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Abstract

An aggregation exercise is proposed that aims at investigating whether the
fast average adjustments of the disaggregate in�ation series of the euro area
CPI translates into the slow adjustment of euro area aggregate in�ation.
We �rst estimate a dynamic factor model for 404 in�ation sub-indices of
the euro area CPI. This allows to decompose the dynamics of in�ation sub-
indices into a part due to a common "macroeconomic" shock and to sector
speci�c "idiosyncratic" shocks. We then aggregate the dynamic equations
corresponding to the in�ation subindices and decompose the dynamics of
this aggregate into the e¤ects of the common and the idiosyncratic shocks.
Although "idiosyncratic" shocks dominates the variance of sectoral prices,
one common factor, which accounts for thirty per cent of the overall variance
of the 404 disaggregate in�ation series, is the main drivers of the dynamic
of the aggregate. In addition, the heterogenous propagation of this common
shock across sectoral in�ation rates, and in particular its slow propagation
to in�ation rates of services, generates the persistence of aggregate in�ation.
We conclude that the aggregation process explains a fair amount of aggregate
in�ation persistence.



1 Non Technical Summary

Understanding the source and degree of in�ation persistence is key both to
improve our ability to forecast in�ation and to discriminate among di¤erent
structural models of the economy. We want to know whether shocks to
in�ation are likely to have a persistent e¤ects and what sort of business cycle
adjustments govern the dynamics of in�ation and real output. On the latter
aspect, macroeconomists disagree on the importance of price stickiness (the
fact that prices are not adjusted every period) for the business cylce. If prices
are sticky, i.e. do not adjust to a change in the economic situation, then real
output need to adjust. However, if prices can adjuts to, say, the gap between
demand and supply, then this gap should be negligible. Recently, research
looked into micro level prices in order to solve this controversy. Because
micro prices tend to adjust relatively frequently (one a quarter on average in
the US and 3 times a year in the euro area), some have concluded that price
stickiness cannot explain the persistence of in�ation.
However, the theory of cross-sectional aggregation of dynamic processes

show that slow macroeconomic adjustments may very well be consistent with
much faster average speed of adjustments at the micro level. This paper uses
sectoral prices of the euro area to test whether, these explicit models of the
aggregation process can solve the apparent dilemma between the �exibility
of sectoral prices and the persistence of macroeconomic in�ation.
To start with, aggregation is a necessary step in the construction of macro-

economic price indices from survey prices on individual goods and services.
For instance, in the US the Bureau of Labor Statistics collects prices on
around 80.000 goods and services each month, which are divided into 350
categories called entry level items; those data are aggregated up to the over-
all CPI. The link between the monthly micro price quotes for each entry level
item and the aggregate CPI implies at least two layers of aggregation: The
�rst one goes from the individual price records to the price index of the rele-
vant subcategory. The second one relates the subcategories to the aggregate
CPI. This paper focuses on this second layer.
We estimate a linear dynamic factor model for 404 sub-indices of the

euro area CPI between 1985 and 2003. In the model, each in�ation series
depends on a macroeconomic shock, the common factor, and a subcategory
(or "sectoral" thereafter) speci�c idiosyncratic factor. We then aggregate
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back the 404 models of micro level in�ation and decompose the dynamics of
this aggregate into the e¤ects of the common and the idiosyncratic shocks.
Our main �ndings can be summarized as follows. First, we �nd that one

common factor accounts for 30 per cent of the overall variance of the 404
series. This share is twice as large if one focuses on low frequencies, i.e.,
on the persistent components of the series. Second, the propagation mech-
anism of shocks is highly heterogenous across sectors. This heterogeneity is
the prerequisite ingredient for the aggregation mechanism to be maximally
e¤ective. Third, the implied persistence from the aggregation exercise mim-
ics remarkably well the persistence observed in the aggregate in�ation. In
particular, the cross-sectional distribution of the micro parameters implies
an autocorrelation function of the aggregate CPI in�ation which decays hy-
perbolically toward zero and displays long memory. Altogether, the high
volatility and low persistence, observed on average at the level of sectoral
in�ation, is consistent with the aggregate smoothness and high persistence.
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1 Introduction

Understanding the source and degree of in�ation persistence is key both to
improve our ability to forecast in�ation and to discriminate among di¤erent
structural models of the economy. Successful out-of-sample forecasting of
in�ation requires in �rst instance to decide the appropriate degree of per-
sistence and, eventually, of non-stationarity of the data generating process.
The long adjustment of the aggregate in�ation appears to be well approxi-
mated by a long memory stationary process, whose autocorrelation function
decays very slowly ("hyperbolically") toward zero as the lag increases. Such
a slow rate of decay has, in the case of in�ation, led many empirical studies
to assume a unit root behavior for aggregate in�ation 1.
Turning to models of the business cycle, price stickiness is seen by many

as the key ingredient that allows micro founded DSGE models to deliver
the in�ation and output persistence that we see in macroeconomic data (see
Sbordone, 2003, Galì and Gertler, 1999, Christiano et al., 2005, Smets and
Wouters, 2003, among many others.). Critics of sticky price models have
stressed that the degree of price stickiness usually assumed are far too large
to make economic sense (Chari, Kehoe and Mac Grattan, 2000) 2 and incon-
sistent with the much faster average frequency of adjustments that can be
observed in the micro data (Bils and Klenow, 2004 and Dhyne et al., 2005).
However, the theory of cross-sectional aggregation of dynamic processes

(see Robinson, 1978, Granger, 1980, Forni and Lippi, 1997, and Za¤aroni,
2004) show that slow macroeconomic adjustments may very well be consis-
tent with much faster average speed of adjustments at the micro level. This
paper uses sectoral prices of the euro area to test whether, these explicit mod-
els of the aggregation process can solve the apparent dilemma between the
�exibility of sectoral prices and the persistence of macroeconomic in�ation.
To start with, aggregation is a necessary step in the construction of macro-

economic price indices from survey prices on individual goods and services.
For instance, in the US the Bureau of Labor Statistics collects prices on
around 80.000 goods and services each month, which are divided into 350
categories called entry level items; those data are aggregated up to the over-
all CPI. The link between the monthly micro price quotes for each entry level

1See for instance O�Reilly and Whelan (2005) and references therein.
2See also Golosov and Lucas (2006) and Mackowiak and Wiederhot (2005).
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item, whose relative frequencies of changes has been analyzed by Bils and
Klenow (2004) and Dhyne et al. (2005), and the aggregate CPI implies at
least two layers of aggregation: The �rst one goes from the individual price
records to the price index of the relevant subcategory. The second one relates
the subcategories to the aggregate CPI. This paper focuses on this second
layer.
We estimate a linear dynamic factor model for 404 sub-indices of the

euro area CPI between 1985 and 2003. In the model, each in�ation series
depends on a macroeconomic shock, the common factor, and a subcategory
(or "sectoral" thereafter) speci�c idiosyncratic factor. We then aggregate
back the 404 models of micro level in�ation and decompose the dynamics of
this aggregate into the e¤ects of the common and the idiosyncratic shocks.
Our main �ndings can be summarized as follows. First, we �nd that one

common factor accounts for 30 per cent of the overall variance of the 404
series. This share is twice as large if one focuses on low frequencies, i.e.,
on the persistent components of the series. Second, the propagation mech-
anism of shocks is highly heterogenous across sectors. This heterogeneity is
the prerequisite ingredient for the aggregation mechanism to be maximally
e¤ective. Third, the implied persistence from the aggregation exercise mim-
ics remarkably well the persistence observed in the aggregate in�ation. In
particular, the cross-sectional distribution of the micro parameters implies
an autocorrelation function of the aggregate CPI in�ation which decays hy-
perbolically toward zero and displays long memory. Altogether, the high
volatility and low persistence, observed on average at the level of sectoral
in�ation, is consistent with the aggregate smoothness and high persistence.
This work is related to a recent stream of literature that stresses the im-

portance of understanding micro heterogeneity and the aggregation process
in order to explain the dynamic properties of aggregate variables. Imbs,
Mumtaz, Ravn and Rey (2005) show that the persistence of aggregate real
exchange rates is substantially magni�ed because the dynamics of disaggre-
gated relative prices is heterogenous. Carvalho (2006) derives a general-
ized new Keynesian Phillips curve that accounts for heterogeneity in price
stickiness across sectors and shows that the process of adjustment to nom-
inal shocks tends to be more sluggish than in comparable identical �rms
economies. Altissimo and Za¤aroni (2004) present an exercise similar to the
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one produced in this paper where they show that the properties of aggregate
income for the US can be reconciled with the dynamic properties of a cross
section of individual level income extracted from the PSID panel.3

The paper is organized as follows. The following section presents the ele-
ments of cross-section aggregation relevant to our analysis. Section 3 presents
the data used in the empirical analysis and addresses the presence of common
factors across the price sub-indices. Section 4 introduces the micro model
and the estimation methodology; furthermore such Section shows the esti-
mation results and their implications for the aggregate persistence. Section
7 concludes.

2 Aggregation of heterogeneous AR(1) mod-
els

In this section we revisit, by means of examples, the relevant results on
contemporaneous aggregation of heterogeneous ARMA models, when the
number of units gets arbitrarily large (see Robinson, 1978, Granger, 1980,
and Za¤aroni, 2004). For sake of simplicity, let the ith sub-index be described
by an AR(1) model

yit = �iyit�1 + �it; (1)

where both the coe¢ cients and the random shocks vary across units. When
considering an arbitrarily large number of units, a convenient way to impose
heterogeneity is to assume that the coe¢ cients �i are i:i:d: random drawn
from some underlying distribution with probability density function f(�).
Stationarity of each of the yit then requires j �i j< 1 a:s: or, alternatively,
that f(�) has support (�1; 1). The random shock is the sum of a common

3On a related issue, Caballero and Engel (2005) have shown that if the adjustment
process is lumpy or step-wise then estimating the speed of adjustment by linear method
tend to over-estimate the speed of adjustment and that this e¤ect washes out in the case
of cross sectional aggregation but at a very low speed. Their result can be regarded as a
criticism to the common practice of using linear method to measure persistence.
Clark (2003) and Boivin et al.(2006) also stress the importance of the decomposition

of sectoral price dynamics into common aggregate shocks and sectoral idiosyncratic ones.
They however do not model the aggregation process and its impact on in�ation persistence.
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and of an idiosyncratic component

�it = ut + �it; (2)

with the ut being an i:i:d: sequence (0; �2u) and �it being an i:i:d: sequence
(0; �2�;i). The �i;t are also assumed independent across ith. The aggregate
variable is simply the sample average of the individual units.
It is well known that summing a �nite number of ARMA processes yields

again an ARMA process. For example, the sum of n distinct AR(1) models,
with di¤erent auto-regressive parameters, yields an ARMA(n; n � 1). How-
ever, when n goes to in�nity, it turns out that for a continuous f(�), the limit
of the aggregate as n!1 will not belong to the class of ARMA processes,
in contrast to the individual yit. We explore such a case.
In view of (2), by stationarity and linearity of the individual models it

follows that

Yn;t =
1

n

nX
i=1

ut
1� �iL

+
1

n

nX
i=1

�it
1� �iL

= Un;t + En;t; (3)

meaning that the aggregate could be decomposed into a common and idio-
syncratic component. Although the statistical properties of each unit are
well-de�ned, conditioning on �i, knowledge of the entire history of each yit,
or even of a �nite number n of them, is uninformative with respect to the
distribution, f(�). However, when looking at an arbitrarily large number of
units, the distribution f(�) will then entirely determine the properties of the
limit aggregate, which we de�ne as the limit of the Yn;t for n!1.
To this end, let us focus on the common component. This can be written

as
Un;t = ut + �̂1ut�1 + �̂2ut�2 + :::+ :::; (4)

setting �̂k =
1
n

Pn
i=1 �

k
i for every k. When n gets large, by the strong law

of large numbers, each �̂k will converge a:s: to the population moments of
the �i, i.e. �k =

R
�kf(�)d�: The dynamic pattern of the �k represents the

impulse response of the common shocks ut on the aggregate.
The dynamic pattern of the �k uniquely depends on the shape of the

density f(�) and in particular on its behavior around the unit root. In
particular, Za¤aroni (2004) shows that for any distribution whose behavior
around unit root can be represented, up to a scaling coe¢ cient, as (1 �
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�)q�1; q > 0, then it follows �k � ck�q as k ! 1, where � denotes
asymptotic equivalence. Thus, an exponential rate of decay of the impulse
response of the micro units (�ki ) corresponds to an hyperbolic rate of decay
for the aggregate (k�q), that depends on q. The smaller q, the denser the f(�)
distribution around the unit root (i.e. more micro units are very persistent),
the longer it takes for �k to converge towards zero (recall that q > 0 for f(�)
to be integrable and thus be a proper pdf).
To further illustrate this result, let us consider the following parametriza-

tion of f(�)

f(�) =

(
B�1(p; q)�p�1(1� �)q�1; 0 � � < 1;

0; otherwise;

corresponding to the Beta(p; q) distribution, with parameters p; q > 0. Ta-
ble 1 reports the dynamic pattern of �k for various values of q with the
mean of Beta(p; q) set equal to 0:8 (�1 = 0:8).

4 The results are contrasted
with the case of homogeneous AR(1), with impulse response given by �k1
(auto-regressive coe¢ cient equal to �1). This example illustrates the e¤ect
of aggregation taking, as a benchmark, the case where all sub-indices are
similar AR(1) processes with a root equal to 0.8, i.e are quite persistent.

Table 1: Impulse response functions of limit aggregate Ut

k f(�) �k1
q = 0:2 0:7 1 3

1 0:8 0:8 0:8 0:8 0:8

2 0:72 0:67 0:66 0:65 0:64

5 0:61 0:48 0:44 0:37 0:33

10 0:54 0:33 0:28 0:17 0:11

50 0:39 0:12 0:07 0:01 1:4� 10�5
200 0:36 0:09 0:05 0:01 4:1� 10�20

The e¤ects of heterogeneity and aggregation are substantial: the impulse
response function of the aggregate process (common component) decays to-
wards zero with a much slower decay than the homogeneous coe¢ cient case.
Note that the smaller q is, the larger is the mass of the distribution around
the unit root and the slower will the e¤ect of random shocks fade away. In

4In order to consider Beta(p; q) distributions with di¤erent q but same mean � = 0:8;

one needs to set p =
�

�
1��

�
q.
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other words, the average impulse response is markedly di¤erent from the
impulse response of the average.
The characterization of the impulse response implies a neat representa-

tion of the auto-covariance function (ACF) and spectral density of the limit
aggregate Ut. In particular, when q > 1=2, the autocovariance function of
the limit aggregate process satis�es

var(Ut) <1; cov(Ut; Ut+k) � ck1�2q as k !1; (5)

with c being an arbitrary scaling constant. One can easily see that cov(Ut; Ut+k)
decays toward zero albeit at an hyperbolically rate. When q > 1, the density
f will have little mass around the unit root (f(�) # 0 as � approaches 1)
and the cov(Ut; Ut+k) is summable, meaning that it decays to zero su¢ ciently
fast. This is known as a case of short memory. Instead, when 1=2 < q < 1,
large mass of the f(�) will be around the unit root (f(�) " 1 for � ap-
proaching 1). For this case, the cov(Ut; Ut+k) still decays toward zero but
too slowly to ensure summability, resembling the classical de�nition of long
memory. In particular, we say that Ut is a stationary process displaying long
memory with memory parameter 0 < d < 1=2 whenever

cov(Ut; Ut+k) � ck2d�1; as k !1: (6)

The previous Beta distribution example yields a particular case of (6) setting
d = 1� q. Hence, the smaller is q, the larger is the frequency of units whose
�i is close to unity, and the more persistent is the limit aggregate. Finally
in the extreme case when 0 < q < 1=2; the aggregate process will be non
stationary; this is evident since the autocovariance function does not even
decay to zero as k increases.
Two �nal remarks are warranted. First, the idiosyncratic component

can be neglected as long as the aggregate is stationary, because their e¤ect
should vanish through aggregation. However, in the case of non-stationary
aggregate, namely 0 < q < 1=2; the idiosyncratic components of the very
persistent micro processes can still show up in the aggregate. Second, the
above results can be extended within a general ARMA framework where the
implication for aggregation depend on the shape of the distribution of the
largest autoregressive root of the ARMA process (See Za¤aroni (2004) for
more details).
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3 The data

The data consist of 404 seasonally adjusted quarter over quarter (q-o-q)
in�ation rates of CPI sub-indices from France, Germany and Italy. In this
section, we �rst discuss our choice of data and sample period. Second, we
present descriptive statistics on sectoral and aggregate in�ation and their
persistence. Finally, we propose some evidence on the presence of a common
driver among the 404 in�ation subindices.

3.1 Choice of data and sample period

We use CPI data rather than HICP because the latter are available only
since 1995. However, because earlier data are not readily available in all
the countries of the euro area, we limited our data to France, Germany and
Italy. These countries together account for roughly 70 per cent of the euro
area population and consumption. The three CPI original databases together
comprise 470 sub-indices. 66 of these were not suitable for estimation of an
ARMA either because they have too few observations (e.g. some sub-indices
are available only since 2000), or because they correspond to items which
prices are set at discrete intervals (e.g. Tobacco or Postal services). We are
left with 404 "well-behaved" series that are proper to be modeled.5

We focus on the post 1985 data for two reasons. First, the German data
are not available beforehand. Second, many studies have showed that the
mid-eighties marked a signi�cant break in average in�ation in most OECD
countries. Corvoisier and Mojon (2005) suggests that Italian, French and
German time series of in�ation all admit a break in the mid-eighties. Bilke
(2005) obtains that most of the 148 French sectoral in�ation rates (exactly
our data as far as France in concerned) admit a break in their mean around
1985 and very infrequently at any other time of the 1972-2003 sample period.
Bilke argues that this coincidence of changes in the dynamics of sectoral
in�ation rates may actually re�ect a major shift in French monetary policy
regime in the mid-1980�s. According to Gressani, Guiso and Visco (1988),
such a regime shift is also very likely to happen at about the same time
in Italy. As regards Germany, where the monetary policy regime was more

5See the appendix for the source of the data and the data treatment.
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stable, the breaks in average in�ation of its two largest trade partners is a
major event in itself.
For all these reasons, we deem the post-1985 sample as appropriate to

study the persistence of in�ation in the euro area. This choice of sample
leaves us up to 77 observations of q-o-q in�ation rates for each of the 404
sub-indices.

3.2 Sectoral in�ation series: descriptive statistics

We now turn to the properties of the sub-sector in�ation rates. Table 2 re-
ports descriptive statistics of aggregate in�ation and of the distribution of the
404 sectoral in�ation rates. First, the in�ation sectoral means are quite dis-
perse with �fty per cent of their distribution ranging from 1:8 to 4:2 percent.
The mean of aggregate in�ation is 2:6 percent. Second, sectoral in�ation is
noticeably more volatile than aggregate in�ation. On average, the standard
deviation of the in�ation sub-indices is equal to 3:5 percent, i.e. nearly three
times as large the one of the aggregate. This much higher volatility is a com-
mon feature of the in�ation rates of sectoral prices as shown in Bilke (2005)
and Clark (forthcoming). Third, the persistence of sectoral in�ation rates is
also clearly smaller than the one of the aggregate in�ation series. The largest
root of the ARMA �tted to the aggregate in�ation amounts to 0:93.6 This
roughly equals to the 75th percentile of the sector�s persistence.
If the sectoral data would already display long memory, so that (6) holds

for the large majority of the sub-indices in�ation rates, then the aggrega-
tion exercise would be trivial. The last column of the table, which reports
the statistics relative to the distribution of estimated long memory parame-
ters7, con�rms that only very few sectoral in�ation rates exhibit fractional
integration. d is not di¤erent from or close to �0:5 for a vast majority of
the cross-section. However, as shown below, our estimate of d for the ag-
gregate in�ation rate is 0:18, well above the 90th percentile of the sectoral
d parameters (�0:18). Fourth, we observe sharper di¤erences in persistence
across the main sectoral groupings of the CPI (processed food, unprocessed

6The largest root is the one associated to the best ARMA(p; q) as selected by the
Akaike (AIC) criteria with 0 � p; q � 4, estimated on the q-o-q in�ation time series for
the 1985q2-2004q2 sample, using the ARMAX procedure of MatLab.

7We use the parametric Whittle estimator (see Brockwell and Davis, 1991).
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food, energy, non-energy industrial goods-NEIG- and services) than across
countries. The gap between the ARMA largest root of the in�ation process
of unprocessed food prices (0.52) and one of the energy (0.78) is wider than
between the root associated to the ARMA processes �tted on the in�ation of
German, French and Italian prices. Comparing the main groupings of CPI
sub-indices across countries, we also �nd that the sectoral hierarchy at the
euro area level applies within each country.
To conclude, we �nd clear evidence that the in�ation rates of the indi-

vidual sub-indices are way more volatile and much less persistent than the
in�ation rate of the aggregate CPI index. Moreover, volatility and persistence
are more sector than country dependent.

Table 2: Descriptive statistics of the 404 sectoral in�ation rates

(�rst two columns annualized q-o-q in�ation rates)

Mean Stand. dev. Larg. ARMA root Long mem. d

Aggregate of 404 2.6 1.1 0.93 0.18

Cross section characteristics

Weighted mean 2.6 3.6 0.78 -0.33

Unweighted mean 2.4 3.5 0.72 -0.36

Minimum -11.3 0.7 -0.81 -0.50

25th percentile 1.8 1.7 0.71 -0.50

Median 2.6 2.5 0.83 -0.43

75th percentile 4.2 4.0 0.90 -0.18

Maximum 8.1 25.4 1.02 0.32

Mean for selected sub-sets

France 1.8 3.0 0.72 -0.34

Germany 1.5 3.2 0.71 -0.34

Italy 3.6 4.3 0.73 -0.36

Processed food 2.6 3.1 0.68 -0.20

Unprocessed food 2.3 3.9 0.52 -0.33

NE Indus. goods 2.0 2.2 0.77 -0.38

Energy 1.9 8.4 0.78 -0.37

Services 3.3 3.0 0.74 -0.33
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3.3 Behind the aggregation mechanism: common shock
and heterogeneous parameters

This section assesses the two elements that play a crucial role in shaping the
e¤ect of cross-section aggregation of time series: the presence of common
shocks and the heterogeneity in the propagation mechanism of those shocks.
This means that, using the notation of Section 2, there is a common shock ut
and that the �i are di¤erent across i. We start by investigating the presence
of common shocks in the cross-section of the in�ation sub-indices before
enquiring on the heterogeneity in the propagation of this common shock
across sectors.
Following the recent literature on factor model in large cross-sections8 we

estimate the �rst ten dynamic principal components of the autocovariance
structure of the sectoral in�ation series. The dynamic principal component
analysis provides indications on the number of common shocks explaining
the correlation structure in the data (see Forni et al., 2000).
Figure 1 presents the spectrum of the �rst ten dynamic principal compo-

8See Forni et al. (2000), Stock and Watson (2002) and the application by Clark (forth-
coming) to US disaggregate consumption de�ators.
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nents9 of the 404 in�ation time series.

Figure 1: First ten principal components.

The variance of sectoral in�ation is strikingly dominated by one common
factor. Figure 1 also shows that this �rst common factor is the only one of
which the spectrum is concentrated on low frequencies. Hence this factor is
the driver of persistence observed in sectoral in�ation.10 The other factors
account for a much smaller share of the variance than the �rst one. And,
they are also more equally relevant at all frequencies, as indicated by their

9Dynamic principal components are calculated as the eigenvalue decomposition of the
multivariate spectra of the data at each frequency (see Forni et al. (2000) for details).
The autocovariance function up to eight lags has been used in the construction of the
multivariate spectral matrix. The data has been standardized to have unit variance before
estimating the multivariate spectra.
10The height of the spectrum at frequency zero is a well-known non parametric measure

of the persistence of a time series.
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relatively �at patterns in Figure 1.11

On the basis of these results, we opt for a factor model of the sectoral
in�ation series that admits a single common shock. We then model the
sectoral in�ation time series as:

yit = �0i +	i(L)ut + �it; i = 1; :::; N (7)

where ut is the common shock, �it is a stationary idiosyncratic component,
orthogonal to the common one and �0i is the constant term. 	i(L) is a
unit speci�c lag polynomial which represents the propagation of the common
shock through the yit process.
We now look at whether the propagation mechanism of the common shock

in the cross-section of price sub-indices is homogenous across items. Still
resorting to spectral analysis, we estimate the coherence of the �rst principal
component and each one of the 404 series, in order to obtain "correlation"
at di¤erent frequencies. Figure 2 reports the cross-section distribution of
the squared coherence values at three frequencies: zeros, �=6 (three years

11These �ndings are in line with Clark (2003)�s results. He also shows that the common
factor of the disaggregate US in�ation rates is more persistent than the idiosyncratic
components.
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periodicity) and �=2 (yearly periodicity) respectively.

Figure 2: Distribution of the squared coherence.

The di¤erences in the mode and the shape of the histograms across the
three frequencies is a �rst con�rmation of the presumption that the common
shock transmission to sectoral in�ation is heterogenous. The following section
models this heterogeneity.
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4 Model: speci�cation and estimation

4.1 The model

The quarterly rate of change of each sectoral price sub-index is assumed to
behave according to (7):

yit = �0i +	i(L)ut + �it (8)

= �0i +
�i(L)

Ai(L)
ut +

�i(L)

Ai(L)
�it;

with ut � i:i:d: (0; 1) and �it � i:i:d: (0; �2i ); i = 1; :::; N . The above polyno-
mials in the lag operator satisfy �i(z) 6= 0; �i(z) 6= 0; Ai(z) 6= 0 jzj � 1.
Each yit behaves as a stationaryARMA(pi; qi) with a possibly non zero mean,
where 1 � pi; qi � 2, in the estimation part, and the order qi; pi of the models
are estimated based on the Akaike criteria. Note that we are imposing that
the common part, involving the ut, and the idiosyncratic part, involving the
�i;t, have the same autoregressive structure but they are not constrained in
the moving average part. Moreover, for the sake of simplicity, we are also
assuming that both the common and the idiosyncratic component have an
MA component at most of order qi in both cases. These assumptions simplify
greatly the estimation procedure and, at the same time, allow a su¢ ciently
rich dynamics. Note, however, that the sectoral coe¢ cients are estimated
freely so that, for example, the parameters in �i(L) and �i(L) are sector
speci�c.

4.2 The estimation strategy

The estimation of model (8) is non standard. First, the large dimensionality
(large N) rules out the recourse to the conventional Kalman �lter approach.
Second, the recent techniques for estimation of dynamic factor models, all
based on the principal component approach such as Stock and Watson (2002)
and Forni et al. (2005), would be inappropriate in our model due to the
presence of sector speci�c autoregressive components, Ai(L). This is why we
estimate the parameters of the model (8) by means of a multi-stage proce-
dure:
(i) For each unit i, we estimate an ARMA(pi; qi) with non-zero mean but
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without distinguishing between the common and the idiosyncratic compo-
nent. In fact the sum of two moving average components of �nite order,

�i(L)ut + �i(L)�it � Bi(L)zit;

turns out to be an MA of the same order with polynomial Bi(L) and an
innovation sequence zi;t. Moreover, we do not need to specify the coe¢ cients
of Bi(L) as a function of the coe¢ cients �i(L); �i(L), in order to obtain
consistent estimate of the constant term, �0i; and of the coe¢ cients of au-
toregressive part, Ai(L);
(ii) we average the estimated MA component B̂i(L)ẑi;t across i. This

yields an estimate bx(N)t of
�
N�1PN

i=1 �i(L)
�
ut, where the approximation im-

proves asN grows since, asN !1, the idiosyncratic component
�
N�1PN

i=1 �i(L)�i;t

�
vanishes. Thus we �t a �nite order MA to the estimated bx(N)t and obtain an
estimate of the common innovation ût;
(iii) using the ût as an (arti�cial) regressor, we �t a ARMAX(pi; qi; qi)

process (an ARMA process with exogenous regressors) to each yit, in order
to obtain also consistent estimate of the coe¢ cients of �i(L) and �i(L).
The steps (ii) and (iii) of the procedure can be iterated in order to improve

the estimate of the common shock as well as of the autoregressive parameters.
Such procedure does not require any distributional assumption. Implicitly it
requires that both N; T to diverge to in�nity with N=T decreasing toward
zero, or at most with N; T diverging at the same rate. Estimation of each
of the ARMA and MA processes is carried out using the Kalman �lter12.
Details can be found in Altissimo and Za¤aroni (2004).

4.3 Results

4.3.1 Results for sectorial in�ation rates

This section brie�y describes the estimates of over three thousand parame-
ters (8 parameters for each of the 404 time series) of the model. First, the
estimated common shock ut turns out to be white, with a non-signi�cant

12The described iterative procedure is similar to a recent modi�cation of the EM al-
gorithm for the estimation of factor models in the presence idiosyncratic autoregressive
components proposed independently by Stock and Watson (2005).
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autocorrelation, corroborating the i:i:d: hypothesis. Second, we compare (in
Figure 3) the distribution of the �rst loading of the common shock, which
is a measure of the size of the e¤ect of the common shock in the individual
time series, with the cross-sectional distribution of the standard deviation of
the idiosyncratic components. The idiosyncratic volatility �i is substantially
larger than the common shock volatility, six times larger. The median of
the distribution of the estimated �rst loading is 0:06; whereas we obtain 0:38
for the standard deviation of the idiosyncratic component. This strikingly
con�rms that most of the variance of sectoral prices is indeed due to sector
speci�c shocks.

Figure 3: Distributions of �0i and �i:

Third, we turn to Ai(L), which dominates the dynamic e¤ects of the common
shock on sectoral in�ation. In Figure 4 we report the distribution of the
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signed modulus of the maximal autoregressive root of such polynomia.13 This
distribution is dense near unity with a median of 0.82, a mode at 0.93 and a
long tail to the left.

Figure 4: Max autoregressive roots.

Fourth, we compare the dynamics of sectoral in�ation rates and main CPI
groupings in Table 3. The Table reports the number and the relative fre-
quency of series having roots above given thresholds in speci�c sub-category
as well as the total weight of such series in the overall CPI.

Table 3: Summary statistics of estimated parameters for sectorial in�ation

rates

13We did sign such modulus so that we could distinguish between the e¤ect of a negative
root from a positive one and also consider the e¤ect of complex roots.
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# CPI weight Largest root >0.875 Largest root >0.925

# freq CPI weight # freq CPI weight

EA3 404 1 142 0.35 0.48 54 0.27 0.26

Germany 87 0.42 31 0.34 0.23 11 0.12 0.14

France 147 0.30 55 0.38 0.15 23 0.17 0.06

Italy 170 0.28 56 0.35 0.11 20 0.12 0.06

Processed food 65 0.14 9 0.14 0.03 2 0.03 0.01

Unprocessed food 42 0.07 7 0.17 0.01 3 0.07 0.00

Non-energy ind. goods 167 0.33 68 0.42 0.14 25 0.15 0.08

Energy goods 18 0.07 8 0.50 0.05 5 0.31 0.03

Services 114 0.39 50 0.44 0.25 19 0.17 0.14

Looking at the cross country pattern, highly persistent sub-sectors in
Germany account for a much larger share of the overall euro area CPI; this
e¤ect is mainly due the high persistence (autoregressive root of 0.96) of Ger-
man housing expenditure in�ation14, which accounts for around 10 per cent
of the overall CPI. Furthermore, while Energy and Service has the highest
frequency of persistent series, Services and, to some degree, Non-energy in-
dustrial goods sub-sectors turn out to be more relevant for the dynamics of
aggregate in�ation because they have a higher weight in the consumption
basket.

4.3.2 Results for aggregate in�ation rate

Given the estimates of the micro parameters, we are now in a position to
infer the dynamic properties of the aggregate induced by the behavior of the
micro time series. We consider three di¤erent types of aggregation schemes.
First, we reconstruct the aggregate as an exact weighted average of the indi-
vidual micro time series and in this way we exactly recover the contribution

14The subindex is apartment rent (incl. the value of rent in case of owner-occupied
houses), which account for around 20 per cent of the German CPI, while it is only 3 per
cent of the Italian and French.
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of the common shocks to the aggregate in�ation and to aggregate persis-
tence. Second, we exploit the theoretical link between the distribution of the
largest autoregressive root of sectoral in�ation rates and the autocovariance
structure of the aggregate, as presented in section 2, to infer the dynamic
properties of the latter. Third, we consider a so-called naive aggregation
scheme based on the (wrong) presumption that the aggregate model has the
same functional form as the individual models, in our case an ARMA.

Exact aggregation
The aggregate in�ation data is de�ned as the weighted average of the sectoral
in�ation rates.15 Therefore using the estimates of the model in (8) it follows:

Yn;t =
nX
i=1

wiyit

=

nX
i=1

wib�0i + ut nX
i=1

wi
b�i(L)bAi(L) +

nX
i=1

wi
b�i(L)bAi(L)�it

� b�0 + b	(L)ut + b�t
where the wi are the euro area CPI weights. So the aggregate in�ation is
decomposed into two components, one associated with the common shocks,
ut; and its propagation mechanism, b	(L); and a second associated with the
micro idiosyncratic process, �t: Figure 5 shows the reconstructed aggregate,
Yn;t; versus its common component, b	(L) � ut: There is a high correlation
between the two components, around 0.76, but the former is clearly more
volatile pointing to the fact that the idiosyncratic component �t is still rel-
evant in the aggregate. We however stress that given that the idiosyncratic
component has little persistence, b	(L) � ut constitute a new measure of
core in�ation that can be of direct relevance for monitoring and forecasting

15Statistical o¢ ces do not aggregate in�ation rates but �rst they aggregate price indices
and then compute the aggregate in�ation rate. Here we ignore the possible e¤ect induced
by such non-linear transformation. In fact it can be shown that this is not relevant for the
dynamic properties of the aggregate.
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in�ation.

Figure 5: Aggregate in�ation (solid line) and common component.

The aggregate propagation mechanism, b	(L); is a weighted average of the
propagation at micro level, b	i(L) and its estimates can be used to recover
the autocovariance structure of the component of the aggregate in�ation that
is driven by the common shock, i.e.: b	(L) � ut: The upper panel in Figure
6 shows the autocovariances of aggregate in�ation, Yn;t; (solid line) versus
the one of b	(L)� ut (dotted line), while the lower panel reports the average
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autocovariance of micro process.16

Figure 6a:Autocovariances aggregate (solid) and common

component.

16Two graphs were needed given the di¤erent scale of the results.
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Figure 6b: Average autocovariance.

The autocovariance of the reconstructed common components tracks well the
covariance structure of the aggregate data, in particular in term of its decay.
The variance of the aggregate in�ation remains larger than the one of the
common component, i.e. the component associated with micro idiosyncratic
noise is still relevant in the aggregate data, even if it seems to have little or no
dynamic structure. The contrast between the results across the two panels
of Figure 6 is even more striking. Average contemporaneous variance of the
micro data is an order of magnitude larger than the one of the aggregate data
or of the common component in the aggregate data but it decays to zero very
quickly. Finally, Figure 7 compares the autocorrelation of the aggregate and
the one of the common component. The same conclusion emerges. The
common component is the main driver of the dependence of the aggregate
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data and it properly captures the slow decay of autocorrelation of the data.

Figure 7: Autocorrelation of aggregate in�ation (solid line) and of

the common component.

Asymptotic aggregation
The above discussion has been based on the analysis of the exact autoco-
variance structure of the common component, given that in the exercise at
hand we have the knowledge of all the relevant micro processes. Similar
conclusion can also be derived by analyzing the cross-sectional distribution
of the largest root of the autoregressive part (Figure 4) using the analytic
apparatus presented in Section 2.
However we �rst need to take into account that sectors have di¤erent

weights in the aggregate. Therefore the distribution in Figure 4 which depicts
the distribution of the 404 maximal roots is not directly relevant because the
weighting scheme in the aggregation can change the relative importance of
the sectors for the dynamics of the aggregate. To overcome this problem, we
implement a relative re-weighting of the 404 maximal autoregressive roots
in function of the relative weights of the respective sectors. Precisely, we
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bootstrap a sample of 10.000 data out of the 404 roots with relative frequency
equal to the weighting scheme; hence roots associated to sectors will a larger
weight will be re-sampled more often. The density function associated to
this simulated sample is compared to the equal weight one in Figure 8.

Figure 8: Renormalized distribution of max autoregressive root (solid) and

original one.

The implication for aggregation are associated to the behavior near unity of
such new distribution. In particular, the above distribution can be approxi-
mated near unity as

f̂(�) � c(1� �)�0:13 as �! 1�;

implying that our estimate of the q as in Section 2 is equal to 0:87: Following
(5) in Section 2 and the results in Za¤aroni (2004), it is possible to show
that the autocovariance function (ACF) of the common component of the
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aggregate, b	(L)� ut; satis�es:
cov(b	(L)� ut; b	(L)� ut+k) � c k�0:74 as k !1:

According to de�nition in Section 2, the process has long memory with para-
meter d = 0:13. Therefore, the common component of the aggregate in�ation
appears to be a stationary but long memory process. Therefore, the ACF
decays toward zero with an hyperbolic decay, and thus is markedly di¤erent
from the behavior of the sectoral in�ation processes.
Moreover, we estimate the memory parameter using now the aggregate

reconstructed data using the Whittle parameteric estimator (see Brockwell
and Davis, 1991). The direct estimate of the memory parameter on aggregate
data turns out to be equal to 0:18, with standard error of the estimate equals
to 0:24; which, given the distribution reported in the last column of Table 2,
is reasonably close to 0:13; as recovered from the micro structure. Therefore,
the aggregate data presents a long memory behavior that is not present in the
micro time series; such a long memory behavior appears to be fully accounted
for by aggregation.

Naive aggregation
The above results are framed in term of autocovariance function and they
show why the di¤erence in persistence between the micro dynamic and macro
one are not necessarily inconsistent. Another way to highlight the e¤ects of
aggregation on persistence is to consider the following naive exercise.
We construct an hypothetical ARMA process, whose roots are the mean

of the individual roots of the 404 estimated ARMAs. Then we contrast the
impulse response function to a common shock of such a hypothetical ARMA
with the one of the common component, b	(L)�ut: The idea of the exercise is
to see the aggregate response to shock in case the propagation mechanism is
equal across agents versus the case of di¤erent propagation mechanisms, i.e.,
to quantify the e¤ect of heterogeneity and aggregation17. Figures 9 compares

17See also the presentation of similar exercises in the context of microfounded model,
though on hypothetical distribution by Carvalho (2006).
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the impulse response for the ARMA and the one implied by b	(L):

Figure 9: Impulse response of the common component and of the naive

ARMA.

The exercise is quite instructive. In the case of a homogeneity of the micro
propagation mechanism, after four years (16 periods on the x axis in Figure
9) a shock ut would be completely absorbed, while in reality, due to the
presence of heterogeneity and of some very persistent micro units, around 20
per cent of the original shock has not been absorbed.
Summarizing, we can claim that the analysis of the micro determinants

of the aggregate in�ation supports the view that aggregate in�ation in our
sample period can be well described by a stationary but long memory process.
We have shown that starting from very simple ARMA process at micro level
we have been able to properly reconstruct the dynamic properties of the
aggregate. We have also shown that the micro volatility and low persistence
can be squared with the aggregate smoothness and persistence.
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5 Conclusion

In this paper, we build on the heterogeneity in the in�ation dynamics across
CPI sub-indices and investigate the role played by cross-sectional aggrega-
tion in explaining some of the di¤erence observed between micro and macro
evidence regarding in�ation dynamics. We focus in particular on the link
between CPI sub-indices and the aggregate CPI.
We estimated time series models for 404 sub-indices of �items/sectors�

of euro area CPI between 1985 and 2003. We �tted ARMA processes at
micro level distinguishing the propagation mechanism of the common and
idiosyncratic shocks. Our �rst result is that the propagation mechanism of
shock at micro level across sectors is very heterogenous. This heterogeneity
implies a non trivial link between sectoral and aggregate persistence. We
perform an aggregation exercise and compute the aggregate persistence as
a function of the 404 sectors persistence. Our model is able to square the
volatility and low persistence observed, on average, at the level of sectoral
in�ation with the smoothness and persistence of the aggregate. The persis-
tence that we obtain through this aggregation exercise mimics remarkably
well the persistence observed in the aggregate in�ation. In particular, aggre-
gate in�ation turns out to be a stationary but long-memory process and the
persistence of the aggregate in�ation is mainly due to the high persistence of
some sub-indices mainly concentrated in the service sector, such as housing
cost in Germany.
Altogether, this paper demonstrated the importance of heterogeneity and

aggregation for understanding the persistence of in�ation at the macroeco-
nomic level. We leave the design and estimation of stylized models of the
business cycle that can be consistent with both heterogeneity at the micro
level and the implied persistence at the macro level for future research.
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Data appendix
The French CPI sub-indices
The French data consist of 161 monthly sub-indices. They are available

since 1972 and they have been back-dated the INSEE CPI (1998 base year).
The later is publicly available since 1990 for 148 sub-indices while the prices
of 13 items enter the CPI basket only after this date.
The German CPI sub-indices
The German data consist of 100 prices of the 3 Digits classi�cation of

HICP sub-indices. These prices are available monthly from early 90s to
2004.
To back date the HICP, we used about 150 3-digits sub-indices of the

1990 base year CPI data, which are available between 1985 and 1995.
The Italian CPI sub-indices
The Italian data consist of 167 monthly indices underlying the Italian

CPI constructed by ISTAT. The data, kindly provided by the Bank of Italy
Research Department, start in 1980 and were rebased to 1995 equal to 100.
The full list, and corresponding description, of the sectors is available upon
request from the authors.
Seasonal adjustment
The data were seasonally adjusted with TRAMO-SEATS. The main ad-

vantage of this routine is that it is used regularly for the o¢ cial HICP sta-
tistics, and that it allows for integrated seasonal components. This latter as-
pect is particularly important for our data because EUROSTAT has required
that, from the mid-1990�s on, the biannual sales campaigns are re�ected in
the HICP sub-indices of interest. This may a¤ect in particular our French
and our German data. As a matter of facts, the Banca d�Italia keeps track
of the prices both with the new method and consistently with the historical
data. And we used the historically consistent series.
In the seasonal adjustment procedure, we utilized the longest available

monthly series, i.e. 1972-2004 for France, 1981-2004Q2 for Italy and 1985-
2004 for Germany.
The monthly price level has been transformed into quarterly average and

the analysis has been performed on quarter on quarter in�ation rates. We use
this frequency both to limit the noise of the monthly series and to compare

28



directly our results with the business cycle literature and available studies of
sectoral in�ation in the euro area (e.g. Lünnemann and Mathä, 2004) and
elsewhere Cecchetti and Debelle (2004).
Data cleaning
We further clean our data according to the following steps. First, we

eliminate all the series that start only in the mid 1990�s. This is because these
series do not have enough degrees of freedom to carry out the estimation of
ARMA models. We exclude from our sample 8 French and 9 German sub-
indices that are available only after 1995, 1998 or 2000.
Second, we eliminate all the series which are adjusted at rare discrete

steps. The typical such series include the price of Tobacco or mailing services.
We exclude 6 German, 4 French and 12 Italian sub-indices of this type.
Altogether we keep 404 sub-indices out of the 444 available in the initial

dataset, 377 of which are available from 1985 Q1 to 2004Q2. A last step
before, the estimation is to corrections of outliers in the in�ation series.
We �lter out these outliers by replacing observations that are more than 3
standard deviations away from the time series mean of each in�ation series by
a local median observation. This outlier correction mainly eliminates discrete
shifts in the levels of the price indices.
Figure A1 plots the time series of the aggregates that we can reconstruct

from the well-behaved in�ation series at the national level and for the aggre-
gate of the three countries (using 1995 PPP-GDP weights of 0.422, 0.296 and
0.282 for Germany, France and Italy, respectively) together with the o¢ cial
CPI in�ation rate. We take from the picture that our sub-set of well-behaved
sectoral in�ation series o¤ers, when aggregated, a reasonable approximation
of the o¢ cial aggregate index.
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Figures

Figure A1: Aggregate q-o-q "o¢ cial" and reconstructed in�ation rates
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