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Abstract

Forecast combinaƟons have been repeatedly shown to outperform individual professional forecasts and complicated Ɵme series
models in accuracy. Their ease of use and accuracymakes them important tools for policy decisions. While simple combinaƟons
work remarkably well in some situaƟons, Ɵme-varying combinaƟons can be even more accurate in other real-life scenarios in-
volving economic forecasts. This paper uses a regime switching framework to model the Ɵme-variaƟon in forecast combinaƟon
weights. I use an opƟmizaƟon problem based on asymmetric loss funcƟons in deriving opƟmal forecast combinaƟon weights.
The switching framework is based on the work of EllioƩ and Timmermann (2005), however I extend their setup by using asym-
metric quadraƟc loss in the opƟmizaƟon problem. This is an important extension, since with my setup it is possible to quanƟfy
and analyze opƟmal forecast biases for different direcƟons and levels of asymmetry in the loss funcƟon, contribuƟng to the
vast literature on forecast bias. I interpret the equaƟons for the opƟmal weights through analyƟcal examples and examine how
the weights depend on the model parameters, the level of asymmetry of the loss funcƟon and the transiƟon probabiliƟes and
starƟng state.

JEL: C53.

Keywords: Forecast combinaƟon, Loss funcƟons, Time-varying combinaƟon weights, Markov switching.

Összefoglaló

A kombinált előrejelzések gyakran pontosabbnak bizonyulnak mind az egyedi szakértői előrejelzéseknél, mind a bonyolult idő-
soros modellek predikcióinál. Egyszerű használatuk és pontosságuk miaƩ a döntéshozók számára is fontos eszközök lehetnek.
Míg bizonyos előrejelzési helyzetekben az egyszerű, staƟkus kombinációk is jól teljesítenek, egyéb életszerű gazdasági szituá-
ciókban az időben változó kombinációs súlyok adnak pontosabb predikciót. Ebben a tanulmányban változó rezsimek feltéte-
lezése melleƩ modellezem az előrejelzési kombinációs súlyok időbeli alakulását. A kombinációs súlyok kiszámítására használt
opƟmalizációs problémában emelleƩ aszimmetrikus veszteségfüggvényeket feltételezek. A felhasznált rezsimváltó modell Elli-
oƩ és Timmermann (2005) munkáján alapul, azonban modelljüket kiterjesztem aszimmetrikus négyzetes veszteségfüggvények
használatára. Tanulmányom az előrejelzési torzítás irodalmához is jelentősen hozzájárul, hiszen a használt általánosabb ke-
retben számszerűsíthető és vizsgálható az előrejelzési torzítás opƟmális mértéke a veszteségfüggvény különböző mértékű és
irányú aszimmetriája esetén. AnaliƟkus példákon keresztül értelmezem az opƟmális súlyokat meghatározó egyenleteket, és
megmutatom, hogyan függnek a súlyok a modellparaméterektől, a veszteségfüggvény aszimmetriájának szintjétől, valamint a
rezsimváltó folyamat kezdő szintjétől és átmeneƟ valószínűségeitől.
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1 IntroducƟon

Forecast combinaƟons have been repeatedly shown to outperform individual professional forecasts and complicated Ɵme se-
ries models in accuracy. Since the seminal paper of Bates and Granger (1969) that introduced opƟmal forecast combinaƟons,
many works have shown the theoreƟcal and empirical benefits of using combined forecasts (see, among others the papers by
Clemen (1989), Diebold and Lopez (1996), Chan et al. (1999), Dunis et al. (2000), Stock andWatson (1998, 1999), Timmermann
(2006), Diebold-Shin (2019)). These benefits include diversificaƟon gains from combining forecasts whose forecast errors are
not perfectly correlated with one another, approximaƟng reality with many models of different nature that are not encom-
passed by one complicated model and the ease of combinaƟon versus using a highly complex forecasƟng model (EllioƩ and
Timmermann (2005)).

While simple combinaƟons work remarkably well in some situaƟons, Ɵme-varying combinaƟons can be even more accurate in
other real-life scenarios involving economic forecasts. The ranking of individual models according to accuracy is likely to change
over Ɵme, as shown by Stock and Watson (2003) and Aiolfi and Timmermann (2004), among others. One forecast might be
the most accurate in a period of high economic growth, but be outperformed by another forecast in Ɵmes of recession. Then
a combinaƟon framework with Ɵme-varying weights would work beƩer at forecasƟng throughout the business cycle than one
with stable weights. The idea of using Ɵme-varying forecast combinaƟon weights was first introduced by Granger and Newbold
(1973), and extended to a regression framework by Diebold and Pauly (1987).

This paper uses a regime switching framework to derive opƟmal combinaƟon weights. I use an opƟmizaƟon problem based on
asymmetric loss funcƟons in deriving opƟmal forecast combinaƟon weights. The switching framework is based on the work of
EllioƩ and Timmermann (2005) however, I extend their setup by using asymmetric quadraƟc loss in the opƟmizaƟon problem.
This is an important extension, since with my setup it is possible to quanƟfy and analyze opƟmal forecast biases for different
direcƟons and levels of asymmetry in the loss funcƟon. At the same Ɵme, this chapter also extends the findings of EllioƩ and
Timmermann (2004). In this paper, the authors characterize the opƟmal combinaƟon weights for the most commonly used
alternaƟves to mean squared error loss, but do not include state-dependence. Thus, my main contribuƟon is the combinaƟon
of state dependence with an asymmetric loss funcƟon, which, to my knowledge, has not been addressed in the literature.

In this paper I study a forecaster’s problemwho has access to a set of individual forecasts and wants to combine them opƟmally
in a regime switching environment under asymmetric loss. I derive the first order condiƟons for an opƟmal linear combinaƟon
and provide a numerical procedure (akin to GMM) for compuƟng them. I interpret the opƟmal weights through analyƟcal
examples and examine how the weights depend on the model parameters, the level of asymmetry of the loss funcƟon and the
transiƟon probabiliƟes and starƟng state. I quanƟfy the opƟmal forecast bias as a funcƟon of the asymmetry parameter of the
forecaster’s loss funcƟon, adding to the literature on forecast bias (see Mincer and Zarnowitz (1969), Holden and Peel (1990),
Batchelor (2007), EllioƩ et al. (2008), Dovern and Janssen (2017)). In the following paragraphs, I moƟvate my choices for using
a Markov-switching framework, asymmetric losses, and I give context on opƟmal biases in forecasts.

There are different methods of using Ɵme-varying weights in forecast combinaƟons. Using rolling window regressions to de-
termine the combinaƟon weights for every forecast period is a popular and methodologically straighƞorward choice. Time-
varying parameter models could also be esƟmated using the Kalman filter. A third choice, proposed by Deutch et al. (1994) is
to determine weights based on a regime-switching model with an observable state variable. EllioƩ and Timmermann (2005)
compare these three methods in creaƟng combinaƟon forecasts from surveys and Ɵme series models. The authors find that
the last method is the most accurate in terms of mean squared forecast error. Using the regime-switching model also enables
the researcher to analyze the opƟmal weights and forecast errors assuming different starƟng regimes and different transiƟon
probabiliƟes between regimes. This makes it possible to draw conclusions on opƟmal forecast biases for different economic
states.

EllioƩ and Timmermann (2005) derives opƟmal combinaƟon weights in a latent state regime switching environment. The au-
thors illustrate the result with an empirical applicaƟon combining survey and Ɵme series forecasts and comparing the accuracy
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of combinaƟon forecasts based on different Ɵme-varyingweighƟngmethods. In the derivaƟon of the opƟmal switchingweights,
the authors assume mean squared (MSE) loss.

Mean squared loss is widely used in the literature due to the ease of computaƟon, analyƟcal convenience and its favorable
staƟsƟcal properƟes¹. However, its use is difficult to jusƟfy on economic grounds and likely does not capture the true behav-
ior of forecasters. The arguments against the use of symmetric loss funcƟons go back to Granger and Newbold (1986) and
are developed in more recent works such as Christoffersen and Diebold (1996, 1997), Granger and Pesaran (2000), EllioƩ et al
(2005) and (2008), PaƩon and Timmermann (2007), Wang and Lee (2014). The use of asymmetric loss funcƟons is based on the
idea that forecasters could be averse to ‘bad’ outcomes: low real GDP growth, high inflaƟon, etc., and they could incorporate
this asymmetry into their forecasts. In another forecasƟng situaƟon there might be different costs in overpredicƟon versus
underpredicƟon of sales: overpredicƟon can lead to higher inventory holding costs, while underpredicƟon can lead to stockout
costs, loss of reputaƟon and revenues when the demand is too high (EllioƩ et al. 2008). The relaƟve costs of overpredicƟon
versus underpredicƟon depend on the preferences of the firm, and it is reasonable to believe that the preferences are asym-
metric. The forecaster is likely to be aware of the asymmetric preferences (their salary could even depend on using the right -
asymmetric - loss funcƟon and producing accurate forecasts as a result), and would therefore use an asymmetric loss funcƟon
in their forecasts.

Biases in economic forecasts could also be related to asymmetric loss funcƟons. It is well documented that survey forecasts
are frequently biased (Mincer and Zarnowitz (1969), Holden and Peel (1990), Batchelor (2007), EllioƩ et al. (2008), Dovern and
Janssen (2017)). The size and direcƟon of the bias can depend on the affiliaƟon of the professional forecaster, as well as on
the current state of the business cycle. EllioƩ et al. (2008) examine US Survey of Professional Forecasters (SPF) and Livingston
survey data on output growth and find that close to 30 percent of individual forecasts are biased at a 5 percent significance
level. The authors also find that on average, forecasters are more likely to underpredict growth (suggesƟng that the cost of
overpredicƟon is higher than the cost of underpredicƟon). The biases vary by the affiliaƟon of the forecaster: academics have
almost symmetric loss funcƟons, while banking and industry economists rely on more asymmetric loss funcƟons (EllioƩ et al.
(2008)).

Recent research suggest that state dependence and asymmetric loss are potenƟally both at play in some economic forecasts.
Dovern and Janssen (2017) examine systemaƟc forecast biases over the business cycle. On a panel of forecasts for the annual
real GDP growth rate in 19 advanced economies² (1990-2013), they find that on average, forecasters overesƟmate GDP growth.
However, there is a substanƟal difference between forecasts for different business cycle states. Forecasts made for recession
periods exhibit large negaƟve forecast errors (in advance, forecasters overesƟmate the growth for these periods). By contrast,
forecasts for recoveries show small posiƟve errors, while forecasts for expansions are unbiased.

As an illustraƟon, I have reproduced Figure 1. from the paper of Dovern and Janssen (2017) using a different data set. I have
used Consensus Economics surveys for annual real GDP growth for 11 Easters European countries³, for the period between
2007 and 2019. The forecast horizons used range from 3 months to 24 months.

The figure for Eastern European economies confirms the same results as Dovern and Janssen’s example of 19 advanced coun-
tries: forecasts made for recessions exhibit large negaƟve biases, forecasts for recoveries oŌen underpredict growth, while
forecasts for expansions are on average unbiased (Figure 1). The differences between forecast biases made for different peri-
ods are large and significant (see Batchelor (2007) and Dovern and Janssen (2017)). Time series forecasts also frequently exhibit
biases, especially around business cycle turning points. When construcƟng forecast combinaƟons, it would be beneficent to let
the weights depend on the state of the economy, as well as allow the loss funcƟon to be asymmetric. This chapter introduces
an opƟmal combinaƟon weighƟng scheme that meets these criteria.

The rest of this paper is organized as follows. SecƟon 2 shows the theoreƟcal setup and outlines the expected loss minimizaƟon
problem in the general case. SecƟon 3 describes the procedure used for deriving the opƟmal weights numerically. SecƟon 4

¹ When assuming MSE loss, the raƟonal forecasts are unbiased and the forecast errors are uncorrelated with all variables in the current informaƟon
set. Therefore, raƟonality tesƟng is straighƞorward if quadraƟc loss is assumed. However, as EllioƩ et al. (2005, 2008) point out, tesƟng raƟonality
this way assumes a joint hypothesis of raƟonality and quadraƟc loss. The laƩer might not hold in many cases; the results of such raƟonality tests are
not valid for forecasts constructed using asymmetric losses.
² Dovern and Janssen (2017) use Consensus Economics surveys for the following countries: Austria, Belgium, Canada, Switzerland, Germany, Denmark,
Spain, Finland, France, Greece, Ireland, Italy, Japan, the Netherlands, Norway, Portugal, Sweden, the United Kingdom, and the United States.

³ Bulgaria, Czech Republic, Estonia, CroaƟa, Hungary, Latvia, Lithuania, Poland, Romania, Slovenia, Slovakia
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INTRODUCTION

Figure 1
SystemaƟc survey forecast errors by horizon

Notes: The figure shows esƟmates of the systemaƟc forecast errors (in percentage points) as a funcƟon of the forecast horizon. The lines represent
point esƟmates from regressions of the forecast errors on a set of 24 dummy variables (one for each forecast horizon).

analyzes how the opƟmal bias and the combinaƟon weights depend on the parameters through four analyƟcal examples with
different parametrizaƟons. SecƟon 5 assembles general observaƟons from the results that could be formalized as theorems
and also outlines some possible extensions. The last secƟon concludes.

MNB WORKING PAPERS 3 • 2023 7



2 Theory

In the introducƟon, I have already argued for the high importance of allowing for asymmetric loss funcƟons when combining
forecasts. In this secƟon, I introduce the theoreƟcal setup and solve the expected loss minimizaƟon problem in the general
case.

2.1 SETUP
We would like to forecast ytశ1 on the basis of It ୀ {ොyഓశ1, yഓ}

t
ഓస1, where

ොyഓశ1 ୀ (ොy1ഓశ1, … ොymഓశ1)ᇲ (1)

is the vector ofm individual forecasts. The informaƟon set includes the realized values of the target variable yt up unƟl the cur-
rent period when the forecast is made, together with the past and current values of the m individual one-step-ahead forecasts.
The last available individual forecasts in the forecaster’s informaƟon set in t are the forecasts made in t for the t ା 1 horizon.

The equaƟon for the linear combinaƟon of forecasts is the following:

ytశ1 ୀ ఠ0 ା𝝎ᇲොytశ1 ା etశ1, (2)

where ఠ0 ∶ is a constant, and 𝝎ᇲ ∶ is an m-vector of weights. The forecaster’s goal is to opƟmally combine the individual
forecasts in order to minimize her expected loss from the combined forecast. She can do this by opƟmizing the combinaƟon
weightsఠ0 and𝝎ᇲ based on her specific loss funcƟon.

I assume that the joint distribuƟon of the target ytశ1 and the vector of individual forecasts ොytశ1 is driven by an unobserved state
variable, St ∈ (1, … , k) that is not part of the informaƟon set; St ∉ It. CondiƟonal on the informaƟon set It and the underlying
state Stశ1 ୀ stశ1, assume that the joint distribuƟon of the target and the vector of individual forecasts is Gaussian:

൮
ytశ1

ො𝐲𝐭శ𝟏
൲ ∼ N൮൮

ఓystశ1

𝝁ොystశ1

൲ ,൮
ఙ2
ystశ1

𝝈ᇲyොystశ1

𝝈yොystశ1
𝚺ොystశ1

൲൲ (3)

Given equaƟon (2), assumpƟon (3) implies that the corresponding condiƟonal distribuƟon of the error etశ1 is also Gaussian
with some mean ఓestశ1

and standard deviaƟon ఙestశ1
.

Finally, I also assume (following Hamilton (1989) and EllioƩ and Timmermann (2005)) that the states are generated by a first
order Markov chain with the following transiƟon probability matrix, where గij denotes the transiƟon probability of arriving at
state j when starƟng from state i:

⎛
⎜
⎜
⎜
⎜

⎝

గ11 గ12 … గ1k

గ21 గ22 … గ2k

⋮ ⋮ ⋱ గkష1k

గk1 … గkkష1 గkk

⎞
⎟
⎟
⎟
⎟

⎠

(4)
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THEORY

Furthermore, if at Ɵme t the state of the process is st, then the probability that the process will transiƟon to state stశ1 in period
t ା 1 will be denoted as

P(stశ1|st) ୀ గstశ1 ,t

Hence, గstశ1 ,t is the element of the matrix (4) that corresponds to row st and column stశ1.

2.2 THE EXPECTED LOSS FUNCTION AND THE FORECASTER’S PROBLEM
DeviaƟng from the setup of EllioƩ and Timmermann (2005), I choose the more flexible asymmetric quadraƟc (or quad-quad⁴)
loss funcƟon in the forecaster’s opƟmizaƟon problem, instead of the symmetry-assuming MSE loss⁵. The loss funcƟon takes
the following form:

L(e) ୀ ൝
(1 ି ఈ)e2, if e வ 0
ఈe2, if e ஸ 0

(5)

where 0 ழ ఈ ழ 1. The parameter alpha in the loss funcƟon captures the asymmetry preferences of the forecaster. For
alpha values lower than 1

2
, negaƟve forecast errors entail a smaller cost for the forecaster as opposed to posiƟve forecast

errors, overpredicƟon is preferred. For ఈ வ 1
2
, posiƟve errors entail smaller costs than negaƟve errors, thus underpredicƟon is

preferred. ఈ ୀ 1
2
is the symmetric case, the loss funcƟon reduces to the same form as the mean squared error loss.

Assuming the loss funcƟon takes the form expressed in equaƟon 5, the posited objecƟve is to minimize the following expected
loss formula:

E{L(etశ1)|It, st} ୀ
k


stశ1స1

గstశ1 ,tEቄ[ఈ ି (2ఈ ି 1)1estశ1ಭ0]e
2
stశ1
ቚIt, stశ1ቅ, (6)

where 1estశ1ಭ0 denotes the indicator funcƟon, i.e.,

1estశ1ಭ0 ୀ ൝
1, if estశ1

வ 0
0, if estశ1

ஸ 0

and estశ1
is the (sƟll random) value of the error etశ1 in state stశ1.

Let us interpret the objecƟve funcƟon in equaƟon 6. The expectaƟon on the leŌ hand side is taken with respect to the condi-
Ɵonal distribuƟon of etశ1 given the forecaster’s informaƟon set It and the current state st. This is then expanded as an iterated
expectaƟon on the right hand side. For any possible value stశ1 of the future state, the inner expectaƟon is with respect to the
condiƟonal distribuƟon of estశ1

given It and stశ1. This expectaƟon is, by assumpƟon, no longer dependent on st, i.e., it does not
maƩer how the process arrives at the state stశ1. The outer expectaƟon then averages over all possible future states, using the
transiƟon probabiliƟes corresponding to the current state st as weights (these are contained in the corresponding row of the
transiƟon matrix). This expectaƟon, by contrast, is no longer dependent on It, as the Markov property implies that transiƟon
probabiliƟes depend solely on the current state.⁶

To evaluate the expected loss (6) in pracƟce, one needs to assume specific values for the transiƟon probabiliƟes గstశ1 ,t or esƟ-
mate them based on an auxiliary model. There is a set of transiƟon probabiliƟes గstశ1 ,t corresponding to each possible current

⁴ The double quadraƟc term refers to the type of the loss funcƟon for both negaƟve and posiƟve forecast errors.
⁵ The asymmetric quadraƟc loss funcƟon I use in this chapter has been studied by other authors as well. It is a special case of the family of loss funcƟons
studied by EllioƩ, Komunjer and Timmermann (2005, 2008). In another paper, EllioƩ and Timmermann (2004) derive the opƟmal forecast combinaƟon
in a permanent-state environment assuming the same loss funcƟon.

⁶We can summarize this discussion more formally as follows. Using the law of iterated expectaƟons, we can write the leŌ hand side of equaƟon 6 as
E{L(etశ1)|It , st} ୀ E൛E[L|It , st , stశ1]หIt , stൟ ୀ E൛E[L|It , stశ1]หstൟ, where the last equality follows from the condiƟonal independence condiƟons discussed
above.
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state st. However, st is not directly observed by the econometrician, which means that the evaluaƟon of (6) also requires an
assumpƟon about the current state st or an esƟmate of it.

I now turn to the forecaster’s problem. The forecaster’s goal is to choose the combinaƟon weights ఠ0 and 𝝎 in equaƟon
(2) in a way that minimizes her expected loss (6). To this end, I write the value of the forecast error in state stశ1 as estశ1

ୀ
ఓestశ1

ାఙestశ1
zstశ1

, whereఓestశ1
andఙestశ1

are the state-specific mean and standard deviaƟon, respecƟvely, and zstశ1
is a standard

normal random variable. Using equaƟon (2) and assumpƟon (3), these moments are given by

ఓestశ1
ୀ ఓystశ1

ିఠ0 ି𝝎ᇲ𝝁ොystశ1

ఙ2
estశ1

ୀ ఙ2
ystశ1

ା𝝎ᇲ𝚺ො𝐲stశ1
𝝎ି 2𝝎ᇲ𝝈yො𝐲stశ1

.

SubsƟtuƟng estశ1
ୀ ఓestశ1

ା ఙestశ1
zstశ1

into (6) and making the corresponding change of variables in the integral yields the
following expression:⁷

E{L(etశ1)|It, st} ୀ
k


stశ1స1

గstశ1 ,tE{(ఈ ି (2ఈ ି 1)1estశ1ಭ0)e
2
stశ1
|It, st} ୀ

ୀ ఈ
k


stశ1స1

గstశ1 ,t[ఓ2
e ା ఙ2

e] ି (2ఈ ି 1)
k


stశ1స1

గstశ1 ,t

ಮ

න
ష ഋe

e

(ఓe ା ఙezstశ1
)2ୢF(zstశ1

), (7)

where ఓe and ఙe are shorthand for ఓestశ1
and ఙestశ1

, respecƟvely, and F(⋅) is the standard normal cumulaƟve distribuƟon func-
Ɵon.

The goal is to minimize (7) with respect to the constantఠ0 and the slope coefficients (or weights)𝝎, where these parameters
are implicit in the definiƟon of ఓe and ఙe. However, as discussed above, the expected loss objecƟve (6) has several ‘versions’
depending on the iniƟal state st; there is, therefore, a corresponding set of minimizers for each possible current state. To
emphasize this dependence, I will denote the opƟmal weights asఠ∗

0t and𝝎∗
t . Thus, if the econometrician’s assessment of the

current state evolves from period to period, so do the opƟmal weights.

I will now characterize ఠ∗
0t and 𝝎∗

t as the soluƟons to the first order condiƟon of the expected loss minimizaƟon problem
outlined above.

2.3 EXPECTED LOSS MINIMIZATION IN THE GENERAL CASE

Let us minimize the expected loss funcƟon in the general case (7) by deriving the corresponding first order condiƟons (FOCs).

Taking the parƟal derivaƟve with respect to the constantఠ0t yields:

డE{L(etశ1)|st, It}
డఠ0t

ୀ 0 ∶

ఈ
k


stశ1స1

గstశ1 ,t ൫ఓe൯ ି (2ఈ ି 1)
k


stశ1స1

గstశ1 ,t

⎡
⎢
⎢
⎣

ಮ

න
ష ഋe

e

(ఓe ା ఙe zstశ1
)ୢF(zstశ1

)
⎤
⎥
⎥
⎦

ୀ 0
(8)

⁷ See the detailed derivaƟons in appendix A, equaƟon 23.
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SubsƟtuƟng ఓe and ఙe with their definiƟons (and omiƫng the state and Ɵme subscripts for clarity), we can write the FOC in
the following form:

డE{L(e)|s, I}
డఠ0t

ୀ 0 ∶

ఈ
s

గs ቀఓys
ିఠ0t ି𝝎ᇲ

t𝝁ෝysቁି

(2ఈ ି 1)
s

గs

⎡
⎢
⎢
⎢
⎢
⎣

ಮ

න
షഋyశഘ0శ𝝎ᇲt 𝝁ො𝐲s

ට2yశ𝝎ᇲt 𝚺ො𝐲𝝎tష2𝝎ᇲt 𝝈yො𝐲

ቀఓys
ିఠ0t ି𝝎ᇲ

t𝝁ෝ𝐲s ା (ఙ2
y ା𝝎ᇲ

t𝚺ො𝐲𝝎t ି 2𝝎ᇲ
t𝝈yො𝐲) zቁୢF(z)

⎤
⎥
⎥
⎥
⎥
⎦

ୀ 0

(9)

డE{L(e)|s, I}
డఠ0t

ୀ 0 ∶

ఈ
s

గs ቀఓys
ିఠ0t ି𝝎ᇲ

t𝝁ෝ𝐲sቁି

(2ఈ ି 1)
s

గs

⎡
⎢
⎢
⎢
⎢
⎣

ಮ

න
షഋyశഘ0శ𝝎ᇲt 𝝁ෞ𝐲s

ට2yశ𝝎ᇲt 𝚺ො𝐲𝝎tష2𝝎ᇲt 𝝈yො𝐲

(ఓys
ିఠ0t ି𝝎ᇲ

t𝝁ෝ𝐲s ା (ఙ2
y ା𝝎ᇲ

t𝚺ොy𝝎t ି 2𝝎ᇲ
t𝝈yො𝐲) z)ୢF(z)

⎤
⎥
⎥
⎥
⎥
⎦

ୀ 0

(10)

The opƟmal weightsఠ∗
0t and𝝎∗

t must then saƟsfy equaƟon (10).

There aremmore first order condiƟons corresponding to the parƟal derivaƟveswith respect to the individual weights𝝎t. These
are given by:

డE{L(e)|s, I}
డ𝝎 ୀ 0 ∶

ఈ
s

గs ቀିఓො𝐲ఓe ା 𝚺ො𝐲𝝎ି 𝝈yො𝐲ቁି

ି (2ఈ ି 1)
s

గs

⎡
⎢
⎢
⎣

ಮ

න
ష ഋe

e

(ఓe ା ఙe z) ቆିఓො𝐲 ା
1
ఙe

൫𝚺ො𝐲𝝎ି 𝝈yො𝐲൯ zቇୢF(z)
⎤
⎥
⎥
⎦

ୀ 0

(11)

The opƟmal weightsఠ∗
0t and𝝎∗

t must also saƟsfy equaƟon (11).

Due to the complexity of these equaƟons, the soluƟons for the opƟmal weights cannot be given in closed form. However, it
is possible to solve these equaƟons numerically, adopƟng the idea behind the well-known generalized method of moments
(GMM) esƟmator. I will describe this the general procedure in the next subsecƟon. In SecƟon 4 I will compute the opƟmal
weights and consequent average losses in three specific scenarios and analyze the results in detail.
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3 Numerical procedure for
compuƟng the weights

Suppose that all the parameters in equaƟons (10) and (11) are given except for the weights ఠ0 and 𝝎. The main difficulty in
solving the first order condiƟons lies in the evaluaƟon of the integrals with respect to dF(z), especially given that the integraƟon
limits are also dependent on the unknown weights. Let me generically represent these integrals as

න
b

a
g(z; 𝜽)dF(z), (12)

where 𝜽 ୀ (ఠ0, 𝝎ᇲ)ᇲ stands for the vector of unknown weights and a and bmay also depend onఠ.

I then evaluate the first order condiƟons in the following way. First, I formally eliminate the integraƟon limits by using indicator
funcƟons; that is, I represent the integrals ∫b

a g(z; 𝜽)dF(z) as ∫ g(z; 𝜽)1[a,b](z)dF(z), where the laƩer integral is taken over the
enƟre real line (i.e., from minus infinity to infinity). The two integrals are equal because the funcƟon 1[a,b](z) is one if z falls
into the interval [a, b] and is zero otherwise.

Second, as F stands for the standard normal cdf, I can again regard these integrals as expectaƟons over a standard normal
random variable; that is,

න g(z; 𝜽)1[a,b](z)dF(z) ୀ E{g(Z; 𝜽)1[a,b](Z)}, Z ∼ N(0, 1). (13)

Using this representaƟon of the integrals with respect to dF(z), the first order condiƟons (10) and (11) can be thought of as a
set of moment condiƟons

E[mj(Z; 𝜽)] ୀ 0, j ୀ 0, … ,m, (14)

where, for example,

m0(Z, 𝜽) ୀ ఈ
s

గs ቀఓys
ିఠ0 ି𝝎ᇲ𝝁ෝ𝐲sቁ

ି (2ఈ ି 1)
s

గsቄ ቂఓys
ିఠ0 ି𝝎ᇲ𝝁ෝ𝐲s ା (ఙ2

ys ା𝝎ᇲ𝚺ො𝐲s𝝎ି 2𝝎ᇲ𝝈yෝ𝐲s) Zቃ ⋅ 1[as ,ಮ)(Z)ቅ
(15)

with

as ୀ
ିఓys

ାఠ0 ା𝝎ᇲ𝝁ෝ𝐲s
ටఙ2

ys ା𝝎ᇲ𝚺ො𝐲s𝝎ି 2𝝎ᇲ𝝈yෝ𝐲s

. (16)

EquaƟons (10) and (11) can be wriƩen this way because the linearity of the expectaƟons allows it to be pulled ’outside’ of all
the other operaƟons.

Third, I replace themoment condiƟonswith their ’empirical’ counterparts using a large sample of arƟficial observaƟons Z1, … , Zn
drawn from the standard normal distribuƟon. That is, instead of expectaƟons, I work with averages of the form

1
n

n


iస1

mj(Zi, 𝜽) ୀ 0, j ୀ 0, … ,m. (17)

For large n, the law of large numbers guarantees 1
n
∑n

iస1 mj(Zi, 𝜽) ≈ E[mj(Z, 𝜽)], and I can make this approximaƟon precise by
choosing n as large as computaƟonally feasible.

Thus, in the three steps outlined above, I have reduced the computaƟon of the opƟmal weights to a standard generalized
method of moments (GMM) esƟmaƟon problem, where the parameter vector 𝜽 ୀ (ఠ0, 𝝎ᇲ)ᇲ is just-idenƟfied. This means that
one can use well-developed numerical procedures and readily available rouƟnes to compute the opƟmal forecast combinaƟon
weights for any given parametrizaƟon of the forecaster’s problem.
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4 AnalyƟcal examples

In this secƟon, I esƟmate and interpret the opƟmal weights and average losses in four different parametrizaƟons. The simu-
laƟons were carried out in order to beƩer understand the differences between the asymmetry-allowing opƟmal combinaƟon
weights and the ET combinaƟon weights that are based on MSE loss. For ease of interpretaƟon, I consider only 2 states and
2 forecasts in all cases, and a one-period forecast horizon. State 1 parameters are different in the four cases, while they are
always compared to the baseline parametrizaƟon in state 2 (state 2: unbiased forecasts, both variances are 1, forecasts are
uncorrelated).

4.1 SCENARIO 1: ONE BIASED FORECAST
Let us assume a simple data generaƟng process of the following form:

ytశ1 ୀ ఉst
1 xt ା ఉst

2 wt ା ఢtశ1 ୀ f1t ା f2t ା ఢtశ1 (18)

Where ఢtశ1 is a standard normal error term, ఢs1∼N(0, 1); ఢs2∼N(0, 1). The two individual forecasts that we would like to
combine are the following:

f1t ୀ ఉst
1 xt

f2t ୀ ఉst
2 wt

(19)

The linear combinaƟon of the two forecasts gives the combined forecast:

ොytశ1|t ୀ ఠ0t ାఠ1t f1t ାఠ2t f2t (20)

In the first parametrizaƟon, asymmetry is introduced by a small posiƟve bias of forecast 1 in state 1 (see table 1 for the full
parametrizaƟon). The other forecast stays unbiased throughout (ఓf2,s1 ୀ ఓf2,s2 ୀ 0). The variances of the forecasts are equal
in both states and the two individual forecasts are uncorrelated E(xtwt) ୀ 0, ∀t. The opƟmal weights are derived using the
numerical procedure introduced in secƟon 3.

I specialize the general expected loss funcƟon from equaƟon 6 by subsƟtuƟng in the adoquate forms of ఓe and ఙe.

ఓe,s1 ୀ ିఠ0,s1 ିఠ1,s1 ఓf1,s1 ୀ ିఠ0,s1 ିఠ1,s1 0.1
ఓe,s2 ୀ ିఠ0,s1

ఙ2
e,s1 ୀ ఙ2

e,s2 ୀ 2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1);

As the variances of the individual forecasts are unity and the forecasts are uncorrelated, the expected loss funcƟon and first
order condiƟons are not overly complicated (see appendix B). The variance-covariance matrix of the two forecasts and the
covariances between the target and the individual forecasts take the following forms:
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Table 1
Scenario 1: one biased forecast

s1 s2

ఉs1
1 1 ఉs2

1 1

ఉs1
2 1 ఉs2

2 1

ఓs1
x 0.1 ఓs2

x 0

ఙs1
x 1 ఙs2

x 1

ఓs1
w 0 ఓs2

w 0

ఙs1
w 1 ఙs2

w 1

ఓs1
y 0 ఓs2

y 0

ఙs1
y √2 ఙs2

y √2
Cov(x,w)s1 0 Cov(x,w)s2 0

ஊොy ୀ ൦
1 0

0 1
൪ ఙyොy ୀ ൦

1

1
൪

When there are two possible Markov states, then we get two sets of opƟmal weights, each referring to the starƟng state that is
assumed to be known whenmaking the forecast. The equaƟon for the expected loss funcƟon and the first order condiƟons are
stated in appendix B. Applying the GMM-based numerical procedure to these analyƟcal results, we get the opƟmal combinaƟon
weights outlined in table 2 and 3. For deriving the results in table 2, the symmetric transiƟon probabiliƟes from the matrix P1
were used, while for the results in table 3, the asymmetric transiƟon probabiliƟes from P2 were used.

P1 ୀ ൦
0.5 0.5

0.5 0.5
൪ P2 ୀ ൦

0.9 0.1

0.1 0.9
൪

First, let us interpret the results of table 2. The transiƟon probability does not depend on the starƟng state in this scenario,
therefore, the opƟmal weights are the same for each starƟng state. The opƟmal weights of the two individual forecasts, ఠ1t
and ఠ2t are essenƟally 1 (minor esƟmaƟon errors occur from the GMM procedure). This is the same as their true values, ఉ1
and ఉ2 from the DGP. The opƟmal bias is captured inఠ0, whose value changes as the asymmetry parameter ఈ increases.

At ఈ ୀ 0.5, the loss funcƟon is symmetric and coincides with the MSE loss. Therefore, we see that the esƟmated opƟmal
weights are exactly the same in the asymmetry-allowing case and theMSE loss-based combinaƟon (ET).ఠ0 takes the value that
offsets the bias competely, resulƟng in an unbiased forecast:

ఠ0 ୀ ି(forecast bias × Pr(arriving in biased state)) (21)

For lower ఈ-s, overpredicƟon is preferred. This is achieved in the combinaƟon forecast, by only sligthly offseƫng the bias
from f1; ఠ0 is close to zero. As ఈ increases toward 0.5, the preference for overpredicƟon is weaker, therefore, ఠ0 increases
in absolute value, resulƟng in a less biased opƟmal combinaƟon forecast. For ఈ-s above 0.5, underpredicƟon is preferred,ఠ0
offsets the bias coming from ఓf1, and produces an overall posiƟve forecast error.

Figure 2 and 3 shows the average asymmetric quadraƟc losses for the transiƟon probability matrices P1 and P2. The figures
depict the result of a thought experiment where a one-period forecast is made and we would like to know the expected loss for
the next period. In figure 2, the transiƟon probability matrix P1 results in a symmetric loss funcƟon that is always lower than
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the constant loss resulƟng from the ET opƟmal combinaƟon. The loss is lower for more extreme asymmetry preferences (ఈ-s
close to 0 and 1). Again, the starƟng state does not influence the results.

When the transiƟon probability matrix takes the from of P2, two different sets of opƟmal weights are calculated based on the
starƟng state. Now, the system is likely to stay in the starƟng state (with probability 0.9). When this is the biased state 1, ఠ0
needs to be higher in absolute value to offset the bias. The relaƟon in equaƟon 21 stays true; for instance when ఈ ୀ 0.5, the
constant from the opƟmal combinaƟon needs to be ି0.09 to yield an unbiased forecast (this is also the opƟmalఠ0 for the ET
loss). As the asymmetry parameter changes, we can see a similar dynamic in the change ofఠ0 as in table 2: for lower ఈ-s, the
preferred overpredicƟon of the target variable is achieved by only partly offseƫng the bias from f1, while for ఈ-s higher than
0.5, anఠ0 higher in absolute value is needed to produce an opƟmally biased combinaƟon forecast. The coefficients of f1 and
f2 are 1 throughout, hiƫng the true ఉ coefficients from the DGP.

Table 2
OpƟmal weights from case 1, symmetric transiƟon probabiliƟes

opƟmal weights ET opƟmal weights

ఈ
starƟng state: s1 starƟng state: s2 starƟng state: s1 starƟng state: s2

ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t

0.1 -0.010 1.000 1.000 -0.010 0.999 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000

0.3 -0.030 0.998 1.000 -0.030 0.998 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000

0.5 -0.050 0.998 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000

0.7 -0.070 0.997 1.000 -0.070 0.998 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000

0.9 -0.090 1.000 1.000 -0.090 1.000 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000

Table 3
OpƟmal weights from case 1, asymmetric transiƟon probabiliƟes

opƟmal weights ET opƟmal weights

ఈ
starƟng state: s1 starƟng state: s2 starƟng state: s1 starƟng state: s2

ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t

0.1 -0.050 0.998 1.000 -0.001 1.000 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000

0.3 -0.079 0.998 1.000 -0.005 1.000 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000

0.5 -0.090 0.999 1.000 -0.010 0.999 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000

0.7 -0.095 0.999 1.000 -0.021 0.998 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000

0.9 -0.104 0.997 0.998 -0.050 0.993 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000
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Figure 2
Asymmetric qaudraƟc losses as a funcƟon of alpha based on parametrizaƟon with one biased forecast (s1); P=[0.5 0.5; 0.5
0.5]

quad-quad losses, starƟng state: s1

quad-quad losses, starƟng state: s2
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Figure 3
Asymmetric qaudraƟc losses as a funcƟon of alpha based on parametrizaƟon with one biased forecast (s1); P=[0.9 0.1; 0.1
0.9]

quad-quad losses, starƟng state: s1

quad-quad losses, starƟng state: s2
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4.2 SCENARIO 2: DIFFERENT VARIANCES OF INDIVIDUAL FORECASTS

In this scenario, both forecasts are unbiased throughout. The difference in the forecasts stems from the second forecast having
a higher variance in state 1 (see table 4 for full parametrizaƟon). The two individual forecasts are uncorrelated. Again, state 2
is characterized by the baseline parametrizaƟon of equal variances and no bias. The state-dependent means and variances of
the forecast error are the following:

ఓe,s1 ୀ ఓe,s2 ୀ ିఠ0,s1

ఙ2
e,s1 ୀ 3 ା (2ఠ2

1,s1 ାఠ2
2,s1) ି 2(2ఠ1,s1 ାఠ2,s1);

ఙ2
e,s2 ୀ 2 ା (ఠ2

1,s1 ାఠ2
2,s1) ି 2(ఠ1,s1 ାఠ2,s1);

In this parametrizaƟon, the variance-covariance matrix of the two forecasts and the covariances between the target and the
individual forecasts are changed from the baseline to the following forms. The resulƟng expected loss funcƟon and first order
condiƟons are detailed in appendix C.

ஊොy ୀ ൦
2 0

0 1
൪ ఙyොy ୀ ൦

2

1
൪

The opƟmal combinaƟon weights are shown in tables 5 (symmetric transiƟon probabiliƟes characterized by P1) and 6 (asym-
metric transiƟon probabiliƟes characterized by P2). It is appearent that the higher variance of f1 in s1 does not change the
opƟmal weights, thus the true parameters stemming from the data generaƟng proccess, [ఠ0, ఠ1, ఠ2] ୀ [0, 1, 1] are found. At
extreme asymmetry parameters, the minor differences are due to calculaƟon errors from the GMM procedure. When a bias
is introduced to forecast 1 in state 1 in addiƟon to the higher variance, the opƟmal combinaƟon weights are the same as in
scenario 1.

4.3 SCENARIO 3: CORRELATED FORECASTS

Let us examine a parametrizaƟon with correlated individual forecasts in state 1. In state 1, f1 has an indirect effect on y, through
its correlaƟon with f2. Similarly to the other specificaƟons, state 2 is characterized by the baseline DGP and forecasts.

ys1tశ1 ୀ f2t ା ఢtశ1

ys2tశ1 ୀ f1t ା f2t ା ఢtశ1

Where ఢtశ1 is a standard normal error term, ఢs1∼N(0, 1), ఢs2∼N(0, 1).

In state 1, each individual forecast consists of a common part, f, and an addiƟonal error term:

f1s1t ୀ ft ା t
f2s1t ୀ ft ା ఎt
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where t∼N(0, 1) and ఎt∼N(0, 0.2)

The forecast is the linear combinaƟon of the individual forecasts.

ොytశ1|t ୀ ఠ0t ାఠ1t f1t ାఠ2t f2t

ஊොy ୀ ൦
2 1

1 1.2
൪ ఙyොy ୀ ൦

1

1.2
൪

ఓe,s1 ୀ ఓe,s2 ୀ ିఠ0,s1

ఙ2
e,s1 ୀ 1.2 ା 2ఠ2

1,s1 ା 1.2ఠ2
2,s1 ା 2(ఠ1,s1ఠ2,s1) ି 2(ఠ1,s1 ା 1.2ఠ2,s1);

ఙ2
e,s2 ୀ 2 ା (ఠ2

1,s1 ାఠ2
2,s1) ି 2(ఠ1,s1 ାఠ2,s1);

To beƩer understand the results, assume first that there was no switching and the system stayed in s1. As f1 does not appear
in the DGP, and has a higher variance than f2, we would expect the opƟmal combinaƟon weights to be [ఠ0, ఠ1, ఠ2] ୀ [0, 0, 1].
In the simulaƟon of such a case, whose results are presented in table 4.3, these weights are indeed found (at very high ఈ-s we
can see some esƟmaƟon errors).

Returning to the original switching framework, let us first assume equal transiƟon probabiliƟes (transiƟon probability matrix
is P1). Then the esƟmated opƟmal combinaƟon weights are those shown in table 4.3. As both forecasts are unbiased in both
states, the weights do not change with the asymmetry parameter, similarly to scenario 2. ఠ0 is zero throughout as there is no
bias to offset coming from the individual forecasts. However, the opƟmal weights of the two forecasts differ in this case: the
coefficient of f1 is lower (0.39) than that of f2 (0.82). The weights take values between their opƟmal values if the system always
stayed in state 1; [ఠ0, ఠ1, ఠ2] ୀ [0, 0, 1], and their opƟmal values if the system always stayed in state 2; [ఠ0, ఠ1, ఠ2] ୀ [0, 1, 1].
The esƟmated ఠ∗

1t and ఠ∗
2t are lower than the simple average of the above two sets of weights [0.5, 1]. This is due to the

variance-minimizing objecƟve of the forecast: the forecast with higher variance, f1, is assigned a lower combinaƟon weight.
Since f2 is posiƟvely correlated to f1, it is also intuiƟve in light of the variance-minimizing objecƟve thatఠ∗

2t is lower than 1.

Assuming a more persistent transiƟon probability matrix, P2, we can see from table 4.3 that the starƟng state maƩers for the
opƟmal weights. When the starƟng state is s1, where the forecasts are correlated, f1 is assigned a low weight of 0.82 that is
even lower than the probability of leaving the starƟng state (P12 ୀ 0.1). ఠ∗

2t is slightly higher (0.92) than the probability of
staying in state 1 (P11 ୀ 0.9).

When the starƟng state is s2, the opƟmal weights are close to (0, 1, 1), (opƟmal weights for a system that always stays in s2) as
the probability of arriving at state 1 is low.

4.4 SCENARIO 4: COMMON FACTOR

In this scenario, the combinaƟon forecast in state 1 is again characterized by two correlated individual forecasts. In addiƟon
to these two forecasts, the data generaƟng process includes a third forecast, f3, that is the common factor responsible for the
correlaƟon between f1 and f2. As in the other examples, state 2 is the baseline parametrizaƟon (two uncorrelated, unbiased
forecasts with equal coefficients in the DGP):

MNB WORKING PAPERS 3 • 2023 19



MAGYAR NEMZETI BANK

ys1tశ1 ୀ f1t ା f2t ା f3t ା జtశ1

ys2tశ1 ୀ f1t ା f2t ା ఢtశ1

Whereఢtశ1 is an i.i.d. error, ఢs2∼N(0, 1). జ is the idiosynchraƟc error from the state 1DGPwith correlated variables,జs1∼N(0, 1).

In state 1, f1 and f2 consists of a common factor, f3, and an addiƟonal error term with different variances:

f1s1t ୀ f3t ା t
f2s1t ୀ f3t ା ఎt

where t∼N(0, 0.1) and ఎt∼N(0, 9)

The forecast is the linear combinaƟon of forecasts f1 and f2.

ොytశ1|t ୀ ఠ0t ାఠ1t f1t ାఠ2t f2t

Let us first examine the opƟmal weights in a constant-state system to beƩer understand the results from the switching simula-
Ɵon. Assume that there is no switching and the prevailing state is always s1. Then, wewould expect the opƟmizaƟon procedure
to assign f2 lower weights than f1, due to the variance-minimizing objecƟve.

ஊොy ୀ ൦
1.1 1

1 10
൪ ఙyොy ୀ ൦

3.1

12
൪

ఓe,s1 ୀ ఓe,s2 ୀ ିఠ0,s1

ఙ2
e,s1 ୀ 16.1 ା 1.1ఠ2

1,s1 ା 10ఠ2
2,s1 ା 2(ఠ1,s1ఠ2,s1) ି 2(3.1ఠ1,s1 ା 12ఠ2,s1);

ఙ2
e,s2 ୀ 2 ା (ఠ2

1,s1 ାఠ2
2,s1) ି 2(ఠ1,s1 ାఠ2,s1);

Table 4.4 shows the opƟmal weights from the no-switching exercise⁸. The results are intuiƟve: ఠ0 is zero similarly to the other
cases where the forecasts are unbiased, and the opƟmal weights do not change with ఈ. This is also likely due to the unbiased-
ness of the forecasts (this conjecture and some other general observaƟons from the results are summarized in secƟon 5). As
expected, f2 is assigned lower weights than f1, due to its higher variance. SƟll assuming a no-switching environment, if the
system stayed in state 2 throughout, the opƟmal weights would be [ఠ0, ఠ1, ఠ2] ୀ [0, 1, 1], as we have seen in the previous
examples.

⁸ Results for ఈ-s lower than 0.3 and higher than 0.7 are truncated from table 4.4, since the numerical procedure produced large esƟmaƟon errors. The
full table can be found in appendix F.
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Returning to the regime-switching environment, let us first examine the opƟmal weights under symmmetric transiƟon prob-
abiliƟes between states (P2 transiƟon probability matrix), shown in table F⁹. ఠ0 is zero since the forecasts are unbiased. Also
likely due to unbiasedness, the opƟmal weights are constant for different asymmetry parameter values. The opƟmal weight of
f2, the forecast with the higher variance is lower than that of the other forecast. The opƟmal combinaƟon weights in table F
are very close to the arithmeƟc means of the opƟmal weights from the previous no-switching exercises (s1: [0, 1.9, 0.01]; s2:
[0, 1, 1]).

Table F shows the opƟmal weights assuming asymmetric transiƟon probabiliƟes (P2)¹⁰. When the starƟng state is s1, the system
is expected to stay in this state with a probability of 0.9, therefore, the opƟmal weights are close to the results from table 4.4.
Conversely, when the starƟng state is s2, the opƟmal weights are close to [0,1,1], as in the scenario where the system stayed in
s2 throughout.

⁹ Results for ఈ-s lower than 0.3 are truncated from table F due to esƟmaƟon errors at these extreme values. The full table can be found in appendix F.
At ఈ ୀ 0.7 the outlier values are also likely due to esƟmaƟon error.

¹⁰ Again, the results for ఈ ୀ 0.1 are truncated due to esƟmaƟon errors, see the full table in appendix F.
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Table 4
Scenario 2: one forecast has higher variance in state 1

s1 s2

ఉs1
1 1 ఉs2

1 1

ఉs1
2 1 ఉs2

2 1

ఓs1
x 0 ఓs2

x 0

ఙs1
x √2 ఙs2

x 1

ఓs1
w 0 ఓs2

w 0

ఙs1
w 1 ఙs2

w 1

ఓs1
y 0 ఓs2

y 0

ఙs1
y √3 ఙs2

y √2
Cov(x,w)s1 0 Cov(x,w)s2 0

Table 5
OpƟmal weights from case 2, symmetric transiƟon probabiliƟes

opƟmal weights ET opƟmal weights

ఈ
starƟng state: s1 starƟng state: s2 starƟng state: s1 starƟng state: s2

ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t

0.1 0.000 1.000 1.000 0.003 1.000 0.999 0.000 1.000 1.000 0.000 1.000 1.000

0.3 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.5 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.7 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.9 0.000 1.000 1.000 -0.004 1.000 0.999 0.000 1.000 1.000 0.000 1.000 1.000

Table 6
OpƟmal weights from case 2, asymmetric transiƟon probabiliƟes

opƟmal weights ET opƟmal weights

ఈ
starƟng state: s1 starƟng state: s2 starƟng state: s1 starƟng state: s2

ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t

0.1 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.3 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.5 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.7 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.9 -0.008 1.002 1.002 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
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Table 7
Scenario 3: correlated forecasts

s1 s2

ఉs1
1 1 ఉs2

1 1

ఉs1
2 1 ఉs2

2 1

ఓs1
x 0 ఓs2

x 0

ఙs1
x √2 ఙs2

x 1

ఓs1
w 0 ఓs2

w 0

ఙs1
w 1 ఙs2

w 1

ఓs1
y 0 ఓs2

y 0

ఙs1
y √3 ఙs2

y √2
Cov(x,w)s1 0 Cov(x,w)s2 0

Table 8
OpƟmal weights from case 3, only one state (s1)

opƟmal weights

ఈ
starƟng state: s1

ఠ0t ఠ1t ఠ2t

0.1 0.000 0.000 1.000

0.3 0.000 0.000 1.000

0.5 0.000 0.000 1.000

0.7 0.000 0.000 1.000

0.9 -0.052 -0.226 1.379

Table 9
OpƟmal weights from case 3, symmetric transiƟon probabiliƟes

opƟmal weights ET opƟmal weights

ఈ
starƟng state: s1 starƟng state: s2 starƟng state: s1 starƟng state: s2

ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t

0.1 -0.010 0.392 0.821 0.000 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821

0.3 -0.002 0.393 0.821 0.001 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821

0.5 0.000 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821

0.7 -0.001 0.393 0.821 -0.006 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821

0.9 -0.007 0.393 0.821 -0.017 0.395 0.821 0.000 0.393 0.821 0.000 0.393 0.821
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Table 10
OpƟmal weights from case 3, asymmetric transiƟon probabiliƟes

opƟmal weights ET opƟmal weights

ఈ
starƟng state: s1 starƟng state: s2 starƟng state: s1 starƟng state: s2

ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t

0.1 0.001 0.083 0.937 0.005 0.824 0.918 0.000 0.082 0.937 0.000 0.826 0.919

0.3 0.001 0.083 0.937 -0.001 0.826 0.919 0.000 0.082 0.937 0.000 0.826 0.919

0.5 0.000 0.082 0.937 0.000 0.826 0.919 0.000 0.082 0.937 0.000 0.826 0.919

0.7 0.000 0.082 0.937 0.001 0.826 0.919 0.000 0.082 0.937 0.000 0.826 0.919

0.9 -0.079 0.115 0.929 -0.005 0.824 0.918 0.000 0.082 0.937 0.000 0.826 0.919

Table 11
Scenario 2: one forecast has higher variance in state 1

s1 s2

ఉs1
1 1 ఉs2

1 1

ఉs1
2 1 ఉs2

2 1

ఉs1
3 0 ఉs2

3 0

ఓs1
f1 0 ఓs2

f1 0

ఙs1
f1 √1.1 ఙs2

f1 1

ఓs1
f2 0 ఓs2

f2 0

ఙs1
f2 √10 ఙs2

f2 1

ఓs1
f3 0 ఓs2

f3 0

ఙs1
f3 1 ఙs2

f3 1

ఓs1
y 0 ఓs2

y 0

ఙs1
y √16.1 ఙs2

y √2
Cov(x,w)s1 0 Cov(x,w)s2 0

Table 12
OpƟmal weights from case 4, only one state (s1)

opƟmal weights

ఈ
starƟng state: s1

ఠ0t ఠ1t ఠ2t

0.3 0.000 1.900 1.010

0.5 0.000 1.900 1.010

0.7 0.000 1.900 1.010
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Table 13
OpƟmal weights from case 4, symmetric transiƟon probabiliƟes

opƟmal weights ET opƟmal weights

ఈ
starƟng state: s1 starƟng state: s2 starƟng state: s1 starƟng state: s2

ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t

0.3 -0.001 1.452 1.050 -0.001 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050

0.5 0.000 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050

0.7 0.089 0.490 1.162 0.090 0.481 1.167 0.000 1.452 1.050 0.000 1.452 1.050

0.9 0.008 1.449 1.050 0.098 0.479 1.176 0.000 1.452 1.050 0.000 1.452 1.050

Table 14
OpƟmal weights from case 4, asymmetric transiƟon probabiliƟes

opƟmal weights ET opƟmal weights

ఈ
starƟng state: s1 starƟng state: s2 starƟng state: s1 starƟng state: s2

ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t

0.3 0.001 1.810 1.019 -0.001 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.5 0.000 1.810 1.019 0.000 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.7 0.001 1.810 1.019 0.000 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.9 0.000 1.810 1.019 -0.002 1.095 1.048 0.000 1.810 1.019 0.000 1.094 1.048
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5 Conjectures

In this secƟon I assemble general observaƟons from secƟon 4 that could be formalized as theorems given further evidence.

1. If the individual forecasts are unbiased, the opƟmal combinaƟon weights do not depend on the loss funcƟon’s asymmetry
parameter. In case 1, we have seen that the constant term in the forecast combinaƟon, ఠ0 changed as ఈ increased.
However, in the other three scenarios, the opƟmal weights were constant despite changing asymmetry preferences. In
scenarios 2 through 4, both forecasts were unbiased, only their variances and covariance changed. When cases 1 and 2
were combined (f1 was biased and had higher variance in s1), the resulƟng opƟmal weights were idenƟcal to the results
from case 1; again, the opƟmal bias captured byఠ0 was different for different ఈ-s.

2. If one of the individual forecasts are biased, the bias is adjusted for through ఠ0, the constant in the combinaƟon. The
opƟmal combinaƟonweight of the biased individual forecast is its trueweight from the data generaƟng process (conjecture
from scenario 1).

3. If the individual forecasts are uncorrelated and unbiased, the difference in their variances does not lead to differences in
their opƟmal combinaƟon weights. In case 2, we have seen that for such parametrizaƟon, the forecasts were assigned
their true coefficients from the DGP as combinaƟon weights.

4. If f1 and f2 are correlated and have different variances, then the variance-minimizaƟon objecƟve is taken into account in
esƟmaƟng their opƟmal weights. The individual forecast with higher variance is assigned a lower weight.
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6 Conclusion

This paper uses a regime switching framework and assumes asymmetric quadraƟc loss funcƟon to derive the opƟmal combina-
Ɵonweights of individual forecasts. The switching framework is based on the paper of EllioƩ and Timmermann (2005), however
I extend their setup by using asymmetric quadraƟc loss in the opƟmizaƟon problem. This is an important extension, since with
my setup it is possible to quanƟfy and analyze opƟmal forecast biases for different direcƟons and levels of asymmetry in the
loss funcƟon, contribuƟng to the literature on raƟonal forecast bias.

AŌer introducing the expected loss funcƟon and first order condiƟons in the general case, I present the numerical procedure
used to calculate the opƟmal weights in specific parametrizaƟons. The opƟmal forecast combinaƟon weights are calculated
in four scenarios exhibiƟng different bias, variance and covariance properƟes between the individual forecasts. The general
observaƟons from these examples are summerized in secƟon 5. Themost important conjecture is that assuming an asymmetric
quadraƟc loss funcƟon and regime switching, the opƟmal combinaƟonweights depend on the asymmetry parameter only in the
case when one of the forecasts are biased. In this case, for asymmetric preferences, the average loss based on the asymmetric
quadraƟc loss funcƟon strongly dominates the MSE-based average loss.

If the individual forecasts are unbiased and only their variances differ (in both uncorrelated and correlated scenarios), then the
opƟmal weights resulƟng from the asymmetric loss funcƟon are the same as those resulƟng from the mean squared loss. The
opƟmal weights are independent from the asymmetry parameter.

In future work, conducƟng simulaƟons calibrated to the real economy and analyzing the performance of the opƟmal forecast
combinaƟons introduced here might prove important.
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Appendix A DerivaƟon of the general
expected loss funcƟon

In this appendix, I show the derivaƟon of the general expected loss funcƟon in equaƟon 7 by subsƟtuƟng estశ1
ୀ ఓestశ1

ା
ఙestశ1

zstశ1
.

The forecaster needs to minimize the following expected loss:

E{L(etశ1)|It, stశ1} ୀ
k


stశ1స1

గstశ1 ,tE{((ఈ ି (2ఈ ି 1)1estశ1ಭ0)(e
2
stశ1
))|It} → min (22)

For simplifying notaƟon, I am going to remove the stశ1 subscripts from estశ1
for the following equaƟons: e.g. ఓe means ఓestశ1

.

Note that zstశ1
ୀ

estశ1షഋestశ1

estశ1

is the standardized forecast error. E[zstశ1
] ୀ 0; E[z2stశ1

] ୀ 1 Taking the expected value into parts:

E{L(etశ1)|It, stశ1} ୀ
k


stశ1స1

గstశ1 ,tE{(ఈ ି (2ఈ ି 1)1estశ1ಭ0)[e
2
stశ1
]} ୀ (23)

ୀ
k


stశ1స1

గstశ1 ,t ఈ E[ఓ2
e ା ఙ2

ez2stశ1
ା 2ఓeఙezstశ1

] ି (2ఈ ି 1)
k


stశ1స1

గstశ1 ,tE[1estశ1ಭ0 e2stశ1
] ୀ

E(z2stశ1 )స1; E(zstశ1 )స0
↓
ୀ

k


stశ1స1

గstశ1 ,t ఈ E[ఓ2
e ା ఙ2

e] ି (2ఈ ି 1)
k


stశ1స1

గstశ1 ,t

ಮ

න
0

e2stశ1
ୢF(estశ1

) ୀ

changing variables in the integral
↓
ୀ ఈ

k


stశ1స1

గstశ1 ,t[ఓ2
e ା ఙ2

e] ି (2ఈ ି 1)
k


stశ1స1

గstశ1 ,t

ಮ

න
ష ഋe

e

(ఓe ା ఙezstశ1
)2ୢF(zstశ1

)
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Appendix B EquaƟons for special
case 1

In this specificaƟon, f1 has an upward bias of 0.1 on state 1 (see table 1 and equaƟons 10-12 for full specificaƟon). The expected
loss takes the following form:

E{L(e)|I, s1} ୀ ఈ[P11(ఓ2
e,s1 ା ఙ2

e,s1) ା P12(ఓ2
e,s2 ା ఙ2

e,s2)]ି

ି (2ఈ ି 1)
⎡
⎢
⎢
⎢
⎣

P1,1

ಮ

න
ష ഋe,s1

e,s1

(ఓe,s1 ା ఙe,s1z)2ୢF(z) ା P1,2

ಮ

න
ష ഋe,s2

e,s2

(ఓe,s2 ା ఙe,s2z)2ୢF(z)
⎤
⎥
⎥
⎥
⎦

ୀ

ୀ ఈ ቄP11[(ିఠ0,s1 ିఠ1,s1 ఓf1,s1)
2 ା (2 ା (ఠ2

1,s1 ାఠ2
2,s1) ି 2(ఠ1,s1 ାఠ2,s1))]ା

ାP12[(ିఠ0,s1)2 ା (2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1))]ቅି

ି (2ఈ ି 1)

⎡
⎢
⎢
⎢
⎢
⎣

P11

ಮ

න
ഘ0,s1శഘ1,s1 ഋf1,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

ቀିఠ0,s1 ିఠ1,s1 ఓf1,s1ା

ାට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)zቇ
2

ୢF(z)ା

ାP12
ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

(ିఠ0,s1 ା ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)z)2ୢF(z)
⎤
⎥
⎥
⎥
⎦

(24)

When the starƟng state is assumed to be s2, we get a similar expected loss funcƟon to equaƟon 24, but the transiƟon probailiƟes
P21 and P22 are used in place of P11 and P12. When all elements of the transiƟon probability matrix are 0.5, the two sets of
weights are equal.
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Minimizing the expected loss in equaƟon 24 yields the following first order condiƟons:

డE{L(e)|s, I}
డఠ0

ୀ 0 ∶

ఈ ቂP11(ఠ0,s1 ାఠ1,s1ఓf1,s1) ା P12(ఠ0,s1)ቃି

ି (2ఈ ି 1)

⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1శഘ1,s1 ഋf1,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

ఠ0,s1 ାఠ1,s1 ఓf1,s1 ି ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1) z ୢF(z)

⎤
⎥
⎥
⎥
⎥
⎦

ା

P12

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

ఠ0,s1 ି ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1) z ୢF(z)
⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(25)

The opƟmal weights for the two individual forecasts,ఠ1 andఠ2 are determined by solving first order condiƟons 26 and 27:

డE{L(e)|s, I}
డఠ1,s1

ୀ 0 ∶

ఈ ቂP11[(ఠ0,s1 ାఠ1,s1ఓf1,s1)ఓf1,s1 ାఠ1,s1 ି 1] ା P12(ఠ1,s1 ି 1)ቃି

ି (2ఈ ି 1)

⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1శഘ1,s1 ഋf1,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

cs1 ቆିఓf1,s1 ା z ቀ2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)ቁ
ష1
(ఠ1,s1 ି 1)ቇୢF(z)

⎤
⎥
⎥
⎥
⎥
⎦

ା

P12

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

cs2 ቆz ቀ2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)ቁ
ష1
(ఠ1,s1 ି 1)ቇୢF(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭
(26)

where

cs1 ୀ ఠ0,s1 ାఠ1,s1 ఓf1,s1 ି ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)

cs2 ୀ ఠ0,s1 ି ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)
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డE{L(e)|s, I}
డఠ2,s1

ୀ 0 ∶

ఈ ൣP11(ఠ2,s1 ି 1) ା P12(ఠ2,s1 ି 1)൧ି

ି (2ఈ ି 1)

⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1శഘ1,s1 ഋf1,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

cs1 ቆz ቀ2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)ቁ
ష1
(ఠ2,s1 ି 1)ቇୢF(z)

⎤
⎥
⎥
⎥
⎥
⎦

ା

P12

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

cs2 ቆz ቀ2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)ቁ
ష1
(ఠ2,s1 ି 1)ቇୢF(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(27)

where

cs1 ୀ ఠ0,s1 ାఠ1,s1 ఓf1,s1 ି ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)

cs2 ୀ ఠ0,s1 ି ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)

When starƟng from s2, the transiƟon probabiliƟes in the above equaƟons change from P(1,1) and P(1,2) to P(2,1) and P(2,2),
respecƟvely.
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Appendix C EquaƟons for special
case 2

In this specificaƟon, f1 has an higher variance in state 1 (see table 4 and the setup in secƟon 4.2 for a full specificaƟon). The
expected loss takes the following form:

E{L(e)|I, s1} ୀ ఈ[P11(ఓ2
e,s1 ା ఙ2

e,s1) ା P12(ఓ2
e,s2 ା ఙ2

e,s2)]ି

ି (2ఈ ି 1)
⎡
⎢
⎢
⎢
⎣

P1,1

ಮ

න
ష ഋe,s1

e,s1

(ఓe,s1 ା ఙe,s1z)2ୢF(z) ା P1,2

ಮ

න
ష ഋe,s2

e,s2

(ఓe,s2 ା ఙe,s2z)2ୢF(z)
⎤
⎥
⎥
⎥
⎦

ୀ

ୀ ఈ ቄP11[(ିఠ0,s1)2 ା (3 ା (2ఠ2
1,s1 ାఠ2

2,s1) ି 2(2ఠ1,s1 ାఠ2,s1))]ା

ାP12[(ିఠ0,s1)2 ା (2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1))]ቅି

ି (2ఈ ି 1)
⎡
⎢
⎢
⎢
⎣

P11

ಮ

න
ഘ0,s1

ට3శ(2ഘ2
1,s1శഘ

2
2,s1)ష2(2ഘ1,s1శഘ2,s1)

൫ିఠ0,s1ା

ାට3 ା (2ఠ2
1,s1 ାఠ2

2,s1) ି 2(2ఠ1,s1 ାఠ2,s1)zቇ
2

ୢF(z)ା

ାP12
ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

(ିఠ0,s1 ା ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)z)2ୢF(z)
⎤
⎥
⎥
⎥
⎦

(28)

When the starƟng state is assumed to be s2, we get a similar expected loss funcƟon to equaƟon 28, but the transiƟon probailiƟes
P21 and P22 are used in place of P11 and P12. When all elements of the transiƟon probability matrix are 0.5, the two sets of
weights are equal.
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Minimizing the expected loss in equaƟon 28 yields the following first order condiƟons:

డE{L(e)|s, I}
డఠ0

ୀ 0 ∶

ఈ ൣP11(ఠ0,s1) ା P12(ఠ0,s1)൧ି

ି (2ఈ ି 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට3శ(2ഘ2
1,s1శഘ

2
2,s1)ష2(2ഘ1,s1శഘ2,s1)

ఠ0,s1 ି ට3 ା (2ఠ2
1,s1 ାఠ2

2,s1) ି 2(2ఠ1,s1 ାఠ2,s1) z ୢF(z)
⎤
⎥
⎥
⎥
⎦

ା

P12

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

ఠ0,s1 ି ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1) z ୢF(z)
⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(29)

The opƟmal weights for the two individual forecasts,ఠ1 andఠ2 are determined by solving first order condiƟons 26 and 30:

డE{L(e)|s, I}
డఠ1,s1

ୀ 0 ∶

ఈ ൣP11[2ఠ1,s1 ି 2] ା P12(ఠ1,s1 ି 1)൧ି

ି (2ఈ ି 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට3శ(2ഘ2
1,s1శഘ

2
2,s1)ష2(2ഘ1,s1శഘ2,s1)

cs1 ቆz ቀ3 ା (2ఠ2
1,s1 ାఠ2

2,s1) ି 2(2ఠ1,s1 ାఠ2,s1)ቁ
ష1
(2ఠ1,s1 ି 2)ቇୢF(z)

⎤
⎥
⎥
⎥
⎦

ା

P12

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

cs2 ቆz ቀ2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)ቁ
ష1
(ఠ1,s1 ି 1)ቇୢF(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(30)

where

cs1 ୀ ఠ0,s1 ି ට3 ା (2ఠ2
1,s1 ାఠ2

2,s1) ି 2(2ఠ1,s1 ାఠ2,s1)

cs2 ୀ ఠ0,s1 ି ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)
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డE{L(e)|s, I}
డఠ2,s1

ୀ 0 ∶

ఈ ൣP11(ఠ2,s1 ି 1) ା P12(ఠ2,s1 ି 1)൧ି

ି (2ఈ ି 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට3శ(2ഘ2
1,s1శഘ

2
2,s1)ష2(2ഘ1,s1శഘ2,s1)

cs1 ቆz ቀ3 ା (2ఠ2
1,s1 ାఠ2

2,s1) ି 2(2ఠ1,s1 ାఠ2,s1)ቁ
ష1
(ఠ2,s1 ି 1)ቇୢF(z)

⎤
⎥
⎥
⎥
⎦

ା

P12

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

cs2 ቆz ቀ2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)ቁ
ష1
(ఠ2,s1 ି 1)ቇୢF(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(31)

where

cs1 ୀ ఠ0,s1 ି ට3 ା (2ఠ2
1,s1 ାఠ2

2,s1) ି 2(2ఠ1,s1 ାఠ2,s1)

cs2 ୀ ఠ0,s1 ି ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)

When starƟng from s2, the transiƟon probabiliƟes in the above equaƟons change from P(1,1) and P(1,2) to P(2,1) and P(2,2),
respecƟvely.
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Appendix D EquaƟons for special
case 3

DGP:
y ୀ f2 ା e (32)

forecast:
ොy ୀ ఠ0 ାఠ1f1 ାఠ2f2 (33)

f1 ୀ f ା ఢf2 ୀ f ା ఔ (34)

Cov(f1, f2) ୀ Var(f) ା Cov(ఢ, ఔ) ୀ 1 (35)

The expected loss takes the following form:

E{L(e)|I, s1} ୀ ఈ[P11(ఓ2
e,s1 ା ఙ2

e,s1) ା P12(ఓ2
e,s2 ା ఙ2

e,s2)]ି

ି (2ఈ ି 1)
⎡
⎢
⎢
⎢
⎣

P1,1

ಮ

න
ష ഋe,s1

e,s1

(ఓe,s1 ା ఙe,s1z)2ୢF(z) ା P1,2

ಮ

න
ష ഋe,s2

e,s2

(ఓe,s2 ା ఙe,s2z)2ୢF(z)
⎤
⎥
⎥
⎥
⎦

ୀ

ୀ ఈ ቄP11[(ିఠ0,s1)2 ା 1.2 ା 2ఠ2
1,s1 ା 1.2ఠ2

2,s1 ା 2ఠ1,s1ఠ2,s1 ି 2(ఠ1,s1 ା 1.2ఠ2,s1))]ା

ାP12[(ିఠ0,s1)2 ା (2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1))]ቅି

ି (2ఈ ି 1)
⎡
⎢
⎢
⎢
⎣

P11

ಮ

න
ഘ0,s1

ට1.2శ2ഘ2
1,s1శ1.2ഘ2

2,s1శ2ഘ1,s1ഘ2,s1ష2(ഘ1,s1శ1.2ഘ2,s1

൫ିఠ0,s1ା

ାට1.2 ା 2ఠ2
1,s1 ା 1.2ఠ2

2,s1 ା 2ఠ1,s1ఠ2,s1 ି 2(ఠ1,s1 ା 1.2ఠ2,s1zቇ
2

ୢF(z)ା

ାP12
ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

ቆିఠ0,s1 ା ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)z)2ୢF(z)
⎤
⎥
⎥
⎥
⎦

(36)

When the starƟng state is assumed to be s2, we get a similar expected loss funcƟon to equaƟon 36, but the transiƟon probailiƟes
P21 and P22 are used in place of P11 and P12. When all elements of the transiƟon probability matrix are 0.5, the two sets of
weights are equal.
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Minimizing the expected loss in equaƟon 36 yields the following first order condiƟons:

డE{L(e)|s, I}
డఠ0

ୀ 0 ∶

ఈ ൣP11(ఠ0,s1) ା P12(ఠ0,s1)൧ି

ି (2ఈ ି 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට(1.2శ2ഘ2
1,s1శ1.2ഘ2

2,s1శ2ഘ1,s1ഘ2,s1ష2(ഘ1,s1శ1.2ഘ2,s1)

ఠ0,s1ି

ିට1.2 ା 2ఠ2
1,s1 ା 1.2ఠ2

2,s1 ା 2ఠ1,s1ఠ2,s1 ି 2(ఠ1,s1 ା 1.2ఠ2,s1) z ୢF(z)ା

P12

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

ఠ0,s1 ି ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1) z ୢF(z)
⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(37)

The opƟmal weights for the two individual forecasts,ఠ1 andఠ2 are determined by solving first order condiƟons 38 and 39:

డE{L(e)|s, I}
డఠ1,s1

ୀ 0 ∶

ఈ ൣP11(2ఠ1,s1 ାఠ2,s1 ି 1) ା P12(ఠ1,s1 ି 1)൧ି

ି (2ఈ ି 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට1.2శ2ഘ2
1,s1శ1.2ഘ2

2,s1శ2ഘ1,s1ഘ2,s1ష2(ഘ1,s1శ1.2ഘ2,s1)

cs1 ቆz ቀ1.2 ା 2ఠ2
1,s1 ା 1.2ఠ2

2,s1 ା 2ఠ1,s1ఠ2,s1 ି 2(ఠ1,s1 ା 1.2ఠ2,s1)ቁ
ష1
×

×(2ఠ1,s1 ାఠ2,s1 ି 1)൯ ୢF(z)൧ା

P12

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

cs2 ቆz ቀ2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)ቁ
ష1
(ఠ1,s1 ି 1)ቇୢF(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(38)

where

cs1 ୀ ఠ0,s1 ି ට1.2 ା 2ఠ2
1,s1 ା 1.2ఠ2

2,s1 ା 2ఠ1,s1ఠ2,s1 ି 2(ఠ1,s1 ା 1.2ఠ2,s1)

cs2 ୀ ఠ0,s1 ି ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)
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డE{L(e)|s, I}
డఠ2,s1

ୀ 0 ∶

ఈ ൣP11(ఠ1,s1 ା 1.2ఠ2,s1 ି 1.2) ା P12(ఠ2,s1 ି 1)൧ି

ି (2ఈ ି 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට1.2శ2ഘ2
1,s1శ1.2ഘ2

2,s1శ2ഘ1,s1ഘ2,s1ష2(ഘ1,s1శ1.2ഘ2,s1)

cs1 ቆz ቀ1.2 ା 2ఠ2
1,s1 ା 1.2ఠ2

2,s1 ା 2ఠ1,s1ఠ2,s1 ି 2(ఠ1,s1 ା 1.2ఠ2,s1)ቁ
ష1
×

×(ఠ1,s1 ା 1.2ఠ2,s1 ି 1.2)൯ ୢF(z)൧ା

P12

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

cs2 ቆz ቀ2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)ቁ
ష1
(ఠ2,s1 ି 1)ቇୢF(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(39)

where

cs1 ୀ ఠ0,s1 ି ට1.2 ା 2ఠ2
1,s1 ା 1.2ఠ2

2,s1 ା 2ఠ1,s1ఠ2,s1 ି 2(ఠ1,s1 ା 1.2ఠ2,s1)

cs2 ୀ ఠ0,s1 ି ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)

When starƟng from s2, the transiƟon probabiliƟes in the above equaƟons change from P(1,1) and P(1,2) to P(2,1) and P(2,2),
respecƟvely.
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case 4

DGP:
y ୀ f1 ା f2 ା f3 ା e (40)

forecast:
ොy ୀ ఠ0 ାఠ1f1 ାఠ2f2 (41)

f1 ୀ f3 ା ఢ
f2 ୀ f3 ା ఔ

(42)

Cov(f1, f2) ୀ Var(f3) ା Cov(ఢ, ఔ) ୀ 1 (43)

Cov(y, f1) ୀ Var(f1) ା Cov(f1, f2) ା Cov(f1, f3) ୀ 1.1 ା 1 ା 1 ୀ 3.1
Cov(y, f2) ୀ Var(f1) ା Cov(f1, f2) ା Cov(f2, f3) ୀ 10 ା 1 ା 1 ୀ 12

(44)

The expected loss takes the following form:

E{L(e)|I, s1} ୀ ఈ[P11(ఓ2
e,s1 ା ఙ2

e,s1) ା P12(ఓ2
e,s2 ା ఙ2

e,s2)]ି

ି (2ఈ ି 1)
⎡
⎢
⎢
⎢
⎣

P1,1

ಮ

න
ష ഋe,s1

e,s1

(ఓe,s1 ା ఙe,s1z)2ୢF(z) ା P1,2

ಮ

න
ష ഋe,s2

e,s2

(ఓe,s2 ା ఙe,s2z)2ୢF(z)
⎤
⎥
⎥
⎥
⎦

ୀ

ୀ ఈ ቄP11[(ିఠ0,s1)2 ା (16.1 ା (1.1ఠ2
1,s1 ା 2ఠ1,s1ఠ2,s1 ା 10ఠ2

2,s1) ି 2(3.1ఠ1,s1 ା 12ఠ2,s1))]ା

ାP12[(ିఠ0,s1)2 ା (2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1))]ቅି

ି (2ఈ ି 1)
⎡
⎢
⎢
⎢
⎣

P11

ಮ

න
ഘ0,s1

ට16.1శ(1.1ഘ2
1,s1శ2ഘ1,s1ഘ2,s1శ10ഘ2

2,s1)ష2(3.1ഘ1,s1శ12ഘ2,s1)

൫ିఠ0,s1ା

ାට16.1 ା (1.1ఠ2
1,s1 ା 2ఠ1,s1ఠ2,s1 ା 10ఠ2

2,s1) ି 2(3.1ఠ1,s1 ା 12ఠ2,s1)zቇ
2

ୢF(z)ା

ାP12
ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

ቆିఠ0,s1 ା ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)z)2ୢF(z)
⎤
⎥
⎥
⎥
⎦
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(45)

When the starƟng state is assumed to be s2, we get a similar expected loss funcƟon to equaƟon 45, but the transiƟon probailiƟes
P21 and P22 are used in place of P11 and P12. When all elements of the transiƟon probability matrix are 0.5, the two sets of
weights are equal.

Minimizing the expected loss in equaƟon 45 yields the following first order condiƟons:

డE{L(e)|s, I}
డఠ0

ୀ 0 ∶

ఈ ൣP11(ఠ0,s1) ା P12(ఠ0,s1)൧ି

ି (2ఈ ି 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට(16.1శ(1.1ഘ2
1,s1శ2ഘ1,s1ഘ2,s1శ10ഘ2

2,s1)ష2(3.1ഘ1,s1శ12ഘ2,s1))

ఠ0,s1ି

ିට16.1 ା (1.1ఠ2
1,s1 ା 2ఠ1,s1ఠ2,s1 ା 10ఠ2

2,s1) ି 2(3.1ఠ1,s1 ା 12ఠ2,s1) z ୢF(z)ା

P12

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

ఠ0,s1 ି ට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1) z ୢF(z)
⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(46)

The opƟmal weights for the two individual forecasts,ఠ1 andఠ2 are determined by solving first order condiƟons 47 and 48:

డE{L(e)|s, I}
డఠ1,s1

ୀ 0 ∶

ఈ ൣP11(1.1ఠ1,s1 ାఠ2,s1 ି 3.1) ା P12(ఠ1,s1 ି 1)൧ି

ି (2ఈ ି 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට16.1శ(1.1ഘ2
1,s1శ2ഘ1,s1ഘ2,s1శ10ഘ2

2,s1)ష2(3.1ഘ1,s1శ12ഘ2,s1)

cs1 ቀz ቀ16.1 ା (1.1ఠ2
1,s1 ା 2ఠ1,s1ఠ2,s1 ା 10ఠ2

2,s1)ି

ି2(3.1ఠ1,s1 ା 12ఠ2,s1)൯
ష1

(1.1ഘ1,s1శഘ2,s1ష3.1)ቁୢF(z)ቃା

P12

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

cs2 ቆz ቀ2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)ቁ
ష1
(ఠ1,s1 ି 1)ቇୢF(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(47)

where

cs1 ୀ ఠ0,s1 ିට16.1 ା (1.1ఠ2
1,s1 ା 2ఠ1,s1ఠ2,s1 ା 10ఠ2

2,s1) ି 2(3.1ఠ1,s1 ା 12ఠ2,s1)

cs2 ୀ ఠ0,s1 ିට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)
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డE{L(e)|s, I}
డఠ2,s1

ୀ 0 ∶

ఈ ൣP11(ఠ1,s1 ା 10ఠ2,s1 ି 12) ା P12(ఠ2,s1 ି 1)൧ି

ି (2ఈ ି 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට16.1శ(1.1ഘ2
1,s1శ2ഘ1,s1ഘ2,s1శ10ഘ2

2,s1)ష2(3.1ഘ1,s1శ12ഘ2,s1)

cs1 ቀz ቀ16.1 ା (1.1ఠ2
1,s1 ା 2ఠ1,s1ఠ2,s1 ା 10ఠ2

2,s1)ି

ି2(3.1ఠ1,s1 ା 12ఠ2,s1)൯
ష1

(ഘ1,s1శ10ഘ2,s1ష12)ቁୢF(z)ቃା

P12

⎡
⎢
⎢
⎢
⎣

ಮ

න
ഘ0,s1

ට2శ(ഘ2
1,s1శഘ

2
2,s1)ష2(ഘ1,s1శഘ2,s1)

cs2 ቆz ቀ2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)ቁ
ష1
(ఠ2,s1 ି 1)ቇୢF(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(48)

where

cs1 ୀ ఠ0,s1 ିට16.1 ା (1.1ఠ2
1,s1 ା 2ఠ1,s1ఠ2,s1 ା 10ఠ2

2,s1) ି 2(3.1ఠ1,s1 ା 12ఠ2,s1)

cs2 ୀ ఠ0,s1 ିට2 ା (ఠ2
1,s1 ାఠ2

2,s1) ି 2(ఠ1,s1 ାఠ2,s1)

When starƟng from s2, the transiƟon probabiliƟes in the above equaƟons change from P(1,1) and P(1,2) to P(2,1) and P(2,2),
respecƟvely.
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Appendix F OpƟmal weights for case
4: full tables

Table 15
OpƟmal weights from case 4, only one state (s1)

opƟmal weights

ఈ
starƟng state: s1

ఠ0t ఠ1t ఠ2t

0.1 0.083 0.517 1.171

0.3 0.000 1.900 1.010

0.5 0.000 1.900 1.010

0.7 0.000 1.900 1.010

0.9 0.113 0.444 1.184

Table 16
OpƟmal weights from case 4, symmetric transiƟon probabiliƟes

opƟmal weights ET opƟmal weights

ఈ
starƟng state: s1 starƟng state: s2 starƟng state: s1 starƟng state: s2

ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t

0.1 0.066 0.517 1.146 0.105 0.518 1.157 0.000 1.452 1.050 0.000 1.452 1.050

0.3 -0.001 1.452 1.050 -0.001 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050

0.5 0.000 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050

0.7 0.089 0.490 1.162 0.090 0.481 1.167 0.000 1.452 1.050 0.000 1.452 1.050

0.9 0.008 1.449 1.050 0.098 0.479 1.176 0.000 1.452 1.050 0.000 1.452 1.050

Table 17
OpƟmal weights from case 4, asymmetric transiƟon probabiliƟes

opƟmal weights ET opƟmal weights

ఈ
starƟng state: s1 starƟng state: s2 starƟng state: s1 starƟng state: s2

ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t ఠ0t ఠ1t ఠ2t

0.1 0.058 0.517 1.167 -0.001 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.3 0.001 1.810 1.019 -0.001 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.5 0.000 1.810 1.019 0.000 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.7 0.001 1.810 1.019 0.000 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.9 0.000 1.810 1.019 -0.002 1.095 1.048 0.000 1.810 1.019 0.000 1.094 1.048
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