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Abstract

In this paper, we prove the existence of a recursive competitive equilibrium (RCE) for
an Aiyagari style economy with permanent income shocks and perpetual youth structure.
We show that there exist equilibria where borrowing constraints are never binding. This
allows us to establish a non-trivial lower bound on the equilibrium interest rate. To solve
the individual’s problem, we present a new approach that uses lattices of consumption
functions to deal with the non-compact state space and the unbounded utility function.
The approach uses only the first order conditions of the problem (Euler equations). The
proof is constructive and it serves as a theoretical foundation for the convergence of a policy
function iteration procedure.

keywords : Permanent income shocks, incomplete markets, dynamic general equilibrium,
heterogeneous agents
JEL codes : D51, D52, E21

1 Introduction

Over the last two decades a large literature has studied the effects of income uncertainty on
individual behavior in heterogeneous agents incomplete markets economies, a model class that
is widely known as Aiyagari style models.1 While applied researchers have focused on finding
recursive competitive equilibria (RCE) for these models numerically, trusting on their existence,
Duffie et al. (1994) and Miao (2006) have provided existence proofs. In line with the quantitative
models the proofs apply to economies where the state space can be restricted to a compact set.
The elements of the equilibrium description like the optimal policy function or the distribution
over individuals on the state space are then functions (distributions) on a compact domain
(support). Although the assumption of a compact state space seems to be a rather technical
issue, it imposes certain restrictions on individual income processes. A restriction that is not

∗Contact: Department of Economics, University of Mannheim, L7, 3-5, 68131 Mannheim, Germany, email:
mokuhn@rumms.uni-mannheim.de, http://webrum.uni-mannheim.de/vwl/mokuhn. This paper is part of my
Ph.D. dissertation at the Center for Doctoral Studies in Economics (CDSE) at the University of Mannheim. I
thank Philip Jung, Dirk Krüger, Felix Kubler, Nicola Pavoni, Melanie Schienle for comments and remarks and in
particular my advisor Tom Krebs for his guidance and support. Furthermore I am grateful for helpful comments
and remarks from seminar participants at Mannheim and UCL. All remaining errors are mine.

1See for example Aiyagari (1994), Huggett (1993), Telmer (1993) or the textbook by Ljungqvist and Sargent
(2000)
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innocuous is that the income process must not contain a unit root. However, this specification
has become quite popular in the empirical literature due to the empirical evidence that income
risk can be decomposed into transitory and permanent (unit root) components.2 It implies that
the support of the income process can no longer be restricted to a compact set. Therefore, the
analysis of a model with a non-compact state space does not only address a theoretical gap but
it also provides the foundation to study the implications of permanent income shocks on the
consumption-saving decision in Aiyagari style economies.
The contribution of this paper is threefold. First, we drop the assumption of a compact state
space and prove the existence of a RCE in an Aiyagari model with permanent income shocks
and perpetual youth structure. Second, we characterize the equilibrium and establish a number
of interesting properties. In particular, we show that there are equilibria with non-binding
borrowing constraints. This result breaks the intimate link in previous existence proofs between
the existence of equilibria and binding borrowing constraints. Furthermore, it shows that the
non-existence result for RCE with non-binding borrowing constraints on a compact state space
(Krebs (2004)) does not extend to the case of a non-compact state space. It also allows us
to establish a non-trivial lower bound on the equilibrium interest rate. Finally, we provide a
constructive proof for the existence of an optimal policy function to the agent’s problem. The
proof is only based on first-order conditions and establishes for the first time the convergence of
the policy function iteration algorithm, a method that is widely used among applied researchers.
The equilibrium existence proof in this paper comprises three steps. The first step is to show the
existence of an optimal solution to the agents’ problem. The seminal textbook by Stokey and
Lucas (1989) established the value function approach, the contraction property of the Bellman
equation, and the principle of optimality as the standard tools to prove the existence of a solution
for this kind of problem. In this paper, we depart from this approach by relying only on first
order conditions of the agents’ problem (Euler equations) to prove the existence of an optimal
policy function.3 Similar approaches have been taken in Deaton and Laroque (1992), Coleman
(1991), and Rabault (2002). All three papers deal with functions on a metric space and in the
case of Deaton and Laroque (1992) and Coleman (1991) apply only to problems with a compact
state space and bounded utility.4 Instead of dealing with functions in a metric space, we use a
lattice of consumption functions and apply Tarski’s fixed point theorem to prove the existence
of a recursive policy function. This approach allows us to deal with the non-compactness of
the state space and unboundedness of the utility function. Since the proof is constructive it
establishes the convergence of the policy function iteration algorithm for consumption-saving
problems, and thereby provides a theoretical justification for its widespread use. This proof has
to our knowledge been missing from the literature.5

In the second step of the existence proof, we show that a unique stationary distribution exists,
and in step three we derive the existence of a market clearing interest rate. As it turns out, the
presence of prudence, i.e. strictly convex marginal utility, is crucial in order to get precautionary
savings in an equilibrium with permanent income shocks. The reason being that borrowing
constraints are potentially non-binding. This complements findings in Huggett and Ospina
(2001), who have shown that in models with mean-reverting shocks, prudence of agents is not
needed to get precautionary savings because borrowing constraints are always binding for some

2For example Carroll and Samwick (1997), Meghir and Pistaferri (2004), and Blundell, Preston, and Pistaferri
(2008).

3Although the present paper focuses is on the case of permanent income shocks, this step of the proof is
presented for a general class of consumption-saving problems with Markovian income processes.

4Coleman (1991) analyzes a representative agent model. This changes the operator on the Euler equation.
5The approach in Deaton and Laroque (1992) and Coleman (1991) covers only the case of a compact state

space. Furthermore, the operator in Coleman applies only to a representative agent economy. The approach by
Rendahl (2007) assumes bounded utility and still relies on the convergence of the value function iteration.
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agents.
Indeed, the existence of equilibria with non-binding borrowing constraints follows as a corollary
to the existence proof. This result is of particular interest because it opposes the finding in
standard incomplete markets models. Now, the two sources of market incompleteness, namely
missing insurance markets for idiosyncratic risk and borrowing constraints, can be disentan-
gled. This also suggests that the existence of precautionary savings in Huggett and Ospina are
indeed driven by the market imperfection induced by the borrowing constraint rather than by
incomplete insurance markets although the two sources of market incompleteness are intimitely
related in the model with mean reverting shocks.
The present paper is not the first to study the implications of permanent income shocks. Con-
stantinides and Duffie (1996) and Krebs (2007) are two examples that also study the implications
of permanent income shocks in a general equilibrium setup. The prediction for the consumption-
saving decision from these papers is, however, highly stylized. The structure of the endowment
process in these models allows it to construct no trade equilibria where all agents consume
their endowment of the current period.6 In contrast to these models, we consider a production
economy. The consumption-investment good is produced using capital and labor as inputs to
a neoclassical production function. Consequently, in equilibrium some agents have to hold pos-
itive assets, for which they receive a deterministic income in return. This rules out autarkic
equilibria as they are constructed in the earlier papers.
Turning to our last result, we show that non-binding borrowing constraints imply a non-trivial
lower bound on the equilibrium interest rate. This lower bound coincides with the equilibrium
interest rate in no trade economies as in Krebs (2007). The reason for the higher interest rate
in our model stems from the fact that in a production economy agents must hold on average
assets in positive net supply.7 The lower bound allows us to relate our results to existing partial
equilibrium studies that examine consumption-saving decisions with permanent income shocks,
like Deaton (1991) and Carroll (2004). In these studies, the authors restrict the interest rates
to values that are below the lower bound that we establish. This provides an explanation for
why they find borrowing constraints to be always binding.8 These models predict, therefore,
long-run consumption dynamics that are similar to those of models with autarkic equilibria
like in Constantinides and Duffie (1996) and Krebs (2007), where consumption tracks income
one-to-one. In contrast the model in this paper features asset trade in equilibrium such that
income shocks will not affect consumption one-to-one.
The rest of the paper is structured as follows: In section 2, we present the model. The existence
of an optimal solution to the individual’s problem is established in section 3. This section is
more general and applies to a large class of Markovian income processes. In section 4, we prove
the existence of a stationary distribution, and in section 5, we prove that a RCE exists. The
discussion on borrowing constraints and the implications for the consumption-saving decision
follows in section 6. Section 7 concludes. All proofs can be found in the appendix.

6Heathcote et al. (2009) build on this model setup to sustain analytic tractability in a model with permanent
shocks but they allow for insurance of a certain fraction of income shocks.

7In Krebs (2007), the bond is in zero net supply.
8Carroll (2004) allows for zero income shocks and for transitory shocks. These additional shocks induce savings

in his model. If we drop these additional shocks, the model reduces to the Deaton (1991) case, and we will find
again that borrowing constraints are always binding.
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2 The model

We take time to be discrete and the periods are labeled by an index t ∈ N. The economy is
populated by a continuum of mass 1 of ex ante identical agents.9 Every agent has an infinite
planning horizon, but faces a constant probability of death in every period. An agent who dies is
replaced by a newborn agent. The initial endowment in assets and labor productivity {a0, z0} is
drawn from a possibly degenerate distribution λ(a, z, r). At the beginning of her life every agent
chooses a recursive policy function that determines her behavior over time. We normalize the
time endowment of every agent in every period to unity and assume an inelasitc labor supply of
this unit of time. The only choice the agent has to make in the model is a consumption-saving
decision. We assume that the preferences of agents over recursively generated consumption
plans can be represented by the expected discounted sum of constant relative risk aversion
(CRRA) utility functions.

Assumption 1. The period utility function is of the CRRA type

u(c) =

{

log(c) γ = 1
c1−γ

1−γ
otherwise

(1)

We denote the productivity state in period t by zt.
10 The shocks to labor productivity are

permanent, and we allow for a wide range of distributions for the innovation term. To capture
the fact that an agent who died is replaced by a newborn agent, we use the following augmented
labor productivity process

zt+1 =

{

ztεt+1 ηt+1 = 1
z0 otherwise

(2)

εt+1 denotes the shock to labor productivity that is realized at the beginning of period t+1, and
ηt+1 denotes a survival shock. For simplicity we assume that ηt+1 has a binomial distribution.
A realization ηt+1 = 1 means that an agent survives the transition from period t to t+ 1. We
also allow for transitory i.i.d. income shocks. We denote the transitory income shock in period
t by ζt. We make the following assumptions on the random variables

Assumption 2. The distributions of ε, ζ and η satisfy

(i) ∄e ∈ supp(ε) : Prob(e) = 1 (vi) E [ζ] = 1
(ii) Prob(ε > 0) = 1 (vii) Prob(ζ > 0) = 1
(iii) Prob(η = 0) = θ > 0 (viii) E [ζtεs] = E [ζt] E [εs] ∀s, t ≥ 0
(iv) E [ε] = 1 (ix) E

[

ζ1−γ
]

= M <∞
(v) βE

[

ε1−γ
]

< 1

2.1 Agent’s problem

We assume that the objective of the agent is to maximize her expected discounted lifetime
utility from consumption. The objective function is

E

[

∞
∑

t=0

((1 − θ)β̃)t u(ct)

∣

∣

∣

∣

∣

F0

]

(3)

9We are aware of the technical issues regarding the measurability problem for models with a continuum of
agents and i.i.d. income shocks. But we refer the interested reader to Green (1994) for detailed discussion of the
appropriate construction of the set of agents to preserve measurability for all subset of agents. From now on we
apply the law of large numbers in this paper without further discussion.

10Throughout, we do not use subscripts for individuals because they only increase the notational burden and
are not necessary for the proofs.
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where β̃ is the time discount factor and (1 − θ) is the probability of surviving from period t to
t + 1. Hence, the expectations are only taken with respect to the realization of the stochastic
productivity process {εt+1}

∞
t=0 and the sequence of transitory income shocks {ζt+1}

∞
t=0. By

Ft we denote the information set of the agent in period t. The set of admissible consumption
choices is restricted by the fact that every plan must satisfy the intertemporal budget constraint

ct + at+1 = (1 + r)at + wtztζt (4)

together with a no Ponzi condition. The condition we impose to rule out Ponzi schemes is an
ad hoc debt constraint at+1 ≥ 0 for all periods t > 0. We discuss the impact of this borrowing
constraint in section 6.
The state space S for this problem is the Cartesian product of possible asset holdings and
productivity states. The information set Ft for every period contains the current state of the
agent {at, zt} and all prices.
When we collect all ingredients to the agent’s decision problem, we can write it as an optimal
control problem under uncertainty

max
{ct,at+1}

E

[

∞
∑

t=0

((1 − θ)β̃)t u(ct)

∣

∣

∣

∣

∣

F0

]

s.t. ct + at+1 = (1 + r)at + wtztζt ∀t

zt+1 = ztεt+1 ∀t

{at+1, ct} ∈ [0,∞) × R+ ∀t

{a0, z0} ⊂ F0

(5)

To simplify notation, we replace (1 − θ)β̃ by an implicit discount rate β

β := (1 − θ)β̃

Assumption 3. θ and β̃ are such that β < 1.

2.2 Firm’s problem

Production in the model takes place in a perfectly competetive production sector. We model
the production side of the economy as a representative firm producing at marginal costs. We
assume that production takes place using a standard neoclassical production function.

Assumption 4.

Yt = F (Kt, Lt) = Ltf(kt) (6)

F (0, Lt) = F (Kt, 0) = 0

and f ′(kt) > 0,f ′′(kt) < 0.

where Lt denotes labor in productivity units, i.e. labor supply times productivity aggregated
over all individuals. We construct the productivity process below such that aggregate effective
labor supply is Lt ≡ 1 in all periods. From the first order conditions there exists a one-to-one
mapping from wages to interest rates

w = f(f
′−1(r + δ)) − (r + δ)f

′−1(r + δ) (7)

We make the following assumption for the depreciation rate and the discount factor.
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Assumption 5. At k̄ defined by
δk̄ = f(k̄)

it holds that
(

β(1 + f ′(k̄) − δ)1−γ
)

1
γ < 1

The assumption imposes joint restrictions on the preferences of individuals and the production
technology. This technical assumption is only needed to make sure that for every possible
aggregate capital stock there exists a strictly positive lower bound to the consumption function.
It can be easily verified that for a risk aversion parameter γ ≤ 1, which includes the important
case of log utility, the assumption does not impose any additional restrictions on the choice for
model parameters.

2.3 Bequests and the probability of death

The reason to assume a constant probability of death is to guarantee the existence of a stationary
distribution. To make the bequest scheme resource feasible, we require that in equilibrium
bequests must be equal to asset holdings of agents who die.

Assumption 6. The initial endowments {a0, z0} of agents are drawn from some distribution
λ(a, z, r) that is continuous in r and satisfies

∫

zλ(da, dz, r) = 1
∫

aλ(da, dz, r) = f ′−1(r + δ)

The assumptions on the means ensure that the average labor productivity in the population
is always one and that the assets allocated to the newborn generation equal on average the
bequests of the old generation in equilibrium.

2.4 Equilibrium

We define a recursive competitive equilibrium (RCE) for this economy as a set of recursively
generated asset choices {a∗t+1} and consumption choices {c∗t }, a capital and labor demand Kd

and Ld of the production sector together with equilibrium prices r∗ and w∗ and a stationary
equilibrium distribution µ(a, z) over asset and productivity levels of agents such that

1. For every agent there is the sequence of recursively generated asset choices {a∗t+1}
∞
t=0

and consumption choices {c∗t }
∞
t=0 that solve the agent’s optimization problem in (5) given

equilibrium prices w∗ and r∗.

2. The firm’s demand for capital Kd and labor Ld maximizes firm’s profits given equilibrium
prices w∗ and r∗.

3. Equilibrium prices are such that

∫

a∗tµ(da, dz) = K∗ = Kd ∀t
∫

ztµ(da, dz) = L∗ = Ld ∀t
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3 Individual problem

In this section, we consider a more general consumption-saving problem where we allow for
a larger class of Markovian labor productivity processes and looser ad hoc debt constraints.
However, we still require that

Prob(wztζt − rD > 0) = 1

The generalized consumption-saving problem is

max
ct,at+1

E

[

∞
∑

t=0

βt c
1−γ
t

1 − γ

∣

∣

∣

∣

∣

F0

]

s.t. ct + at+1 = (1 + r)at + wztζt

zt+1 = f(zt, εt+1)

at+1 ≥ −D

ct ≥ 0

{a0, z0} ⊂ F0

(8)

where f(zt, εt+1) is the (Markovian) law of motion for {zt}
∞
t=0. We reformulate the problem

using cash-at-hand. We define

xt := (1 + r)at + wztζt +D

and get

max
ct

E

[

∞
∑

t=0

βt c
1−γ
t

1 − γ

∣

∣

∣

∣

∣

F0

]

s.t. xt+1 = (1 + r)(xt − ct) + wzt+1ζt+1 − rD

zt+1 = f(zt, εt+1)

xt ≥ ct

ct ≥ 0

{x0, z0} ⊂ F0

(9)

3.1 Characterization of the optimal solution

We know that every optimal solution to (9) must satisfy the first order conditions.

c
−γ
t + κt = β(1 + r)E

[

c
−γ
t+1

∣

∣

∣
Ft

]

∀t (10)

κt(xt − ct) = 0 ∀t (11)

where κt denotes the Lagrange multiplier on the debt constraint. In a RCE the optimal con-
sumption plan must obey a recursive structure, therefore, we restrict attention to optimal
solutions that have a recursive structure of the form

ct = c(xt, zt)
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where the dependence on zt is necessary if the conditional distribution of income next period
depends on the current state11.
Once we have restricted the optimal solution to obey a recursive structure, the problem of
finding a solution to the first order conditions can be formulated as finding a fixed point to the
following equation

c(x, z) = min
{

x, (β(1 + r))−
1
γ (E

[

(c(x′, z′))−γ
]

)−
1
γ

}

(12)

where the min-operator captures the complementary slackness condition in (11). This approach
has been proposed by Deaton and Laroque (1992) and has been applied to consumption-saving
problems in Deaton (1991) and Rabault (2002)12. In the following, we establish the existence
of a fixed point c(x, z) to the modified Euler equation in (12). To establish the existence of a
fixed point, we restrict the interest rate to a set

[

f ′(k̄) − δ, β−1 − 1
]

. As we show below, this is
sufficient to establish the existence of a RCE.

3.2 Existence of an optimal solution

We have formulated the search for an optimal solution to the agents’ problem as a fix point
problem of the modified Euler equation. To prove the existence of a fixed point to this equation,
we construct a lattice of consumption functions and an operator that is a selfmap on this set of
functions. We then apply a version of Tarski’s fixed point theorem to establish the existence of a
fixed point to this operator in a constructive way. All definitions can be found in the appendix.
In the first step, we construct a set of candidate consumption functions for the optimal solution
to the consumption-saving problem. We restrict attention to the following set of consumption
functions

C0 := {c : X × Z → R+|

∀x1, x2 ∈ X : x1 > x2 ⇒ c(x1, z) ≥ c(x2, z) ∧ x1 − x2 ≥ c(x1, z) − c(x2, z)}

Hence, we only consider consumption functions that are increasing and Lipschitz continuous
(with Lipschitz constant L = 1) in their first argument. For this class of functions, we apply
the usual pointwise ordering

c1(x, z) ≥ c2(x, z) ∀(x, z) ∈ X × Z ⇒ c1 ≥ c2

In the appendix, we show (lemma 10) that we can restrict the set of candidate solutions further
by imposing an upper and a lower bound (cu and cl) on the set of consumption functions. The
reason is that the operator that we will construct below is inward pointing13 at the bounds.
The restricted set of candidate solutions in which we are looking for a solution is the set C

C := {c ∈ C0 : cl ≤ c ≤ cu}

The next step is to show that this set C together with the ordering just defined forms a complete
lattice. To this end, we need to show that the supremum and the infimum for arbitrary sets

11It has been shown for example in Deaton (1991) that this dependence can be removed in the case of permanent
income shocks.

12Both authors iterate on the optimal marginal utility function whereas we iterate on the optimal consumption
policy directly.

13We call the operator T inward pointing if for the upper bound x̄ it holds that T x̄ ≤ x̄ and respectively for
the lower bound x it holds that Tx ≥ x.
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always exist. In the appendix, we prove that we get the supremum (infimum) of two consumption
functions as the upper (lower) envelope. Hence, we obtain the supremum c̄ (infimum c) by taking
the pointwise maximum (minimum).

c̄(x, z) = max{c1(x, z), c2(x, z)} ∀(x, z) ∈ X × Z

c(x, z) = min{c1(x, z), c2(x, z)} ∀(x, z) ∈ X × Z

Equivalently, we get the supremum c̄∞ (infimum c∞) of a possibly infinite subset of consumption
functions C ′ ⊂ C as the upper (lower) envelope.

c̄∞(x, z) = sup
c∈C′

{c(x, z)} ∀(x, z) ∈ X × Z

c∞(x, z) = inf
c∈C′

{c(x, z)} ∀(x, z) ∈ X × Z

Since the set C has an upper bound cu and a lower bound cl the supremum and the infimum
always exist, and it holds that c̄∞ ≤ cu and c∞ ≥ cl. It follows that (C,≤) is a complete lattice.
In the next step, we go on an construct an operator on this set of functions. The operator T
maps an element ci ∈ C to an element ci+1

ci+1 = Tci

by the following operation

∀(x, z) : ci+1(x, z) = λ where λ solves

λ = min

{

x, (β(1 + r))−
1
γ

(

E
[

(

ci
(

(1 + r)(x− λ) + wz′ζ ′ − rD, z′
))−γ

])− 1
γ

}

and we define the following function

Gi(x, z, λ) := min

{

x,
(

β(1 + r)E
[

(

ci
(

(1 + r)(x− λ) + wz′ζ ′ − rD, z′
))−γ

])− 1
γ

}

− λ (13)

such that we can represent the operator as ci+1 = Tci with ci+1(x, z) = λ iff G(x, z, λ) = 0 for
all (x, z).
In the appendix, we prove that the function G(x, z, λ) is (i) increasing and continuous in x, (ii)
strictly decreasing and continuous in λ, and (iii) for fixed (x, z) there is a unique solution λ∗

that solves G(x, z, λ∗) = 0. It follows, that the operator maps every element ci ∈ C to a unique
element ci+1. We prove that the operator has the properties of being (i) monotone increasing
and (ii) a selfmap, i.e. T : C → C. Furthermore, we prove that imposing an upper bound and a
lower bound on the possible set of consumption functions is valid because the operator is inward
pointing at these bounds. Thus, we have constructed a monotone increasing operator that is a
selfmap on a complete lattice. This is already sufficient to prove the existence of a fixed point
to the modifed Euler equation in (12) using the fixed point theorem by Tarski (1955).

Tarski 1. Every monotone increasing mapping T : X → X on a complete lattice X has a
smallest and a greatest fixed point.

The theorem does not require a contraction property of the operator but lacks therefore also
the uniqueness result of a contracting operator. The proof is not constructive and establishes
only the existence of a fixed point. However, constructiveness would be desirable because it
would provide an approach how the fix point can be attained. A constructive version of Tarski’s
theorem exists for continuous operators. The continuity of the operator T can be proven by
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exploiting the properties of the lattice of consumption fucntions. This fact allows us to apply
the constructive version of Tarski’s fixed point theorem14.

Tarski 2. For xu := sup(X), xl := inf(X) and a continuous increasing mapping T : X → X on
a complete lattice X we get that lim

n→∞
T nxu and lim

n→∞
T nxl converge to the largest resp. lowest

fixed point x̄ resp. x of T : X → X.

This constructive version of the iteration procedure proves the convergence of the standard
numerically approach of policy function iteration. The policy function iteration algorithm starts
with an initial guess for the policy function and applies the operator T repeatedly to this guess.
If cu is taken as initial guess, then iterating on the operator T will attain a fixed point to the
modified Euler equation.
Since the first order conditions are only necessary for an optimal solution, we still have to check
if the transversality condition is satisfied at our candidate solution. In the appendix, we show
that under the maintained assumptions the transversality condition for the case of permanent
income shocks is satisfied. We also state additional conditions for the case of general Markovian
income processes and borrowing constraints with D > 0. We can summarize the results of this
section in the following proposition.

Proposition 1. Under the maintained assumptions there exists for every r ∈
[

f ′(k̄) − δ, β−1 − 1
]

an optimal recursive policy function to the agents’ problem. It can be found
as lim

n→∞
T ncu.

4 Stationary distribution

For the existence of a stationary distribution, we restrict attention again to the case of permanent
income shocks with a constant probability of death.15

The joint stochastic process for asset holdings and productivity is

[

at+1

zt+1

]

=

[

ηt+1((1 + r)at + wzt − c∗(xt, zt)) + (1 − ηt+1)a0

ηt+1ztεt+1 + (1 − ηt+1)z0

]

where c∗(xt, zt) denotes the optimal policy given r and w, and a0 and z0 are draws from λ(a, z, r).
In the appendix, we prove that a unique stationary probability distribution for the process
always exists. The idea of the proof is to exploit the renewal structure induced by the constant
probability of death. With a positive probability of death the expected life-time of an agent
is finite. Every time an agent dies there is a draw from a fixed distribution λ and the process
starts from the support of λ. This implies that all sets with positive λ-mass must also have
positive µ-mass. These two features of the stochastic process imply that the process is recurrent
and irreducible such that a unique stationary distribution exists.16

We also establish the continuity in the interest rate of the stationary distribution on the interval
[

f ′(k̄) − δ, β−1 − 1
]

. The proof relies on a result by Le Van and Stachurski (2007).
We summarize the results of the current section in the follwoing proposition

Proposition 2. Under the maintained assumptions there exists for every r ∈
[

f ′(k̄) − δ, β−1 − 1
]

a unique stationary distribution µr that is continuous in r on
[

f ′(k̄) − δ, β−1 − 1
]

.

14The constructive version of the theorem results from Kleene’s (1952) first recursion theorem. See Cousot and
Cousot (1979) for discussion and further references.

15All proofs also apply to the more general case of a Markovian process, if there is a positive probability of
death, and an optimal recursive consumption policy exists.

16Further details and an extensive study of stability of Markovian processes can be found in the textbook by
Meyn and Tweedie (1993).
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Indeed, the stationary distribution in this model is a mixture over distributions of agents of
different ’age cohorts’, where an age cohort at time T contains all agents that have survived
for t periods from T − t to T . If we introduce an operator P that maps the distribution of
agents’ asset holdings and productivity levels of one cohort to their next period’s distribution
conditional on survival, then the stationary distribution can be shown to be an infinite mixture
over initial distributions

µr =

∞
∑

t=0

(1 − θ)tP tλ(a, z, r)

Remark 1. The operator P maps asset holdings and productivity from the current period’s
distribution to next periods distribution conditional on survival, it depends therefore on the
optimal consumption policy because the consumption policy affects the transition of assets.

5 Equilibrium

In the previous sections, we have established the existence of an optimal recursive solution to
the agents’ problem and the existence of a stationary distribution for a wide range of interest
rates. To statisfy the equilibrium conditions of a RCE in section 2.4, we have to find a stationary
distribution µr∗ such that all markets clear. The labor market is cleared by construction, and
in the appendix, we show that the goods market clears for at least one interest rate in the set of
interest rates for which an optimal solution to the agents’ problem and a stationary distribution
exist. The idea of the proof is to show that there is an interest rate low enough such that asset
demand exceeds asset supply and an interest rate high enough such that the reverse is true.
Since the asset demand and the asset supply are continuous in the interest rate, there must be
at least one interest rate in between where asset markets clear. This proves the existence of a
RCE for this model.
We summarize the results of this section again in a proposition.

Proposition 3. Under the maintained assumptions a recursive competitive equilibrium always
exists.

When we establish the existence of an interest rate for which there is aggregate excess supply
of capital, we find that for sufficiently high interest rates and only permanent income shocks
borrowing constraints are not binding. For this case, we need that consumers are prudent, i.e.
have a positive third derivative of the utility function, to rule out equilibria without positive pre-
cautionary savings. This case provides an example where the argument by Huggett and Ospina
(2001) for the existence of precautionary savings does not apply. Their result of the irrelevance
of prudence relies on the fact that borrowing constraints must be binding in equilibrium. How-
ever, as we show below, there are equilibria with incomplete markets and idiosyncratic income
risk where borrowing constraints are non-binding and precautionary savings arise only due to
prudence of consumers.17

6 Borrowing constraints

We have established the existence of a RCE in a model with permanent and transitory income
shocks. In this section, we remove transitory income risk. This allows us to prove some interest-

17The same bound for the interest rate at which borrowing constraints would be non-binding has been es-
tablished in Rabault (2002) who studies the consumption-saving decision in a partial equilibrium framework.
However, he puts it as an open question whether non-binding borrowing constraints can be sustained indefinitely
if marginal utility at the optimal solution is bounded.
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ing properties of the equilibrium in this model. Especially, we prove that borrowing constraints
must be non-binding. The following proposition summarizes this result

Proposition 4. Assume only permanent income shocks are present. If a recursive competitive
equilibrium exists, then borrowing constraints must be non-binding.

To establish this result, it is important to recognize that the state space can be reduced to
a single ratio variable18: cash-at-hand to permanent labor income. This variable is defined as
follows

x̃t :=
xt

wzt
= (1 + r)

at

wzt
+ 1

The reduction of the state space implies that the decision whether to save or not becomes
independent of the current income level, however, the amount saved will still depend on the level.
This characteristic property allows us to develop an intuitive understanding why borrowing
constraints are non-binding.
Consider the case where asset holdings are zero (x̃t = 1). At this point, the decision whether
to save or not is the same for all agents. If agents with no asset holdings decided not to save,
this would imply that agents with higher cash-at-hand to permanent labor income ratios save
to sustain a positive aggregate capital stock in equilibrium. As we prove in the appendix,
this can not be an optimal solution to the agent’s problem. Hence, an optimal policy that is
compatible with an equilibrium must be a policy where agents with zero assets do save, and
hence, borrowing constraints are non-binding.
Exploiting the same property also provides a good starting point to develop an intuitive under-
standing for the optimal consumption-saving decision. First recall the case of mean-reverting
shocks, there agents save income when they expect a future decline in income, and they spend
additional funds - if available - when they expect a future growth in income. Hence, in situ-
ations with low income and low assets the borrowing constraint will be binding. The decision
depends therefore crucially on the level of the current income state relative to the long-run
mean of income. Intuitively, in a situation with mean-reverting shocks agents smooth income
around the long-run mean by accumulating and decumulating assets. This behavior is generally
known as buffer-stock saving. The intuition for the optimal behavior with permanent income
shocks must differ from this case because a long-run mean no longer exists. The current in-
come is now the best predictor for future income, and a policy that aims at smoothing income
around this income level can not optimal if shocks are permanent and neither Ponzi schemes
nor accumulating an infinite amount of assets is optimal. We think therefore that the optimal
behavior in a situation with permanent income shocks should be rather described as balancing
the risk exposure of total income by adjusting capital, i.e. the cash-at-hand to permanent labor
income ratio. Now, agents buffer some of the shock by adjusting the stock of assets towards
their old cash-at-hand to permanent labor income ratio from which the shock has put them
apart rather than smoothing income around a long-run trend. This interpretation also provides
an alternative explanation for the existence of non-binding borrowing constraints. With per-
manent shocks agents do neither expect a future increase nor decline in income but if they are
in equilbrium willing to save at low cash-at-hand to permanent labor income ratios to balance
their risk exposure, then they will be not constrained by the borrowing limit. This intuitive
explanation leads us to associate the result of non-binding borrowing constraints rather with
the existence of permanent income shocks than with the non-compactness of the state space
although the two properties are inherently related.

18This result is well-known and can be found in Deaton (1991). We establish the result in the appendix (lemma
16).
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From the existence of equilibria with non-binding borrowing constraints, we can derive fur-
ther implications for the consumption-saving decision. One is the existence of a unique target
insurance ratio.19

Corollary 1. Assume only permanent income shocks are present. If a recursive competitive
equilibrium exists, then there is a unique ¯̃x (target insurance ratio) such that the optimal policy
is at = at+1.

The target insurance ratio is characterized as the state in the reduced state space where the
optimal decision of the agent is to keep assets constant between periods.20 The uniqueness of
the target insurance ratio implies that the dynamics induced by the optimal consumption saving
decision drive - apart from stochastic fluctuations - the agents’ cash-at-hand ratio towards the
target insurance ratio. This aligns nicely with the intuition provided above that agents aim at
balancing their risk exposure rather than sustaining a constant income level.
As a further corollary to the result of non-binding borrowing constraints, we can establish a
non-trivial interval for the equilibrium interest rate21.

Corollary 2. If a RCE with non-binding borrowing constraints exists, then the equilibrium

interest rate r lies in the interval [r, r̄] :=
(

(βE[ε−γ ])
−1

− 1;β−1 − 1
)

The lower bound interest rate r separates three ranges for the interest rate that have all been
independently studied in different strands of the literature with quite different implications for
the consumption-saving decision.
One strand of the literature has studied economies where the interest rate is exactly at the
lower bound r. These are the endowment economies as studied for example in Krebs (2007).
In this model, assets are in zero net supply and the interest rate is chosen to balance the desire
to accumulate and decumulate assets for all agents and there will be no trade in equilibrium.
In this situation, the target insurance ratio is exactly at one (¯̃x = 1). A situation that is not
compatible with an equilibrium in a production economy where capital is an essential input in
the production technology. Intuitively, the higher interest rate in the production economy can
then be explained by the fact that agents need an additional incentive to accumulate assets.
The interest rates below the lower bound, i.e. r < r, have been extensively studied in papers by
Deaton (1991) and Carroll (1997, 2004). In his paper, Deaton (1991) conjectures that agents
always run down assets to zero, become borrowing constrained, and stay borrowing constrained
forever. We prove that this never happens, once we introduce production into the model and
impose equilibrium restrictions on prices. The bound on the interest rate in the models by
Deaton and Carroll arises naturally in the proof for the existence of an optimal policy function.
It can, however, be shown that this condition can be slightly relaxed without loosing existence
of the optimal solution if the lower bound on the optimal consumption function c (lemma 10)
is taken into account. We exploit this property to prove that the transversality condition is
always satisfied.

19The proof can be found in the appendix.
20It is important to notice, that this does not coincide with the target insurance rate as defined in Carroll

(2004) which is
E[x̃t+1|Ft] = x̃t

To see this, plug c̃t = r
1+r

x̃t + 1
1+r

in the law of motion for the ratio variable, this yields

E[x̃t+1|Ft] = E[ε−1](x̃t − 1) + 1 6= x̃t

21The proof can be found in the appendix.
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7 Conclusions

In this paper, we prove the existence of a recursive competitive equilibrium (RCE) for an
Aiyagari style economy with permanent income shocks and perpetual youth structure. The
available proofs for the existence of an equilibrium do not apply to this economy because they
require a compact state space. To prove that there exists an optimal recursive solution to the
agent’s problem in our economy, we present an approach based only on first order conditions
(Euler equation) and use lattices of consumption functions together with Tarski’s fixed point
theorem. This allows us to deal with the non-compact state space and an unbounded utility
function. We present the approach for a general setting of Markovian income processes and
show that it can be applied for a large class of consumption-saving problems. The fact that the
proof is constructive serves as a theoretical foundation for the convergence of an policy function
iteration algorithm that is popular in the quantitative literature.
In the second part of the paper, we prove that if there exists an equilibrium where only perma-
nent income shocks are present, then borrowing constraints must always be non-binding. This
shows that the non-existence result of equilibria with non-binding borrowing constraints on
compact state spaces by Krebs (2004) does not extend to the case of a non-compact state space.
However, it is important to notice that the result in our paper seems to be driven by the fact
that income shocks are permanent rather than by the fact that the state space is non-compact.
From this result, we can establish the existence of a unique target insurance ratio and a non-
trivial lower bound on the equilibrium interest rate. If we compare this lower bound to the
interest rates in existing studies, we find that the interest rates in these studies are not com-
patible with the equilibrium interest rates in our model.
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A Proofs and definitions for the existence of an optimal solution

A.1 Mathematical preliminaries

The definitions are taken mostly from Zeidler (1986).

Definition 1. 1. A set M is called ordered iff M is nonempty and for certain pairs (x, y) ∈
M ×M there is a relation x ≤ y which satisfies

(a) x ≤ x for all x ∈M

(b) if x ≤ y and y ≤ x then x = y

(c) if x ≤ y and y ≤ z then x ≤ z

The notation x < y means that x ≤ y and x 6= y

2. Let N ⊆M and let M be ordered. The set N is called a chain (of M) iff N is nonempty
and for all x, y ∈ N , one of the two conditions x ≤ y and y ≤ x holds.

3. Let N ⊆ M again. The element x ∈ N is called greatest or smallest in N iff y ≤ x or
x ≤ y, respectively, for all y ∈ N . The element x ∈ N is called a maximal element of N
iff there is no y ∈ N such that x < y.

4. The ordered set M is called well ordered iff every nonempty subset of M has a smallest
element.

Definition 2. Let y ∈M and N ⊆M . Then y is called the supremum (smallest upper bound)
of N iff y is an upper bound of N , i.e. x ≤ y for all x ∈ N , and y ≤ u for all upper bounds u
of N . We write y = sup(N). Similarly, inf(N) is defined to be the greatest lower bound.

Definition 3. By a lattice we mean an ordered set M with the property that inf({x, y}) and
sup({x, y}) exist for all x, y ∈ M . A lattice is called complete iff inf(N) and sup(N) exist for
all nonempty subsets N of M .

Definition 4. An operator T is called continuous iff for every chain S

supT (S) = T (sup(S))

and
inf T (S) = T (inf(S))

Definition 5. An operator T is called monotone increasing if for x ≥ y it holds that Tx ≥ Ty.

A.2 Set of consumption functions as complete lattice

Define

c̄(x, z) := max{c1(x, z), c2(x, z)} ∀(x, z) ∈ X × Z

c(x, z) := min{c1(x, z), c2(x, z)} ∀(x, z) ∈ X × Z

Lemma 1. For every two consumption functions c1, c2 ∈ C, it holds that c = inf{c1, c2} and
c̄ = sup{c1, c2}. Furthermore, it holds that c, c̄ ∈ C.
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Proof. Suppose not. Suppose there is a ĉ such that ĉ ≥ c1 and ĉ ≥ c2 but ĉ < c̄. This yields
immediately a contradiction because c̄(x, z) = max{c1(x, z), c2(x, z)} and it holds that either
ĉ � c1 or ĉ � c2 or ĉ ≤ c1 or ĉ ≤ c2. The argument for c is equivalent.
We have c1, c2 ∈ C, and therefore, it holds that c̄ ∈ C because c̄ is the piecewise continuous
composition of parts of c1 and c2.

Define

c̄∞(x, z) := sup
c∈C′

{c(x, z)} ∀(x, z) ∈ X × Z

c∞(x, z) := inf
c∈C′

{c(x, z)} ∀(x, z) ∈ X × Z

Lemma 2. For every subset of consumption functions C ′ ⊂ C, it holds that c∞ = inf(C ′) and
c̄∞ = sup(C ′). Furthermore, it holds that c∞, c̄∞ ∈ C.

Proof. Suppose not. Suppose there exists a ĉ < c̄∞ such that c ≤ ĉ for all c ∈ C ′. This
implies that there exist (x, s) such that ĉ(x, z) < c̄∞(x, z). By definition, it holds that
c̄∞(x, z) = sup

c∈C′

{c(x, z)}, hence, ĉ(x, z) ≥ c(x, s) implies that ĉ(x, z) ≥ sup
c∈C′

{c(x, z)} which

yields a contradiction because

sup
c∈C′

{c(x, z)} = c̄∞(x, z) > ĉ(x, z) ≥ sup
c∈C′

{c(x, z)}

It follows immediately from the fact that all c ∈ C ′ are Lipschitz continuous that c̄∞(x, z) is
also Lipschitz continuous such that c̄∞ ∈ C holds. An equivalent argument applies for the
infimum.

Remark 2. The fact that c̄∞ ∈ C holds follows directly from the Lipschitz property because for
all (x1, z) and (x2, z) with x1 ≤ x2 it holds that

c̄∞(x2, z) = sup
c∈C′

{c(x2, z)}

≤ sup
c∈C′

{c(x1, z) + x2 − x1}

= sup
c∈C′

{c(x1, z)} + x2 − x1

= c̄∞(x1, z) + x2 − x1

and the same argument applies to the infimum.

Lemma 3. (C,≥) is a complete lattice.

Proof. From lemma 1 it follows that (C,≥) is a lattice, and from lemma 2 follows that it is
complete.

A.3 Properties of G(x, z, λ)

Lemma 4. Gi(x, z, λ) is

(a) increasing and continuous in x

(b) strictly decreasing and continuous in λ

Proof. We consider the two arguments of the min-operator first separately
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1. Suppose Gi(x, z, λ) = x− λ, (a) and (b) are obviously satisfied.

2. Suppose

Gi(x, z, λ) =
(

β(1 + r)E
[

(

ci
(

(1 + r)(x− λ) + wz′ζ ′ − rD, s′
))−γ

])− 1
γ
− λ (14)

Since u′(·) is a strictly decreasing function, its inverse is strictly decreasing as well. By
assumption, ci(·, z) is increasing and continuous in x. It follows that (14) must be increas-
ing in x. The continuity of ci(·, z) together with the continuity of u′(·) and its inverse
imply that (14) satisfies (a) because ci ≥ cl > 0. We apply the same arguments for (b)
and λ ≤ x, and we get that (14) satisfies (b).

Finally, we have to show that the min-operator preserves the properties of Gi(·, z, ·). The
min-operator forms the lower envelope of two continuous and increasing respectively strictly
decreasing functions in x and λ. It preserves, therefore, the monotonicity and continuity of
these functions. Hence, Gi(·, z, ·) satisfies (a) and (b).

Lemma 5. For every (x, z), G(x, z, λ) = 0 has a unique solution λ.

Proof. It follows from the properties of u′(·) that for λ = 0, G(x, z, λ) ≥ 0 and for λ → x, it
follows from lemma 4 that G(x, z, λ) is strictly decreasing with G(x, z, λ) ≤ 0 if λ = x. Hence,
the solution G(x, z, λ) = 0 must be unique.

A.4 Properties of T

Lemma 6. The operator T is monotone increasing.

Proof. Take c1i > c2i . It follows from the fact that u′(·) and its inverse are strictly decreasing
functions that

min

{

x,
(

β(1 + r)E
[

(

c1i ((1 + r)(x− λ) + wz′ζ ′ − rD, z′)
)−γ
])− 1

γ

}

≥

min

{

x,
(

β(1 + r)E
[

(

c2i ((1 + r)(x− λ) + wz′ζ ′ − rD, z′)
)−γ
])− 1

γ

}

From lemma 4, we know that Gi(x, z, ·) is decreasing in λ. Since it holds that G1
i (x, z, ·) ≥

G2
i (x, z, ·), it follows that for all (x, z) we get that λ1 ≥ λ2.

Lemma 7. The operator T maps elements of C to continuous and increasing functions.

Proof. Again, we proceed in two steps. First, we show that if ci(·, z) is continuous and increasing,
then ci+1(·, z) will be increasing, and in a second step, we show that it is also continuous.

1. (increasing)

(a) If λ = x, this is obvious.

(b) If λ =
(

β(1 + r)E
[

(ci((1 + r)(x− λ) + wz′ζ ′ − rD, z′))−γ
])− 1

γ
pick x1 > x2.

Lemma 4 implies that Gi(x1, z, λ) ≥ Gi(x2, z, λ) and it follows that λ1 ≥ λ2 be-
cause Gi(x1, z, ·) is strictly decreasing.

From steps (1a) and (1b) it follows that ci+1(·, z) must be an increasing function.
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2. (continuous) The continuity of the optimal solution follows directly from the implicit
function theorem (Kumagai (1980))22 . To see this, note that Gi(·, z, ·) is a continuous
map Gi : X ⊂ R × R+ → R. From lemma 5, we know that for all (x0, z) there exists a
unique solution Gi(x0, z, λ0) = 0, and from Kumagai (1980), it follows that ci+1(·, z) is
continuous in a neighborhood of x0 if and only if there are open neighborhoods B ⊂ X

and A ⊂ R+ of x0 and λ0, respectively, and

∀x0 ∈ B : Gi(x0, z, ·) : A→ R

is locally one-to-one (injective). From lemma 4, we know that G(x, z, ·) is strictly de-
creasing, and therefore, it is locally one-to-one. Hence, ci+1(x, z) will be continuous in
x.

Lemma 8. If x1 > x2 and G(x2, z, λ2) = 0 with x2 > λ2, then for G(x1, z, λ1) = 0 it holds that
x1 > λ1.

Proof. Suppose not. It follows from lemma 4 that

λ1 = x1

≤
(

β(1 + r)E
[

(ci(wz
′ζ ′ − rD, z′))−γ

])− 1
γ

≤
(

β(1 + r)E
[

(ci((1 + r)(x2 − λ2) + wz′ζ ′ − rD, z′))−γ
])− 1

γ

= λ2

< x2

This yields a contradiction, and hence, it holds that if x1 > x2 and x2 > λ2, then also x1 >

λ1.

Lemma 9. The operator T is a self-map. It maps Lipschitz continuous, increasing functions
ci(·, z) to Lipschitz continuous, increasing functions ci+1(·, z) with Lipschitz constant L = 1,
i.e.

ci(x1, z) − ci(x2, z) ≤ x1 − x2 ∀x1, x2 ∈ X

Proof. From lemma 7, we know that T maps continuous and increasing functions to continuous
and increasing functions. Consider the case where x1 > x2. We know from lemma 7 that
λ1 ≥ λ2. We consider now all possible combinations

I. λ1 = x1 and λ2 = x2 ⇒ x1 − x2 = λ1 − λ2.

II. λ1 < x1 and λ2 = x2 ⇒ x1 − x2 > λ1 − λ2.

III. λ1 = x1 and λ2 < x2. Not possible, see lemma 8.

IV. λ1 < x1 and λ2 < x2.

(a) λ1 = λ2 ⇒ x1 − x2 > λ1 − λ2

22Kumagai proves a theorem for the case of non-differentiable function.
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(b) λ1 > λ2 : (Proof by contradiction) Suppose that x1 − x2 < λ1 − λ2. This implies
x1 − λ1 < x2 − λ2.

λ1 =
(

β(1 + r)E
[

(

ci((1 + r)(x1 − λ1) + wz′ζ ′ − rD, z′)
)−γ
])− 1

γ

≤
(

β(1 + r)E
[

(

ci((1 + r)(x2 − λ2) + wz′ζ ′ − rD, z′)
)−γ
])− 1

γ

= λ2

but λ1 ≤ λ2 yields a contradiction, because we started with the assumption that
λ1 > λ2.

Hence, it must be true that

x1 − λ1 ≥ x2 − λ2 ⇐⇒ x1 − x2 ≥ λ1 − λ2

and the proof is complete.

Lemma 10. For every r such that β(1 + r) ≤ 1 and 1 − (β(1 + r)1−γ)
1
γ > 0 there exists a

supersolution cu and a subsolution cl to the operator T .

1. For cu(x, s) = x, it holds that Tcu ≤ cu.

2. For cl(x, s) = ιx with ι := 1 − (β(1 + r)1−γ)
1
γ , it holds that Tcl > cl.

Proof. 1. By construction, we get that c1 = Tcu ≤ x. Since c1(x, s) = λ ≤ x where λ solves

λ = min

{

x,
(

β(1 + r)E
[

(

cu
(

(1 + r)(x− λ) + wz′ζ ′, z′
))−γ

])− 1
γ

}

and it follows that Tcu ≤ cu

2. Take cl(x, z) = ιx and suppose that Gl(x, z, λ) = 0 for λ ≤ ιx for some x. This implies
that

ιx ≥ (β(1 + r))−
1
γ

(

E
[

(

cl
(

(1 + r)(x− ιx) + wz′ζ ′ − rD, z′
)

)−γ
])− 1

γ

ιx ≥ (β(1 + r))−
1
γ

(

E
[

(

ι
(

(1 + r)(1 − ι)x+ wz′ζ ′ − rD, z′
))−γ

])− 1
γ

x > (β(1 + r))
− 1

γ
(

E
[

((1 + r)(1 − ι)x)−γ
])− 1

γ

1 > (β(1 + r))−
1
γ (1 + r)(1 − ι)

(1 − ι) > (1 − ι)

which yields a contradiction. Hence, it must be true that λ > ιx for all (x, z), and
therefore, it holds that Tcl > cl.

Lemma 11. The operator T : C → C is continuous.
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Proof. For finite chains the proof is obvious. For infinite chains, take a chain CS ⊂ C. Define
c̄∞ = sup(CS). Denote the image set of CS by CS′

=
{

c′ ∈ C : c′ = Tc ∀c ∈ CS
}

and c̄′ =

sup(CS′

). For all (x, z) ∈ X × Z, we have c′i(x, z) = λ∗i where λ∗i solves Gi(x, z, λ) = 0. Again,
c̄′ is defined pointwise as c̄′(x, z) = supλ∗ =: λ̄∗. Since T is monotone increasing and CS is
a chain, it holds that λ∗i ≥ λ∗j if ci ≥ cj . It follows from the definition of a chain that for all

ci, cj ∈ CS we either have ci ≥ cj or ci ≤ cj . Now fix (x, z, λ̄∞) where λ̄∞ = T c̄∞(x, z). Put
ci ∈ CS in increasing order and define ∆i := Gi(x, z, λ̄

∞). The {∆i} sequence is increasing and
bounded because λ̄∞ solve G(x, z, λ̄∞) = 0 for c̄∞. Since we have c̄∞ = sup(CS), it follows
from the proof of lemma 2 that for every ci there exists a ci+1 ∈ CS such that c̄∞ ≥ ci+1 ≥ ci
because otherwise c̄∞ can not be the supremum of CS. It follows that sup(∆i) = 0. Hence,
Gi(x, z, λ̄

∞) → 0 holds, and this implies that λ∗i → λ̄∞ because λ∗i solves Gi(x, z, λ) = 0 and
Gi(x, z, ·) is continuous in λ. Hence, we get λ̄∗ = λ̄∞ for all (x, z) such that T c̄∞ = sup (Tc)
holds. The equivalent argument applies to the infimum and the elements of the chain put
in decreasing order. It follows that according to definition 4, T : C → C is a continuous
operator.

A.5 Transversality condition

The transversality condition reads

lim
t→∞

βtE
[

c
−γ
t (1 + r)at

]

= 0 (15)

In the following, we need the definition for cash-at-hand xt = (1 + r)at + wztζt + D and the
result from lemma 10 that c∗(xt, zt) > ιxt for all (xt, zt).

lim
t→∞

βtE
[

c
−γ
t (1 + r)at

]

= lim
t→∞

βtE

[

(

ct

xt

xt

)−γ

((1 + r)at + wztζt +D − wztζt −D)

]

= lim
t→∞

βtE

[

(

ct

xt

)−γ

x
−γ
t (xt − wztζt −D)

]

≤ lim
t→∞

βtE
[

ι−γ(x1−γ
t − x

−γ
t wztζt − x

−γ
t D)

]

≤ lim
t→∞

βtE
[

ι−γ(x1−γ
t )

]

Consider first the case of log utility (γ = 1)

lim
t→∞

βtE
[

ι−1x0
t

]

= lim
t→∞

βtι−1 = 0

For the γ > 1 case, we get

lim
t→∞

βtE
[

ι−γx
1−γ
t

]

≤ lim
t→∞

βtE
[

ι−γ(wztζt − rD)1−γ
]

We make the following additional assumption for the general case

Assumption 7. If γ ≥ 1, then it holds that

lim
t→∞

βtE
[

(wztζt − rD)1−γ
]

= 0
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From assumption 7, it follows that

lim
t→∞

βtE
[

c
−γ
t (1 + r)at

]

≤ 0

For the case D = 0, assumption 7 condition simplifies to

lim
t→∞

βtE
[

(wztζt)
1−γ
]

= 0

and we get for the case of permanent income shocks the sufficient condition

βE
[

ε1−γ
]

< 1

This condition is satisfied by assumption 2.
Finally, consider the γ < 1 case

lim
t→∞

βtE
[

ι−γ(x1−γ
t )

]

≤ lim
t→∞

βtE
[

ι−γ(1 + (1 − γ)(xt − 1))
]

≤ lim
t→∞

(

βt(ι−γ − (1 − γ)) + βtE
[

ι−γxt

])

We can determine an upper bound on E[xt]

E[xt] = E [(1 + r)at + wztζt +D]

= E [(1 + r)at] + E [wztζt] +D

≤ E [(1 + r)āt] + E [wztζt] +D

where āt is defined as follows

ā1 = (1 + r)a0 +wz0ζ0 − ι((1 + r)a0 + wz0ζ0)

ā1 = (1 − ι)((1 + r)a0 + wz0ζ0)

ā2 = ((1 − ι)(1 + r))2a0 + (1 − ι)2(1 + r)wz0ζ0 + (1 − ι)wz1ζ1

ā3 = ((1 − ι)(1 + r))3a0 + (1 − ι)3(1 + r)2wz0ζ0 + (1 − ι)2(1 + r)wz1ζ1 + (1 − ι)wz2ζ2
...

āt = ((1 − ι)(1 + r))ta0 + (1 − ι)

t−1
∑

s=0

((1 − ι)(1 + r))swzt−1−sζt−1−s

We have β(1 + r) ≤ 1, and therefore, we get

āt ≤ a0 +
1

1 + r

t−1
∑

s=0

wzt−1−sζt−1−s

and

E[xt] ≤ E

[

t
∑

s=0

wzt−sζt−s

]

+D + a0(1 + r)

= x0 + E

[

t−1
∑

s=0

wzt−sζt−s

]

= x0 + E

[

t−1
∑

s=0

wzt−s

]

where the last equality holds because of assumption 2.
For the general case we have to make an additional assumption
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Assumption 8. If γ < 1, then it holds that

lim
t→∞

βtE

[

t−1
∑

s=0

wzt−s

]

= 0

For the case of permanent income shocks, the expression simplifies to

lim
t→∞

βtwz0

t−1
∑

s=0

(E[ε])t−s = 0

and is satisfied because of assumption 2.
Hence, if for the general case 7 resp. 8 holds, then there exists an upper bound for the transver-
sality condition

lim
t→∞

βtE
[

c
−γ
t (1 + r)at

]

≤ 0

For the case of permanent shocks assumption 2 is sufficient for the existence of the upper bound.
To establish a lower bound, note that if D = 0, then the lower bound is trivially at zero. For
the general case of D > 0 we need an additional assumption.

Assumption 9. If D > 0, then it holds that

lim
t→∞

βtE
[

(wztζt − rD)−γ
]

= 0

We have established an upper bound and an lower bound for the transversality condition

0 ≤ lim
t→∞

βtE
[

c
−γ
t (1 + r)at

]

≤ 0 =⇒ lim
t→∞

βtE
[

c
−γ
t (1 + r)at

]

= 0

and we can conclude that the transversality condition is satisfied. Hence, the fixed point to the
modified Euler equation is an optimal solution to the agents’ problem in (9).

B Proofs and definitions for the existence of a stationary dis-

tribution

B.1 Mathematical preliminaries

The definitions are taken mostly from Meyn and Tweedie (1993). Let the state space for the
stochastic process of labor productivity and asset holdings be S and the Borel σ-algebra on
S be B(S). The stochastic process {at, zt}

∞
t=0 is denoted by Φ and the state in period t by

Φt = {at, zt}.

Definition 6. The return time probability from state Φ0 to a set A ∈ B(S) is defined as

L({a0, z0}, A) := Prob(Φt ever enters A|{a0, z0})

Definition 7. We call a Markov chain ϕ-irreducible if there exists a measure ϕ on B(S) such
that, whenever ϕ(A) > 0, we have L({a, z}, A) > 0 for all {a, z} ∈ S

Definition 8. The Markov chain is called ψ-irreducible if it is ϕ-irreducible for some ϕ and
the measure ψ is a maximal irreducibility measure (ψ ≻ ϕ).

From the definitions and proposition 4.2.2 in Meyn and Tweedie (1993) we get immediately that
if the Markov chain is ϕ-irreducible, it is also ψ-irreducible. Next, we introduce the concepts of
recurrence and transience.
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Definition 9. The set A is called recurrent if E [1(Φt ∈ A)|(a, z)] = ∞ for all (a, z) ∈ A.
The set A is called uniformly transient if there exists a M <∞ such that E [1(Φt ∈ A)|(a, z)] ≤
M for all (a, z) ∈ A.

These concepts can be extended to chains in the following way

Definition 10. If every state is recurrent, the chain is recurrent, and if every state is transient,
the chain is transient.

Theorem 1. Under the maintained assumptions there exists for every r with β(1 + r) ≤ 1 a
unique stationary probability distribution µr.

Proof. By construction, Φ is λ-irreducible, and every set in the support of λ is recurrent,
hence, Φ is a recurrent chain (cf. theorem 8.1.2 Meyn and Tweedie (1993)). It follows from
theorem 10.0.1 in Meyn and Tweedie (1993) that Φ has a unique stationary measure. It holds
furthermore that the expected hitting time for every set in the support of λ is finite, and
therefore, the stationary measure can be normalized to be a probability measure.

It is important to notice that the intial endowments of agents are only resource feasible in
equilibrium. If goods markets do not clear, then also the mean over assets of the exogenously
fixed distribution does not coincide with the mean asset holdings of the agents’ that died.

Remark 3. The proof for the existence and uniqueness of a stationary distribution does not
require that initial endowments {a0, z0} are uncorrelated with {at, zt}. It only requires that the
conditional distribution for {a0, z0} has the same support as λ(a, z, r) and that the uncondi-
tional distribution over {a0, z0} is λ(a, z, r). Hence, we can allow for correlation in assets and
productivity levels of agents that leave and their successors.

Lemma 12. The stationary distribution is continuous in the interest rate on the interval
(f ′(k̄) − δ, β−1 − 1).

Proof. See proof of theorem 1 in Le Van and Stachurski (2007). The assumptions can be easily
verified. Assumption 1 holds because the optimal consumption choice is continuous in the
interest rate, the individual choice is independent from the cross-sectional distribution, and
the initial distribution is continuous in the interest rate. Assumption 2 is satisfied23 because
we have for every r in (f ′(k̄) − δ, β−1 − 1) a unique stationary distribution (theorem 1) such
that we can directly evaluate at the limit. The bound for the stationary moments follow
immediately from the positive probability of death (our assumption 2) and the lower bound
on consumption (lemma 10). Finally, assumption 3 follows by a similar argument using that a
highest sustainable capital stock exists (our assumption 5) and that the variance of productivity
is bounded. We have already shown that the stationary distribution is unique (theorem 1), and
hence, the stationary distribution is continuous in the interest rate (see remark 1 in Le Van and
Stachurski).

C Proof for the existence of a RCE

In this section, we establish the existence of an equilibrium interest rate in the interval (f ′(k̄)−
δ, β−1 − 1) such that all markets clear. We need the following lemmata.

Lemma 13. If only permanent shocks are present, D = 0, and r is such that β(1+r)E [ε−γ ] ≥ 1,
then borrowing constraints are non-binding.

23Using as Lyapunov function V (a, z) = a + (z − E[z])2 = a + (z − 1)2.
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Proof. The borrowing constraints are non-binding if for all (x, z) it holds that G(x, z, x) < 0.
If only permanent income shocks are present, then it can be easily checked that the inequality
always holds if

1 > β(1 + r)E
[

ε−γ
]

Hence, we get that for all r that satisfy this inequality, borrowing constraints must be non-
binding.

Lemma 14. For β(1 + r) = 1 aggregate asset supply is larger than aggregate asset demand.

Proof. It follows from theorem 1 that a stationary distribution exists. Aggregate asset supply
Ks is the sum of asset supply of newborn agents Knew and the asset holdings of agents that
survived from the last period Kold, we get

Ks = θKnew + (1 − θ)Kold

The asset supply of the newborn generation Knew is determined by the initial distribution
λ(a, z, r). The asset supply of the surviving generation Kold has been determined by a sequence
of optimal consumption choices. The consumption choice is characterized by the first order
conditions of the agent’s problem. We have to distinguish two cases.
(1) If borrowing constraints are binding for some agents, it follows from the first-order conditions
(see Huggett and Ospina (2001)) that for β(1 + r) = 1 there is expected consumption grwoth
in the cross-section conditional on survival

1 > Eµ

[

(

c∗t+1

c∗t

)−γ
]

⇒ Eµ [c∗t ] < Eµ

[

c∗t+1

]

where the µ subscript denotes the fact that the expectations are taken with respect to the
stationary distribution µ.
(2) If lemma 13 applies, then borrowing constraints are non-binding. The Euler equation holds
as an equality, and the argument by Huggett and Ospina (2001) does not apply.

1 = E

[

(

c∗t+1

c∗t

)−γ
]

There is only one riskless asset. Hence, ct+1 = ct is not an optimal choice for all realizations of
εt+1. Hence, Jensen’s inequality for strictly convex functions24 applies, we get

1 = E

[

(

c∗t+1

c∗t

)−γ
]

>

(

E
[

c∗t+1

c∗t

])−γ

⇒ 1 < E
[

c∗t+1

c∗t

]

⇒ Eµ [c∗t ] < Eµ

[

c∗t+1

]

and again we get conditional on survival consumption growth in the cross-section.25

Since expected labor income is constant, consumption growth can only be financed by accu-
mulating on average higher assets. If assets grow for all surviving agents between periods, it
follows that Kold > Knew because the average capital of all generations at the beginning of the
life has been Knew. As a consequence, we get Ks > Knew = Kd.

24Note that marginal utility is strictly convex if and only if ∂3u(x)

∂x3 > 0.
25The same argument applies, if borrowing constraints were binding. The argument by Huggett and Ospina

(2001) could therefore be replaced by this argument but to highlight the importance of prudence in the model
with permanent shocks we decided to present the proof in two steps.
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Lemma 15. There exists an interest rate low enough such that aggregate asset demand is larger
than aggregate asset supply.

Proof. Suppose not. First determine the highest sustainable capital stock given zero consump-
tion

k̄ = (1 − δ)k̄ + f(k̄)

Fix the interest rate at the implied interest rate

r = f ′(k̄) − δ

and allocate k̄ arbitrarily in the population. Draw initial productivity levels from the station-
ary marginal distribution of productivity levels. To sustain the capital stock, all agents must
consume ct = 0 but this is never optimal. Hence, aggregate consumption must be positive and
capital supply must be smaller than capital demand, but this yields a contradiction.

Theorem 2. Under the maintained assumptions a recursive competitive equilibrium (RCE)
exists.

Proof. We have already shown that an optimal solution to the agents optimization problem and
a stationary distribution exist. The stationary distribution is continuous in the interest rate.
Lemmata 14 and 15 together with the fact that asset demand is downward sloped26 imply that
there must exist at least one interest rate such that the goods market clears. The labor market
clears by construction. Hence, a recursive competitive equilibrium exists.

D Proof of non-binding borrowing constraints

Lemma 16. If all income shocks are permanent or transitory and i.i.d., then the optimal policy
only depends on a single variable.

Proof. (i) Start with c0(x, z) = cu(x, z) = x.

λ = min

{

x, (β(1 + r))−
1
γ

(

E
[

(

(1 + r)(x− λ) +wz′η
)−γ
])− 1

γ

}

λ

wz
= min







x

wz
, (β(1 + r))

− 1
γ

(

E

[

(

(1 + r)
(x− λ)

wz
+ εη

)−γ
])− 1

γ







λ̃ = min







x̃, (β(1 + r))−
1
γ

(

E

[

ε−γ

(

(1 + r)

ε
(x̃− λ̃) + η

)−γ
])− 1

γ







where we define for all variables x̃ := x
wz

. It follows that c̃0(x̃) = x̃, because x̃′ =
(1+r)

ε
(x̃− λ̃) + η and c̃1(x̃) = λ̃ for all x̃.

(ii) Suppose ci(x, z) = wzc̃i(x̃), it follows that

λ = min







x, (β(1 + r))−
1
γ

(

E

[

(

c̃i

(

(1 + r)

ε
(x̃−

λ

wz
) + η

)

wzε

)−γ
])− 1

γ







λ̃ = min







x̃, (β(1 + r))−
1
γ

(

E

[

(

c̃i

(

(1 + r)

ε
(x̃− λ̃) + η

)

ε

)−γ
])− 1

γ







26This follows immediately from assumption 4.
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it follows that c̃i+1(x̃) = λ̃ will also only be a function of x̃.

For this policy we use the result from Carroll and Kimball (1996) that the optimal consumption
function c(x̃) is concave27. Using this result, we prove that for the case where only permanent
shocks are present borrowing constraints must be non-binding.

Theorem 3. Assume only permanent income shocks are present. If a stationary recursive
equilibrium exists, then borrowing constraints must be non-binding.

Proof. The optimal recursive policy function of a RCE satisfies c∗ > cl (Lemma 10). From
Carroll and Kimball (1996) and Carroll (2004) it follows that c̃(x̃) is concave. This implies that
ι as defined in Lemma 10 is also a lower bound to the slope of the optimal policy function in
ratio form c̃(x̃). If an equilibrium exists, there must exist states where agents spend less than
there current income, and states where they spend more than their current income. Current
income in the reduced state space is

r

1 + r
x̃+

1

1 + r

and it can be easily shown that r
1+r

≤ ι in equilibrium because β(1 + r) ≤ 1

ι = 1 − (1 + r)−1 (β(1 + r))
1
γ ≥ 1 −

1

1 + r
=

r

1 + r

If borrowing constraints are binding, then it holds for some x̃ that c̃(x̃) = x̃ and the continuity
and the slope restriction for c̃(x̃) imply c̃(x̃) > r

1+r
x̃+ 1

1+r
for all x̃. However, a situation where

agents always spend more than their current income is not compatible with the existence of an
equilibrium. This contradiction proves that borrowing constraints must always be non-binding
in a RCE of this model.

Corollary 1. Assume only permanent income shocks are present. If a recursive competitive
equilibrium exists, then there is a unique ¯̃x ( target insurance rate) exists such that the optimal
policy yields at = at+1.

Proof. In equilibrium the optimal policy of the agent must such that optimal consumption is
for some state smaller and for some states larger than current income. It follows directly from
the continuity and concavity of the optimal policy function together with the lower bound cl on
the optimal policy that there must be a unique intersection of the optimal policy with current
income. This intersection characterizes ¯̃x.

Corollary 2. Given the assumptions of theorem 3, the equilibrium interest rate r lies in the

interval
(

(βE[ε−γ ])
−1

− 1;β−1 − 1
)

Proof. The upper bound follows from lemma 14. The lower bound can be derived from the fact
that borrowing constraints are always non-binding. The Euler equation for the reduced state
space variables and zero assets implies that if borrowing constraints are non-binding, then

1 < β(1 + r)E
[

ε−γ
]

⇐⇒ r >
(

βE[ε−γ ]
)−1

− 1

27The result can also be used on the reduced state space as it is shown in Carroll (2004). The argument
by Carroll and Kimball (1996) involves iteration on the Bellman equation but applies here as well because the
sequences of consumption functions of the two approaches are equivalent. This can be easily verified because
Gi(x, z, λ) = 0 is the necessary condition for updating the value function using the Bellman equation.
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