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Abstract

In this paper we develop a model of shock propagaƟon in the banking system with feedback channels towards the real econ-
omy. Our framework incorporates the interacƟons between the network of banks (exhibiƟng contagion mechanisms among
them) and the network of firms (transmiƫng shocks to each other along the supply chain) which systems are linked together
via loan-contracts. Our hypothesis was, that the feedback mechanisms in these coupled networks could amplify the losses in
the economy beyond the shorƞalls expected when we consider the subsystems in isolaƟon. As a test for this, we embedded
the model into a liquidity stress tesƟng framework of the Central Bank of Hungary, and our results proved the importance of
the real economy feedback channel, which almost doubled the system-wide losses. To illustrate the versaƟlity of our modeling
framework, we presented two further applicaƟons for different policy purposes: (i) We elaborated a way to use the model for
SIFI idenƟficaƟon, (ii) and we showed an example of assessing the impact of shocks originated in the real economy.

JEL: G01, G21, G28, C63.

Keywords: systemic risk, financial network, producƟon network, contagion.

Összefoglaló

A tanulmány egy, a magyar bankrendszerre fókuszáló, reálgazdasági visszacsatolásokat is tartalmazó sokkterjedési modellt mu-
tat be. A modellkeret magában foglalja a bankok hálózatát (a köztük megjelenő fertőzési csatornákkal), a cégek termelési
hálózatát (a beszállítói kapcsolatokon keresztüli sokkterjedéssel), illetve ennek a két rendszernek a hitelszerződésekkel történő
összekapcsolását. Hipotézisünk szerint ebben a visszacsatolási mechanizmusokat is tartalmazó összeteƩ rendszerben a gaz-
daságban várható veszteségek meghaladják a két hálózat izolált vizsgálata során felmerülő veszteségeket. Ennek tesztelésére
beépíteƩük a modellt a Magyar NemzeƟ Bank likviditási stressztesztjébe. Az eredmények szerint a reálgazdasági visszacsatolás
majdnem megduplázta a rendszerszintű veszteségeket. A modellkeret sokoldalúságának illusztrálása érdekében két további
alkalmazást is bemutatunk a tanulmányban: (i) Kidolgoztunk egy módszert, amelynek segítségével a modell alkalmas lehet a
rendszerszinten jelentős pénzügyi intézmények azonosítására, (ii) valamint bemutatunk egy példát a reálgazdaságból érkező
sokkok hatásainak felmérésére is.
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1 IntroducƟon

The 2008 economic crisis shed light on a disƟncƟve feature of the financial intermediary system: banks and other financial
insƟtuƟons are consƟtuents of a mulƟ-layer network, in which their interacƟons and feedbacks create non-linear processes.
As the recogniƟon of this complexity¹ as an intrinsic and influenƟal characterisƟc which requires special aƩenƟon has become
widely accepted, a vast amount of research was conducted on network-based contagious mechanisms in the financial system.
However, while this newly explored jusƟficaƟon for the unique regulaƟon of the financial sector unfolded in various forms,
another, more tradiƟonal consideraƟon was oŌen neglected in the models. Namely, a more convenƟonal line of reasoning
grants a special role to the financial intermediary sector based on its connectedness towards all the other economic sectors,
which puts banks in a special posiƟon from the point of view of shock propagaƟon in the economy. This consideraƟon – among
others² – led at the first place to the regulatory frameworks, which have been even before the crisis much stricter than one can
experience in almost any other industry.

In this project we are aƩempƟng to take a step towards the synthesis of the two above described consideraƟons about the
disƟnguished role of the financial sector by creaƟng a banking system contagion model with real economy interlacement. As
we experienced also during the escalaƟon of the crisis aŌer 2008, shock events either in the financial sector or in the real
economy can be easily transmiƩed to the other: since in most countries banks are the main sources of firms’ financing, if the
banking system is hit by a shock, it can lead to financial problems for firms dependent on bank loans³ due to the lower lending
acƟvity. In turn, if the real economy is declining, banks can suffer losses e.g. on non-performing loans or through the lack of
demand due to the setback of investments. Crucially, these shocks can even be augmented not only in the banking system,
but also in the producƟon network of firms. Hence, the environment, in which the underlying processes beyond the observed
emergent phenomena in the financial system are taking place is not limited to the financial sector, but it interferes heavily with
the realm of the real economy.

Tomodel the consequences of these intricacies on the financial stability of an economywe built amicrosimulaƟon based frame-
workwhich is suitable to capture contagiousmechanisms in an interconnected system of economic networks. More specifically,
we are focusing on the interacƟons between the network of banks (exhibiƟng contagious mechanisms among them) and the
network of firms (transmiƫng shocks to each other along the supply chain) which systems are linked together primarily via
loan-contracts. Results obtained in theoreƟcal models suggest, that the interconnected nature of networks causes qualita-
Ɵvely different behavior and alters the robustness of a complex system compared to the mere aggregaƟon of its subsystems
(Buldyrev et al. (2010), Leicht and D’Souza (2009)). Consequently, one can assume that to accurately assess financial systemic
risks we need to consider the feedback channels between the interacƟng economic subsystems as well. Our hypothesis is, that
these feedback mechanisms could amplify the losses in the economy beyond the shorƞalls expected when we consider the
interacƟng systems in isolaƟon. According to our knowledge, this is the first model which integrates all the above menƟoned
mechanisms by using microsimulaƟon jointly on empirical firm network data and the banking system.

Our framework consists of four modeling blocks: (i) contagions in the banking sector, (ii) modeling credit supply shocks for
firms, (iii) assessing the amplificaƟon of these shocks in the producƟon network and (iv) esƟmaƟng banks’ losses on their
corporate loan porƞolios. In the first block we built a banking system contagion model with channels for interbank losses,
liquidity hoarding and fire sales effects, however, it also incorporates several balance sheet adjustment mechanisms to take
into account the realisƟc behavior of banks in a stress scenario. This feature makes it possible to expand the propagaƟon
of distress towards the real sectors by acknowledging the procyclicality of the banking sector. Furthermore, addiƟonally to
the capital adequacy raƟo (CAR) default condiƟon, the liquidity coverage raƟo (LCR) is also included to account for defaults

¹ In this sense a complex system is notmerely a synonym for a complicated, large, sophisƟcated structure. Complexity is a scienƟfic theory which asserts
that some systems display emergent phenomena that are completely inexplicable by any convenƟonal analysis of the systems’ consƟtuent parts. The
source of complexity is usually assumed to be the non-linear, feedback-based interacƟon of many heterogeneous components.
² There are other characterisƟcs of the financial sector which can jusƟfy its unique regulaƟon as it operates in a highly leveraged way compared to other
sectors and informaƟon asymmetries are present on mulƟple levels.

³ Most importantly SMEs are vulnerable to these shocks as they cannot raise capital or issue bonds so easily as listed companies.

6 MNB WORKING PAPERS 6 • 2020



INTRODUCTION

due to liquidity insufficiency. The other three blocks of the model are treated together in a spaƟal econometric model which
gives esƟmates for the probability of default on corporate loan contracts. To carry out this esƟmaƟon we borrowed tools from
another stream of economic literature, which deals with shock propagaƟon along the supply chain in producƟon networks. As
this research project does not aim to build a general economic model, we elaborated only those channels between the banking
system and the real economy, which seem to be the most influenƟal from the point of view of financial stability⁴.

In order to build an implementaƟon of the microsimulaƟon environment we obtained access to several detailed datasets at the
NaƟonal Bank of Hungary and at the NaƟonal Tax and Customs AdministraƟon, including balance sheet data of the Hungarian
banks and firms, bilateral exposures at the interbank market, informaƟon about the investment porƞolios of banks, details of
loan contracts between banks and firms, and most notably, transacƟon level data about the supply chain connecƟons among
firms.

As a first applicaƟon we embedded our model in the Hungarian Central Bank’s liquidity stress test (which is calibrated to the
2008 crisis). The results of the simulaƟon indicate that in the Hungarian banking system the magnitude of feedback-based
losses on the non-performing loan porƞolio coming from the firm network are similar in magnitude or in some cases even
more severe than the losses caused by the usual firesales and interbank contagion channels. AddiƟonally, the introducƟon of
real economy feedbacks changed fundamentally the distribuƟon of the losses among banks. The new contagion channels also
made the interacƟon between solvency and liquidity problems more emphasized: some banks became unable to comply with
the solvency criterion even in the case when only liquidity shocks were present in the stress scenario. As we are using firm-level
granularity, it is also possible to assess some real economy consequences as well. In this parƟcular applicaƟon 0.5% of the firms
in the model became non-performing on their loans.

A further important applicaƟon of the model is to use it as a tool for idenƟfying systemically important insƟtuƟons (SIFIs). To
construct a SIFI measure we embedded our model into a modified version of the Shapley value concept. Our indicator can be
decomposed into three elements: i) system-wide losses caused by the default of a given bank, ii) losses suffered by the given
bank due to external shocks, and iii) the part of other banks’ losses which were caused by the shock amplifier effect of the given
bank. The importance of these three factors can greatly vary among banks. In some cases the systemic importance is rooted
mainly in the vulnerability of a bank, while others can be resilient from this perspecƟve, but their default can represent more
serious systemic risk. The third factor is usually less pronounced, which indicates that the complexity of the Hungarian banking
system might not be as high as that of some larger countries. However, in some cases the ability to amplify shocks can also
have significant influence on the systemic importance of Hungarian banks.

The modeling framework makes it also possible to simulate the effects of shocks originated not necessarily in the banking
system, but also those coming from the real economy. By assuming firms in a given industry becoming non-performing on their
loans, we could assess the significance of different economic sectors for financial stability. Following this logic we were able
to apply the model for a preliminary assessment of the economic impacts of the COVID-19 pandemic. Although we do not
have yet the necessary staƟsƟcs to make confident assumpƟons about some crucial parameters, our results can sƟll indicate a
plausible range for the expected consequences.

The rest of the paper is organized as follows. SecƟon 2 reviews the related literature. SecƟon 3 provides intuiƟve descripƟon
and jusƟficaƟon of our model. SecƟon 4 specifies the detailed formulaƟon of the simulaƟons, while SecƟon 5 deals with the
calibraƟon of the key parameters. SecƟon 6 describes some applicaƟons, and SecƟon 7 concludes and offers further research
plans.

⁴ Broer, Antony, et al. (2010) offers a comprehensive summary of several other potenƟal interacƟons.
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2 Literature review

The unexpected cascading spillovers in the global economy aŌer the 2008 crisis fostered the emergence of network-based
simulaƟons as a popular modeling framework in economics (EllioƩ et al. (2014), Acemoglu et al. (2015)), but this recogniƟon
so far resulted mainly in numerous analyses about contagion channels only in the financial system. The topic of interconnected
economic networks, although it was even listed as an objecƟves of the FuturICT project (Farmer et al. (2012)), remained so far
largely unexplored in the economic literature. This way our project is most closely related to papers which connect the banking
system and firms using loan contracts but do not consider the producƟon network. One of the first aƩempts for this was done
by Lux (2016), which study considered shock propagaƟon via firms with mulƟple bank connecƟons (similarly to the concept
of contagion through overlapping porƞolios). If a bank defaulted, the resulƟng credit crunch could force firms dependant on
the banks’ loan into bankruptcy. These firms then caused losses to their other bank connecƟons. In their simulaƟons they
found that the joint exposures to counterparty risk in corporate lending is actually more important in the contagious spread
of defaults than the interbank lending channel. A model in similar spirit was done by Silva et al. (2018), but in this case the
simulaƟons were run using empirical data as well. This paper extended a variant of the DebtRank model (Bardoscia et al.
(2015)) to incorporate lending connecƟons between banks and firms to create addiƟonal channels of shock propagaƟon (but
without including links among in the firm network). They showed that without taking into consideraƟon the links between the
financial and the real sectors one can severely underesƟmate systemic risks. Recent developments in the European Central
Bank also include real economy feedbacks within their stress tesƟng framework (Budnik et al. (2019)). In their work, they
used a DSGE model to invesƟgate how deleveraging the banking system affects the real economy, which effect feeds back into
the aggregated macroeconomic variables. AddiƟonally, they also consider cross-sectoral spillovers due to losses on claims of
distressed banks, and then due to the equity holdings between sectors in the real economy (Dees and Henry (2017)). However,
the DSGE approach entails some disadvantages: it produces only macro-level outcomes without revealing the heterogeneity
of the economic actors and the role of the disƟnct components in the contagion along producƟon chains. Gross and Siklos
(2020) considers spillovers of financial shocks in the real economy without arƟculaƟng a feedback component. They are using
network-based econometric tools to esƟmate the transmission of bank and sovereign risks to the non-financial corporate sector
based on CDS spreads. Furthermore, some papers depict connecƟons between the financial and the real sector in the form of
indirect interconnectedness among banks via exposures to common asset holdings (Caccioli et al. (2014), Duarte and Eisenbach
(2018), Cont and Schaanning (2019), Roncoroni et al. (2019)).

AddiƟonally, there are also theoreƟcal models of interconnected networks, which can give relevant insights into the behaviour
of interacƟng economic systems. Buldyrev et al. (2010) found that a broader degree distribuƟon can amplify the vulnerability
of coupled systems to random failures, which is opposite to how a single network behaves. Furthermore, Leicht and D’Souza
(2009) showed that the percolaƟon threshold in an isolated subnetwork canbe significantly lowerwhen edges to other networks
are also present. Although these results were obtained in theoreƟcal models with a very high abstracƟon level, they suggest,
that accounƟng for the interconnected nature of economic networks can be crucial in systemic risk assessment.

Papers focusing solely on financial networks are also relevant to our work. The banking system block of our model is most
similar in its spirit to Georgescu (2015), Idier and Piquard (2017), Covi et al. (2019) and Coen et al. (2019), however there are a
vast amount of related papers concerning interbank contagions. E.g. Rogers and Veraart (2013) and Dietrich and Hauck (2020)
focused on shock propagaƟon in interbank networks, Gai and Kapadia (2010) and Gai et al. (2011) dealt with contagion through
funding risk, and Bargigli et al. (2015), Poledna et al. (2015) and Montagna and Kok (2016) conducted research on contagion
on mulƟ-layer networks of banks. Upper (2011) and Jackson and Pernoud (2020) offer exhausƟve summaries about further
potenƟal contagion channels. There are several other influenƟal papers, which served as a starƟng point for many research
projects in this topic: Furfine (2003) offered one of the first algorithmic soluƟons to the contagion mechanisms on a bank
network, Eisenberg and Noe (2001)⁵ managed to deal with the simultaneity problem of accounƟng for defaults and losses in
a network, Baƫston et al. (2012) offered a widely-used centrality measure to idenƟfy systemically important insƟtuƟons and
Barucca et al. (2016) improved on handling ex-ante valuaƟon of claims among consƟtuents of financial networks.

⁵ Csóka and Herings (2018) shows a decentralized approach for the clearing in Eisenberg and Noe (2001), generalized to the discrete setup, while Csóka
and Herings (2020) offers an axiomaƟzaƟon for the clearing process.
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As we are taking into account the amplificaƟon of shocks in the producƟon network of firms as well, our work is also connected
to the supply chain contagion literature. Unlike in the case of banks, analysis of firm networks did not proliferate that much
aŌer the crises. However, some recent works have highlighted that systemic risk analysis should not be limited to financial
networks. Bimpikis et al. (2018) and Bimpikis et al. (2019) have showed, that disrupƟons in the supplier network can result in
subopƟmal network formaƟon which can amplify systemic risks. Baqaee (2018) showed in a general equilibrium model that
shock propagaƟon can be further amplified by the interconnectedness between industries. Luo (2019) establishes linkages
between firms both using the producƟon network and financial links due to delays in input payments, and shows that this
mulƟplex network leads to the propagaƟon of financial shocks in both upstream and downstream direcƟons. further support
for this mechanism using empirical data about the great east Japan earthquake. Barrot and Sauvagnat (2016) also uses natural
disasters for the idenƟficaƟon of firm-level shocks, and they found that suppliers can trigger considerable output losses for
their customers. Further examples of supply chain disrupƟon analyses can be Demir et al. (2018) and Boehm et al. (2019),
but Carvalho and Tahbaz-Salehi (2018) and Bernard and Moxnes (2018) offer reviews of the broader literature on producƟon
networks.

Another important aspect of our model is its implementaƟon on empirical data. Links between economic enƟƟes are very
oŌen confidenƟal informaƟon and they are rarely accessible for academic insƟtuƟons. In the case of bank networks a standard
method is to reconstruct the topological structure using only aggregate observaƟons. An oŌen used procedure for reconstruc-
Ɵon is the Maximum Entropy (ME) approach (Upper and Worms (2004), Elsinger et al. (2013)). DistribuƟng each bank’s total
interbank lending as evenly as possible also means that ME results in an unrealisƟc, almost complete network. Drehmann and
Tarashev (2013) enhanced ME by adding random perturbaƟons to the maximum entropy output matrix to generate results
with higher concentraƟon mimicking more closely the sparse structure of empirical networks. Another variant of ME is the
Minimum Density (MD) approach developed by Anand et al. (2015), which method creates an interbank lending network using
as few links as possible by imposing a cost on link formaƟon. Mastrandrea et al. (2014) takes into account the degrees of the
nodes as well during theME allocaƟon. An alternaƟve technique was applied by Baral and Fique (2012), which paper used cop-
ulas to construct the interbank lending network. ME was also applied to recover input-output matrices by Golan et al. (1994),
however, reconstrucƟon, or more generally even the use of granular enƟty-level linkages is much less prevalent in the case of
firms than in the banking system. There are only very few countries in which fine-grained producƟon network data is available.
Watanabe et al. (2015) gave the first detailed descripƟon of a large, granular supplier network by considering relaƟonships
among 400,000 firms in Japan. However, probably the Belgian producƟon network is used most oŌen in studies dealing with
firm-level trade connecƟons Magerman et al. (2016), Tintelnot et al. (2018)). AddiƟonally, Demir et al. (2018) used the Turkish,
while Kumar et al. (2020) considered the Indian supplier network in their work.
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3 DescripƟon of the model

In this secƟon we provide intuiƟve descripƟon and jusƟficaƟon for our work, while SecƟon 4 will show the exact formulaƟon of
our simulaƟons.

Our model can be divided into four theoreƟcal blocks (Figure 1):

• In the first block, we model the adjustments and contagions in the banking system aŌer an exogenous shock.

• As an adjustment mechanism of banks, a credit supply shock hits the real economy, which increases firms’ probability of
default (PD) on their loans.

• The amplificaƟon of the shock in the producƟon network further increases firms’ PD.

• As a feedback from the firm network, banks suffer losses on their corporate loan porƞolios.

As the last three blocks are all parts of the process how credit supply shocks translate into an increased probability of firms
becoming nonperforming on their loans, these can be handled together during the implementaƟon as one modeling unit de-
scribing the real economy feedback. Before we describe the detailed formulaƟon of the simulaƟon steps, first we provide
intuiƟve explanaƟons for these theoreƟcal blocks.

3.1 BANKING SYSTEM
Our model of the banking system contains two channels of contagion and several mechanisms that capture banks’ adjustment.
One source of contagion is happening through the interbank lendingmarket: If a bank suffers a loss of amagnitude that results in
its failure, and thus it becomes unable to repay the loans it borrowed in the interbankmarket, it causes losses to its partners. The
second channel stems from the form of bank adjustment when a bank aƩempts to improve its posiƟon by selling assets whose
price may change as a result of these transacƟons, and thus other banks also suffer losses because of the price change. (This
mechanism is hereinaŌer referred to as ‘fire sales’.) According to the logic of themodel, contagion and adjustmentmechanisms
follow one another cyclically unƟl the fixed point of the system is reached⁶. (Figure 3.1)

During running the model, first we examine whether the given bank meets the levels of the liquidity (Liquidity Coverage RaƟo
- LCR) and solvency (Capital Adequacy RaƟo - CAR) indicators required by the regulatory authority. If not, to avoid bankruptcy,
banks first try to adjust themselves unƟl the required LCR and CAR levels are reached, in order to offset the impact of stress
events. Our assumpƟons regarding the adjustment opƟons are built on empirical findings in the European banking system:
Brinkhoffet al. (2018) shows the results of the European Systemic Risk Board’smacroprudenƟal surveys that aim to assess banks’
behaviour in macroeconomic stress scenarios. They have found that lowering credit risk exposures is the largest component
of the expected reducƟon in their risk-weighted assets. AddiƟonally, Behn et al. (2019) also showed that banks in danger of
breaching regulatory requirements oŌen choose socially detrimental adjustment strategies, most of all by reducing lending
acƟvity. The assumpƟon that banks would even use balance sheet transformaƟon which entail fire sales contagion to raise
liquidity in a stress situaƟon is supported by e.g. Allen and Carleƫ (2008), Adrian and Shin (2010) and Diamond and Rajan
(2011). However, adjustment steps can differ between countries due to country- and bank-specific dissimilariƟes. As we could
implement our model on Hungarian data, we fine-tuned the assumpƟons to the Hungarian experiences during the 2008 crisis.
Furthermore, the exact adjustment opportuniƟes can vary depending on the applicaƟon as well. The assumed behaviors of
banks in the model reflect these evidences and principles.

In order to improve the liquidity situaƟon, banks in the model aƩempt to increase their liquid assets by liquidaƟng those assets
that cannot be taken into account in the LCR calculaƟon or can only be taken into account with a high discount. This adjustment

⁶ Eisenberg and Noe (2001) showed that a unique fixed point exists in the system, however, they only considered the interbank contagion channel
without fire sales.
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DESCRIPTION OF THE MODEL

may take place in three stages. In the first step banks carry out operaƟons that are feasible in a stress situaƟon as well, do not
cause a decline in reputaƟon, do not entail large losses, and do not generate further contagion in the banking sector. Adjustment
possibiliƟes like this may include the drawing of nostro accounts (accounts that a bank holds in a foreign currency in another
bank) and the non-renewal of just maturing deposits at the central bank. If no further adjustment is necessary, a given bank’s
reacƟon is evenly distributed across the above listed instruments. If carrying out the first level is not sufficient, the bank makes
adjustments which do not meet the above listed consideraƟons. In the second stage banks make the parts of the household
and corporate loan porƞolios which are just maturing on a cash flow basis expire⁷. Finally, if necessary, even those assets are
liquidated (corporate bonds and mortgage bonds) whose selling may result in a fire sales effect as other banks whose balance
sheet also contains the given security also suffer losses through the price change. The extent of the price change depends on
the type, the overall amount and the liquidated amount of the given asset.

Improving the solvency posiƟon takes place along similar logic, with the difference that in order to improve a bank’s posiƟon,
asset restructuring is possible on the basis of the risk weights (which are taken into account during the calculaƟon of the risk-
weighted asset value), instead of the LCR discount rates. Accordingly, in this case the bank transforms the assets with high risk
weight into assets with risk-free raƟng (e.g. into cash when making assets mature). According to our model specificaƟon, in
the case of a solvency problem banks have somewhat fewer opƟons to adjust as some assets in the first stage have pracƟcally
zero risk weight, so their liquidaƟon would not improve the CAR.

If even all these adjustments are insufficient to meet the requirements (LCR and CAR), the given bank goes bankrupt, and its
interbank loans become nonperforming. We account simultaneously for the losses stemming from the interbank exposures
vis-a-vis the banks that failed and the fire sales type price losses due to the asset fire sales. In the case of a default event, we
differenƟate in the LGD parameter based on the extent the given bank violated the requirements. AŌer accounƟng for all the
banks, if no change has taken place in the assets compared to the previous iteraƟon, the process stops. Otherwise, if further
loss occurred because of the contagion, some banks may have gone below the regulatory limit again, and the process restarts.

3.2 SHOCK TRANSMISSION FROM THE BANKING SYSTEM TO THE REAL
ECONOMY

In the model of bank-firm network relaƟonships the main mechanisms to transfer shocks from banks towards firms is the
decline in credit availability from the supply side. Ivashina and Scharfstein (2010) offers an underpinning for this mechanism by
showing that firms had difficulƟes during the recent financial crisis in renewing their credit lines. An important factor which can
modulate this kind of vulnerability is the number of connecƟons a given firm has to the banking sector. The ability for a bank to
privately observe informaƟon and maintain a close relaƟonship with its customer enables these firms to have increased access
to capital with more complex and non-standard credit needs (Von Thadden (1995)). Based on this, it can be beneficial if a firm
has more than one long-term, embedded connecƟons with financial insƟtuƟons.

This embeddedness is also useful during crisis Ɵmeswhen firms oŌen prefer to solve their financial problems privately in a credit
relaƟonship, rather than damaging their reputaƟon on the financial markets. Jiangli et al. (2008) showed that banks are able to
smoothen out shocks to firms by rescheduling payments or by the renegoƟaƟon of the terms of the credit contract. However,
this effect seems to bemuchweaker during systemic crises situaƟons. In this case, banks do not necessarily accommodate firms
with new lending, rather they oŌen refuse future lending. Puri et al. (2011) suggests that banks can smooth out idiosyncraƟc
shocks but they amplify systemic shocks. They also showed that banks affected by a shock reject substanƟally more loan
applicaƟons than non-affected banks.

In Hungary, the economy experienced amassive drop in lending aŌer the 2008 crisis. Although Figure 3 and 4 do not disƟnguish
supply and demand side factors, however, the extent of the disrupƟon in the trends can sƟll be considered as an obvious sign
of credit retrenchment.

⁷We assumed that banks make 100 per cent of the household loans maturing within 90 days and 50 per cent of the corporate loans maturing within
90 days expire (however, this Ɵme window can vary based on the assumed iniƟal shock and the applicaƟon of the model). The difference between
the retail and corporate porƞolio is explained by the fact that reputaƟon loss can be more severe in the case of corporate clients.
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3.3 SHOCK AMPLIFICATION IN THE PRODUCTION NETWORK
Credit supply shocks can have an impact via the supplier network even on firms which were not affected directly. In this block
of the model our objecƟve is to assess also the indirect effect of shocks coming from the banking system. Our approach to deal
with this challenge is different from the mechanical modeling style we applied for the banking system. As firms are extremely
heterogeneous and their operaƟon is much less regulated than that of banks, it would be extremely burdensome to work out
the details of their behaviour. Instead, we used a spaƟal econometric approach to esƟmate the increase in the probability of
default of firms on their loans aŌer a credit supply shock hits some part of the producƟon network they are indirectly connected
to⁸.

This soluƟon is connected to the literature of supply chain contagions, which gained momentum aŌer supplier informaƟon
about firms becamemore andmore oŌen accessible. These studies supplied ample evidence that producƟon networks are not
resilient even to firm-level idiosyncraƟc shocks as firms are not capable to react flexibly enough⁹. Moreover, shocks can even
be amplified through supplier links. E.g. according to the results of Barrot and Sauvagnat (2016), the reducƟon of sales by $1
at the supplier level causes a decrease of $2.4 in sales at the customer level.

Furthermore, this stream of the economic literature disƟnguishes between upstream and downstream shock propagaƟons:

• If a firm experiences a credit supply shock, its producƟon might fall on account of the financial distress, so the shock
will affect intermediate input suppliers as well. In addiƟon, suppliers might not be able to collect money from defaulƟng
partners. This means that the shock travels to the upstream direcƟon on the supply chain.

• Regarding the other direcƟon, if a supplier defaults aŌer a credit supply shock, the intermediate inputs it produced might
not be easy to replace for its costumers, hence, the shock spreads to the downstream direcƟon.

InteresƟngly, shocks can reverse direcƟons along the network, which means that in effect they can also spread horizontally. A
popular example for this is the case of car manufacturing industry in the United States. In the fall of 2008, the president of Ford
Motor requested government support for General Motors and Chrysler, but not for Ford. He wanted government support for
his company’s rivals because the failures of GM and Chrysler were predicted to result in the failure of many of the suppliers
of Ford Motor. Namely, a shock to General Motors can trigger upstream shock propagaƟon in the car-parts industry, which
becomes a negaƟve supply shock (downstream propagaƟon) to Ford. One can imagine other scenarios for horizontal shock
propagaƟon as well. For instance, if a supplier is hit by a shock, its compeƟtors can gain market share if the input is not too
specific.

3.4 SHOCK TRANSMISSION FROM THE REAL ECONOMY TO THE BANKING
SYSTEM

The parameters esƟmated for the direct and indirect impact of credit supply shocks on firms’ PD can be applied directly to
simulate firm defaults. If a firm becomes nonperforming, banks with loan exposures towards the firm will suffer losses on their
corporate loan porƞolio¹⁰. To handle the stochasƟc nature of this procedure we calculated with the expected value of 1000
realizaƟons of credit losses.

The problem of nonperforming loan porƞolios became one of themost pressing issues in several European countries. Rampant
NPL porƞolios are not only problemaƟc for banks, but it cuts back lending acƟvity even further creaƟng a negaƟve feedback
loop in the economy (Accornero et al. (2017)). Figure 5 shows the devastaƟng situaƟon in Hungary following the 2008 crisis.

3.5 THE TIME SCALE OF THE MODEL
The processes described in this secƟon so far must be synchronized in the Ɵme scale of the model. First of all, it is important to
emphasize that even if the blocks of the simulaƟon follow each other iteraƟvely, this is oŌenmerely the pracƟcal representaƟon

⁸ The details of this esƟmaƟon are discussed in SecƟon 5.
⁹ See for example Carvalho et al. (2016), Demir et al. (2018), Boehm et al. (2019).
¹⁰ During most of the simulaƟons we used either 50% or 100% as LGD parameters, which simplificaƟon conceals the vast difficulƟes of esƟmaƟng LGD
parameters specific to several relevant bank and firm characterisƟcs.
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of processes simultaneously reinforcing each other. Furthermore, the Ɵme scale of the simulaƟons is highly dependant on the
assumed iniƟal shock and the applicaƟon. As it can be seen on Figures 3-5, the effect of the shock in 2008was rather drasƟc and
immediate both in the case of the plummeƟng lending acƟvity and the soaring delinquency raƟo, and we also experienced that
the situaƟon worsened for several quarters at an almost constant rate. However, if we apply the model within the framework
of a liquidity stress test, then the relevant Ɵme scale might be only 30 or 90 days.

To address this concern, we can adjust the model by tuning two types of parameters to match the Ɵme scale of the modeled
phenomena. Firstly, the window in which banks canmake their loan porƞolio expire should be set to the Ɵme period applicable
for the given run. Secondly, the parameters governing the probabiliƟes of firms becoming non-performing on their loans can
also be adjusted to manage the mismatch between the data frequency in the esƟmaƟon and the applicaƟon’s Ɵme scale. It
might arise as an addiƟonal concern, that we consider the shock propagaƟon based on esƟmates coming from yearly data,
which masks the differences between short-term and medium-term dynamics. On the one hand, one would assume that the
producƟon funcƟon is more similar to the LeonƟef funcƟon in the short run, but the opportuniƟes for subsƟtuƟon become
later gradually more andmore relevant. On the other hand, firms’ liquidity buffer can aƩenuate the propagaƟon of shocks for a
while. Unfortunately, we cannotmeasure which one of these impacts dominates in different Ɵmewindows, so we opted for not
making correcƟons to any direcƟon based on these consideraƟons, so we transform the yearly esƟmates simply proporƟonally
to the Ɵme frame of the applicaƟon.

Of course, similarly to any other model, the reliability of the results can be lower and lower as the Ɵme window increases and
less and less elements of the economy can be assumed to remain constant. As this is only a parƟal model, it is not suited to
incorporate long-term changes in the economy. For instance, during the years following the 2008 crisis the situaƟon of the
banks was heavily influenced by several factors including capital injecƟons, extra taxes, restructuring of some banks by the
state, introducƟon of new regulaƟons, etc. This way, regarding the dynamics of contagions within the banking system, we can
only make plausible assumpƟons for relaƟvely short Ɵme periods.

3.6 DATA REQUIREMENTS OF THE MICROSIMULATION
To implement this microsimulaƟonmodel on real data we obtained access to several detailed datasets at the Hungarian Central
Bank and at the Hungarian Tax Authority. While detailed informaƟon about banks and bilateral exposures at the interbank
market are part of the standard data reporƟng towards central banks in most countries, we could also access

• the central credit informaƟon database (KHR) containing all loan contracts between banks and firms,

• firms’ balance sheet and profit and loss statements from corporate tax reports, and

• transacƟon level data about the supply chain connecƟons among firms from VAT reports.

Although most of these datasets have been already preprocessed and have relaƟvely high quality, the construcƟon of the
supplier network required several correcƟons. VAT reporƟng in Hungary contains informaƟon also about the trade partners
of firms, where the tax content of all the trade transacƟons between two companies exceeds € 3000 in the given year. This
informaƟon is available between 2014-2017¹¹, which made it possible to reconstruct the Hungarian producƟon network with
relaƟvely high precision. By adding the locaƟon and financial reports of firms to the data we could uƟlize not only topological
characterisƟcs but also several node aƩributes. The most important shortcomings of this data are the missing observaƟons
stemming from mainly two sources: (i) internaƟonal trade and (ii) connecƟons below the value threshold. As a result of these,
around 50% of the procurements is present in the observed system. The supplier network changes notably from one year to
another, which is mainly due to the lot of one-off, incidental transacƟons. As these links are important from the point of view
of shock propagaƟon, we applied a filtering to keep only long-term supplier connecƟons¹². In 2017, only slightly more than half
of the links are long-term, however, these cover around 93% of all the traded value.

A further distorƟon we had to handle is that firms belonging to the same ownership group someƟmes report collecƟvely, but
very oŌen it happens individually. To correct for this, we obtained access also to OPTEN’s ownership connecƟon database.

¹¹ Although the quality is very poor for 2014.
¹²We classified a connecƟon as long-term if there were at least two transacƟon between the firms, and if there is at least one quarter Ɵme difference
between the first and the last trade occasion between them.
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Although we did not see global ulƟmate beneficiary owners, only local connecƟons, we could sƟll cover most of the relevant
connecƟons among firms. We also considered indirect ownership links by a calculaƟon analogous to the LeonƟef inverse¹³.
AŌer all these correcƟons, our final network consists of yearly 80-100 thousand nodes and 200-250 thousand links.

¹³ More specifically, we computed the Neumann-series approximaƟon of this version of the LeonƟef inverse.
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Figure 1
Modeling blocks of the framework

Our framework consists of four modeling blocks: (i) contagions in the banking sector, (ii) shock propagaƟon from banks to firms, (iii) assessing the
amplificaƟon of these shocks in firms’ producƟon network and (iv) feedback from firms to the banking system.

Figure 2
SchemaƟc structure of the banking block

Regular arrows indicate adjustment opƟons, while dashed arrows show occurrences of losses.
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Figure 3
Growth rate of outstanding corporate and SME loans and indicators of the real economy

Source: Central Bank of Hungary.
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Figure 4
Household (housing and consumer) loan transacƟons and its annual growth rate

Source: Central Bank of Hungary.
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Figure 5
RaƟo of non-performing corporate loans in the credit insƟtuƟon sector

Source: Central Bank of Hungary.
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4 Details of the simulaƟon

The banking system block and the real economy feedback part (which consists of the last three theoreƟcal blocks) iteraƟvely
follow each other during the simulaƟon. If any of the banks makes some adjustment in its lending acƟvity (which exceeds a
very low tolerance parameter in the model) the real economy feedback is triggered. If this feedback results in addiƟonal losses
for the banking system (which exceeds the tolerance parameter), than the banking system’s contagion mechanisms become
acƟve again. Within a “banking system block” there is a similar inner loop: If significant losses occur at any of the banks, its
adjustment and/or its default can cause losses to the other banks as well, which can lead to further adjustments. Although
the simulaƟon runs in a sequenƟal manner, this is oŌen merely the technical representaƟon of simultaneous events. When we
denote the order of events (or states of variables) with the notaƟon t, we refer to the iteraƟve rounds of the simulaƟon and
not actual Ɵme. The logic of the simulaƟon can be summarized by the following pseudocode:

In the following subsecƟons we will give detailed formulaƟon of the simulaƟon steps.

4.1 BANKING SYSTEM CONTAGIONS
In the model we consider the nine largest Hungarian banks, which cover around 85% of the market¹⁴. At the Central Bank of
Hungary we can observe banks’ exact measures regarding their liquid assets, expected cash inflows and ouƞlows, furthermore
the equity instruments which are relevant for the CAR calculaƟon and the risk-weighted assets.

Another crucial piece of informaƟon in the banking block is the representaƟon of the interbank market. As the transacƟons
here are usually very short-term, mostly overnight, a snapshot would not reflect a representaƟve state of the market. Instead,
we constructed the network by taking the average daily exposures in a month for each bank, which we then distributed in the
proporƟon of the monthly average exposures towards the banks’ partners.

AddiƟonally, we consider further asset classes which are relevant for banks’ adjustment processes. These are (1) short-term
(within three month) claims towards the central bank, (2) nostro accounts, (3) government bonds, (4) corporate loans, (5)
household loans, (6) corporate securiƟes and (7) mortgage bonds. Each asset class has some parameters which govern their
role during the adjustment decisions of banks (Figure 7)¹⁵:

• LCR haircut indicates that to what extent a given asset should be discounted during the calculaƟon of liquid assets for LCR.

• Risk weight is the discount parameter to determine the risk-weighted assets of a bank.

• The rank parameter determines the order in which assets are used by banks to adjust their balance sheet to be able to
meet the regulatory requirements. Rank is determined following the principles laid out in SecƟon 3.1., and it can be
considered as an externally given soluƟon of banks’ opƟmizaƟon problem. Assets can have the same rank parameter, in
which situaƟon the required adjustment is evenly distributed between those assets.

• Minimum Price denotes the lowest relaƟve price in the scenario where all the banks in the model liquidate completely the
given asset category. As there are other holders of those assets on the market, the banking system can have only limited
impact on the price.

4.1.1 SOLVENCY ADJUSTMENTS OF BANKS
During modeling the solvency related behavior of the banks, firstly we have to test whether a bank meets the regulatory CAR
requirement in every iteraƟon. For a given bank i this test is given by EquaƟon 1.

¹⁴ The inclusion of smaller insƟtuƟons, which oŌen have in some aspect special operaƟons would only add complicaƟons to the model without any
significant benefit.

¹⁵ The risk weights and the LCR haircuts are regulated in a very detailed way, which we did not follow in the model with the same level of precision.
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(Ei,t0 ି Li,t)
RWAi,t0 ା ∑j (rwj × pt,j × (Ai,j,t ି Ai,j,t0) ା rwj × (pt,j ି p0,j) × Ai,j,t)

ழ CARreg (1)

where Ei,t0 is bank i’s original equity, Li,t is the cumulaƟve loss occurred up unƟl round t for bank i, RWAi,t0 is the original risk-
weighted asset of bank i, rw denotes the vector of risk weights associated with all the asset classes considered in the model, pt
is the vector of relaƟve prices for all the asset classes¹⁶ (the original price, p0 is one in every case), and Ai,t shows the assets of
bank i. The change of the risk-weighed assets can be decomposed into the change due to asset liquidaƟon (୼RWA(A)) and the
change caused by price changes (୼RWA(p)). CARreg is the regulatory requirement of the capital adequacy raƟo.

From this we can also calculate how much equity bank i lacks to comply with the regulaƟon:

Missing Equityi,t ୀ [RWAi,t0 ା ୼RWA(A) ା ୼RWA(p)] × CARreg
ି(Ei,t0 ି Li,t)

(2)

We also have to assess how much assets are available for selling which could help to improve the solvency situaƟon. In the
case of solvency, banks first consider only one asset, sovereign bonds, with a rank parameter equal to 1 (Stage 1). Maturing
household and corporate loans have a rank parameter equal to 2 (Stage 2), and corporate securiƟes andmortgage bonds belong
to Stage 3. The amount of available assets which can be used to improve solvency (Assets for AdjustmentS) in a stage is simply
the sum of a given banks’ assets in that category:

Assets for AdjustmentS,i,t ୀ ෍
j∈Stager

Aij,t (3)

where Stager is the set of assets with rank r.

Then the actual solvency adjustment (AdjustmentS,i,t) is the minimum of the available adjustment opportuniƟes and the neces-
sary adjustment to reach the requirement. Even if a bank cannot meet the required CAR, it will try to approach it as much as
possible.

AdjustmentS,i,t ୀ minቀAssets for AdjustmentS,i,t;
Missing Equityi,t
(rwr) × CARreg

ቁ (4)

where rwr is the risk weight of assets with rank r.

If the required adjustment cannot be covered by Stage 1 assets, also Stage 2 and finally Stage 3 assets are needed. Adjustment
within a given stage happens by selling the same percentage of each asset in that stage.

4.1.2 LIQUIDITY ADJUSTMENTS OF BANKS
During the tesƟng of banks for their compliance with the CAR we accounted for the changes in the numerator and the de-
nominator due to the adjustments in previous rounds. As the LCR has a more complicated formula (EquaƟon 5) with more
interacƟons with previous adjustments, we will present separately the alteraƟons of LCR’s components.

LCR ୀ High Quality Liquid Assets (HQLA)
Outflows ିmin(Inflows; 0.75 × Outflows) (5)

¹⁶ AccounƟng standards vary among countries and asset classes, but for the sake of simplicity, we generally follow the principles of mark-to-market
evaluaƟon in the model. Although the implicaƟons of this approach are oŌen debated, it reflects realisƟcally the fair value of the assets during crisis
periods.
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Bank i’s HQLA is computed as the sum of the amount of liquid assets at the current price plus the amount which was sold earlier
possibly at a different price (both corrected by the vector of haircut parameters):

HQLAi,t ୀ HQLAi,tష1 ା ෍
j∈ALCR

(Aij,tష1 ି Aij,t) × (pj,t) × (1 ି hLCR,j) ା ෍
j∈ALCR

(pj,t ି pj,tష1) × Aij,tష1 × (1 ି hLCR,j) (6)

where ALCR is the set of assets which can be used for liquidity adjustment and hLCR,j is the LCR haircut parameter for asset j.

As opposed to the solvency examinaƟon, here we are calculaƟng the difference between Ɵme t and t ି 1 instead of t0. The
reason for this is that now the Ɵme of the adjustment maƩers because prices can change during the simulaƟon, and using
different prices also means different change in the HQLA. The amount of cash received during liquidaƟon has an important role
for LCR (as it is part of the HQLA), but it was not relevant for the RWA as losses in the solvency block appeared in the numerator
of the CAR.

Importantly, adjustments of banks aiming to improve their liquidity by increasing HQLAs can interfere with the denominator of
the LCR as well. The usage of some of the adjustment opƟons (short term central bank deposits and nostro accounts) influences
the expected cash inflows as well, and this effect might distort the expression in the denominator. AddiƟonally, losses on the
interbank market also contribute to the reducƟon of the expected inflows:

୼Inflowsi ୀ ୼Nostroi ା ୼CBclaimsi ି Linterbank,i,tష1 (7)

where ୼ refers to the change between t and t ି 1, while Linterbank,i,tష1 is the losses suffered by bank i in the previous round of
the simulaƟon.

The denominator of the LCR (LCRdenom) can be constructed now using the following expression:

LCRdenom ୀ Outflows ିmin[max(Inflows ା ୼Inflows; 0); 0.75 × Outflows] (8)

AŌer updaƟng all the components of the LCR, we can also calculate the addiƟonal HQLA need if a bank is below the regulatory
limit:

Missing HQLAi,t ୀ LCRdenom,i,t × LCRreg ି HQLAi,t (9)

To get the required adjustment in a given stage we have to correct theMissing HQLAwith the LCR haircut parameters and with
the current weighted average prices.

Required adjustmentrL,i,t ୀ
Missing HQLAi,t

∑
j∈Ar

LCR

hrLCR,j × pj,t ×
Aj,t
∑Aj,t

(10)

where Ar
LCR is the set of assets which can be used for liquidity adjustment in stage r and hrLCR is the vector of LCR haircut param-

eters for assets with rank r.

Similarly to the solvency part, we have to assess how much assets are available for selling to improve the liquidity situaƟon. In
a given adjustment stage r it follows the same logic as EquaƟon 3.

Assets for AdjustmentL,i,t ୀ ෍
j∈Stager

Aij,t (11)
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Finally, the actual liquidity adjustment (AdjustmentL) is the minimum of the available adjustment opportuniƟes and the nec-
essary adjustment to reach the requirement. Similarly to the CAR, even if a bank cannot meet the required LCR, it will try to
approach it as much as possible.

AdjustmentL,i,t ୀ minቀAssetsForAdjustmentL,i,t; Required adjustmentL,i,tቁ (12)

If the required adjustment can be covered by Stage 1 assets, only these will be uƟlized by selling the same percentage of each
of them. If also Stage 2 or 3 assets are needed, the necessary adjustment will be distributed in the same proporƟonal manner.

4.1.3 CLEARING OF THE LOSSES IN THE BANKING SYSTEM

AŌer managing the solvency and liquidity situaƟon of all the banks, we evaluate the state of the system. We consider a bank
bankrupt, if even aŌer all the adjustment opportuniƟes it is unable to meet the regulatory criteria. However, we somewhat
differenƟate in the consequences of a default event based on the extent the given bank violated the requirements. In the case
of the LCR, the loss given default (LGD) parameter was determined as 0% when the LCR is between 50-100%, and 100% for a
requirement breach where the LCR goes below 50%. For the capital adequacy raƟo a similar threshold is used at the 4% level
of the CAR. A bank’s LGD (lgdk) is determined in every round based on their LCR and CAR levels:

lgdi,t ୀ max(lgdSi,t; lgdLi,t) (13)

where lgdSi,t is the LGD level which would be imposed based on the CAR of bank i, and lgdLi,t is the LGD which would come from
the LCR of bank i at round t.

Based on these parameters we update the interbank exposures following EquaƟon 14.

WB
t ୀ WB

tష1 × St (14)

whereWB is the weighted adjacency matrix represenƟng the exposures among K banks on the interbank lending market. A cell
wB

i,j denotes the amount that bank i lends to bank j.

WB ୀ

⎡
⎢
⎢
⎢
⎢
⎣

wB
11 wB

12 …

⋮ ⋱

wB
K1 wB

KK

⎤
⎥
⎥
⎥
⎥
⎦

S is a diagonal matrix containing the surviving raƟo of the interbank exposures based on the LGDs of each bank:

S ୀ

⎡
⎢
⎢
⎢
⎢
⎣

1 ି lgd1

⋱

1 ି lgdK

⎤
⎥
⎥
⎥
⎥
⎦

The losses on the interbank exposures (Lossib) can be represented as the difference between the iniƟal and the final state of
the interbank matrix:

Lossib ୀ WB
t ିWB

0 (15)
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Finally, we are calculaƟng the losses due to the change of the asset prices. The formula describing the funcƟonal form of price
development is based on Georgescu (2015):

pj,t ୀ expቀఈj

K

෍
iస1

si,j,tቁ (16)

where pj,t is the price of asset j at round t, si,j,t is the sold amount of asset j unƟl round t by bank i, and ఈ controls the price
elasƟcity. ఈ is chosen such that when all of asset j in the system are sold, the price drops to the price level determined by the
minimum price parameter of the given asset:

ఈj ୀ ln(MinimumPricej)/
K

෍
iస1

Ai,j (17)

The losses due to fire sales (Lossfs) can be calculated then as the difference in banks’ asset values due to the price changes:

Lossfs ୀ (p0 ି pt) × A0 (18)

AŌer accounƟng for all the banks, if the amount of the assets compared to the previous iteraƟon changed more then the
tolerance parameter ఢ, or some banks have gone below the regulatory requirements, the banking block part of the algorithm
restarts. Otherwise, the banking block stops.

4.2 REAL ECONOMY FEEDBACK
Real economy feedback is triggered if any of the banks used corporate credit retrenchment during the adjustment process
(similarly to Silva et al. (2018)). Firstly, we calculate the extent of the reducƟon of these loans in the case of all banks:

୼Loanscorp,i ୀ
(Loanscorp,i,t0 ି Loanscorp,i,t)

Loanscorp,i,t0
(19)

where Loanscorp,i,t is the size of the corporate loan porƞolio (which is maturing within 30 days) of bank i at round t.

As establishing new bank connecƟons is costly (see e.g. Kim et al. (2003)), and during a crisis the credit crunch can be gen-
eral, bank i’s credit retrenchment (୼Loanscorp,i) can be interpreted as a direct credit supply shock for firm j (css0j ) who needs
(re)financing from the given bank. ¹⁷

AŌer determining the credit supply shock experienced by firms directly, we assess the spillover effects happening via the sup-
plier network. The simplest – although from a computaƟonal perspecƟve someƟmes inefficient – way to represent the firm
network is using an adjacency matrix (AF or in the case of weighted networks WF). In this matrix, WF

m,n corresponds to the
traded amount supplied by firmm to firm n.

To account for shock propagaƟon to the upstream direcƟon, we first normalize the weighted adjacency matrix by the output
(revenue+acƟvated own performance)¹⁸ of firms in the row dimension:

¹⁷ If a firm is connected to more than one banks, then the credit supply shock the firm faces will be some funcƟon of the shocks coming from the banks
the firm has connecƟons with. The choice of this funcƟonal form is not trivial: using the weighted mean (where the weights are coming from the
lending history between the firm and the banks) would imply that firms would have demand towards their bank connecƟons in the same proporƟon
as in their pre-crisis credit mix. However, firms might try to switch between the exisƟng bank connecƟons during a crisis, so taking the minimum of
the shocks coming from the exisƟng bank connecƟons seems to be a more realisƟc assumpƟon.

¹⁸ One could use the rowsums of the weighted adjacency matrix for normalizaƟon as well, however, using the output instead makes the interpretaƟon
of the results more intuiƟve.
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෦WF
us ୀ ୻ ×WF (20)

where ෦WF
us is the row-normalized matrix represenƟng the supplier network, and ୻ is a diagonal matrix containing the reciprocal

of the output of each firm.

By mulƟplying this row-normalized matrix with the vector of credit supply shocks experienced by each firm, we will have a
vector represenƟng the weighted sum of the credit supply shocks of the buyers (at one step distance in the network) of each
firm css1us:

css1us ୀ ෦WF
us × css0 (21)

where css0 is the vector of direct credit supply shocks experienced by the firms.

To calculate higher order spillovers we can also determine weighted sum of the credit supply shocks of the buyers of the buyers
(so at two steps distance downstream in the network) of each firm css2us:

css2us ୀ ෦WF
us × css1us (22)

We could go even further in the network, however, during the esƟmaƟon of the coefficients for firms’ PDs we have found only
shocks coming maximum from two steps distance have significant effect. However, we can consider shock propagaƟon from
two steps distance to the downstream direcƟon as well. To calculate these terms we have to make only a slight modificaƟon.
We have to normalize the weighted adjacency matrix by the output of firms in the column dimension, which can be done by
mulƟplying with the same diagonal matrix, but this Ɵme using the transpose ofWF:

෦WF
ds ୀ ୻ × (WF)T (23)

The calculaƟon of the weighted sum of the shocks coming from the suppliers at distance one and two happens the same way
as in the upstream case:

css1ds ୀ
෦WF
ds × css0 (24)

css2ds ୀ
෦WF
ds × css1ds (25)

As we menƟoned in SecƟon 3.3., shocks can reverse direcƟons along the network, which means that they can also spread
“horizontally”. If we consider only two steps distance again, we have to deal with two types of horizontal shock propagaƟon: (i)
In one situaƟon the shock can come from the suppliers of my buyers, (ii) while in the second case it can come from the buyers
of my suppliers. We can account for these shocks similarly to the previous calculaƟons. As in the first case the shock goes first
downstream and then upstream, it will be denoted by cssds→us, while the second case is the opposite: cssus→ds. The calculaƟon
of each of them is shown by EquaƟons 26-27 respecƟvely.

cssds→us ୀ ෦WF
us × css1ds (26)

cssus→ds ୀ ෦WF
ds × css1us (27)
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As a next step, we translate the direct and indirect shocks hiƫng a firm into addiƟonal probabiliƟes that a given firm becomes
non-performing on its loans. This step is described by EquaƟon 28.

୼PDj ୀ css0j × ఉcss0 ା css1us,j × ఉcss1us
ା css2us,j × ఉcss2us

ା css1ds,j × ఉcss1ds
ା

css2ds,j × ఉcss2ds
ା cssds→us,j × ఉcssds→us

ା cssus→ds,j × ఉcssus→ds

(28)

where ୼PDj is the increase in a firm’s probability of becoming non-performing on its loans as a result of the direct and indirect
consequences of the credit supply shocks¹⁹. The ఉ parameters are coefficients showing the effects of one unit increase in the
credit supply shock variables. The esƟmaƟon of these coefficients will be described in SecƟon 5.

To complete the feedback mechanism, we simulate the default of the firms based on their ୼PD and we calculate the losses
for each bank on their loans belonging to the defaulted firms. As it is a stochasƟc procedure, we create 1000 realizaƟons and
use the average of them as the actual losses suffered by the banks²⁰. EquaƟon 29 shows the losses suffered by bank i on its
corporate loan porƞolio in one realizaƟon round (Lossfb,i,t).

Lossfb,i,t ୀ
D

෍
vస1

OPv→i × lgdf (29)

where D is the number of firms becoming non-performing in the given realizaƟon, OP is the outstanding principal amount of
the loan contract between bank i and firm v and lgdf is the loss given default parameter for corporate loans.

AŌer accounƟng for all the banks, if the loan losses of any of the banks exceeds the tolerance parameter ఢ, the banking block
part of the algorithm is triggered again. Otherwise, the simulaƟon ends.

¹⁹We concentrate now on the addiƟonal PD of banks’ clients, as their base PD is accounted for during the normal operaƟon of banks.

²⁰We preferred to calculate here the average instead of the median, because the average reflects more the consequences of tail events which we did
not want to ignore in the model.
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Figure 6
Pseudocode describing the algorithmic structure of the simulaƟon
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Figure 7
Adjustment parameters of the relevant asset classes
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5 EsƟmaƟon of the feedback
parameters

The parameters controlling how credit supply shocks influence firms’ probability of becoming non-performingwould be difficult
to determine reliably by expert judgment or based on the experiences of past crises, hence, we aƩempted to esƟmate them
independently of the model. However, this task has two main challenges: Firstly, the idenƟficaƟon of credit supply shocks is
far from being trivial, and secondly, we want to esƟmate not only the direct effects, but also the spillovers via the producƟon
network. In the next two subsecƟons we will describe our approaches to deal with these difficulƟes.

5.1 IDENTIFICATION OF CREDIT SUPPLY SHOCKS
Shocks can influence banks’ credit supply and firms’ credit demand simultaneously, thus, the observed change in lending
amount cannot be considered the change of supply only. There are two typical strategies to handle this well-known endo-
geneity problem. When it is possible, researchers can use natural or quasi-natural experiments, such as an unexpected policy
change, a nuclear accident or a natural disaster for idenƟficaƟon. (See e.g. Khwaja and Mian (2008), Banerjee and Duflo
(2014), Chodorow-Reich (2014) and Dörr et al. (2018).) The main advantage here is the strongly credible exogeneity of the
shocks. However, it is oŌen not possible to find or quanƟfy such exogenous shocks, in which cases one can use only more
indirect idenƟficaƟon strategies. An indirect approach which gained popularity recently was developed by AmiƟ andWeinstein
(2018). Their method uses matched firm-bank loan data, where the idenƟficaƟon is based on the observaƟon of firms with
mulƟple bank connecƟons in different Ɵme periods. Although this approach has weaker internal and external validity, it does
not require to find a suitable instrument. Furthermore, by imposing adding-up constrains this procedure has the addiƟonal ad-
vantage to ensure consistency with the aggregate lending dynamics. This, or similar soluƟons were applied by e.g. Chava and
Purnanandam (2011), Schnabl (2012), Jiménez et al. (2012), Dwenger et al. (2015), Amador and Nagengast (2016) and Degryse
et al. (2017).

As the Ɵme window in which we observe both the Hungarian firm network and the loan contract data is relaƟvely short, we
had only very limited opportuniƟes to find a suitable exogenous shock which we can use for idenƟficaƟon. This period (2015-
2017) was without major turbulences in the Hungarian banking sector, however, there were some policy measures which we
aƩempted to exploit to idenƟfy the supply side of the corporate credit market.

The Hungarian Central Bank launched a program in 2015 called Market-based Lending Scheme (MLS) to sƟmulate economic
growth by supporƟng banks’ lending acƟvity²¹. Within the framework of the MLS, the central bank offered two instruments:
The first incenƟve was that the banks could hedge their lending-related interest rate risk by an interest rate swap (LIRS) offered
by the central bank to incenƟvize banks to grant longer-term, fixed-rate SME loans. AddiƟonally to the LIRS, a preferenƟal
deposit facility was also introduced to support banks’ liquidity management.

However, there was a condiƟon for banks if they wanted to parƟcipate in the MLS: By having recourse to the LIRS instrument,
banks had to make an implicit commitment to increase their net lending to small and medium-sized enterprises by an amount
equalling one fourth of the allocated LIRS. During the programme, the central bank concluded LIRS transacƟons amounƟng to a
total € 2.2 billion with 17 credit insƟtuƟons, which means the undertaking of an SME loan expansion of nearly € 550 million by
the banks parƟcipaƟng in the programme (Figure 8). As this means an ex ante dedicaƟon to future lending, it can be interpreted
as a proxy for banks’ credit supply. Banks made such commitments for 2016 and 2017 as well, which makes it possible to use
this as a credit supply shock indicator in our esƟmaƟon²².

²¹ The descripƟon of the MLS is based on Box 5 in the 2016 May Financial Stability Report of the Hungarian Central Bank, where further details can also
be found. (hƩps://www.mnb.hu/en/publicaƟons/reports/financial-stability-report/financial-stability-report-may-2016)

²² Although the MLS program created a posiƟve loan supply shock, we are assuming that a negaƟve shock would have similar effect to the opposite
direcƟon.
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A potenƟal concern might arise due to the possibility that the variaƟon in the commitment decisions of banks could be influ-
enced to some extent by their anƟcipaƟon of credit demand towards them. While this effect cannot be completely dismissed,
it probably plays only a negligible role in the variaƟon of the commitments. Although there are a few banks among the largest
nine banks in Hungary (which were included in our model) which have some specializaƟon (e.g. some banks are stronger in
the household segment, others in the corporate market), however, even in their cases it is unlikely to experience very different
demand from their SME clients as banks’ specializaƟon is not based on such firm characterisƟcs (e.g. their industry) which
could jusƟfy relevant differences in credit demand dynamics. Furthermore, the examined period can be considered free from
serious economic turbulences in Hungary, thus, even if there were dissimilariƟes in banks’ expectaƟons concerning demand
factors, these are more likely to be the result of the uncertainty of these kind of forecasts. However, as robustness check to the
MLS shocks, we also performed the indirect method of AmiƟ and Weinstein (2018) following the implementaƟon of Amador
and Nagengast (2016). Further details of this methodology are described in Appendix A, where we also compare the outcomes
of the regressions which are using different credit supply shock variables.

5.2 ESTIMATION OF DIRECT AND INDIRECT EFFECTS

To represent the network-based interacƟons among firms, we turned to esƟmaƟon techniques coming from the spaƟal econo-
metrics literature. This branch tradiƟonally deals with spaƟally structured data, however, the same methods can be applied
to capture more abstract interacƟon structures, such as the producƟon network of firms. (For a detailed review of the field
see e.g. Elhorst (2014).) SpaƟal esƟmaƟon models usually display the dependence among the observaƟons using the so-called
spaƟal weight matrix (W), which makes it possible to represent units affecƟng each other mutually. In our case the spaƟal
weight matrix is analogous to the normalized supplier exposure matrices.

Three basic types of spaƟal interacƟon models can be disƟnguished: (i) the spaƟal autoregreesive (SAR) model, (ii) the spaƟal
error model (SEM) and (iii) the exogenous interacƟon (SLX) model. As the mechanisms modeled by each of these techniques
can be present simultaneously, more complicated models were also developed to combine the different spaƟal interacƟons.
EquaƟon 30 shows a general formulaƟon containing all of these potenƟal spaƟal terms in matrix form:

Y ୀ ఘWY ା Xఉ ାWX఍ ା u (30)

where Y is the dependent variable (e.g. the default of a firm’s loans), W is the supplier exposure matrix, X is the matrix of
explanatory variables (most importantly for us the credit supply shock) and

u ୀ ఒW ା ఢ

where
ఢ ∼ i.i.d.

The term ఘWY represents the SAR part for which the interpretaƟon would be that a given firms’ probability of becoming non-
performing depends on its buyers’ or suppliers’²³ probability of becoming non-performing on their loans. The ఒW is the SEM
term referring to shocks which would jointly affect firms that are connected to each other in the supplier network. Finally,WX఍
is the SLX term implying that firms’ probability of becoming non-performing depends on its partners’ independent variables,
most importantly on their credit supply shock. As this last term is exactlywhatwe are interested in for themodel, we formulated
a panel logit SLX specificaƟon without including the other types of spaƟal interacƟons (Figure 9). This way we assumed that (i)
in the examined period there were no significant correlated shocks affecƟng firms based on their supplier connecƟons, and (ii)
the credit supply shocks did not spread through any other unobserved channels.

This relaƟvely simple framework makes it possible to flexibly include further Ɵme and spaƟal lags, and even more than one
spaƟal weight matrices. AsWi,j is defined as firm i sells to firm j, than the matrixWkX would represent shock spreading to the
upstream direcƟon from distance k, while (WT)kX would mean shock propagaƟon to the downstream direcƟon from distance

²³ It depends on whether we are usingW, orWT.
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k. By including these matrices up to k ୀ 4 in the esƟmaƟon²⁴, we can have separate coefficients for different spaƟal lags for
upstream, downstream and horizontal contagion as well.

To avoid any concerns about the potenƟal endogeneity of the supplier exposurematrices, we are exploiƟng the Ɵme dimension
of the data by using the one-year lagged versions of them. Aswe are considering only long-term supplier connecƟons, the usage
of the lagged versions does not cause significant informaƟon loss, but it can assure that the endogenous nature of link formaƟon
will not interfere with the spreading process.

A further difficulty which needs to be addressed is the handling of firms without loans. Ignoring them completely during the
esƟmaƟon would also mean their removal from the supplier network. However, even if a firm does not have any bank connec-
Ɵon, and cannot experience credit supply shocks directly, it sƟll can have a role in propagaƟng shocks which were originated
elsewhere in the producƟon network. In order to preserve these pieces of informaƟon, we delete these firm only aŌer cal-
culaƟng all the higher order matrices. This way we can retain all the indirect pathes between firms even if we disregard firms
without loans during the esƟmaƟon.

AŌer taking into account all the consideraƟons above, we arrive at our final specificaƟon, which gives esƟmates for all the
parameters in EquaƟon 31:

NPt ୀ ఉ0 ା ఉcssCSSt ା
4

෍
kస1

ൣఉcsskus
( ෧WF

us,tష1)kCSSt ା ఉcsskds
( ෧WF

ds,tష1)
kCSSt൧ା

ఉcssds→us
CSSds→us,t ା ఉcssus→ds

CSSus→ds,t ା Xtఉcontrols ା ఢt

(31)

whereNPt is a dummy variable indicaƟngwhether a firmbecame non-performing (defined asmore than 90 days delinquency) in
the given year. In the esƟmaƟon we included as controls firms’ revenue, ROA, liquidity buffer, size category, the export share of
their revenue and a dummy variable indicaƟng state owned companies. Furthermore, we added fixed effects for firms’ industry,
regional locaƟon and for the year.

According to the results (Figure 10), the impact of credit supply shocks can be significant even two steps away in the supplier
network. Although in the case of upstream propagaƟon, p-values are a bit higher at distance two from the source of the shocks,
we included even this level of spreading in themodel as they are not that far away from the significance levels of the downstream
case. However, in the case of distance three and four there is no indicaƟon of any effect of the credit supply shocks. Regarding
the horizontal channels, our results indicate significant spreading only when the shock is firstly transmiƩed towards a supplier
and then to another buyer of that supplier, but not for the reverse situaƟon, so in the end we excluded the cssds→us channel by
seƫng its parameter to zero in the model.

Since the coefficients of our esƟmaƟon are odds raƟos which cannot be used directly as parameters in the model, we had to
calculate the marginal effects to obtain interpretable results. AŌer this step, we arrive at the final feedback parameters (Figure
11):

As a robustness check, we performed the same esƟmaƟon using the indirect credit supply shock variable as well. Although
in this case we had significant results only for the one-step downstream shock spreading with the indirect shocks, and the
marginal effects were somewhat different as well, the overall impact of the credit supply shocks were similar to that of the
main specificaƟon. We show this in Appendix A using the applicaƟon described in SecƟon 6.1 as an illustraƟon.

A further important consideraƟon could be that the parameter values in Table 3 were esƟmated using data on yearly frequen-
cies, however, some applicaƟons of the model might require a shorter Ɵme scale for the simulaƟon. In these situaƟons we
adjusted the parameters proporƟonally; e.g. if we considered only a three months Ɵme window (for instance in the liquidity
stress test in SecƟon 6.1), we divided the parameters by four to handle the mismatch with the esƟmaƟon.

²⁴ As the average shortest path length of the producƟon network is 4.9 with a standard error as low as 1.1, invesƟgaƟng four steps in both upstream
and downstream direcƟons is sufficient to cover the vast majority of potenƟal shock propagaƟon.
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Figure 8
Banks’ commitments and fulfillments in the MLS program

Source: Central Bank of Hungary.

Figure 9
ConnecƟons between the model and the esƟmated parameters

The different terms of the SLX model framework capture all the mechanisms which are relevant for the model. Xఉ refers to the direct effect of credit
supply shocks, while WX఍ captures the spreading of the shock on the producƟon network.
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Figure 10
Regression results

Figure 11
Average marginal effects of the esƟmated feedback parameters
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6 ApplicaƟons

Since the primary objecƟve of this model is to offer a versaƟle tool for various policy analyses, we present here three potenƟal
applicaƟons: (i) Firstly, we embedded the model into a liquidity stress tesƟng framework, (ii) then we elaborated a way to use
it for SIFI idenƟficaƟon, and lastly (iii), we show an example of assessing the impact of shocks originated in the real economy.

6.1 EMBEDDING THE MODEL INTO A LIQUIDITY STRESS TEST
As one of the first applicaƟons, we embedded themodel to the liquidity stress tesƟng framework of the Hungarian Central Bank.
This liquidity stress test has been featuring contagion channels in the banking system since 2016, however, we could add now
a unified shock propagaƟon modeling block with feedback mechanisms from the real economy. During the implementaƟon
we used the standard stress scenario of the liquidity stress test (presented in the central banks’ biannual Financial Stability
Reports), which is a complex exogenous shock calibrated to the 2008 crisis (Figure 12).

When we ran the stress test simulaƟon using only a limited version of the framework which did not contain any contagion
mechanisms, only one out of the nine largest banks was unable to comply with the LCR during the stress scenario. If we
enabled for contagion channels in the banking block only, two out of the nine largest banks have become unable to comply
with LCR even with using adjustment opportuniƟes. In this case, an addiƟonal € 258 million fire sales loss and € 5 million
interbank loss occurred in the banking system. AŌer enabling the real economy feedback channels as well, 0.5% of the firms
in the model went bankrupt causing € 184 million loss for banks on defaulƟng loans. Furthermore, losses due to fire sales
further increased by € 41 million, and a third bank went below the regulatory requirement, but this Ɵme it happened due to
solvency insufficiency. Although it is sƟll the fire sales channel which is responsible for the largest chunk of banks’ losses in the
simulaƟon, the real economy feedback contributes by almost the same extent. We also noƟced that the loss-based ranking of
the banks has changed as well aŌer we enabled the feedback mechanisms. (Figure 13)

From the point of view of systemic risks and financial stability, it is clear that ignoring the feedback mechanisms can lead to
the severe underesƟmaƟon of risks and potenƟal losses in this shock scenario. Furthermore, while the interlacing between the
liquidity and the solvency problems was largely hidden in the reduced stress tesƟng frameworks, the real economy feedbacks
made this aspect also more pronounced. AddiƟonally, by including the feedback channels we can gain some insight into the
impacts of a banking sector liquidity shock on the non-financial firms as well. (Although we do not claim that the model is
capable of giving a full picture about all the consequences of the stress scenario on the real economy.)

6.2 SIFI IDENTIFICATION BASED ON SHAPLEY VALUE
The problem of idenƟfying systemically important financial insƟtuƟons (SIFIs) has been dealt with by numerous papers, among
which we relied in this exercise on those using the concept of Shapley value (Tarashev, Drehmann, et al. (2011), Bluhm et al.
(2014), Aldasoro et al. (2017)). Shapley value is a concept originated in game theory, and it was developed to allocate the
outputs generated in cooperaƟve games among agents (Shapley (1953)).

The typical technique how the Shapley value is applied for SIFI idenƟficaƟon is to calculate the difference between the system-
wide losses occurring aŌer a shock event with and without the parƟcipaƟon of a given bank in the simulaƟon of the banking
system. We calculated this difference for the idiosyncraƟc default of each bank, however, Shapley value in its original form
would require to repeat this calculaƟon for all the possible subsystems of the banking system (f(NSUB)ି f(NSUBି i)). The actual
Shapley value would be then the average of the addiƟonal losses that a bank generates by parƟcipaƟng in any subsystem of the
bank network:

Shapleyi ୀ
1
n

n

෍
nsస1

1
c(ns)

෍
NSUB⊃i

ൣf(NSUB) ି f(NSUB ି i)൧ (32)
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where Shapleyi is the Shapley value of bank i, NSUB ⊃ i denotes all the subsystems that contains bank i, ns means the number
of banks in a given subsystem and c(ns) ୀ

(nష1)!
(nషns)!

(ns ି 1)! is the number of subsystems containing bank i and are comprised of
ns banks.

Due to computaƟonal constraints, we did not perform the calculaƟons for all the subsystems, only for thewhole bank network²⁵.
This way, our Shapley-based measure for bank i is the average difference between the aggregate system-wide losses (caused
by the idiosyncraƟc default of each bank occurring one by one) with and without the presence of the bank in interest²⁶:

SIFIi ୀ
N

෍
m,n
mಯn

Sm,n ି
Nష1

෍
p,q
pಯq

Sషip,q (33)

where S is anN×Nmatrix, in whichN denotes the number of banks, and Sm,n is the losses suffered by bank n aŌer the exogenous
default of bankm. Sషi is an (Nି 1) × (Nି 1)matrix which contains the losses occurring without the parƟcipaƟon of bank i in
the system. The main diagonals of these matrices are ignored in this applicaƟon.

In order to gain more detailed insight in the sources of systemic risk for each bank, we present our SIFI measure decomposed
into three factors:

• System-wide losses due to a given bank’s default:

DamagingPotentiali ୀ
N

෍
nಯi

Si,n (34)

• A given bank’s losses due to other banks’ defaults:

Vulnerabilityi ୀ
N

෍
mಯi

Sm,i (35)

• Other banks’ extra losses due to the amplificaƟon of the impact of other banks’ defaults by bank i:

Amplificationi ୀ
N

෍
mಯi

N

෍
nಯi

Sm,n ି
Nష1

෍
pస1

Nష1

෍
qస1

Sషip,q (36)

The importance of these factors can vary across the examined banks. (Figure 14) There are banks, whose systemic importance
comes from their vulnerability to shocks. Other banks might be resilient from this aspect, but their default can cause severe
damage in the banking system. The amplificaƟon component has notable role only in the case of one examined bank, which
indicates that either the complexity of the Hungarian bank network was not high enough (in 2017) to make it possible for a
bank to cause severe damage only by transmiƫng losses, or at least the assumed idiosyncraƟc shocks were too weak to trigger
cascading failures.

6.3 IMPACT ASSESSMENT OF REAL ECONOMY SHOCKS

Our model contains elaborated details only for the banking system, but not about any other sector of the economy. However,
in a limited form it might sƟll be possible to examine the effects of shocks coming from the real economy if we keep in mind

²⁵ Castro et al. (2017) proposed a polynomialmethod using straƟfied random samplingwith opƟmumallocaƟon to esƟmate the Shapley value, however,
for our purposes it is more advantageous to simply ignore the subsystems since we are more interested in the importance of insƟtuƟons when the
whole system is present.

²⁶When a bank is deleted from the system, all the links aƩached to it will be removed as well. To avoid interference with the simulaƟon of the model,
we assumed that the banks which borrowed from the removed insƟtuƟon can replace their interbank funding with other financing sources offering
the same condiƟons, while the assets of the removed bank are reallocated to agents outside of the model.
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that in this framework, shocks have to be translated into the change in firms’ probability of becoming non-performing. This
way we can capture only the credit loss and the supply chain contagion aspects of real economy shocks, which is far from being
a complete assessment. With this cauƟon in mind, we aƩempted to assess the consequences of shocks originated in certain
industries on the banking system. A recent example of an unexpected stress event can be the COVID-19 pandemic, which had
very severe impact on some industries whose firms could transmit the shock to other industries, and to the banks as well.

As a first step in this analysis we idenƟfied themost vulnerable industries to this shock using four-digit NACE categories. Most of
the affected sectors in Hungary belong to themanufacturing, wholesale and retail trade, transporƟng, storage, accommodaƟon,
food service acƟviƟes, real estate acƟviƟes, administraƟve and support service acƟviƟes, arts, entertainment, recreaƟon and
other services acƟviƟes. (A detailed table about the affected sectors can be found in Appendix B.) We assumed that these
directly affected firms have 100% suscepƟbility for being hit by the shock, which means the maximum exposure to the shock.

AŌer the idenƟficaƟon of the most involved sectors, we calculated the indirect exposures (up to four steps) to these industries
in each firm’s revenue. (E.g. if 20% of firm A’s revenue comes from buyers belonging to the directly affected sectors, then
firm A’s exposure will be 20%. If there is another buyer of this firm, which is responsible for another 20% revenue and it has
50% exposure, then the vulnerability of firm A will be 20% ା 10% ୀ 30%.) During this procedure we did not include the
directly affected firms as they have reached already the maximum level of involvement with the crisis²⁷. To acknowledge some
heterogeneity among firms, we corrected their exposure with firms’ potenƟal liquidity buffers²⁸. We calculated these buffers
in the proporƟon of their revenue as well, so we could simply subtract it from the exposure measure.

As we esƟmated only the parameters governing shock spreading and feedback in the case of credit supply shocks (which would
not be applicable here), we had to make some assumpƟons about the connecƟon between this shock and firms’ probability
of becoming non-performing. If the final value of the exposure was 100%, or a firm operates directly in some of the affected
sectors, we increased the probability of becoming non-performing by ୼PD percentage points. If the vulnerability was below
100%, we decreased the ୼PD parameter proporƟonally. These PD values could be directly fed into the model as inputs to
simulate the effects of this shock. As we do not know the exact value of ୼PD, we ran the simulaƟon ten Ɵmes increasing it by
five percentage points each Ɵme.

Figure 15 shows the number of lost jobs due to the defaulƟng firms, and the losses of the banking sector in the case of different
values of the ୼PD parameter. Figure 16 illustrates the losses separately for the nine largest Hungarian banks²⁹. If one considers
the direct scenario, the banking system could suffer a loss of more than € 1.1 billion, which is equivalent to almost 13% of the
equity in the banking system.

Other shocks coming from the real-economy could be included in a similar fashion, however, for the sake of reliable inter-
pretaƟon of the results, it is necessary to thoroughly explore the connecƟon between firms’ exposure to the shock and their
probability of becoming non-performing on their loans. In the case of the COVID-19 crisis, we do not have yet the necessary
staƟsƟcs to make confident assumpƟons in this aspect, however, the results can sƟll indicate a plausible range for the expected
consequences.

²⁷ It also means that directly affected firms cannot amplify shocks further. E.g. if a firm has a buyer belonging to one of the directly hit industries, and
this buyer is responsible for 10% of the firm’s revenue, then there cannot be second, or higher order contagions through the same buyer, as the
whole 10% exposure has been already taken into account as vulnerability.

²⁸We calculated basically the quick liquidity raƟo with a slight modificaƟon: We took the difference between the numerator and the denominator from
the original formula.

²⁹ Since our data are about 2017, the results should also be interpreted as if the shock had happened in 2017.
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Figure 12
Components of the liquidity stress scenario of the Hungarian central bank

Figure 13
Results for the nine largest banks in Hungary (based on 2017 data).
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Figure 14
Decomposed SIFI index of the nine largest banks (2017)

Although the units of this SIFI index are expressed in Hungarian Forint, they would be difficult to interpret as amounts of money since they are the
sums of the differences between aggregate losses in the case of mulƟple scenarios.
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Figure 15
The number of lost jobs and the losses of the banking sector in the case of different values of the ୼PD parameter.

Figure 16
Losses of the nine largest Hungarian banks in the case of different values of the ୼PD parameter.
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7 Conclusion

Themain objecƟve of this research project was to create a modeling framework to analyse the financial stability of an economy
in a microsimulaƟon environment which is suitable to capture contagious mechanisms in an interconnected system of eco-
nomic networks. More specifically, we were focusing on the interacƟons between the network of banks (exhibiƟng contagious
mechanisms among them) and the network of firms (transmiƫng shocks to each other along the supply chain) which systems
are linked together primarily via loan-contracts.

In order to build an implementaƟon of this microsimulaƟon environment we obtained access to several detailed datasets de-
scribing the links, nodes and aƩributes in these economic networks. Among these rarely available pieces of informaƟon the
most unique is probably the transacƟon level data about the supply chain connecƟons between Hungarian firms, which made
it possible to model shock propagaƟon even on the producƟon network.

Our hypothesis was, that the feedback mechanisms in these coupled networks could amplify the losses in the economy beyond
the shorƞalls expected when we consider the interacƟng subsystems in isolaƟon. As a first test for this, we embedded the
model into the liquidity stress tesƟng framework of the Central Bank of Hungary, and our results proved the importance of
the real economy feedback channel, without which systemic risks could potenƟally be severely underesƟmated. The inclusion
of this feature did not only doubled the system-wide losses, but it also made the connecƟon between liquidity and solvency
problems more pronounced. To illustrate the versaƟlity of this modeling framework, we presented two further applicaƟons for
different policy purposes. (i) Firstly, we elaborated a way to use it for SIFI idenƟficaƟon, which showed us that the source of
the systemic importance of banks can greatly vary between the damaging potenƟal of their default and their vulnerability to
shocks coming from other banks, and (ii) secondly, we showed an example of assessing the impact of shocks originated in the
real economy. By using the example of the COVID-19 pandemic as a shock to some industries, we calculated that in the worst
scenario the losses in the banking sector can reach up to more than € 1.1 billion, while almost 100 thousand jobs could be lost
in the economy.

Given thewide range of potenƟal further applicaƟons, amore elaborated embedding of the financial system in the real economy
would be desirable. Our framework could be extended in several direcƟons. Regarding the financial sector we only included
banks but no other financial insƟtuƟons (such as the insurance sector, investment funds or central clearing counterparƟes),
which can contribute greatly to the complexity of the economy. However, our representaƟon of the real economy was even
more simplified. A significant upgrade would be to model the operaƟon of firms more mechanisƟcally instead of our staƟsƟ-
cal approach. It would make it possible to reflect on the now missing credit demand component, and one could also include
shocks coming from outside the financial sector more realisƟcally. In a more general model it would even be possible to gener-
ate endogenous shocks³⁰. However, in parallel with these opportuniƟes one should also be aware of some piƞalls during the
elaboraƟon of more and more details of the economy in this data-driven simulaƟon environment. This line of research would
lead to the territory of agent-basedmacroeconomic models, for which one of the greatest challenges is to create detailed mod-
els, but preserve their tractability to avoid becoming unfathomable “black boxes”. Furthermore, as it is apparent in our work,
the development of these models should go hand in hand with the advancement of the empirical literature which produces
vital inputs for essenƟal parameters.

³⁰ Nowadays researchers usually impose exogenous stress calibrated to a crisis event to see how the modelled mechanisms respond. However, in
reality, these mechanisms are also responsible for the shocks growing to the observed extents.
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8 Appendix

8.1 APPENDIX A – INDIRECT CREDIT SUPPLY SHOCK IDENTIFICATION

For the sake of tractability we start the descripƟon of this esƟmaƟon by showing a general modeling specificaƟon for the
problem. If one assumes that the credit demand of a mulƟ-bank firm changes the same way towards all of its partner banks,
than the percentage difference between the changes in the amounts of credits can be aƩributable to supply side factors (Figure
17).

In this case, the lending ஏfbt between bank b and firm f at Ɵme t can be decomposed into supply (ఉbt) and demand factors
(ఈft):

ஏfbt ିஏfb,tష1
ஏfb,tష1

ୀ ఈft ା ఉbt ା ఢfbt (37)

where we assume that the expected value of the error term is zero, 𝐄[ఢfbt] ୀ 0. ఈft captures all firm-specific characterisƟcs and
shocks which can affect its borrowing, while ఉbt comprises all the bank-specific factors which can have an impact on the credit
supply of a given bank. Although EquaƟon 37 could be directly esƟmated on our data coming from the credit registry, AmiƟ
and Weinstein (2018) highlighted that this formula ignores the aggregate equilibrium on the lending market. That is, firms can
only obtain new loans if a bank is willing to provide that credit; and similarly, banks can increase their lending acƟvity only if
there are firms soaking up the addiƟonal supply. They offer an alternaƟve formulaƟon which corrects for this inefficiency and
allows us to consider newly formed loan contracts as well. According to this, the growth in a given bank’s lending DB

bt can be
expressed as the supply of the bank plus the weighted sum of its client firms’ demand, where the weights are the share a given
firm had in the bank’s lending in the previous period:

DB
bt ୀ෍

f

ቀஏfbt ିஏfb,tష1
ஏfb,tష1

ቁ × ஏfb,tష1
∑fஏfb,tష1

ୀ ఉbt ା෍
f

థfb,tష1 × ఈft ା෍
f

థfb,tష1 × ఢfbt
(38)

where
థfb,tష1 ୀ

ஏfb,tష1
∑fஏfb,tష1

(39)

Analogously, the growth in a given firm’s borrowing DF
ft is the composiƟon of its own demand and the weighted sum of the

supply of its partner banks:

DF
ft ୀ෍

b

ቀஏfbt ିஏfb,tష1
ஏfb,tష1

ቁ × ஏfb,tష1
∑bஏfb,tష1

ୀ ఈft ା෍
b

ఏfb,tష1 × ఉbt ା෍
b

ఏfb,tష1 × ఢfbt
(40)

where
ఏfb,tష1 ୀ

ஏfb,tష1
∑bஏfb,tష1

(41)
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Asథfb,tష1 and ఏfb,tష1 are determined directly from the data, we can make similar assumpƟons about the error terms as before:
𝐄ൣ∑fథfb,tష1 × ఢfbt൧ ୀ 0 and 𝐄ൣ∑b ఏfb,tష1 × ఢfbt൧ ୀ 0. With these moment condiƟons we arrive at a system of linear equaƟons
with ఈft and ఉbt as unknowns:

DB
bt ୀ ఉbt ା෍

f

థfb,tష1 × ఈft (42)

DF
ft ୀ ఈft ା෍

b

ఏfb,tష1 × ఉbt (43)

Although this system consists of the same number of equaƟons and unknowns (which is equal to the number of banks plus
the number of firms) in every year, the system is sƟll under-determined as the sum of the shares in lending are equal to one
( ∑fథfb,tష1 ୀ 1 and ∑b ఏfb,tష1 ୀ 1). To be able to find a unique soluƟon, we have to impose an addiƟonal constraint, which
can be handled analogously to the dummy variable trap problem by choosing a reference category. To obtain economically
interpretable results, we transformed ఈft and ఉbt by subtracƟng their median respecƟvely in every year. (This implies, that
banks’ credit supply shocks can only be compared to each other within the given year. However, since we also include Ɵme
fixed effects, this concern is not problemaƟc as the Ɵme-specific components are removed from the banks’ shocks.) The trans-
formaƟon gives us the following expression for the banks:

DB
t ୀ (Āt ା ̄Bt)ఐB ା஍tష1Nt ା஍tష1 ෥At ା ෥Bt (44)

where DB
t is a vector containing the loan growth rates of banks at Ɵme t, (Āt ା ̄Bt) are the median firm and bank common

shocks, which would affect all firm-bank pairs the same way in year t. ఐB is a vector of ones, Nt is the vector of the average
industry-level shock for all the firms, and஍t is the matrix of weights of all the loans of every borrowers:

஍t ୀ

⎡
⎢
⎢
⎢
⎢
⎣

థ11,t … థF1,t

⋮ ⋱

థ1B,t థFB,t

⎤
⎥
⎥
⎥
⎥
⎦

The first term in EquaƟon 44 represents common shocks, e.g. a change in the key interest rates by the central bank, whichwould
affect all lending connecƟons. The second term shows industry-level shocks to a given banks’ clients. It captures changes in
a bank’s lending coming from its specializaƟon to some industries, which can make its lending acƟvity differ from the general
trend. The third term can be interpreted as the change in the bank’s lending due to idiosyncraƟc firm-level demand shock.
Lastly, the fourth term represents the credit supply shock of a bank which is independent from all the above listed influences,
so we can use it as a credit supply shock variable in our esƟmaƟon of feedback effects. Since this term was expressed as the
deviaƟon from the median bank’s supply shock in year t, its interpretaƟon is also relaƟve to this median. This way, the zero
value of the credit supply shock does not mean unchanged lending acƟvity, but rather the median change in the system in a
given year. If a bank decreases its lending by 20%, but all the other banks’ lending drops only by 15%, than the credit supply
shock of the given bank will be 5%.

The described methodology of AmiƟ and Weinstein (2018) is based on firms with mulƟple bank connecƟons, regarding which
we made a slight modificaƟon following Degryse et al. (2017). As only a small porƟon of Hungarian firms have mulƟple bank
connecƟons (Figure 18), we wanted to enhance the external validity by including also firms with only one bank link. If the vast
majority of the firms were excluded from the esƟmaƟon,ఉbt might not reflect the representaƟve credit supply shocks of banks,
but only those experienced by firms with more bank connecƟons. Since Hungarian firms show strong heterogeneity especially
along the dichotomy of large, producƟve foreign-owned companies and small, inefficient SMEs, representaƟveness might be
essenƟal in gaining correct esƟmates.

The main idea of Degryse et al. (2017) is that firms with similar size, operaƟng in the same region and in the same industry can
have similar dynamics in their credit demand as well. To exploit this informaƟon we replaced the Time× Firm fixed effects with
Location × Industry × Size × Time fixed effects as control to demand-side factors in a given a year³¹.
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The results of the parameter esƟmaƟon using this indirect credit supply shock variable are summarized below:

To assess the sensiƟvity of our model to the differences between the feedback parameters esƟmated using direct and indirect
credit supply shocks, weused the applicaƟon in SecƟon 6.1 as an illustraƟon. AŌer enabling the real economy feedback channels
in the model, 0.51% of the firms in the model went bankrupt (as opposed to 0.53% in the main specificaƟon) causing € 175
million loss for banks on defaulƟng loans (which is only slightly differ from the € 184million in the original results). Furthermore,
losses due to fire sales further increased by € 48 million (instead of € 41 million), and a third bank went below the regulatory
requirement the same way due to solvency insufficiency.

Based on these results, the main difference between the two specificaƟons seems to be that in the case of the indirect credit
supply shock esƟmates the role of the direct effect of the shocks is somewhat weaker, and the role of the contagion among
firms is stronger. However, the overall impact is basically idenƟcal from the point of view of the losses in the banking system.

8.2 APPENDIX B – LIST OF DIRECTLY AFFECTED INDUSTRIES

³¹ The industry classificaƟons are based on the two-digit NACE categories, locaƟon is determined by the town of the headquarters of firms, while size
categories are given by the Hungarian XXXIV. SME regulaƟon.

42 MNB WORKING PAPERS 6 • 2020



APPENDIX

Figure 17
IntuiƟve illustraƟon of the indirect credit supply shock idenƟficaƟon

The amount of credits between firm A and bank B increases more than towards bank A. If one assumes that the credit demand of the firm changes
uniformly towards both of its partner banks, then this difference can be aƩributed to supply side factors.

Figure 18
DistribuƟon of Hungarian firms based on the number of bank connecƟons.

Bank connecƟons are defined by credit contracts or financial leasing. (Based on 2017 data.)
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Figure 19
Regression results

Figure 20
Marginal effects of the esƟmated feedback parameters
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Figure 21
List of directly affected industries
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