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Abstract. If long maturity bonds are traded frequently and traders have non-nested in-
formation sets, speculative behavior in the sense of Harrison and Kreps (1978) arises. Using
a term structure model displaying such speculative behavior, this paper proposes an em-
pirically plausible re-interpretation of predictable excess returns that is not based on the
value traders attach to a marginal increase of wealth in different states of the world. It is
demonstrated that (i) dispersion of expectations about future short rates is sufficient for in-
dividual traders to systematically predict excess returns even in a model with constant risk
premia and (ii) the new term structure dynamics driven by speculative trade is orthogonal
to public information in real time. The model is estimated using monthly data on US short
to medium term Treasuries from 1964 to 2007 and it provides a very good fit of the data.
Speculative dynamics are found to be quantitatively important, accounting for a substantial
fraction of the variation of bond yields and is more important at long maturities. We also
show that a three factor no-arbitrage factor model would find overwhelming but misleading
evidence in favor of time varying risk premia if the world is characterized by the model
presented here.

Keywords: Term structure of interest rates; Speculative dynamics; Excess returns; Non-
nested information; Private information

1. Introduction

If long bonds are traded before they mature, the price an individual trader will be willing
to pay for a bond depends on how much he thinks other traders will be willing to pay for
it in the future. If traders have access to different information, this price may differ from
what an individual trader would be willing to pay for the bond if he had to hold it until it
matures and “speculative behavior” in the sense of Harrison and Kreps (1978) arises. That
is, the possibility of reselling a bond changes its equilibrium price as traders exploit what
they perceive to be market misperceptions about future short rates.
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In this paper we present a term structure model populated with rational traders that
engage in the type of speculative behavior described above. We use this model to argue
that relaxing the assumption that all traders have access to the same information introduces
empirically relevant new dynamics to the term structure of interest rates. More specifically,
we apply the properties of orthogonal projections to show that if traders’ information sets are
non-nested, (i) individual traders can systematically predict excess returns (defined as the
difference in return on holding an n period bond until it matures and holding a sequence of
short bonds for n periods) even in a model with constant risk premia. (ii) Individual traders
can predict and take advantage of other traders’ prediction errors even though no trader
on average is better informed than other traders and (iii) that the speculative dynamics
introduced by non-nested information sets are orthogonal to public information.

Despite the fact that the speculative dynamics are orthogonal to public information, we
can both quantify their importance as well as back out an estimated historical time series
of their evolution in the past. This is possible since we as econometricians have access to
the full sample of data and the speculative term is orthogonal only to public information
available to traders in real time. That is, we can use public information available in period
t+s : s > 0 to back out an estimate of the speculative term in period t. The estimated model
suggest that speculative dynamics are quantitatively important and explains a substantial
fraction of the variation in observed US bond yields.

A necessary condition for traders to have any relevant private information about future
bond yields is that bond prices cannot perfectly reveal the state of the economy. Recent
statistical evidence appear to support this view. In a few closely related papers, Cochrane
and Piazzesi (2005, 2008) and Duffee (2008) present evidence suggesting that the factors that
can be found by inverting yields are not sufficient to optimally predict future bond returns.
They find that while the usual level, slope and curvature factors explain virtually all of the
cross sectional variation, additional factors are needed to forecast excess returns. Ludvigson
and Ng (2009) provide more evidence that current bond yields are not sufficient to optimally
forecast bond returns. They show that drawing on a very large panel of macroeconomic
data helps predict deviations from the expectations hypothesis, or equivalently, future excess
returns, compared to using only yield data. Stated another way, these statistical models all
suggest that linear combinations of current bond yields are not sufficient to predict future
bond yields optimally.

In addition to the empirical evidence cited above, we also have a priori reasons to believe
that bond prices should not reveal all information relevant to predicting future bond returns.
Grossman and Stiglitz (1980) argued that if it is costly to gather information and prices are
observed costlessly, prices cannot fully reveal all information relevant for predicting future
returns. For the bond market, the most important variable to forecast is the short interest
rate. In most developed countries, the short interest rate is set by a central bank that
responds to macroeconomic developments. If it is costly to gather information about the
macro economy, Grossman and Stiglitz’s argument implies that bond prices cannot reveal
all information relevant to predict future bond returns. This is indeed what the evidence in
Ludvigsson and Ng (2009) suggests.

If prices do not reveal all information relevant for predicting bond returns, it becomes more
probable that traders have non-nested information sets, that is, traders will have access to
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and use different information when trading.1 With the exceptions of bond prices, statements
by central bank officials and some well publicized macroeconomic data releases, it is hard
to think of sources of information that are public in the strong common knowledge sense
of the word. In this paper we allow for traders to have private information that they can
exploit when trading. This also seems to accord well with casual observation that at least
one motive for trade in assets is possession of information that is not, or at least is not
believed to be, already reflected in prices.

One implication of non-nested information sets is that expectations across individual
traders will differ which provides us with another way of gauging the plausibility of this
assumption. While bond traders’ expectations are unobservable, Swanson (2006) presents
evidence that professional forecasters’ expectations of future interest rates are surprisingly
widely dispersed. Citing numbers from the Blue Chip Survey of professional forecasters from
1992-2004, Swanson reports that the spread between the 10th and the 90th percentile of in-
dividual forecasts of the 3-month Treasury Bill rate 4 quarters ahead fluctuates between 80
and 220 basis points.

There is a growing literature analyzing asset pricing models under non-nested information
sets (or one of its synonyms, see Footnote 1). Singleton (1987) is an early reference of a
dynamic asset pricing model with an information structure similar to the one presented
here. More recent examples include papers by Allen, Morris and Shin (2005), Kasa, Walker
and Whiteman (2008), Bacchetta and van Wincoop (2005, 2007), Cespa and Vives (2009)
and Makarov and Rytchkov (2009). These papers either present purely theoretical models
or models calibrated to explain some feature of the data. In this paper, we estimate the
model directly using Bayesian methods with uniform priors truncated only to ensure that
the model is stationary and that variances are non-negative. As far as the author knows,
this is the first paper to estimate a model with non-nested information sets and the fit of the
model is surprisingly good. The model is also used to quantify the dispersion of expectations
implied by the posterior parameter estimates.

Using the estimated model to generate artificial data, we further show that an econome-
trician estimating an affine three factor no-arbitrage model would find overwhelming but
misleading statistical evidence in favor of time varying risk premia if the model with non-
nested information sets was the true data generating process. The estimated model also
displays similar dynamics to those documented by Duffee (2008) and Cochrane and Piazzesi
(2005, 2008). Factors that play practically no role in explaining the cross section of bond
yields have predictive power for future yields. This is arguably an intrinsic feature of models
with imperfectly informed traders. If the true state of the economy could be summarized
by three factors that are an exact linear function of yields, no other factor could possibly
add predictive power. We demonstrate that the model presented here can account for the
evidence in Duffee (2008) by computing Duffee’s impulse responses estimated on artificial
data generated from our model.

1What I in this paper call non-nested information sets is also known as disparately informed traders
(Singleton 1987), private information (Sargent 1991), heterogenous information (Bacchetta and van Wincoop
2006), dispersed information (Angeletos and Pavan 2009) and imperfect common knowledge (Woodford 2002,
Adam 2006 and Nimark 2008). The term non-nested information connects naturally to the language of
orthogonal projections used in this paper.
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The next section presents a simple bond pricing model that allows for traders to have non-
nested information sets. Section 3 uses the properties of orthogonal projections to derive
the main theoretical results and Section 4 contains the estimated model and discusses the
quantitative importance of speculative dynamics. Section 5 relates the model to a popular
class of alternative models. Section 6 concludes and the Appendix contains details of how the
model was solved and lists some of the properties of orthogonal projections used in Section
3.

2. A Bond Pricing Model

In this section we present a simple bond pricing model. The current price of a bond de-
pends on the average expectation of the price of the same bond in the next period, discounted
by the one period interest rate. In the absence of private information, the model implies
that the expectations hypothesis holds and the simplicity of the model helps to highlight the
consequences for term structure dynamics of relaxing the assumption that traders all have
access to the same information.

2.1. Demand and supply of long maturity bonds. Traders are indexed by j ∈ (0, 1)
and maximize the discounted expected utility of future log consumption

Ut(j) =
∞∑
s=0

βsEt [logCt+s(j) | Ωt(j)] (2.1)

where β is the (common) discount rate and Ωt(j) denotes trader j’s information set. Con-
sumption Ct(j) by trader j is financed solely from his wealth Wt(j) determined by the
intertemporal budget constraint

Wt+1(j) = (1 + rpt (j)) [Wt(j)− Ct(j)] (2.2)

where rpt (j) is trader j’s portfolio return. Traders can buy either a riskless one period bond
with return rt or zero coupon bonds of longer maturities. Campbell and Viceira (2002) show
that the vector of optimal portfolio weights of zero coupon bonds αt(j) is then given by

αt(j) = Σ−1
(
E
[
b

(−1)
t+1 | Ωt(j)

]
− bt − rt

)
+

1

2
Σ−1diag(Σ) (2.3)

where bt is a vector of (log) bond prices for bonds of different maturities, and the vector

b
(−1)
t+1 contains the prices of the same bonds in the next period when they have one period less

to maturity. Σ is the conditional covariance of bond prices. (The optimal portfolio weights
are exact with log utility.) The vector of bond supply st is stochastic and proportional to
aggregate wealth

st =

∫
Wt(j)djΣ

−1ηt : ηt ∼ N (0,Ση) (2.4)

where to simplify notation, the vector of supply shocks ηt are normalized by the inverse of the
conditional variance of bond prices Σ−1. The supply shocks ηt play a similar role here as the
noise traders in Admati (1985), that is, they prevent equilibrium prices from fully revealing
the information held by other traders. To solve for equilibrium prices, we will assume that the
distribution across traders of current wealth is approximately independent of the distribution
of current bond price expectations so that

∫
Wt(j)αt(j)dj ≈

∫
Wt(j)dj

∫
αt(j

′)dj′. This is
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a valid assumption to make since ŵt(j) ≡ wt(j) −
∫
Wt(j)dj is a unit root process, while

α̂t(j) ≡ αt(j)−
∫
αt(j)dj is stationary. For a sufficiently large t, the correlation between ŵt(j)

and α̂t(j) is thus approximately zero.2 Equating aggregate demand
∫
Wt(j)dj

∫
αt(j

′)dj′ and
supply st gives the log price bnt of an n periods to maturity zero coupon bond

bnt = cn − rt +

∫
E
[
bn−1
t+1 | Ωt(j)

]
dj − ηnt (2.5)

where cn is the relevant element of −1
2
diag(Σ). The price of an n periods to maturity bond

in period t thus depends on the average expectation in period t of the price of a n−1 period
bond in period t+1. The more a trader expects to be able to sell a bond for in the future, the
more is he willing to pay for it today. However, risk aversion prevents the most optimistic
trader from demanding all of the available supply. Since we are primarily interested in the
effects of information we will dispense with the (constant) term premia cn for most of the

analysis below, and denote the deviation of the log price from its mean b̃nt so that

b̃nt = bnt − cn. (2.6)

2.2. The term structure of interest rates. The bond price formula (2.5) can be used
to price any maturity bond. The procedure is similar to deriving bond prices under a no
arbitrage assumption, though we need to be more careful in specifying the information sets
that the expectations that govern prices are conditioned on. As usual, we can start from

b̃1
t = −rt (2.7)

and apply (2.5) recursively. The log price of a two period bond then is

b̃2
t = −rt −

∫
E [rt+1 | Ωt(j)] dj + η2

t (2.8)

The price of a three period bond according to (2.5) is given by the average expectation of
the price of a two period bond in t+ 1, discounted by the short rate rt. Leading (2.8) by one
period and substituting into (2.5) with n = 3 gives

b̃3
t = −rt −

∫
E [rt+1 | Ωt(j)] dj (2.9)

−
∫
E

[∫
E [rt+2 | Ωt+1(j′)] dj′ | Ωt(j)

]
dj

+η3
t

2Readers interested in the interaction between wealth dynamics and heterogenous beliefs can consult
Xiong and Yan (2009) who analyze this issue in a model with boundedly rational traders.



6 KRISTOFFER P. NIMARK

Applying the same procedure recursively to derive the price of an n periods to maturity
bond gives

b̃nt = −rt −
∫
E [rt+1 | Ωt(j)]− (2.10)∫

E

[∫
E [rt+2 | Ωt+1(j′)] dj′ | Ωt(j)

]
dj + ...

...+

∫
E

[∫
E

[
...

∫
E [rt+n−1 | Ωt+n−2(j′′)] dj′′... | Ωt+1(j′)

]
dj′ | Ωt(j)

]
dj + ηnt

The yield of a bond with n periods to maturity is (as usual) given by dividing the log bond
price by n

ynt = −n−1b̃nt (2.11)

As has been noted before (e.g. Allen, Morris and Shin (2006)), the fact that (2.10) contains
average expectations of average expectations (and so on) prevents us from applying the law
of iterated expectations to solve for bond prices if traders have non-nested information sets.
Before analyzing the consequences of this, we first establish that in the absence of supply
shocks and with only common information, the model does indeed imply that the expectation
hypothesis hold. Below, the properties of orthogonal projections will be used extensively and
we therefore first define orthogonal projections and the relevant inner product space.

2.3. Projections and A Common Information Benchmark. In the next section, the
properties of orthogonal projections will be used to analyze the implications of non-nested
information sets. However, we first apply some of these tools to the familiar case where all
traders share the same information set. This section can thus be thought of as a benchmark,
confirming that in the absence of private information the model implies that the expectation
hypothesis hold. (For readers unfamiliar with orthogonal projections, the Appendix lists
some of the properties that will be particularly useful below. For more details see Brockwell
and Davis (2006).)

In the model presented below, all bond yields, the factors that drive them and the signals
that traders observe will be elements of the inner product space L2, which we now define.

Definition 1. (The inner-product space L2.) The inner product space L2 is the collection C
of all random variables X with finite variance

EX2 <∞ (2.12)

and with inner-product

〈X, Y 〉 ≡ E (XY ) : X, Y ∈ L2 (2.13)

Definition 2. Let Ω be a subspace of L2. An orthogonal projection of X onto Ω , denoted
PΩX, is the unique element in L2 satisfying

〈X − PΩX,ω〉 = 0 (2.14)

for any ω ∈ Ω.
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In a linear model with Gaussian shocks, conditional expectations are equivalent to orthog-
onal projections. We can thus use the equality

E (X | Ω) = PΩX (2.15)

to replace the conditional expectations in the bond pricing equation (2.10) with projections
and rephrase the expectation hypothesis in the following way.

Definition 3. (The Expectations Hypothesis.) The expectations hypothesis of the term struc-
ture of interest rates is said to hold with respect to Ωt if the implied forward rate

fnt ≡ b̃nt − b̃n+1
t (2.16)

equals the projection of the short rate in period t+ n onto Ωt

fnt = PΩtrt+n ∀t, n (2.17)

This is a standard definition of the expectation hypothesis (e.g. Backus, Foresi, Mozumdar
and Wu, 2001), apart from the explicit reference to the information set expectations are
conditioned on.

We can use the definition (2.17) to demonstrate that in the absence of supply shocks, the
bond pricing equation (2.10) implies that the expectations hypothesis hold if all agents share
the same information set. Consider the 2 period ahead forward rate which by (2.10) and
(2.16) is given by

f 2
t = b̃3

t − b̃2
t

=

∫
E

[∫
E [rt+2 | Ωt+1(j′)] dj′ | Ωt(j)

]
dj (2.18)

For now, let Ωt(j) = Ωt for all j, that is, let the information set Ωt be common across all
traders. If traders do not forget, the sequence of information sets {Ωt}∞t=0 is a filtration so
that Ω0 ⊆ Ω1 ⊆ Ω2... ⊆ Ωt. It is a property of projections that taking repeated projections
onto nested information sets reduces to the projection onto the smallest information set, i.e.
PΩtPΩt+sX = PΩtX for s ≥ 0. This is simply the law of iterated expectations and implies
that traders cannot predict in period t how they will revise their expectation in period
t+ 1 of the period t+ 2 short rate. Stated differently, the sequence {E [rt+n | Ωt+s]}ns=0 is a
martingale. Applying this result to the bond pricing equation (2.18) gives

f 2
t = PΩt (PΩt+1rt+2) (2.19)

= PΩtrt+2 (2.20)

The expectation hypothesis then holds for a three period bond with respect to the common
information set Ωt. A similar argument can be generalized to an n-period bond.

In the next section we analyze how the dynamics of the term structure changes when
traders have non-nested information sets. The direct link between forward rates and expec-
tations about future short rates make it more convenient to frame the analysis in terms of
forward rates rather than bond yields. Of course, bond yields can always be backed out from
implied forward rates by the identity (2.16).
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3. Non-nested information sets and the term structure of interest rates

In the previous section, the fact that rational traders cannot predict the direction that they
will revise their own expectations in the future allowed us to solve for bond prices as a function
of the common period t expectation about future short rates. With non-nested information
sets, predictions about the expectations of others are distinct from one’s own expectations.
If a trader’s current prediction about future short rates differ from his expectation about
other traders’ predictions, it is rational for him to believe that other traders in the future
will revise their predictions in the direction towards what he considers the best prediction,
as more information becomes available. This section draws out the consequences of this fact
for the term structure and contains the main theoretical contributions of the paper.

First, it is demonstrated that dispersed expectation about future short rates is sufficient
for traders to be able to predict excess returns, even though risk premia are constant in
the model. Secondly, we show that with non-nested information sets, individual traders can
predict the average prediction error made by others which introduces speculative behavior
in the sense of Harrison and Kreps (1978). Third, it is shown that the speculative dynamics
introduced by non-nested information sets are orthogonal to public information which has
interesting implications for how the speculative dynamics can (and cannot) be quantified
using public bond price data. We start by defining what it means for information sets to be
non-nested.

Definition 4. The subspace Ωt(j) is the space spanned by the history of variables observed
by trader j at period t. Projections onto Ωt(j) are denoted Pt,j.

Definition 5. Information sets of traders indexed by j, i ∈ (0, 1) are said to be non-nested
so that Ωt(j) 6⊆ Ωt+s(i) and Ωt(i) 6⊆ Ωt+s(j) if and only if

Pt,jrt+n 6= Pt+s,irt+n : j 6= i (3.1)

for s = 0, 1, 2, ..n− 1 and for at least some t = 0, 1, 2...

Information sets are thus considered non-nested if two traders in at least some period t
disagree about the best prediction of the short rate in period t + n and expects to disagree
up until period t+ n when the short rate rt+n is observed. Defining non-nested information
sets through the implications for projections of short rates onto individual trader’s informa-
tion sets is somewhat tailored to the needs of this paper. A more general definition would
simply state that information sets are non-nested if projections of any random variable onto
individual traders’ information sets differ (see Brockwell and Davis 2006). The definition
used here is designed to avoid trivial cases where projections only differ about uninterest-
ing quantities. We therefore define information sets as non-nested only if they imply that
expectations about future short rates differ across agents.

3.1. Predictable excess returns. We start by proving that non-nested information sets
are sufficient for individual traders to be able to predict excess returns. We do this in two
steps. First, we show that if individual traders’ projections of future short rates are dispersed,
then the n period forward rate fnt cannot coincide generally with traders’ expectations about
the corresponding future short rates.
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Figure 1. Dispersion of expectations of the short rate in period t+n and the
implied forward rate.

Proposition 1. The forward rate fnt is agent j’s optimal prediction of the short rate n
periods ahead, if and only if it coincides with the orthogonal projection of rt+n onto trader
j’s information set Ωt(j) so that

Pt,jrt+n = fnt (3.2)

holds. The equality (3.2) can only hold generally, i.e. for all traders at all times, when
traders’ information sets coincide.

Proof. The first half of the proposition holds by the optimality and uniqueness of orthog-
onal projections. The second half states that Pt,jrt+n = fnt can hold generally only when
information sets are nested. To see why this is true, note that if

Pt,jrt+n = fnt ∀j, t, n
then the ex ante symmetry of traders implies that

Pt,jrt+n = Pt,irt+n∀j, i, t, n (3.3)

or that the forward rate fnt is the best predictor of rt+n for trader j at all times and at all
horizons only when it is also the best prediction for all others traders, i.e. when information
sets are nested. �

In words, Proposition 1 simply states that if the distribution across traders of expected
future short rates is non-degenerate, all points on the support of the distribution cannot
coincide with the forward rate, which is a single number. This is illustrated in Figure 1 and
may seem like an obvious statement, but the uniqueness of orthogonal projections makes it
nevertheless interesting. To see why, note that by the uniqueness of orthogonal projections,
Pt,jrt+n 6= fnt implies that Pt,j (rt+n − fnt ) 6= 0, i.e. trader j can systematically predict the
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forecast error a person would make who used the forward rate as a forecast of the short rate.
The next proposition shows that this in turn implies that traders can systematically predict
excess returns.

Definition 6. (Excess return) The excess return on an n period bond is the difference in
return between holding an n period bond until maturity and the return on holding a sequence
of one period bonds over n periods, i.e.

−b̃nt − (rt + rt+1 + ...rt+n−1) (3.4)

An alternative (and more common) definition of excess returns would be to define it as
the difference in return of holding an n period bond for one period minus the one period
yield

b̃n−1
t+1 − b̃nt − rt (3.5)

This definition is equivalent to (3.4) in the sense that if the expectations hypothesis hold,
expected excess returns will be zero according to both definitions (see Singleton 2006). The
definition (3.4) is somewhat more convenient to work with in the present setting, but either
definition could be used without changing the substance of the results presented below. We
now use the result from Proposition 1 to show that non-nested information sets imply that
individual traders can predict excess returns.

Proposition 2. If traders’ information sets are non-nested, excess returns are predictable
by trader j for at least some maturity n∗.

Proof. Excess return on an n∗-period bond are predictable with respect to trader j’s infor-
mation set if

Pt,j
(
−b̃n∗t − (rt + rt+1 + ...rt+n∗−1)

)
6= 0 (3.6)

for some t. From the identity

−b̃n∗t ≡ rt + f 1
t + ...+ f ′n

∗−1
t (3.7)

excess returns on an n∗ period bond are thus predictable if

n∗−1∑
s=1

Pt,jrt+s 6=
n∗−1∑
s=1

f st (3.8)

We know from Proposition 1 that Pt,jrt+n 6= fnt holds for at least some, t, n and j if
information sets are non-nested. To prove the proposition we need to show that this in turn
implies that the inequality (3.8) must be true for at least some maturity n∗. The proposition
holds trivially for n = 2 since the inequality (3.8) then is true by assumption. For n > 2,
consider the case when (3.8) is an equality at maturity n+ 1 so that

n∑
s=1

Pt,jrt+s =
n∑
s=1

f st (3.9)

which can equivalently be written as
n−1∑
s=1

Pt,jrt+s + Pt,jrt+n =
n−1∑
s=1

f st + fnt (3.10)
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Since by assumption, Pt,jrt+n 6= fnt we must have that

n−1∑
s=1

Pt,jrt+s 6=
n−1∑
s=1

f st (3.11)

which implies that excess returns on an n∗ = n period bond is predictable. To complete the
proof, it is sufficient to note that the proposition is trivially true for n∗ = n+ 1 if (3.9) fails
to hold. That is, if Pt,jrt+n 6= fnt excess returns cannot simultaneously be unpredictable for
bonds of both maturity n and n+ 1. �

3.2. Non-nested information sets and speculative trade. Proposition 1 and 2 com-
bined demonstrated that a non-degenerate distribution of short rate expectations is sufficient
for excess returns to be predictable by individual traders. The next propositions helps us
understand more about the dynamics introduced to the term structure by non-nested in-
formation sets and how these dynamics relate to public and private information. First, we
demonstrate that non-nested information sets imply that individual traders can predict the
average prediction errors made by other traders.

Proposition 3. Non-nested information sets imply that an individual trader j can system-
atically predict the average period t+ s projection error of the short rate in period t+n, that
is

Pt,j
(
rt+n −

∫
Pt+s,j′rt+ndj′

)
6= 0 (3.12)

if Ωt(j) 6⊆ Ωt+s(i) and Ωt(i) 6⊆ Ωt+s(j) for s = 0, 1, 2... and all j 6= i ∈ (0, 1).

Proof. The expression (3.12) can be rearranged to

Pt,jrt+n = Pt,j
∫
Pt+s,j′rt+ndj′. (3.13)

Since traders do not receive signals that are informative about the idiosyncratic noise in
other traders’ signals, we have that

Pt,j
∫
Pt+s,j′rt+ndj′ = Pt,jPt+s,irt+n : i 6= j. (3.14)

That is, an individual trader j’s expectation about average expectations coincide with his
expectation of trader i’s expectation for any i 6= j. By property (4) of projections we know
that

Pt,jrt+n = Pt,jPt+s,irt+n (3.15)

if and only if Ωt(j) ⊆ Ωt+s(i) which contradicts the definition of non-nested information sets
and completes the proof. �

Proposition 3 showed that individual traders can systematically predict the average pre-
diction errors made by other traders. To see how this induces speculative behavior, consider
an example with n = 2 and s = 0 in (3.12) and

Pt,j
(
rt+2 −

∫
Pt,j′rt+2dj

′
)

= ∆ (3.16)
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where ∆ > 0 so that trader j’s expectation about rt+2 is higher than what he thinks the
current average expectation of rt+2 is. Since trader j knows that other traders will receive
new information in period t + 1, he thinks that other traders on average will revise their
expectations in period t + 1 towards what trader j considers the best prediction of rt+2 so
that

Pt,j
(
rt+2 −

∫
Pt+1,j′rt+2dj

′
)
< ∆ (3.17)

A positive ∆ thus implies that trader j believes that other traders will revise their expecta-
tions of rt+2 upward in t+ 1

Pt,j
∫
Pt+1,j′rt+2dj

′ > Pt,j
∫
Pt,j′rt+2dj

′ (3.18)

and trader j′s expectation of the one period return on a 3 period bond (̃b2
t+1 − b̃3

t ) is lower
than his expectation about other traders expectations about the one period return, since by
(2.8) the price of a 2 period bond in t+ 1 depends negatively on the average expectation in
t+ 1 of rt+2.

3 Ceteris paribus, for a positive ∆ trader j expects to hold less than the average
trader of the 3 period bond, as he thinks others on average expects it to have a higher return.
A symmetric argument holds if ∆ is negative.

3.3. Forward rates and average higher order prediction errors. So far, we have dis-
cussed the implications of non-nested information sets from the perspective of the individual
trader. We now turn to the implications of non-nested information sets for aggregate bond
prices, or more specifically, for implied forward rates. In the next proposition, we show
that the speculative dynamics introduced by non-nested information sets can be expressed
as average predictions about higher order prediction errors of future short rates. That is,
predictions about the difference between future short rates and other traders’ predictions
about future short rates.

Proposition 4. The forward rate fnt can be decomposed into the the average first order
projection of rt+n, a sum of higher order projection errors and the exogenous supply shocks
ηnt and ηn+1

t .

Proof. For convenience, first define the notation

n−1∏
s=0

∫
Pt+s,jrt+n ≡

∫
Pt,j

∫
Pt+1,j′ ...

∫
Pt+n−1,j′′rt+ndj

′′...dj′dj. (3.19)

and rewrite the definition of the n period forward rate as

fnt =
n−1∏
s=0

∫
Pt+s,jrt+n +

(
ηnt − ηn+1

t

)
. (3.20)

3The argument will hold as long as there is not a perfect negative correlation between revisions to∫
Pt+s,j′rt+1 and

∫
Pt+s,j′rt+2 for s = 0, 1.
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Add and subtract
∫
Pt,jrt+n from the r.h.s. of (3.20) to get

fnt =

∫
Pt,jrt+n (3.21)

−
∫
Pt,j

(
rt+n −

n−1∏
s=0

∫
Pt+s,jrt+n

)
︸ ︷︷ ︸

n−1 order prediction error

+
(
ηnt − ηn+1

t

)
�

The term on the second line of (3.21) is the average prediction of the n−1 order prediction
error, i.e. the average prediction of the difference between the actual short rate in period
t + n and the n − 1 order expectation of the short rate in period t + n.4 The expression
(3.21) thus demonstrates that even in the absence of time varying risk premia, forward rates
do not necessarily reflect average expectations about future short rates.

In a model with perfect or common information, the higher order prediction errors on
the second line of (3.21) would of course be zero and the n period forward rate would be a
function of only the period t average expectation of the the short rate in period t+n (and the
exogenous supply shocks). This would also be true in a model where bonds are only traded
when they are issued and then held until maturity. In such a setting, the expectation of other
traders’ expectations would not matter for the equilibrium price, since the price of a zero
coupon bond at maturity is simply its face value, which is known to all traders. The price
of the bond at the date of issue would then simply be such that the return on an n period
bond equals the expected return on the alternative investment. (By imposing this condition
for all maturities n, it can be shown that this alternative return is the average expectation
of the cumulative return of holding a series of one period bonds for n periods.) The new
dynamics introduced to the term structure by non-nested information sets contained in the
higher order prediction error term is thus dependent on the fact that long bonds are traded
frequently. This is also the sense in which the “speculative behavior” in this model conforms
to the definition of Harrison and Kreps (1978).

There are also some differences between the model presented here and the set up of Har-
rison and Kreps (1978) that are worth noting. The most important of these is perhaps that
Harrison and Kreps rule out short sales, with the implication that the price of the asset in
their model is bounded below by what any single trader would be willing to pay for it, where
he to hold on to the asset forever. In our model, there are no short sales constraints and
the price of a bond can be either above or below what the equilibrium price would be if the
bond could not be traded before maturity.

4In a different context, Bacchetta and Wincoop (2006) shows that a similar term (which they label the
“higher order wedge”) can be expressed as an average expectation error of the innovations to the fundamental
process in their model.
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3.4. Speculative dynamics and public information. It is straightforward to show that
the speculative dynamics due to higher order prediction errors are orthogonal to public
information. Before proving this statement, we first define two relevant information sets.

Definition 7. The subspace Ωp
t is the space spanned by the history of publicly observable

variables in period t so that Ωp
t ⊆ Ωt(j) for all j. Projections onto Ωp

t are denoted Ppt .

Definition 8. The subspace Ω⊥pt (j) is the orthogonal complement of Ωp
t in Ωt(j). Projections

onto Ω⊥pt (j) are denoted P⊥pt,j .

Proposition 5. The forward rate fnt can be decomposed into the projection of rt+n onto
the public information set Ωp

t , the supply shocks and terms that are orthogonal to public
information.

Proof. Use that any projection onto Ωt(j) can be decomposed into a sum of the projection

onto Ωp
t and a projection onto the orthogonal complement Ω⊥pt (j) to rewrite the expression

of the forward rate (3.21) as

fnt = Ppt rt+n +

∫
P⊥pt,j rt+n (3.22)

−
∫
Ppt,j

(
rt+n −

n−1∏
s=0

∫
Pt+s,jrt+n

)

−
∫
P⊥pt,j

(
rt+n −

n−1∏
s=0

∫
Pt+s,jrt+n

)
+
(
ηnt − ηn+1

t

)
Since Ωp

t ⊆ Ωt+s(j) for all j and s = 0, 1, ...,m−1 and by Property 4 of orthogonal projections
(see Appendix A) we have that

Ppt,jrt+n = Ppt,j
n−1∏
s=0

∫
Pt+s,jrt+n (3.23)

for all all j and s = 0, 1, ...,m− 1. The term on the second line of (3.22) is thus identically
zero and the n period forward rate can thus be expressed as

fnt = Ppt rt+n +

∫
P⊥pt,j rt+n (3.24)

−
∫
P⊥pt,j

(
rt+n −

n−1∏
s=0

∫
Pt+s,jrt+n

)
+
(
ηnt − ηn+1

t

)
which concludes the proof. �

Proposition 5 demonstrates that the new term structure dynamics introduced by non-
nested information sets are orthogonal to public information which by definition is common
knowledge. This is intuitive, since all traders know that all traders know, and so on, that
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all traders know that all traders observe a public signal and that the public signal therefore
cannot be used to predict the errors that other traders will make. The component of other
traders’ projection errors that are predictable by an individual trader j must therefore be
orthogonal to public information.

This ends the theoretical part of the paper. Before turning to the data, we can summarize
our findings so far. Individual traders can identify and take advantage of predictable excess
returns, even though risk premia are constant. The model thus provides an alterative expla-
nation of predictable excess returns that is not based on agents valuing a marginal increase
in wealth differently in different states of the world. We also demonstrated that the new
dynamics introduced by speculative behavior is orthogonal to public information. This has
an interesting empirical implication: Speculative dynamics cannot be detected using public
data in real time. However, as econometricians we can use public information from periods
t+ s : s > 0 to extract an estimate of the term due to the speculative dynamics in period t.
To do so, we need to specify a process for the short rate and traders’ information sets.

4. The Estimated Model

In the previous section it was demonstrated that non-nested information sets introduce
new dynamics to the term structure of interest rates. Here, we address the question whether
these dynamics are quantitatively important. Above, bond prices were derived as functions
of higher order expectations of future short rates. In order to have an operational model
that can be estimated, we need to specify two more objects: A process for the short rate
and the information sets of the traders.

4.1. The short rate. The short interest rate rt is the sum of three exogenous factors

rt = x1
t + x2

t + x3
t (4.1)

where the factors xt ≡
[
x1
t x2

t x3
t

]′
follow the vector autoregressive process

xt = Axt−1 + Cεt : εt ∼ N(0, I3) (4.2)

The diagonal structure of A and the lower triangular structure of C

A =

 ρ1 0 0
0 ρ2 0
0 0 ρ3

 , C =

 c1 0 0
c21 c2 0
c31 c32 c3


are normalizations that do not restrict the dynamics of rt. The three factor structure is
motivated by two considerations. It gives a sufficiently high dimensional latent state to
make the filtering problem of traders interesting, while keeping the model computationally
tractable. In addition, using three factors implies that if traders were perfectly informed,
the model would simply be a three factor affine no-arbitrage model with a constant price of
risk.
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4.2. Traders’ information sets. All traders observe a vector of public signals containing
the current short rate rt and selected bond yields collected in the vector yt. Non-nested
information sets are introduced through individual signals about the first two factors x1

t and
x2
t . Each signal is the sum of a the true factor and an idiosyncratic noise component and the

noise is uncorrelated across signals and time. The vector of private signals zt(j) observed by
trader j is thus given by

zt(j) =

[
x1
t

x2
t

]
+Qζt(j) : ζt ∼ N (0, I2) (4.3)

Q =

[
q1 0
0 q2

]
(4.4)

Since the short rate is observed directly and is the sum of the three factors, it is without
loss of generality that traders observe private signals only about the first two factors. The
vector

St(j) =
[

z′t(j) rt y′t
]′

(4.5)

contains all the signals that trader j observes in period t. Trader j’s information set in period
is thus given by

Ωt(j) = {St(j),Ωt−1(j)} (4.6)

implying that traders condition their expectations on the entire history of observed signals.

4.3. The solved model. When traders have non-nested information sets it becomes optimal
to form expectation about other traders’ expectations, and natural representations of the
state in this class of models tend to be infinite.5 The model is solved using the method
proposed in Nimark (2007) which delivers a law of motion for the (finite dimensional) state
Xt of the form

Xt = MXt−1 +Nεt (4.7)

The state vector Xt contains stacked higher order expectations of the factors

Xt ≡
[

x
(0)′
t x

(1)′
t · · · x

(k)′
t

]′
(4.8)

where the higher order expectations of the vector of factors xt are defined recursively as

x
(k)
t ≡

∫
E
[
x

(k−1)
t | Ωt(j)

]
dj

starting from x
(0)
t = xt. The integer k is the maximum order of expectation considered and

can be chosen to achieve an arbitrarily close approximation in the limit as k →∞.
Common knowledge of the model is used to pin down the law of motion for Xt, that is, to

find M and N in (4.7). As usual in rational expectations models, first order expectations x
(1)
t

are optimal estimates of the actual factors xt. The knowledge that other traders have model
consistent estimates allow traders to form expectations about other traders estimates of the
true factors. Common knowledge of the model thus implies that second order expectations

x
(2)
t are optimal estimates of x

(1)
t given the law of motion for x

(1)
t . Imposing this structure

on all orders of expectations allows us to find the law of motion for the complete hierarchy

5See Townsend (1983), Sargent (1991) and Makarov and Rytchkov (2009).
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of expectations as functions of the structural parameters of the model, i.e. the parameters
governing the short rate (4.1), traders’ information sets (4.6) and the parameter ση governing
the standard deviation of the bond supply shocks ηt. The vector εt contains the aggregate
shocks in the economy, i.e. the factor innovations εt and the bond supply shocks ηt.

For a given law of motion (4.7), bond prices can be derived using the average expectation

operator H : Rk → Rk that annihilates the lowest order expectation of a hierarchy so that
x

(1)
t

x
(2)
t
...

x
(k+1)
t

 = H


x

(0)
t

x
(1)
t
...

x
(k)
t

 (4.9)

and where x
(k)
t = 0 : k > k. Combing the operator H that moves expectations one step

up in orders of expectations and the matrix M from the law of motion (4.7) that moves
expectations one step forward in time allows us to compute the higher order expectation in
the bond pricing equation (2.10) as

n−1∏
s=0

∫
Pt+s,jrt+n =

[
11×3 0

]
(MH)s−1Xt (4.10)

so that bond prices are given by

b̃nt = −
n−1∑
s=0

[
11×3 0

]
(MH)s−1Xt + ηnt (4.11)

The matrix M governs the actual dynamics of rt while bonds are priced as if Xt was observed
by all agents and rt followed a process governed by MH. The matrices M and MH are
thus analogous to the “physical” and “risk neutral” dynamics in a standard no-arbitrage
framework, though the interpretation is different.

Since bond prices are a linear function of the state Xt plus the supply shocks ηt we can

use the definition of bond yields ynt = −n−1b̃nt to also write the vector of bond yields yt as
linear function of the state and the supply shocks

yt = BXt + ηt (4.12)

The state equation (4.7) and the yield equation (4.12) constitutes a state space system that
can be used to let the observed history of bond yields inform us about the most likely values
of the parameters of the model. More details on how the model was solved can be found in
the Appendix.

4.4. Posterior Estimates. The solved model is in a form that can be estimated directly
by likelihood based methods, i.e. the state space system (4.7) and (4.12). The standard
deviations of an n period bond supply shock ηnt is specified as nση, adding the parameter
ση to estimate along the parameters of the short rate process (4.2) and the private signals
of traders (4.3). The vector of parameters to be estimated is denoted θ ≡ {A,C,Q, ση} and
consists of a total of 12 parameters. I use monthly data of the Federal Funds rate and the
3, 12, 24, 36, 48 and 60 month annualized interest rates on Treasuries taken from the CRSP
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data base. These are the same maturities that the traders inside the model are assumed to
observe. The sample period is from January 1964 to December 2007 (528 monthly observa-
tions) and chosen to coincide with the sample period used by Cochrane and Piazzesi (2008)
and Duffee (2008). The time series are demeaned. The posterior parameter distributions
was simulated by 500 000 draws from an Adaptive Metropolis algorithm (see Haario, Saks-
man and Tamminen (2001)), initialized from a parameter vector found by maximizing the
posterior using the simulated annealing maximizer of Goffe (1996). There are some large
discrete mean adjustments in the first 200 000 draws of the Markov chain, but visual in-
spection suggests that both first and second moments have converged after 500 000 draws.6

The results based on the last 250 000 draws are reported in Table 1. The posterior mode

θ̂ is the parameter vector of the simulated posterior Markov chain that achieves the highest
posterior likelihood.

Table 1
Posterior Parameter Estimates 1964:1-2007:12

θ Mode θ̂ Prior dist. Posterior 2.5%-97.5%
Short rate process

ρ1 0.990 U (0, 0.99) 0.989 - 0.990
ρ2 0.989 U (0, 0.99) 0.987 - 0.990
ρ3 0.696 U (0, 0.99) 0.655 -0.750
c1 11.2 U (0, 50) 7.42 - 26.8
c2 0.62 U (0, 50) 0.59 - 0.65
c3 0.48 U (0, 50) 0.45 - 0.51
c21 -11.9 U (−50, 50) (−27.4) - (−8.11)
c31 -0.49 U (−50, 50) (−0.54) - (−0.45)
c32 0.38 U (−50, 50) 0.34 - 0.43

Noise in private signals
q1 0.35 U (0, 50) 0.24 -1.14
q2 1.01 U (0, 50) 0.61- 1.34

Bond supply shocks
ση 0.21 U (0, 50) 0.20 - 0.21

Log likelihood at θ̂: -248.18

By themselves, the posterior estimates are not very interesting, but we can note that all
parameters appear to be well-identified. The first two factors are very persistent and traders
appear to have more precise private information about the first factor than about the second,
that is q1 < q2. The standard deviation ση of the supply shocks are similar to the estimated
standard deviation of measurement errors in latent factor models (e.g. Duffee 2008).

Figure 2 displays one period ahead fitted values together with the actual (demeaned) data
series for selected yields. The interpretation is similar to the fit of a VAR and it is clear that
the model can explain most of the observed variation in yields.

6More details, including the simulated posterior Markov chain and recursive plots of parameter standard
deviations, are available to download from the author’s web page.
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Figure 2. Data (black solid) and one-sided model fit (blue dashed).

4.5. Historical speculation. The previous section showed that the speculative term intro-
duced to the term structure by non-nested information sets could be expressed as a higher
order prediction error that is orthogonal to public information. Nevertheless, we can quan-
tify this term using public price data since the period t higher order prediction error is only
orthogonal to public information known up to time t. As econometricians, we can use the
full sample and exploit information for t + s : s > 0 to back out information about the
higher order prediction error in period t. The Kalman simulation smoother can be used to
draw from p

(
XT | yT , θ

)
for a given parameter vector θ (e.g. Durbin and Koopman 2002).

The simulation smoother together with the posterior distribution of θ can be thus used to
construct the posterior distribution of the state p

(
XT | yT

)
. Once we have a posterior dis-

tribution of the state, it is straightforward to compute the distribution of the speculative
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term (3.21) in the implied n period forward rate by using that

−
∫
Pt,j

(
rt+n −

n−1∏
s=1

∫
Pt+s,jrt+n

)
(4.13)

=
[

11×3 0
]

[(MH)n −MnH]Xt

where the equality follows from (4.10) and the fact that∫
Pt,jrt+n =

[
11×3 0

]
MnHXt (4.14)

= 11×3 × An
∫
Pt,jx(0)

t dj (4.15)

Figure 3 displays the median and the 95% (point-wise) posterior probability intervals for the
speculative term in the one (n = 12) and five (n = 60) year forward rates.

The speculative term in the two maturities are strongly correlated and potentially quan-
titatively important at both short and long maturities. At their peaks, around 1981, the
median estimate is 3.5% and 2.5% for respectively, the 1 and 5 year forward rates. The 95%
probability interval reaches even higher, and is above 5% for the the speculative term in
the 1 year forward rate. One way to interpret these numbers is the following. If a “naive”
observer in 1981 took the implied forward rate as an indicator of market expectations about
the short rate in 1982, the magnitude of the mistake he would make by not controlling for
the speculative term would be 3.5%.

Singleton (2006) points out that violations of the expectation hypothesis in US data are
most pronounced when the period 1979-1983 is included in sample, and the episode in the
early 1980’s is also the most eye-catching (and volatile) in Figure 3. Since the speculative
term (4.13) is (up to the supply shocks ηt) the difference between the implied forward rate
and the average expectations of the future short rate, the speculative term has some features
that other models may attribute to time varying risk premia. However, the interpretation
our model suggest is quite different. The period 1979 - 1983 coincides with the so-called
Volcker disinflation when the then Federal Reserve chairman Paul Volcker raised interest
rates sharply to bring inflation under control (see for instance the account in Goodfriend
and King 2005). Once inflation credibility had been established, short interest rates began
to fall, though long rates stayed long for some time. The estimated model suggests that this
was an episode when first order expectations of future short rates where significantly lower
than higher order expectations. That is, individual traders may have found it credible that
Volcker would be able to keep future short rates low before they believed that other traders
had been convinced as well. This contrasts with the alternative explanation that this was a
period when traders demanded either more compensation to hold a given amount of risk, or
when the amount of risk was perceived to be higher than usual.

4.6. Quantifying the importance of speculative dynamics. We can also use the esti-
mated model to quantify the relative importance of speculation at different maturities. The
left panel of Figure 4 displays the median and the 95 per cent probability interval of the rel-
ative standard deviation of the speculative term and forward rates. At the one year horizon,
the relative standard deviation of the speculative term is around 15% at the median and
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Figure 3. Estimated speculative term (percentage points) in 12 and 60
month implied forward rate 1964:1 - 2007:12. Median (solid) and 95% proba-
bility interval (dotted).

rises to approximately 30% at the peak at around a maturity of three years (n = 36). It is
also evident from the figure that the speculative term is not only quantitatively important,
but it is also statistically significant, with the 95% probability interval clearly bounded away
from zero. (The statistical significance of the speculative term is somewhat obscured by the
point-wise nature of the probability intervals in Figure 3.)

The right panel of Figure 4 displays the relative standard deviation of the speculative term
in yields, computed as the recursive average of the speculative term in forward rates. We
can see that the speculative term is quantitatively important also for yields, and more so at
long horizons, peaking at the four year maturity where it reaches 22.5 % at the median. The
fact that speculative dynamics appear to be more important for longer maturities may also
help explain the evidence in Gürkaynak, Sack and Swanson (2005) who argue that current
macro models of the term structure have trouble explaining the “excess” variability of long
bond yields. Embedding a non-nested information structure in a macro model may improve
these models’ ability to match the variance of long term yields.

4.7. The estimated dispersion of expectations. The dynamics of the model depend
importantly on that traders’ information sets are non-nested. As noted in the introduction,
one implication of non-nested information sets is that expectations will be dispersed. This
fact can be used as an independent check to gauge whether the estimated model requires
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Figure 4. Estimated relative standard deviation of speculative term in for-
ward rates (left panel) and yields (right panel). Median (solid) and 95% prob-
ability interval (dotted).

a reasonable degree of expectations dispersion to fit the data. Since no information about
expectation dispersion is used in the estimation process, this can be thought of as an informal
test of over-identifying restrictions.

The standard deviation of individual traders expectations of the short rate n months ahead
is given by

√
E

(
Pt,jrt+n −

∫
Pt,j′rt+n

)2

(4.16)

The 95 per cent probability intervals for n = 12, 36 and 60 of the posterior distribution
of dispersion of first order expectations are reported in Table 2. The first row (n = 12)
is directly comparable to the survey evidence reported by Swanson (2006). The dispersion
implied by the estimated model is significantly smaller than that of the Blue Chip survey. The
spread between the 10th and the 90th percentile of a Gaussian distribution is approximately
3.9 standard deviations. The estimated spread is thus approximately 0.12 × 3.9 = 0.47 or
around 50 basis points at the median and around 60 basis points at the 97.5 percentile. The
estimated dispersion is thus smaller than even the lower end (80 basis point) of the spread
reported by Swanson. The model can thus not be considered to rely on an implausibly large
dispersion of expectations to fit the data. This should increase our confidence in the model.
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Table 2
Estimated dispersion of short rate expectations√

E
(
Pt,jrt+n −

∫
Pt,j′rt+n

)2

n 2.5% Median 97.5%
12 0.08 0.12 0.15
36 0.06 0.09 0.11
60 0.05 0.07 0.08
All numbers in percentage points (1 basis point = 0.01).

Table 2 also reports the dispersion of expectations at the three and five year forecast
horizon. The spread is slightly decreasing at longer horizons. Of course, at long enough
horizons the dispersion will disappear as expectations of all agents will converge to the
unconditional mean of short rates.

5. The Model and the Evidence from Statistical Term Structure Models

In this section, we relate the estimated model above to some of the statistical evidence from
no-arbitrage factor models. We do three things. First, we show that the model with non-
nested information sets compares favorably with an affine three factor no-arbitrage model
in terms of fitting the dynamics of the term structure, in spite of having fewer parameters.
Secondly, we demonstrate that if the world is characterized by the model presented here,
an affine three factor no-arbitrage model would find overwhelming but misleading evidence
in favor of time varying risk premia. Thirdly, we show that the model can account for the
“hidden” factors found by Duffee (2008).

5.1. An estimated affine three factor no-arbitrage model. A three factor no arbitrage
model can be described by the following equations (see Ang and Piazzesi 2003). The three
factors in the vector XF

t follow
XF
t = ΓXF

t−1 + Ψet (5.1)

where Γ is diagonal and Ψ is lower triangular with ones on the diagonal. (These are nor-
malizations that do not affect the estimated yield dynamics, see Joslin, Singleton and Zhu
2010.) The short rate is a linear function of the factors

rt = δ′XF
t (5.2)

and the deviation of the log price of an n period bond from its mean is then given by

b̃nt = BF
nX

F
t (5.3)

where
BF
n = BF

n−1 (Γ−Ψλ)− δ′ (5.4)

As before, yields can be computed as

ynt = −n−1b̃nt + ηFt (5.5)

The affine model is estimated using likelihood based methods.The parameter vector θF to
be estimated consists of Γ, Ψ, δ, λ and σ2

ηF where σ2
ηF is the variance of the yield measurement
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errors ηFt (assumed constant across maturities). First, a preliminary mode is found by
maximizing the likelihood over the free parameters using a simulated annealing algorithm.
This mode is then taken as the initial value for the parameter vector in an Adaptive Metroplis

algorithm used to construct a posterior estimate of the parameters. The final mode θ̂F is the
vector in the posterior distribution that achieves the highest log likelihood L

(
yT | θF ,MF

)
.

To formally compare the fit of the no-arbitrage model and the non-nested information model,
one should ideally compute the posterior odds ratio. This involves computing the marginal
likelihoods of the two models which is computationally demanding and the results are often
inaccurate. One approximation of the posterior odds ratio that has the benefit of being easy
to compute (see Canova 2007) is the Schwarz approximation

L
(
yT | θ̂F ,MF

)
− L

(
yT | θ̂,M

)
− 1

2

(
dim θF − dim θ

)
lnT (5.6)

where MF and M denotes respectively, the no-arbitrage and the non-nested information
model. The Schwarz approximation is thus similar to a (log) likelihood ratio but with a
correction for the number of parameters.

Estimating the no-arbitrage model on the same sample used in Section 4 yields a log
likelihood at the mode of −893.99, which is significantly lower than the log likelihood
(−260.77) of the non-nested information model.7 This is in spite of the fact that the
number of parameters in the non-nested information model is significantly fewer than in
the three factor no-arbitrage model (12 vs 19). The Schwarz approximation will thus fur-
ther punish the no-arbitrage model and gives an approximate log posterior odds ratio of
−893.99− (−260.77)− 1

2
(19− 12) ln 528 = −655.16. The Schwarz approximation thus sug-

gests that the no-arbitrage model is e−655.16 ≈ 0 times as likely as the non-nested information
model.

To be fair, affine no-arbitrage models are able to also match the average slope of the yield
curve, while here we estimate both models on demeaned data. It is nevertheless interesting
to see that the more parsimonious model matches the deviations from the sample mean
better. In principle, we could also use 7 additional parameters to adjust the average supply
of bonds so that the non-nested information model also matches average yields. The number
of parameters of each model would then be the same.

5.2. Detecting constant risk premia with a no-arbitrage model. Affine three factor
no-arbitrage models are known to provide a good fit of the term structure of interest rates
(e.g. Duffie and Kan 1996). However, if the world is characterized by bond markets where
traders with non-nested information sets interact, low dimensional affine no-arbitrage models
are fundamentally misspecified. The reason is that in dynamic models where agents have
non-nested information sets, natural state representations tend to be infinite dimensional
(see for instance Townsend (1983), Sargent (1991) and Makarov and Rytchkov (2009)). In
the estimated model of the previous section, the true model is approximated with a 75
dimensional state vector. Given the structure imposed by higher order expectations by

7More details on the estimation of the affine three factor no-arbitrage model is available from the author’s
web page.
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Figure 5. Histogram of Schwarz approximation to the posterior odds ratio
of the restricted and unrestricted three factor no-arbitrage model estimated
on artificial data.

common knowledge of rationality, the model places stringent restrictions on the dynamics of
the observable variables, in spite of the high dimensional state vector.

In this section, we investigate what an affine three factor no-arbitrage model would find
if the estimated model of the previous section represents the true data generating process.
We are particularly interested in finding out whether a three factor no-arbitrage model will
correctly detect that risk premia are constant in the model that generated the artificial
data. The experiment we conduct is the following. We first draw parameters from the
posterior distribution of the non-nested information model and for each draw we generate
528 observations. The no-arbitrage model is then estimated by maximum likelihood and for
each sample of artificial data we also re-estimate the model imposing the restriction that
risk premia is constant, which implies setting λ in (5.4) equal to zero. We then compute the
Schwarz approximation to the posterior odds ratio of the restricted and unrestricted model.
This procedure was repeated 2500 times.8

Figure 5 displays the histogram of the posterior odds ratios of the restricted model with
λ = 0 and the unrestricted model. If the restriction of no time-varying risk premia was
supported by the data, the (log of the) posterior odds ratio should on average equal zero.
Instead, the average log posterior odds ratio is around -1400. The Schwarz approximation
to the posterior odds ratio then suggest that the restricted model is only e−1400 ≈ 0 as likely
as the unrestricted model. In other words, the restricted model has approximately zero
probability of being the true model compared to the model with time varying risk premia, in
spite of the fact that the data is generated by a model with constant risk premia. Of course,

8The procedure is very time consuming and the 2500 repetitions took about 5 weeks to compute.
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Figure 6. Impulse responses to orthogonal factor innovations, dashed lines
are 5th and 95th percentile.

this does not prove that the actual data generating process is a model with non-nested
information sets. However, it does demonstrate that the evidence from this popular class of
statistical models is not sufficient reason to conclude that risk premia are time varying.

5.3. Hidden factors and predictable excess returns. Duffee (2008) provide evidence of
a “hidden” factor that is insignificant in explaining the cross-section of yields but important
for predicting short rates and in extension, excess returns. Duffee estimates a 5 factor model
of the form

x†t = D†x†t−1 + Σ†εt (5.7)

yt = A+B†x†t + η†t (5.8)

on US bond data and the estimated model can be rotated to compute the implied principal
components. Duffee finds that while the first three principal components explain almost
all of the unconditional variation in yields, the fifth principal component is important for
explaining expected future short rates. He illustrates this by impulse response functions
of the 5 factors and their effect on the short rate. If a factor is unimportant for the cross
section, but important for predicting short rates (and in extension, excess returns) it will
manifest itself as an impulse response function of the short rate to the factor in question
that originates at zero but then becomes positive (or negative).

We investigated whether the hidden factor found by Duffee is consistent with the model
presented here by again generating artificial data sets using parameter draws from the esti-
mated posterior of our model with non-nested information sets. For each parameter draw,
we simulated 528 months of data and then estimated Duffee’s five factor model by maximum
likelihood and performed the rotations to find the principal components. We then computed
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impulse responses of short rates to orthogonal innovations to the factors. This procedure
was repeated 450 times. Figure 7 shows the median impulse response and the 5th and 95th
percentile.9 As we can see, the fourth and fifth principal components have little effect on
the short rate in the impact period, but becomes more important at longer time horizons.
This is exactly what we should expect from a model where the term structure does not
reveal all information about future short rates perfectly. If the state of the model would
be revealed perfectly by the cross section of yields, no additional factors beyond the three
(level, slope and curvature) that explains the cross sections would be useful to predict future
yields. However, if the state is not revealed by the cross section, then by construction there
must be additional factors that can help predict future yields.

6. Conclusions

Introducing private information in a model of bond pricing can give rise to speculative
behavior in the sense of Harrison and Kreps (1978). For traders in the model to engage in
speculative behavior it is sufficient that information sets are non-nested, or equivalently that
there is dispersion across traders’ forecasts of future short rates. Dispersed expectations are
also sufficient for traders to be able to predict excess returns, and the model thus provides a
new explanation for predictable excess returns that is not based on the value traders attach
to a marginal increase of wealth in different states of the world.

Theoretical models of private information in asset markets dates back to at least Gross-
man (1976). More recently, Allen, Morris and Shin (2006) presented a single risky asset,
finite horizon model with an information structure similar to the one presented here. They
show that a concern among market participants about other market participants opinions as
described in Keynes’ (1936) “beauty contest” metaphor of the stock market, can be present
among fully rational traders if traders have access to private information. Here we have
demonstrated that even if the estimated amount of private information is small in the sense
that the dispersion of (first order) expectations across traders is low, speculative trade driven
by attempts to exploit perceived market mispricing of bonds can be quantitatively impor-
tant. We showed this by formulating an empirically plausible model of the term structure
that was estimated using likelihood based methods. The model has fewer parameters than
a popular class of affine term structure models, but nevertheless fit the dynamics of bond
yields better. We also demonstrated how a historical time series of the effect of speculative
dynamics on implied forward rates can be estimated from public price data, in spite of the
fact that speculation according to the model is orthogonal to real time public information.
This may be of separate interest to some readers.

Excess returns in the model presented here are predictable with respect to individual
traders’ information sets. While the speculative behavior this induces is shown to be po-
tentially quantitatively important, in the model it is orthogonal to public price data in real
time. One may then ask how these results relate to the large body of evidence documenting
that excess returns are predictable using public information, e.g. Litterman and Sheinkman

9The percentile refer to the percentiles of the point estimates from Duffee’s model estimated on artificial
data and can thus not be given a probabilistic interpretation. A full Bayesian posterior simulation for each
draw of artificial data is too time consuming to be feasible.
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(1991), Ang and Piazzesi (2003) and Cochrane and Piazzesi (2005). First, there is nothing
in the mechanism proposed here that excludes speculative dynamics from co-existing with
time varying risk premia. However, from a pedagogical perspective, excluding time varying
risk premia helped us isolate the effects of introducing non-nested information sets.

Having said this, we also demonstrated that a class of popular statistical models would find
statistically significant, but nevertheless misleading, evidence in favor of time varying risk
premia if the model with non-nested information sets is the true data generating process.
Since neither model nests the other, it is difficult to say anything with confidence about
the reasons for this, but one can speculate that three factor no-arbitrage models may be
over-fitting the data. This view is also supported by several recent papers. Bauer (2009)
and Barillas and Collin-Dufresne (2009) both show that affine factor models of the term
structure may be biased toward overstating the predictability of excess returns. There is
also survey evidence suggesting that excess returns may be less predictable than previously
thought. Piazzesi and Schneider (2008) show in a no-arbitrage model with learning that if
one imposes that the dynamics of expectations about future short rates should be consistent
with survey evidence, then the estimated variability of risk premia decreases. Bacchetta,
Mertens and van Wincoop (2008) show that predictable forecast errors from survey data
are closely related to predictable excess returns in both bond and stock markets. The
distinction between excess returns that are predictable in real time from public information
and excess returns that appears predictable ex post may potentially form the basis for a
three-way statistical decomposition of the yield curve, adding a speculative term to the type
of decomposition made by for instance Cochrane and Piazzesi (2005).

Finally, the zero-coupon bonds traded in the present model have a known value at maturity.
The uncertainty about future bond prices arise solely from the uncertainty about the discount
rates that apply between the current period and the period when a bond matures. Arguably,
these discount rates should matter also for the pricing of other assets that will be traded
and pay dividends in the future. To the extent that there is additional uncertainty about
dividend payments and returns on other classes of assets, speculative dynamics may be even
more important in other markets than the bond market.
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Appendix A. Some useful properties of projections

This Appendix reproduces some results and properties of orthogonal projections on inner-
product spaces that are used in Section 3 of the main text above. Proofs and more details
can be found in for instance Brockwell and Davis (2006).

Definition 1. (The inner-product space L2.) The inner product space L2 is the collection
C of all random variables X with finite variance

EX2 <∞ (A.1)

and with inner-product

〈X, Y 〉 ≡ E (XY ) : X, Y ∈ L2 (A.2)

Definition 2. Let Ω be a subspace of L2. An orthogonal projection of X on Ω , denoted
PΩX, is the unique element in L2 satisfying

〈X − PΩX,ω〉 = 0 (A.3)

for any ω ∈ Ω.
Orthogonal projections have the following useful properties:

(1) The projection PΩX coincides with the conditional expectation E [X | Ω] in linear
models with Gaussian shocks.

(2) Let Ω′ be a subspace of Ω and Ω′⊥ its orthogonal complement in Ω. Then each ω ∈ Ω
has a representation as a sum of an element in Ω′ and an element of Ω′⊥, i.e.

ω = PΩ′ω + PΩ′⊥ω (A.4)

(3) X ∈ Ω⊥ if and only if PΩX = 0, where Ω⊥ is the orthogonal complement to Ω.
(4) Ω1 ⊆ Ω2 if and only if PΩ1X = PΩ1PΩ2X for all X ∈ L2.
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Property (1) is obviously useful as it allows us to use property (2) - (4) to analyze traders’s
expectations in a model with linear constraints and Gaussian shocks. Property (2) was used
in the proof of Proposition 5 where we decompose bond prices into a component that is
the projection of future short rates on public information and into a component that is
orthogonal to public information. Property (3) is used to show that individuals can predict
average expectations errors when information sets are non-nested. Property (4) is used to
show both that in the absence of supply shocks the expectations hypothesis holds in our
model with respect to a public information set and that individual traders can predict other
traders’ prediction errors as well as excess returns when information sets are non-nested.

Appendix B. Solving the model

Solving the model implies substituting out the higher order expectations from the bond
pricing equation (2.10). We are looking for a solution of the form

Xt = MXt−1 +Nεt (B.1)

yt = BXt + ηt (B.2)

where

Xt ≡


x

(0)
t

x
(1)
t
...

x
(k)
t

 , εt =

[
εt
ηt

]

That is, to solve the model, we need to find the matrices M,N and B as functions of the
parameters governing the short rate process, the stochastic supply shocks and the idiosyn-
cratic noise shocks. The integer k is the maximum order of expectation considered and can
be chosen to achieve an arbitrarily close approximation to the limit as k →∞. Here, a brief
overview of the method is given, but the reader is referred to Nimark (2007) for more details
on the solution method.

First, common knowledge of the model can be used to pin down the law of motion for the
vector Xt containing the hierarchy of higher order expectations of xt. Rational, i.e. model

consistent, expectations of xt thus implies a law of motion for average expectations x
(1)
t

which can then be treated as a new stochastic process. Knowledge that other traders are

rational, means that second order expectations x
(2)
t are determined by the average across

traders of the rational expectations of the stochastic process x
(1)
t . Third order expectations

x
(3)
t are then the average of the rational expectation of the process x

(2)
t , and so on. Imposing

this structure on all orders of expectations allows us to find the matrices M and N . Section
B.2 below describes how this is implemented in practice.

Second, the method exploits that the importance of higher order expectations are decreas-
ing with the order of expectation. This has two components:

(i) The variance of higher order expectations of the factors xt are bounded by the variance
of the true process, or more generally, the variance of k + 1 order expectation cannot be
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larger than the variance of a k order expectation

E
[
x

(k+1)
t x

′(k+1)
t

]
≤ E

[
x

(k)
t x

′(k)
t

]
(B.3)

To see why, note that by the identity

x
(k)
t ≡ x

(k+1)
t + e

(k+1)
t (B.4)

and the fact that since x
(k+1)
t is the average of an optimal estimate of x

(k)
t the k = 1 order

error e
(k+1)
t must be orthogonal to x
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t we have that
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Since E
[
e

(k+1)
t e

′(k+1)
t

]
is a covariance

E
[
e

(k+1)
t e

′(k+1)
t

]
≥ 0 (B.6)

and the inequality (B.3) then follows immediately.
That the variances of higher order expectations of the factors are bounded is not suffi-

cient for an accurate finite dimensional solution. We also need (ii) that the impact of the
expectations of the factors on bond yields are decreasing “fast enough” with the order of ex-
pectation. To understand why this is the case, it helps to first note that the full information
rational expectation equilibrium is a special case of the solution (B.1) - (B.2) where

x
(k)
t = x

(k+1)
t ∀t, k (B.7)

That is, under full information, all orders of expectations of the factors coincide with the
true factors at all times. Define the full information solution, i.e. bond yields as a function

of the true state x
(0)
t as

yt = B̃x
(0)
t + ηt (B.8)

where the rows of the matrix B̃ can be found by stacking the matrices 1
n

∑n−1
s=0

[
11×3 0

]
As−1

for the appropriate choices of n. By chance, for some t, all orders of expectations can coincide
also in the non-nested information case. Yields in the non-nested information model should
then be the same as the yields in the full information model: If everybody believes that

everybody agrees about what the current “true” state x
(0)
t is, they must also agree about

their expectations about future short rates. For this to then result in the same yields as a

function of the state as the full information solution, the sub-matrices of B must sum to B̃
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since

B̃x
(0)
t = BXt

=
[
B0 B1 · · · Bk

]


x
(0)
t

x
(0)
t
...

x
(0)
t

 (B.9)

=
∞∑
0

Bjx
(0)
t (B.10)

if x
(0)
t = x

(k)
t ∀k and where the Bjs are the sub matrices of B in the non-nested information

solution (B.2). Since B̃ is finite, the sequence B0, B1, ..., Bk, ... must be a convergent series,
which implies that limk→∞Bk = 0.

Summing up, we can use common knowledge of the model to derive a law of motion for
the hierarchy of expectations of the factors xt. We can then find an approximate solution
for bond yields of the form

yt =
[
B0 B1 · · · Bk

]


x
(0)
t

x
(1)
t
...

x
(k)
t

+Qεt (B.11)

where the coefficients Bk that tend to zero as k →∞, are multiplied with a k order expec-
tation, where the variance of the expectations are bounded from above by the variance of

the true state x
(0)
t . The accuracy of the solution for the k chosen in the estimated model is

discussed below in section B.4.

B.1. Bond yields as a function of the state. For a given law of motion (4.7), bond

prices can be derived using the average expectation operator H : Rk → Rk that annihilates
the lowest order expectation of a hierarchy so that

x
(1)
t

x
(2)
t
...

x
(k+1)
t

 = H


x

(0)
t

x
(1)
t
...

x
(k)
t

 (B.12)

and where x
(k)
t = 0 : k > k. The matrix H is then given by

H =

[
03k×3

Ik−3

03×(k−3)

]
(B.13)

Combing the operator H that moves expectations one step up in orders of expectations and
the matrix M from the law of motion (4.7) that moves expectations one step forward in time
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allows us to compute the higher order expectation in the bond pricing equation (2.10) as

b̃nt = −
n−1∑
s=0

[
11×3 0

]
(MH)s−1Xt + ηnt (B.14)

so that the yield on a bond with n periods to maturity is given by

ynt =
1

n

n−1∑
s=0

[
11×3 0

]
(MH)s−1Xt + ηnt (B.15)

By stacking the yield formula (B.1) for appropriate maturities n gives the matrix B in (B.2).

B.2. The law of motion of higher order expectations of the factors. To find the
law of motion for the hierarchy of expectations Xt we use the following strategy. For a given
M,N and B in (B.1) - (B.2) we will derive the law of motion for trader j’s expectations of
Xt , denoted Xt|t(j) ≡ E [Xt | Ωt(j)] . First, write the vector of signals St(j) as a function of
the state, the aggregate shocks and the idiosyncratic shocks

St(j) =
[

z′t(j) rt y′t
]′

(B.16)

= DXt +R

 ζt(j)
εt
ηt

 (B.17)

where the matrix D is given by the definitions (4.1), (4.3) and (4.12)

D =

 I2 0
11×3 0
B

 (B.18)

and R can be partitioned conformably to the idiosyncratic and aggregate shocks

R =
[
Rj RA

]
.

Agent j’s updating equation of the state Xt|t(j) estimate will then follow

Xt|t(j) = MXt|t−1(j) +K
(
St(j)−DMXt|t−1(j)

)
(B.19)

Rewriting the observables vector St(j) as a function of the lagged state and taking averages
across traders using that

∫
ζt(j)dj = 0 yields

Xt|t = MXt|t−1 +K
(
DMXt−1 + (DN +RA) εt +−DMXt|t−1(j)

)
(B.20)

= (M −KDM)Xt|t−1 +KDMXt−1 +K (DN +RA) εt (B.21)

Appending the average updating equation to the exogenous state gives us the conjectured

form of the law of motion of x
(0:k)
t[

xt
Xt|t

]
= M

[
xt−1

Xt−1|t−1

]
+Nεt
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where M and N are given by

M =

[
A 0
0 0

]
+

[
03×3 0

0 [M −KDM ]−

]
+

[
0

[KDM ]−

]
(B.22)

N =

[
C 0
0 0

]
+

[
0

[K (DN +RA)]−

]
(B.23)

where [·]− indicates that the a last row or column has been canceled to make a the matrix

[·] conformable, i.e. implementing that x
(k)
t = 0 : k > k . The Kalman gain K in (B.19) is

given by

K = (PL′ +NR′) (LPL′ +RR′)−1 (B.24)

P = M
(
P − (PL′ +NR′) (LPL′ +RR′)−1 (PL′ +NR′)

′)
M ′ +NN ′ (B.25)

The model is solved by finding a fixed point that satisfies (B.2), (B.22), (B.23), (B.24) and
(B.25).

B.3. Numerical issues. It is well-known that due to finite machine precision, the Kalman
filter may be unstable in applications where some state variables (or some linear combination
of state variables) are estimated very precisely compared to others, see Simon (2006). This
manifests itself as a Kalman filter covariance matrix P that is numerically not symmetric
and/or positive semi-definite. In our model, there are three latent factors, but a linear
combination of them (i.e. the short rate rt) is observed perfectly and solving the model
as above may (and for some parameterizations, do) give rise to numerical inaccuracies. To
avoid this problem, we can rewrite the short rate process as

rt = x1
t + x2

t + x3
t (B.26)

= x1
t + x2

t + ρ3

(
rt−1 − x1

t−1 − x2
t−1

)
+
[
c31 c32 c3

]
εt (B.27)

We can still solve the model as above if we redefine the state as

X̂t =


x̂

(0)
t

x̂
(1)
t
...

x̂
(k)
t

 , x̂
(0)
t ≡

[
x1
t

x2
t

]

to get a system of similar form as in Section B.2 above

X̂t = M̂X̂t−1 +Nεt (B.28)

yt = B̂X̂t +Rεt +Brrt (B.29)

but where yields now also depend on the current short rate directly. We also need to adjust
the measurement equation for trader j to be

St(j) = D1X̂t +D2X̂t−1 +Drrt−1 + R̂

 ζt(j)
εt
ηt

 (B.30)
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where

R̂ =
[
Rj RA

]
+

 0[
0 c31 c32 c3 0

]
0

 (B.31)

The updating equation of trader j′s state estimate is now given by

X̂t|t(j) = M̂X̂t|t−1(j) + K̂
[
St(j)−D1M̂X̂t−1|t−1(j)−D2X̂t−1|t−1(j)−Drrt−1

]
(B.32)

Since the additional term D2X̂t−1 in trader j’s measurement equation is a function of the

lagged state X̂t−1, the innovation representation is non-standard. The Kalman gain K̂ in
(B.32) is the steady state (t→∞) Kalman gain of the modified Kalman filter

K̂ = P+1D
′
1 (B.33)

×
[(
D1M̂ +D2

)
P
(
D1M̂ +D2

)′
+
(
D1Ĉ + R̂

)(
D1Ĉ + R̂

)′]−1

P = P+1 (B.34)

−K̂
[(
D1M̂ +D2

)
P
(
D1M̂ +D2

)′
+
(
D1Ĉ + R̂

)(
D1Ĉ + R̂

)′]
K̂ ′

P+1 = M̂PM̂ + ĈĈ ′ (B.35)

For a derivation of the modified filter, see Nimark (2009).

M̂ and N̂ are found in the same way as in (B.22), (B.23), i.e. by taking averages of the
update equation (B.32) and amending it to the “new” true factor process[

x1
t

x2
t

]
= Â

[
x1
t−1

x2
t−1

]
+ Ĉεt (B.36)

=

[
ρ1 0
0 ρ2

] [
x1
t−1

x2
t−1

]
+

[
c1 0 0
c21 c2 0

]
εt (B.37)

The resulting system is algebraically equivalent to the system in B.2, but does not suffer
from numerical instability.

B.4. The accuracy of the solution. While it can be shown that the impact coefficients
of higher order expectations on yields are a convergent sum, exactly how many orders of
expectations that are needed for an accurate solution in a given application depends on the
parameters of the model. In the model estimated in Section 4 k = 25. Figure 8 displays
the posterior distribution of the loadings onto the different orders of expectations of the
factors for the 12, 36 and 60 month yields, that is, the posterior distributions of the odd (left
column) and even (right column) numbered elements of the rows of the relevant rows of B
in (4.12). As we can see, the loadings approaches zero quite quickly and the loadings onto
the factors for the 12 month yield are approximately zero for k > 12. For longer maturities
(36 and 60 months shown), the loadings are practically zero for k > 15. Choosing k = 25
thus seems more than sufficient.
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Figure 7. Estimated posterior (higher order) factor loadings, median (solid)
and 95% probability interval (dotted). First column contains loadings onto
the (higher order expectations of the) first factor x1

t , with order of expectation
k on the x-axis for yields of 1, 3 and 5 years to maturity. Second column
contains the same information regarding the second factor x1

t

Code and data used to estimate the model and generate figures are available at the author’s
web page.


