default set

D(𝐱) ୀ {i ∈ 1… n ∶ (𝐱)i ழ yi}

and define the matrix

ஃ(𝐱)i,j ୀ ൝
1 if i ୀ j and i ∈ D(𝐱)
0, otherwise.

With these notaƟons, further let

Fxᇲ (𝐱) ୀ ஃ(𝐱ᇲ)(୫୧୬{𝐲,୫ୟ୶{0, 𝐐 ⋅ (ஃ(𝐱ᇲ)𝐱 ା (𝐈 ି ஃ(𝐱ᇲ)) ⋅ 𝐲) ା 𝐞}}) ା (𝐈 ି ஃ(𝐱ᇲ)) ⋅ 𝐲.

One can check that F𝐱(𝐱) ୀ (𝐱) for all 𝐱. The algorithm works as follows. Define the sequence 𝐲0 ୀ 𝐲, 𝐲j ୀ f(𝐲jష1),
where f(𝐲jష1) is a fixed point of F𝐲jష1(⋅). This iteraƟon terminates in at most n iteraƟons and 𝐲n becomes the greatest clearing
vector 𝐱∗ for network (𝐘, 𝐞). At every iteraƟon step I am looking for the fixed point of F𝐱ᇲ (⋅), say a funcƟon f(𝐱ᇲ) for which
F𝐱ᇲ (f(𝐱

ᇲ)) ୀ f(𝐱ᇲ). The fixed point of F𝐲jష1(⋅) is calculated by another iteraƟon: let 𝐘0 ୀ 𝐲, 𝐘n ୀ F𝐲jష1(𝐘nష1) for n ஹ 1. {𝐘n}
converges to f(𝐲jష1), the iteraƟon is terminated if ‖F𝐲jష1(𝐘n) ି 𝐘n‖2 ழ ఌ for a predefined tolerance level ఌ. It is clear that if
x∗j ழ yj then bank j is insolvent and one can also differenƟate fundamental and contagious defaults; bank i suffers fundamental
default if

n


jస1

qi,j ⋅ yj ା ei ି yi ழ 0

and it suffers contagious default if
n


jస1

qi,j ⋅ yj ା ei ି yi ஹ 0,

but ∑n
jస1 qi,j ⋅ x∗j ା ei ି yi ழ 0.

In our setup, the iniƟal default of a bank i deletes its interbank liabiliƟes (outgoing payments) from the network, i.e. the ith
column is deleted from matrix ቄyi,jቅ

n

i,jస1
. To measure the effect of this default in the network I simulate contagion with the
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method above and get the equilibrium payment vector 𝐱∗. Thus compared to the original vector of liabiliƟes 𝐲, the overall loss
induced in the financial system by the default of bank j is the sum of the elements of 𝐲 ି 𝐱∗,

lossesj ୀ
n


iస1
(yi ି x∗i ).

This amount is our benchmark measure of systemic importance of a bank. The number of defaults is given by defaults ୀ
∑n

iస1 𝟏 ൛yi வ x∗i ൟ.
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7 ApplicaƟon to systemically
important insƟtuƟons

The first straighƞorward quesƟon that comes to one’s mind is that how well harmonic distances describe the systemic impor-
tance of individual financial insƟtuƟons. This quesƟon is closely related to the applicaƟon of centrality measures in the systemic
risk literature and may be interpreted as a cross-secƟon analysis of measures under consideraƟon.

This secƟon summarizes the simulaƟon results on our theoreƟcally established measures compared to some ”off-the-shelf”
measures. The analysis was carried out as follows. I generated a given number of networks with fixed parameters preferenƟal
aƩachment, number of banks, number of iniƟal banks, number of payments and cash flow parameter. I set the cash flow
vector (liquid assets) so that there is no contagion. AŌer this, I erased outgoing payments for every node one-by-one and ran
the Eisenberg –- Noe algorithm and calculated 𝐲 ି 𝐱∗ and the above defined measure losses for every iniƟal default. Then I
calculated the importance measures. In case of BA networks and harmonic distances, I applied the ”trick” of SubsecƟon 6.1,
i.e. yᇲi,j ୀ yi,j ା 1 for all i, j.

7.1 RESULTS ON BA NETWORKS

7.1.1 OBSERVED BEHAVIOUR OF HARMONIC DISTANCES

Our first remark is that harmonic distances range between extremely large scales compared to centrality measures and losses
also. Furthermore, important nodes have low harmonic distanceswhile their centraliƟes are large. Based on these experiences,
I set the importance measure to 1

∑n
iస1 hi,j

, see Figures 4 and 5.

In the following, I generated 1000 networks for fixed parameter set (ఈ, n ୀ 50, n0 ୀ 5,m ୀ 4, c), calculated systemic impor-
tancemeasures and ran the payment equilibrium algorithm to obtain losses implied by the failure of any node. Table 1 contains
the average correlaƟons of importance measures with normed losses

losses ୀ
n


iస1

(yi ି x∗i )
୫ୟ୶i,j yi,j

and the standard deviaƟons of correlaƟons.

One can conclude that though our suggested harmonic distances perform beƩer than the original harmonic distances, they are
sƟll weaker than classical weighted degree and eigenvector centraliƟes. Both harmonic measures’ correlaƟon with losses have
really high standard deviaƟon. Except for closeness and betweenness, all measures’ performance improve by the increase of
preferenƟal aƩachment parameter ఈ. This is important in the sense that the structure of network is a key issue in the analysis.
One can note that results do not change significantly along parameter c which may seem surprising: banks with slightly higher
amount of liquid assets have similar loss paƩerns when an insƟtuƟon fails. As an addiƟonal check, in the following experiments
I generated 10 000 BA networks for fixed parameter set (ఈ, n ୀ 50, n0 ୀ 5,m ୀ 4) while c ∈ (1, 3) was uniformly random for
each bank individually. See results in Table 2. Results are similar to the previous ones.

Rank correlaƟons are available in Appendix B. It is important to note that rank correlaƟons are not the proper measures to
quanƟfy the linear co-movement of variables. Though they are higher and deviaƟons in case of harmonic distances are signif-
icantly lower. These results highlight that harmonic distances are useful for idenƟfying and ranking systemic insƟtuƟons, but
loss paƩerns might differ.
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Figure 4
The sum of harmonic distances and implied losses of nodes in a BA network with parameters n ୀ 50, n0 ୀ 5, m ୀ 4,
ఈ ୀ 0.1
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Figure 5
The reciprocal of sum of harmonic distances and implied losses of nodes in a BA network with parameters n ୀ 50, n0 ୀ 5,
m ୀ 4, ఈ ୀ 0.1
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Table 1
Average correlaƟon of centrality measures and losses generated by the failure of single nodes and standard deviaƟon of
correlaƟons

harmonic distances:

c 1 2 3

ఈ avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.406 0.215 0.423 0.219 0.410 0.215

0.2 0.524 0.229 0.529 0.226 0.531 0.236

0.4 0.665 0.223 0.675 0.223 0.669 0.236

0.6 0.703 0.215 0.721 0.220 0.733 0.227

extended harmonic distances:

c 1 2 3

ఈ avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.443 0.229 0.460 0.236 0.443 0.227

0.2 0.579 0.247 0.587 0.242 0.587 0.252

0.4 0.733 0.224 0.738 0.226 0.732 0.239

0.6 0.773 0.207 0.778 0.215 0.794 0.217

weighted degree:

c 1 2 3

ఈ avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.783 0.063 0.793 0.070 0.796 0.067

0.2 0.805 0.071 0.816 0.073 0.817 0.072

0.4 0.839 0.076 0.848 0.077 0.846 0.082

0.6 0.849 0.079 0.861 0.080 0.866 0.080

eigenvector:

c 1 2 3

ఈ avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.746 0.078 0.757 0.078 0.757 0.078

0.2 0.782 0.076 0.792 0.079 0.792 0.079

0.4 0.821 0.080 0.830 0.079 0.831 0.084

0.6 0.836 0.084 0.843 0.086 0.849 0.083

closeness:

c 1 2 3

ఈ avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.431 0.095 0.422 0.096 0.425 0.092

0.2 0.403 0.100 0.402 0.101 0.401 0.102

0.4 0.364 0.117 0.355 0.119 0.355 0.120

0.6 0.316 0.128 0.314 0.130 0.315 0.128

betweenness:

c 1 2 3

ఈ avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.373 0.168 0.369 0.162 0.367 0.162

0.2 0.345 0.168 0.357 0.173 0.356 0.177

0.4 0.300 0.182 0.289 0.183 0.292 0.189

0.6 0.230 0.188 0.232 0.191 0.234 0.188
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Table 2
Average correlaƟon of centrality measures compared to losses generated by the failure of single nodes, randomized liquid
assets

harmonic distances

ఈ avg.corr. std.dev.

0.1 0.416 0.217

0.2 0.540 0.234

0.4 0.666 0.232

0.6 0.722 0.223

extended harmonic distances

ఈ avg.corr. std.dev.

0.1 0.450 0.231

0.2 0.591 0.248

0.4 0.724 0.235

0.6 0.778 0.219

weighted degree

ఈ avg.corr. std.dev.

0.1 0.794 0.071

0.2 0.819 0.075

0.4 0.847 0.079

0.6 0.864 0.080

eigenvector

ఈ avg.corr. std.dev.

0.1 0.759 0.078

0.2 0.796 0.078

0.4 0.828 0.082

0.6 0.846 0.083

closeness

ఈ avg.corr. std.dev.

0.1 0.427 0.094

0.2 0.402 0.100

0.4 0.356 0.117

0.6 0.313 0.127

betweenness

ఈ avg.corr. std.dev.

0.1 0.433 0.164

0.2 0.428 0.181

0.4 0.293 0.185

0.6 0.303 0.195
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7.1.2 ”MEAN” BEHAVIOUR OF HARMONIC DISTANCES

In the previous subsecƟon we have seen that both harmonic distances’ correlaƟon to losses have high standard deviaƟon. Now
I invesƟgate this behaviour when a large number of network measures are averaged. This could be interpreted as an expected
behaviour of systemic importance measures where expectaƟon is through random networks. I repeat calculaƟons, but this
Ɵme all measures and losses will be averaged along networks for a given parameter set. More formally, if ci,t is a centrality
of bank i in network t, then the average centrality of bank i will be ∑T

tస1
ci,t
T
, the method is the same for implied losses. The

averaging method can be used if one would like to take a usual interbank network when imposing a capital buffer for miƟgaƟng
contagion risks. This is the method that the MNB (the central bank of Hungary) applies to analyze the systemic importance
of financial insƟtuƟons in interbank networks. Weekly network measures are averaged in a yearly Ɵme horizon to indenƟfy
important parƟcipators in interbank markets.

The results in Table 3 show that harmonic distances become an appropriatemeasure of systemic importance along with weight-
ed degree and eigenvector centrality, though for higher preferenƟal aƩachment parameters the performance of harmonic
distances decreases.

7.2 RESULTS ON COMPLETE NETWORKS

As importance measures are defined not specially for BA networks, it is reasonable to compare them on other network struc-
tures. To cross-check the results on BA networks I ran the algorithmon 1000 complete networks for fixed parameter c generated
according to 6.3, see results in Table 4. Note that betweenness in a complete network is 0 by definiƟon and closeness is also
constant, therefore the correlaƟons are not interpretable. The main finding is that harmonic distances behave very differently
compared to real losses, though extended harmonic distances sƟll perform slightly beƩer than harmonic distances. I also note
that for complete networks the reciprocal transformaƟon did not result any significant change in correlaƟons.

These results are even more surprising concerning that also weighted degree and eigenvector centrality become much worse.
It also confirms that centrality performances are highly dependent on the network structure itself therefore calculaƟng the real
payment equilibrium is always useful and recommended and centrality measures are to be used for supplementary analysis.
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Table 3
CorrelaƟon of averaged network measures and average induced losses

harmonic distances

c 1 2 3

ఈ corr. corr. corr.

0.1 0.993 0.994 0.991

0.2 0.985 0.979 0.987

0.4 0.947 0.915 0.947

0.6 0.880 0.839 0.900

extended harmonic distances

c 1 2 3

ఈ corr. corr. corr.

0.1 0.993 0.995 0.991

0.2 0.986 0.980 0.988

0.4 0.950 0.916 0.949

0.6 0.877 0.811 0.881

weighted degree

c 1 2 3

ఈ corr. corr. corr.

0.1 0.998 0.999 0.998

0.2 0.999 0.999 1.000

0.4 0.999 0.999 0.998

0.6 0.996 0.997 0.995

eigenvector

c 1 2 3

ఈ corr. corr. corr.

0.1 0.995 0.996 0.996

0.2 0.999 0.998 0.999

0.4 0.999 0.998 0.999

0.6 0.997 0.997 0.997

closeness

c 1 2 3

ఈ corr. corr. corr.

0.1 0.864 0.847 0.853

0.2 0.800 0.798 0.793

0.4 0.719 0.710 0.714

0.6 0.651 0.635 0.662

betweenness

c 1 2 3

ఈ corr. corr. corr.

0.1 0.841 0.819 0.817

0.2 0.726 0.726 0.724

0.4 0.603 0.586 0.600

0.6 0.511 0.477 0.512
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Table 4
CorrelaƟons for complete networks

value of c

1 2 3

avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

harmonic
distances

0.067 0.151 0.024 0.148 0.020 0.141

extended
harmonic
distances

0.168 0.154 0.136 0.153 0.129 0.146

weighted degree 0.654 0.087 0.680 0.076 0.677 0.077

eigenvector 0.642 0.095 0.672 0.076 0.669 0.075

closeness 0 0 0 0 0 0

betweenness N/A N/A N/A N/A N/A N/A
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8 ApplicaƟon as a financial stress
indicator

In the previous secƟon I analyzed harmonic distances and centrality measures in cross-secƟon without Ɵme-evoluƟon. Now
I turn to a real-life financial network, the unsecured interbank lending of Hungarian financial insƟtuƟons to see how these
measures behave in Ɵme. It turns out to be interesƟng to look at these measures aggregated as an indicator of the state of the
interbank market.

Hungarian financial insƟtuƟons including banks, saving cooperaƟves, building socieƟes and financial undertakings have to re-
port their unsecured interbank lending and deposit transacƟons to the MNB thus the Ɵme evoluƟon of the whole network
is known. Data starts on 2 January 2008 and lasts unƟl 31 December 2015. Banks with several subsidiaries are handled as
consolidated banking groups. A daily network of transacƟons is usually sparse but one is able to calculate centrality measures
on connected networks. To obtain at least a weakly connected network, I aggregated daily networks in 5-day, non-overlapping
windows. This aggregaƟon resulted networks in which the size of the largest weakly connected component is almost always
equal to the number of acƟve banks in the corresponding 5-day period. Therefore, a network contains the weekly transacƟons
of financial insƟtuƟons. Figure 6 shows the number of financial insƟtuƟons and their total value of transacƟons in every week
in the given Ɵme period.

Figure 6
Number of banks and transacƟon volume in weekly networks
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8.1 SCALE-FREE PROPERTY

As a first side-result, one has to check whether the Hungarian interbank lending network is a scale-free network which is a
missing result from previous papers on Hungarian data. This fact, on the other hand jusƟfies the transformaƟon 1

∑n
iస1 hi,j

also for
Hungarian data that was applied in SubsecƟon 7.1. For this, one has to empirically check that the degree distribuƟon follows a
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power law distribuƟon: ℙ(k) ∼ kషം for some ఊ typically lying between 2 and 3. Figure 7 shows the degree distribuƟon for the
405 weekly networks. Colours change across 405 weeks as indicated on the colour bar.

Figure 7
Degree distribuƟon of the Hungarian interbank lending network between 2008 and 2015
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I fit power-law distribuƟons with the MATLAB codes of Clauset et al. (2009). The code esƟmates parameters with maximum
likelihood method and tests the null-hypothesis of being drawn from a power-law distribuƟon with a Kolmogorov – Smirnov
test. I accept a network to bepower-lawdistributedwith p-value greater than 0.1 as in Clauset et al. (2009). This is approximately
80% of our sample, 78 networks failed the test out of 405 networks. Table 5 shows the numbers of networks and the average,
minimum, maximum p-value and ఊ parameters of degree distribuƟons. Rejected networks are distributed roughly uniformly in
the Ɵme series.

Summarizing this subsecƟon, I showed for the first Ɵme in Hungarian empirical literature that most of the interbank networks
in the Ɵme series from 2008 to 2015 are scale-free. For similar results on the Austrian interbank network, see Boss et al. (2004).
For a staƟsƟcal test based approach on US payment flows, see Soramäki et al. (2007).

Table 5
Accepted (scale-free) and rejected (non-scale-free) networks’ p-values and ఊ parameters of degree distribuƟons

p-value ఊ
no. of
networks

min max avg min max avg

scale-free 327 0.100 0.993 0.477 1.886 3.344 2.906

non-scale-free 78 0.000 0.098 0.038 1.499 3.321 2.117

8.2 CROSS-SECTION ANALYSIS

Similarly to SubsecƟon 7.1. and 7.2, I calculate correlaƟons along insƟtuƟons for every week between 2008 and 2015. In
contrast with our simulated scale-free networks where out-degree is very close to in-degree because of symmetric edge at-
tachment, weighted degree is subsƟtuted with weighted out-degree as an ex-ante failure of an insƟtuƟon causes contagion if
only if it is intended to pay back its interbank loans. In this analysis, I accept the fact from SubsecƟon 7.1. that weighted degree
fits best to generated loss paƩerns. I do not drop rejected (non-scale-free) networks from our sample because correlaƟons do
not improve significantly. Thus, one can think of rejected networks as “nearly scale-free” and apply the reciprocal transforma-
Ɵon of harmonic distances. CorrelaƟons on Figure 7 confirms our results in SubsecƟon 7.1. Weighted degrees and eigenvector
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centraliƟes are highly correlated, the correlaƟon of transformed harmonic distances to eigenvector centrality is close to 0.5 but
extremely volaƟle with standard deviaƟon around 0.2 as can be seen on Figure 8. Table 6 shows average correlaƟons and stan-
dard deviaƟons of correlaƟons. I also present the correlaƟons on the average network in Table 7 which reflects to SubsecƟon
7.1.2 and the results are similar to that subsecƟon. Therefore I conclude that in case of averaging networks or measures in Ɵme
aggregated harmonic distances become good measures of systemic importance. This is an important result from a pracƟƟon-
er’s point of view since as menƟoned earlier, at the MNB we idenƟfy systemic importance of banks in the financial network by
averaging in Ɵme.

Figure 8
EvoluƟon of correlaƟons across insƟtuƟons of weighted degrees (WD), eigenvector centraliƟes (Eig), harmonic distances
(HD) and the reciprocal of harmonic distances (1/HD)
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Table 6
Average correlaƟons and standard deviaƟons across insƟtuƟons

avg. std.dev.

Corr (WD, Eig) 0.704 0.076

Corr (HD,WD) -0.172 0.128

Corr (1/HD,WD) 0.079 0.187

Corr (HD, Eig) -0.548 0.127

Corr (1/HD, Eig) 0.488 0.197

8.3 EVOLUTION IN TIME

To be able to capture changes also in transacƟon volumes and see the variaƟon of risk in Ɵme, I use un-normalized centrality
measures along the Ɵme horizon: weighted out-degree is replaced with total liabiliƟes. Figure 9 shows the sum of liabiliƟes
and harmonic distances of an O-SII in Hungary. Similar graphs for two further systemically important insƟtuƟons are available
in Appendix B.
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Table 7
CorrelaƟons on the averaged network

Corr (WD, Eig) 0.881

Corr (HD,WD) -0.358

Corr (1/HD,WD) 0.847

Corr (HD, Eig) -0.535

Corr (1/HD, Eig) 0.937

Figure 9
Time evoluƟon of interbank liabiliƟes and harmonic distances of Bank 1 (O-SII) in Hungary
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Harmonic distance obtains its peak value during the global financial crisis, while aŌerwards its volaƟlity becomes lower. This
result is similar to other insƟtuƟons, thus it is promising to define a financial network stability index as

I(t) ୀ
n


jస1

1
∑n

iస1 hi,j(t)
.

The behaviour of this index can be seen on Figure 10 together with interbank transacƟon volume (i.e, the sum of all liabiliƟes),
sum of closenesses and betweennesses. One can see on Figure 6 that neither the number of banks in the network, nor the
above menƟoned measures showed as spectacularly the volaƟlity change around the financial crisis. Harmonic distances seem
to catch the systemic instability around a systemic distress situaƟon or the role of an insƟtuƟon in systemic instability. Although
one could argue that if harmonic distances performed worse than other measures in the cross-secƟon analysis, why one should
apply the aggregaƟon to make implicaƟons about the state of systemic stability in the network.

Figure 10
Centrality measures and the sum of all harmonic distances I(t) in the network
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A criƟque of I(t)might be that a decrease in transacƟon volumes leads to an increase in transformed harmonic distances. This
may lead to the behaviour of harmonic distances during the crisis. Though one can also interpret it as a good result as the drying
up of a market is a good indicaƟon of a stress situaƟon, to control for the changes in transacƟons, I define a modified version
of I(t) inspired by the statement of ProposiƟon 2. Since all banks default if and only if hi,j ழ yi for all i, it may be reasonable
to rearrange these inequaliƟes to hi,j

yi
ழ 1 for all i. One can see that the leŌ side of this inequality is independent of size as it is

compared to a constant 1 in the statement. Let the modified version

̂I(t) ୀ
n


jస1

1

∑n
iస1

hi,j(t)
yi(t)

.

On Figure 11, one can see that when I(t) obtained its peak, themodified version ̂I(t) also significantly increased and its volaƟlity
also became higher. Nevertheless, it is easy to see that higher transacƟon volumes make the original index I(t) smoother.

32 MNB WORKING PAPERS 1 • 2017



APPLICATION AS A FINANCIAL STRESS INDICATOR

Figure 11
The graph of I(t) and its modificaƟon ̂I(t)
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8.4 PERFORMANCES IN A FACTOR MODEL

The idea of using network measures to idenƟfy systemic stress can be achieved by including them in a systemic stress index
(Hałaj and Kok, 2013). The quanƟficaƟon of their usefulness is possible if we apply a factor model approach. Factor modelling
is a dimension reducƟon tool which creates common components from a dataset by linear operaƟons. If a few number of
factors explain the variance of a large data set and explained variance is high enough, the role of variables can be idenƟfied in
each factor. In this subsecƟon, I quanƟfy the performance of different network measures in a staƟc factor model approach. I
use the dataset and preliminary methodology of Szendrei and Varga (2017). They rethink the model of Holló et al. (2012) in a
staƟsƟcally rigorous way by using a dynamic factor model to create an index of financial systemic stress. Usually, the creaƟon
of a sophisƟcated factor model starts with the simple staƟc factor model. There are five sets of variables: government bond
market, interbank market, banking sector, FX market and capital market. The exact names of the variables in these sets are
indicated in Table 8.

These variables form the vector 𝐲t at Ɵme t, and the standard staƟc factor model is given by

𝐲t ୀ 𝝀 ⋅ 𝐟t ା 𝝐t,

where the informaƟon in 𝐲t is compressed into the factors 𝐟t, 𝐲t is n-dimensional, 𝐟t is q-dimensional and q ழ n. Factors and
data are normally distributed, i.e. 𝐟t ∼ N(𝟎, 𝐈q), 𝝐t ∼ N(𝟎, 𝚺) are iid, 𝝀 is a n × qmatrix of factor loadings. In this example, the
number of variables is n ୀ 19 and the number of factors is q ୀ 4. The variance is then given by

𝐕𝐚𝐫 (𝐲t) ୀ 𝝀 ⋅ 𝝀T ା 𝚺.

Szendrei and Varga (2017) idenƟfy four intuiƟve factors that drive the variance of the dataset. Since the variance-covariance
matrix of 𝐟t is assumed to be diagonal, the factors are orthogonal to each other in the preliminary, staƟc factor model. It turns
out that the inclusion of a networkmeasuremakes the fourth factormuch beƩer interpretable. The corresponding factor seems
to be dominated by the largest Hungarian bank’s PD in the banking sector variable set. One can see that network measures
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play an important role in the third and fourth factor and harmonic distances have a quite high coefficient of 0.3185 in the fourth
factor. Furthermore, explained variance increases by approximately 2.3% by including network measures. The exact loading
matrices are available in Table 9. Regarding the explained variance, models that include harmonic distances, betweennesses,
closenesses and degrees explain 84.5 percent, 83.3 percent, 84.9 percent and 84.9 percent respecƟvely. Note that all measures
have been transformed by the reciprocal transformaƟon in order to obtain similar funcƟonal shapes.

One can conclude that the inclusion of network measures into a systemic stress indicator is reasonable and improves the ex-
plained variance of the informaƟon in the dataset. Harmonic distances are useful in this manner because though explained
variances are similar to closenesses and degrees, its role in the fourth factor is very important.

Table 8
Variables in the factor model of Szendrei and Varga (2017)

government bond market
bond yields (3-month and 10-year)

CDS (5-year bond)

interbank market

BUBOR (3-month)

HUFONIA overnight rate

HUFONIA trading volume

banking sector
bank PDs: from market price (Merton model)

network measure

FX market
bid-ask spreads: HUF/EUR + HUF/USD

volaƟliƟes: HUF/EUR, HUF/USD, HUF/GBP, HUF/CHF

capital market
CMAX: BUX, BUMIX, CETOP20, DAX

implied volaƟlity: VDAX
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Table 9
Loadingmatrices and explained variances of the preliminary, staƟc factormodel of Szendrei and Varga (2017)with different
network measures included

 

F1 F2 F3 F4 F1 F2 F3 F4

Benchmark yield 3m 0,2259 -0,2947 -0,3358 -0,0398 Benchmark yield 3m 0,2265 -0,3270 -0,2948 -0,0616

Benchmark yield 10y 0,2518 -0,2642 -0,1666 -0,1855 Benchmark yield 10y 0,2523 -0,2884 -0,1148 -0,1672

CDS HUN-GER spread 0,2653 -0,0821 0,1142 -0,4133 CDS HUN-GER spread 0,2674 -0,0968 0,1852 -0,2925

BUBOR 3m 0,2258 -0,2990 -0,3290 -0,0153 BUBOR 3m 0,2260 -0,3291 -0,2935 -0,0370

HUFONIA rate 0,2160 -0,2964 -0,3454 0,0369 HUFONIA rate 0,2161 -0,3256 -0,3169 0,0024

HUFONIA vol -0,1501 0,2456 -0,1600 -0,2527 HUFONIA vol -0,1446 0,2201 -0,1110 -0,2606

PD Bank1 0,2351 0,0953 0,0723 0,1917 PD Bank1 0,2353 0,1012 0,0443 0,2318

PD Bank2/Rest 0,1453 0,0736 0,2907 -0,7184 PD Bank2/Rest 0,1502 0,0591 0,4018 -0,5763

HDist 0,1663 -0,2383 0,3241 0,3185 Betweenness 0,1471 -0,1454 0,2932 -0,3533

bidask spot 0,2525 0,0839 0,2530 0,1091 bidask spot 0,2513 0,1026 0,2224 0,2262

Vol EURO 0,2802 -0,0873 0,1314 0,0647 Vol EURO 0,2788 -0,0814 0,1246 0,2098

Vol USD 0,2837 -0,0352 0,2122 0,0306 Vol USD 0,2832 -0,0269 0,2125 0,1597

Vol GBP 0,2835 -0,0108 0,2264 0,0261 Vol GBP 0,2833 -0,0023 0,2270 0,1588

Vol CHF 0,2189 0,0457 0,1914 0,0964 Vol CHF 0,2183 0,0571 0,1704 0,2767

BUX CMAX 0,2196 0,2488 -0,2746 -0,1295 BUX CMAX 0,2239 0,2239 -0,2696 -0,2434

BUMIX CMAX 0,2185 0,3085 -0,2469 0,0750 BUMIX CMAX 0,2211 0,2966 -0,2854 -0,0563

CETOP CMAX 0,2210 0,3573 -0,1301 0,1020 CETOP CMAX 0,2240 0,3517 -0,1688 -0,0187

DAX CMAX 0,1766 0,3997 -0,1749 0,0635 DAX CMAX 0,1802 0,3912 -0,2097 -0,1181

VDAX 0,2527 0,2552 0,0243 0,0977 VDAX 0,2541 0,2587 -0,0087 0,0590

Explained variance 0,5393 0,1525 0,0984 0,0554 Explained variance 0,5362 0,1483 0,0951 0,0541

F1 F2 F3 F4 F1 F2 F3 F4

Benchmark yield 3m 0,2210 -0,3379 -0,2794 -0,0338 Benchmark yield 3m 0,2208 -0,3379 -0,2811 -0,0348

Benchmark yield 10y 0,2486 -0,2950 -0,1222 -0,1918 Benchmark yield 10y 0,2484 -0,2951 -0,1221 -0,1921

CDS HUN-GER spread 0,2673 -0,0957 0,1346 -0,3971 CDS HUN-GER spread 0,2670 -0,0954 0,1348 -0,3970

BUBOR 3m 0,2209 -0,3406 -0,2724 -0,0082 BUBOR 3m 0,2207 -0,3407 -0,2738 -0,0091

HUFONIA rate 0,2108 -0,3376 -0,2905 0,0464 HUFONIA rate 0,2106 -0,3377 -0,2926 0,0453

HUFONIA vol -0,1477 0,2289 -0,1589 -0,2250 HUFONIA vol -0,1477 0,2288 -0,1599 -0,2256

PD Bank1 0,2365 0,0961 0,0444 0,2516 PD Bank1 0,2363 0,0962 0,0443 0,2519

PD Bank2/Rest 0,1510 0,0735 0,2979 -0,7261 PD Bank2/Rest 0,1509 0,0737 0,3013 -0,7249

Closeness 0,1640 -0,0378 0,4870 0,0651 Degrees 0,1697 -0,0381 0,4772 0,0639

bidask spot 0,2802 -0,0892 0,1165 0,1440 bidask spot 0,2800 -0,0890 0,1169 0,1445

Vol EURO 0,2543 0,0992 0,2007 0,1669 Vol EURO 0,2541 0,0994 0,2022 0,1680

Vol USD 0,2847 -0,0293 0,1840 0,0986 Vol USD 0,2844 -0,0290 0,1845 0,0993

Vol GBP 0,2850 -0,0040 0,1954 0,0976 Vol GBP 0,2846 -0,0037 0,1953 0,0980

Vol CHF 0,2201 0,0519 0,1440 0,1873 Vol CHF 0,2199 0,0521 0,1456 0,1886

BUX CMAX 0,2207 0,2189 -0,2781 -0,2103 BUX CMAX 0,2205 0,2188 -0,2795 -0,2111

BUMIX CMAX 0,2193 0,2884 -0,2744 -0,0012 BUMIX CMAX 0,2192 0,2882 -0,2749 -0,0016

CETOP CMAX 0,2227 0,3482 -0,1791 0,0435 CETOP CMAX 0,2225 0,3481 -0,1787 0,0435

DAX CMAX 0,1788 0,3899 -0,2130 -0,0269 DAX CMAX 0,1785 0,3899 -0,2170 -0,0286

VDAX 0,2549 0,2558 -0,0203 0,0841 VDAX 0,2545 0,2560 -0,0233 0,0832

Explained variance 0,5389 0,1462 0,1138 0,0509 Explained variance 0,5399 0,1462 0,1125 0,0509

government 

bond 

market

government 

bond 

market

FX market

interbank 

market

banking 

sector

interbank 

market

banking 

sector

capital 

market

FX market

capital 

market
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9 An explanaƟon of results

We saw in SubsecƟon 7.1 that the best fiƫng measure is weighted degree. That is the consequence of the fact that first order
losses (i.e. the sum of interbank liabiliƟes which is equivalent to weighted degree) largely dominate higher order losses and
higher order losses only add a shiŌ to first order losses. Figure 12 shows the amount of first order and higher order losses as an
output of the Eisenberg – Noe algorithm in a typical scale-free network. In complete networks, higher order losses are larger
which explains lower correlaƟons in SubsecƟon 7.2. One can conclude that we are sƟll not able to approximate higher order
losses without the iteraƟve algorithm of Eisenberg and Noe.

Figure 12
First order and higher order losses induced by the iniƟal default of banks
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Arriving to the not so aƩracƟve results of harmonic distances, this behaviour may be the consequence of the weakness of
ProposiƟon 2 and its pair ProposiƟon 12 in Acemoglu et al. (2015b). These statements linearize the non-linear problem

𝐱∗ ୀ [୫୧୬{𝐐𝐱∗ ା 𝐞, 𝐲}]శ

by requiring all banks in the network to default if a single bank iniƟally fails. In real life it is not realisƟc that all other insƟtuƟons
fail even if the iniƟal default is of a dominant systemic bank. The default of all nodes in the presence of a large shock could be
possible in case of a complete network because of dense interconnecƟons as theoreƟcally stated in Acemoglu et al. (2015b). In
SubsecƟon 7.2, I analyzed contagion in complete networks and did not experience the default of all banks in case of simulated
networks.

Another observaƟon was the behaviour of these measures in Ɵme using the daily data of lending and deposit transacƟons of
Hungarian financial insƟtuƟons. CorrelaƟons were found to be similar to the case of simulated networks. The transformaƟon
of harmonic distances peaked around the crisis. As it was menƟoned in SecƟon 5, this is partly a consequence of the decline of
transacƟon volumes.
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10 Conclusion

The main goal of this paper was to provide the first numerical results on harmonic distances by the extension of the model
of Acemoglu et al. (2015b). The first set of results are based on simulated interbank networks, while the second set of results
shows the behaviour in a real financial network. I gave the explicit formula for the calculaƟon of the measure and extended the
results for any size of liquid assets. To perform the analysis, I generated large numbers of Barabási – Albert type and complete
networks and induced insƟtuƟonal failures by the deleƟon of their outgoing payments. The results showed that tradiƟonally
used networkmeasures likeweighted degree and eigenvector centrality can catch the importance of individual nodes as default-
implied losses of a node correlates highlywith thesemeasures. Despite the theoreƟcal grounding, harmonic distances could not
outperform the previously menƟoned ”off-the-shelf” measures but the applicaƟon of averagingmethods resulted in the similar
performance of harmonic distances as well. I note that the extended version of harmonic distance performed beƩer than the
original one. In case of complete networks even the previously good measures became much poorer. This fact underpins that
one has to strictly invesƟgate the applicaƟon purpose of centrality measures.

I repeated the analysis for averaged Barabási – Albert type networks. This method showed very good results for harmonic
distances as well. One could conclude (carefully interpreƟng this result) that the paƩern of expected losses (where expectaƟon
is along networks) is very well described by the two main tradiƟonal measures and the two harmonic distances. I can conclude
that for specific policy applicaƟons all these measures are suitable when we examine Ɵme-averaged real life networks or Ɵme
averages of centrality measures.

For empirical results, I also calculated harmonic distances for the Ɵme series of Hungarian interbank lending networks. AŌer
showing that most of these networks are scale-free, I calculated correlaƟons between the measures and found a similar phe-
nomenon as in case of simulated networks, for observed and ”mean” behaviour as well. One finding was that the behaviour of
harmonic distances is very stable in ”normal Ɵmes” and it peaks around the financial crisis. This makes it a possible indicator of
financial network stress besides other measures as a factor model approach shows it on Hungarian data (Szendrei and Varga,
2017). This phenomenon is partly due to the sharp drop in total transacƟon volumes. A modified measure behaves similarly
with higher volaƟlity.

This work pointed out that the behaviour of financial networks in a contagion situaƟon is extremely complicated and hard to
approximate despite the large amount of research carried out in recent years. The structure of the underlying network is a key
component of the soluƟon when one applies different importance measures. I found that the informaƟon in a single random
or real network cannot be compressed into a centrality measure when the area of analysis is direct contagion. When looking
at an average network along a Ɵme horizon, the compression of informaƟon becomes very good. The decrease of volaƟlity is
related to the law of large numbers.

MNB WORKING PAPERS 1 • 2017 37



References

A��ÃÊ¦½ç, D., A. Oþ��¦½�Ù �Ä� A. T�«��þ-S�½�«® (2015a), ‘Networks, shocks and systemic risk’, The Oxford Handbook on the
Economics of Networks,

A��ÃÊ¦½ç, D., A. Oþ��¦½�Ù �Ä� A. T�«��þ-S�½�«® (2015b), ‘Systemic risk and stability in financial networks’, American Eco-
nomic Review, vol. 105 no. 2, pp. 564–608

A½��Ùã, R. �Ä� A. L. B�Ù���Ý® (2002), ‘StaƟsƟcal mechanics of complex networks’, Reviews of Modern Physics, vol. 74 no. 1,
pp. 47

A½½�Ä, F. �Ä� D. G�½� (2000), ‘Financial contagion’, Journal of PoliƟcal Economy, vol. 108 no. 1, pp. 1–33

A½ã�Ù, A., B. CÙ�®¦ �Ä� P. R�çÖ��« (2015), ‘Centrality-Based Capital AllocaƟons’, InternaƟonal Journal of Central Banking,
vol. 11 no. 3, pp. 329–379

B�ãã®ÝãÊÄ, S., M. Pç½®¦�, R. K�çÝ«®», P. T�Ý�� �Ä� G. C�½��Ù�½½® (2012), ‘DebtRank: Too central to fail? Financial networks,
the fed and systemic risk’, ScienƟfic Reports, vol. 2,

BÊÄ��®�«, P. (1987), ‘Power and Centrality: A Family of Measures’, American Journal of Sociology (University of Chicago Press),
no. 92, pp. 1170–1182

BÊÄ��®�«, P. �Ä� P. L½Êù� (2001), ‘Eigenvector-like measures of centrality for asymmetric relaƟons’, Social Networks, vol. 23
no. 3, pp. 191–201

BÊÙ¦�ãã®, S. (2005), ‘Centrality and network flow’, Social Networks, no. 27, pp. 55–71

BÊÝÝ, M., H. E½Ý®Ä¦�Ù, M. SçÃÃ�Ù �Ä� S. T«çÙÄ�Ù (2004), ‘The Network Topology of the Interbank Market’, QuanƟtaƟve
Finance, vol. 4 no. 6, pp. 677–684

C���«�ãã®, S.,M. RÊ��Ê �Ä� L. S®¦�½Êãã® (2016), ‘Contagion and fire sales in banking networks’,Bank of Italy Temi di Discussione
(Working Paper), no. 1050,

C½�çÝ�ã, A., C. S«�½®þ® �Ä�M. N�óÃ�Ä (2009), ‘Power-law distribuƟons in empirical data’, SIAMReview, vol. 51 no. 4, pp. 661–
703

E®Ý�Ä��Ù¦, L. �Ä� T. NÊ� (2001), ‘Systemic risk in financial systems’,Management Science, vol. 47 no. 2, pp. 236–249

F®Ä», K., U. KÙì¦�Ù, B. M�½½�Ù �Ä� L.-H. WÊÄ¦ (2015), ‘The credit quality channel: Modeling contagion in the interbank mar-
ket’, Deutsche Bundesbank Discussion Paper No, vol. 52 no. 38, pp. 1301–1314

FÙ�®ø�Ý, X., B. M. P�Ù®¦® �Ä� J. C. RÊ�«�ã (2000), ‘Systemic risk, interbank relaƟons, and liquidity provision by the central bank’,
Journal of Money, Credit and Banking, vol. 32 no. 3, pp. 611–638

H�Á�¹, G. �Ä� C. KÊ» (2013), ‘Assessing interbank contagion using simulated networks’, ComputaƟonal Management Science,
vol. 10 no. 2-3, pp. 157–186

HÊ½½Ì, D., M. KÙ�Ã�Ù �Ä� M. LÊ Dç�� (2012), ‘CISS-a composite indicator of systemic stress in the financial system’, ECB
Working Paper series No., no. 1426,

L�ò®Ä, D., Y. P�Ù�Ý �Ä� E. W®½Ã�Ù (2009),Markov chains and mixing Ɵmes, American MathemaƟcal Society.

LÊò�Ýþ, L. (1993), ‘Random walks on graphs: A survey’, Combinatorics, Paul Erdős is eighty, vol. 2 no. 1, pp. 1–46

SÊÙ�Ã�»®, K. �Ä� S. CÊÊ» (2013), ‘SinkRank: An algorithm for idenƟfying systemically important banks in payment systems’,
Economics, vol. 7 no. 28, pp. 1

38 MNB WORKING PAPERS 1 • 2017



REFERENCES

SÊÙ�Ã�»®, K., M. L. B��«, J. AÙÄÊ½�, R. J. G½�ÝÝ �Ä� W. E. B�ù�½�Ù (2007), ‘The topology of interbank payment flows’, Physica
A: StaƟsƟcal Mechanics and its ApplicaƟons, vol. 379 no. 1, pp. 317–333

Sþ�Ä�Ù�®, T. �Ä� K. V�Ù¦� (2017), ‘Factor based index of systemic stress’,MNB, mimeo,

UÖÖ�Ù, C. (2011), ‘SimulaƟon methods to asses the danger of contagion in interbank markets’, Journal of Financial Stability,
vol. 7 no. 3, pp. 111–125

V®ò®�Ù-L®Ù®ÃÊÄã, S. (2006), ‘Contagion in interbank debt networks’,Working Paper,

MNB WORKING PAPERS 1 • 2017 39



Appendix A Theory and proofs

A matrix 𝐀 with non-negaƟve elements is called irreducible if for any i, j there is a k such that 𝐀k
i,j வ 0.

Theorem (Perron – Frobenius). Let 𝐀 be an irreducible square matrix. Then

1. 𝐀 has a posiƟve real eigenvalue ఒmax such that all other eigenvalues saƟsfy |ఒ| ஸ ఒmax.

2. ఒmax has mulƟplicity 1 and has an eigenvector 𝐯 வ 0.

3. Any posiƟve eigenvector is a mulƟple of 𝐯.

4. If𝐰 ஹ 0,𝐰 ஷ 0 and ఓ is a number such that 𝐀𝐰 ஸ ఓ𝐰, then𝐰 வ 0 and ఓ ஹ ఒmax. ఓ ୀ ఒmax if and only if𝐰 is a mulƟple
of 𝐯.

Proof of Lemma 1 (Bonacich and Lloyd (2001)). For the sake of generality, I do not assume that 𝐀 is symmetric. Let 𝐕 be the
matrix of eigenvectors 𝐯i of 𝐀. Then 𝐀𝐕 ୀ 𝐕ఒ and 𝐀k ୀ 𝐕ఒkVష1. Let 𝐰i be the ith row of 𝐕ష1. Then 𝐀k ୀ ∑n

iస1 ఒ
k
i ⋅ 𝐯i ⋅ 𝐰i.

Therefore Bonacich centrality for ఈ ୀ 1 becomes

𝐛 ୀ (𝐈 ି ఉ𝐀)ష1 ⋅ 𝟏 ୀ ቌ
ಮ


kస0

ఉk𝐀kቍ ⋅ 𝟏 ୀ ቌ
ಮ


kస0

ఉk
n


iస1

ఒk
i ⋅ 𝐯i ⋅ 𝐰iቍ ⋅ 𝟏

ୀ ቌ
n


iస1

ಮ


kస0

ఉkఒk
i ⋅ 𝐯i ⋅ 𝐰iቍ ⋅ 𝟏 ୀ

n


iస1

𝐰i ⋅ 𝐯i
1 ି ఉఒi

⋅ 𝟏,

thus using the fact thatఒ1 is the largest eigenvalueof𝐀, it is easy to see that the second termdisappears in limit, ୪୧୫ഁ→1/ഊ1ష 𝐛(1, ఉ)⋅
(1 ି ఉఒ1) ୀ (𝐰1 ⋅ 𝟏)𝐯1, what one needed to show.

Proof of Lemma 2. First, I show that 1 is an eigenvalue of a stochasƟc matrix denoted by 𝐖. The rows of 𝐖 sum up to 1,
therefore𝐖 ⋅ 𝟏 ୀ 1 ⋅ 𝟏, 1 is indeed an eigenvalue. Secondly, I show that there is no larger eigenvalue than 1. Suppose that
𝐖⋅ 𝐱 ୀ ఒ𝐱 for a ఒ வ 1. Then𝐖⋅ 𝐱 is a vector with elements smaller than the largest element of 𝐱. On the other hand, at least
one element of ఒ𝐱 is greater than the largest element of 𝐱. This is a contradicƟon.

Proof of ProposiƟon 1. Let us first rewrite equaƟon (5) in matrix form. Let 𝐘 be the matrix of total repayments, where the ith
row is (yi, … , yi). Then equaƟon (5) turns into

(𝐈 ି 𝐐) ⋅ 𝐇 ୀ 𝐘 ି ቌ
n


iస1

yiቍ ⋅ 𝐈. (7)

1st case: If (𝐈 ି 𝐐) is not inverƟble (or equivalently, 0 is an eigenvalue of (𝐈 ି 𝐐)), one cannot simply obtain 𝐇. I show that

𝐌 ୀ ି൫∑n
iస1 yi൯ ⋅ ൬𝐈 ି 𝐐 ା 1

∑n
iస1 yi

⋅ 𝐘൰
ష1

solves equaƟon (7).

(𝐈 ି 𝐐) ⋅ 𝐌 ୀ ି(𝐈 ି 𝐐) ⋅ ቌ
n


iస1

yiቍ ⋅ ቆ𝐈 ି 𝐐 ା 1
∑n

iస1 yi
⋅ 𝐘ቇ

ష1

ୀ ିቆ𝐈 ି 𝐐 ା 1
∑n

iస1 yi
⋅ 𝐘 ି 1

∑n
iస1 yi

⋅ 𝐘ቇ ⋅ ቌ
n


iస1

yiቍ ⋅ ቆ𝐈 ି 𝐐 ା 1
∑n

iస1 yi
⋅ 𝐘ቇ

ష1

ୀ ିቌ
n


iస1

yiቍ ⋅ 𝐈 ା 𝐘 ⋅ ቆ𝐈 ି 𝐐 ା 1
∑n

iస1 yi
⋅ 𝐘ቇ

ష1

.
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It remained to check that 𝐘 ⋅ ൬𝐈 ି 𝐐 ା 1
∑n

iస1 yi
⋅ 𝐘൰

ష1
ୀ 𝐘, which is equivalent with

𝐘 ୀ 𝐘 ⋅ ൬𝐈 ି 𝐐 ା 1
∑n

iస1 yi
⋅ 𝐘൰. AŌer noƟcing that 𝐘 ⋅ (𝐈 ି𝐐) ୀ 𝟎, it is enough to verify that 𝐘 ⋅ 1

∑n
iస1 yi

⋅ 𝐘 ୀ 1
∑n

iస1 yi
⋅ 𝐘 ⋅ ∑n

iస1 yi ୀ 𝐘.

𝐌 saƟsfies equaƟon (7), but there is one more restricƟon; the diagonals have to be zero according to the definiƟon. This can
be reached by adding a matrix 𝐃 to𝐌 for which (𝐈 ି 𝐐) ⋅ 𝐃 ୀ 𝟎 and di,i ୀ ିmi,i.

According to that every column of 𝐃 is an eigenvector of (𝐈 ି 𝐐) corresponding to 0 eigenvalue (let it be 𝐯0). This eigenvector
mulƟplied by a scalar is sƟll an eigenvector since (𝐈 ି 𝐐) ⋅ ఒ𝐯0 ୀ ఒ (𝐈 ି 𝐐) 𝐯0 ୀ ఒ ⋅ 0 ⋅ 𝐯0 ୀ 𝟎. Thus for the ith column of 𝐃,
let 𝐝i ୀ ି𝐯0 ⋅

mi,i
v0,i

, then (𝐈 ି 𝐐) ⋅ 𝐝i ୀ
షmi,i
v0,i

(𝐈 ି 𝐐) ⋅ 𝐯0 ୀ 𝟎 and di,i ୀ ିmi,i. 𝐇 ୀ 𝐌ା𝐃 solves equaƟon (7) with the restricƟon
on the diagonals.

2nd case: If (𝐈 ି 𝐐) is inverƟble then 0 is not an eigenvalue of (𝐈 ି 𝐐). Simply 𝐌 ୀ (𝐈 ି 𝐐)ష1 ⋅ (𝐘 ି (∑n
iస1 yi) ⋅ 𝐈). For the

diagonal restricƟon one again needs a matrix 𝐃 for which (𝐈 ି 𝐐) ⋅ 𝐝i ୀ 𝟎 for all i. This would mean that all columns of 𝐃 are
eigenvectors corresponding to 0 eigenvalue. This is a contradicƟon.

In fact, the assumpƟon that there is no non-borrowing node in the network is equivalent with the inverƟbility of (𝐈 ି 𝐐): if
there is no non-borrowing node then the sum of all columns is 0 in (𝐈ି𝐐), (𝐈ି𝐐)T ⋅ 𝟏 ୀ 𝟎, 0 is an eigenvalue of (𝐈ି𝐐)T.

Proof of ProposiƟon 2. 1. Suppose ఌ வ ∑n
iస1 ei but no bank defaults. Then from the definiƟon of payment equilibrium,


kಯi

xi,k ା ei ஹ
kಯi

xk,i

for all banks i. Summing over all i and using that j is shocked with ఌ,


i


kಯi

xi,k ା ei ஹ
i


kಯi

xk,i,

and by the fact that the sums on the two sides are equal, ∑iಯj ei ା ej ି ఌ ஹ 0. Furthermore, since only j is shocked, I
equivalently get ∑i ei ஹ ఌ. This is a contradicƟon.

2. In the presence of a large shock to bank j, all other banks default if and only if xi ழ yi for all i, where xi’s are the soluƟons
of the following equaƟons:

xi ୀ ei ା
kಯj

qi,k ⋅ xk.

Comparing it to equaƟon (6), it is clear that xi ୀ hi,j. All banks default if and only if hi,j ழ yi.

Proof of ProposiƟon 3. The proof is idenƟcal to that of ProposiƟon 1 by interchanging 𝐘 with 𝐄.
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Figure 13
Time evoluƟon of sum of interbank liabiliƟes and harmonic distances of Bank 2 (O-SII) in Hungary
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Figure 14
Time evoluƟon of sum of interbank liabiliƟes and harmonic distances of Bank 3 (O-SII) in Hungary
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Table 10
Rank correlaƟons corresponding to Table 1

harmonic distances:

c 1 2 3

ఈ avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.588 0.094 0.589 0.092 0.647 0.081

0.2 0.653 0.081 0.654 0.079 0.661 0.083

0.4 0.750 0.071 0.744 0.071 0.750 0.074

0.6 0.809 0.066 0.811 0.068 0.809 0.068

extended harmonic distances:

c 1 2 3

ఈ avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.592 0.094 0.592 0.092 0.594 0.096

0.2 0.655 0.080 0.656 0.079 0.649 0.080

0.4 0.751 0.071 0.746 0.071 0.751 0.073

0.6 0.810 0.066 0.812 0.068 0.810 0.068

weighted degree:

c 1 2 3

ఈ avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.864 0.040 0.867 0.037 0.867 0.039

0.2 0.885 0.037 0.886 0.037 0.885 0.037

0.4 0.925 0.031 0.917 0.032 0.920 0.030

0.6 0.940 0.028 0.941 0.028 0.940 0.029

eigenvector:

c 1 2 3

ఈ avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.825 0.050 0.823 0.048 0.826 0.050

0.2 0.851 0.046 0.852 0.046 0.850 0.047

0.4 0.895 0.039 0.892 0.040 0.896 0.039

0.6 0.923 0.033 0.924 0.035 0.922 0.036

closeness:

c 1 2 3

ఈ avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.827 0.045 0.825 0.047 0.824 0.045

0.2 0.845 0.042 0.843 0.055 0.845 0.042

0.4 0.867 0.052 0.864 0.060 0.862 0.055

0.6 0.860 0.096 0.856 0.100 0.858 0.091

betweenness:

c 1 2 3

ఈ avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.827 0.045 0.825 0.047 0.824 0.045

0.2 0.845 0.042 0.843 0.055 0.845 0.042

0.4 0.867 0.052 0.864 0.060 0.862 0.055

0.6 0.860 0.096 0.856 0.100 0.858 0.091
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Table 11
Rank correlaƟons corresponding to Table 2

harmonic distances

ఈ avg.corr. std.dev.

0.1 0.588 0.093

0.2 0.654 0.080

0.4 0.747 0.073

0.6 0.811 0.066

extended harmonic distances

ఈ avg.corr. std.dev.

0.1 0.591 0.093

0.2 0.656 0.080

0.4 0.748 0.073

0.6 0.812 0.066

weighted degree

ఈ avg.corr. std.dev.

0.1 0.867 0.039

0.2 0.887 0.036

0.4 0.919 0.032

0.6 0.941 0.027

eigenvector

ఈ avg.corr. std.dev.

0.1 0.823 0.050

0.2 0.852 0.046

0.4 0.894 0.041

0.6 0.924 0.034

closeness

ఈ avg.corr. std.dev.

0.1 0.825 0.046

0.2 0.845 0.044

0.4 0.864 0.057

0.6 0.861 0.089

betweenness

ఈ avg.corr. std.dev.

0.1 0.738 0.066

0.2 0.770 0.059

0.4 0.778 0.078

0.6 0.801 0.086
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