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1 Introduction

This paper revisits the age-old question of whether governments should respond to

changes in economic activity. The actions recently undertaken by governments the

world over clearly demonstrate that policy makers believe that the answer to the above

question is a resounding yes. The idea behind the practice of a counter-cyclical fiscal

policy typically revolves around the notion that idle resources (capital and labor) can

be used during periods of low economic activity to produce some kind of public good,

and that tax breaks help dampen the effects of bad shocks. The goal of this paper is

to investigate whether this kind of policy response can be reconciled with standard

neoclassical growth theory.

To that end, we investigate this question within the context of a stochastic neo-

classical growth (or real business cycle) model in which government infrastructures

are an input into production which firms do not control. Under a widely used class

of utility functions, we show that in bad times the government should: (i) lower the

tax rate on labor income, (ii) lower the tax rate on capital income; and (iii) increase

spending (or investment) in infrastructures. Quantitatively, following a one-standard

deviation negative productivity shock, the tax break amounts to 0.45% of GDP (most

of which is accounted for by the labor income tax) and government spending increases

by 0.62% of GDP.

While the pro-cyclicality of the labor income tax is not surprising, the result that

capital income tax rates are pro-cyclical may seem not only surprising, but at odds

with the work of Chari et al. (1994).1 The difference comes from a different timing

assumption in this paper relative to theirs. Chari et al. (1994) assume a conventional

timing whereby investment made during the period becomes productive next period.

As a result, the fiscal authority can promise a wide range of tax rates on capital income

tomorrow while at the same time re-assuring investors that on average they will not

be taxed. In other words, the government can induce an essentially undistorted

investment decision while at the same time absorbing shocks ex post with a highly

volatile tax on capital income. For example, the government taxes capital income

heavily to absorb the negative effect of a bad shock on tax revenues. Indeed, under

1We do, however, establish properties of labor income taxes that not only apply to their environ-
ment, but also shed some light of their numerical findings.
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standard specifications, in which shocks are persistent, the tax rate on capital income

is so high that the government runs a surplus in bad times. This is optimal since

it minimizes the need to resort to distortionary taxation, not only today but also

in the future. While the intuition for the results in Chari et al. (1994) is clear, the

results rely heavily on the notion that taxing capital tomorrow is a free lunch as the

investment decision was made in the past.

A simple way to avoid the presence of an ex post free lunch is to assume that

investment becomes productive in the same period in which it is undertaken. Under

this timing assumption, the return on capital is realized during the same period in

which the investment is made. Clearly, this timing assumption is not more realistic

than the conventional one. However, in the context of analyzing optimal fiscal policy,

it captures the idea that the tax authority does not hold an important timing advan-

tage over investors. This implies that the tax rate is distortionary on a state by state

basis.

One advantage of this approach is that the model remains sufficiently tractable

to derive some analytical results. Theoretically, our environment produces results

that are very much in the spirit of Chamley (1986) in the context of a deterministic

neoclassical growth model. In particular, under a per-period utility function which is

separable in consumption and leisure and feature constant elasticity of substitution in

consumption, not only are ex ante capital income taxes zero, but realized tax rates as

well (there is no distinction in our framework between ex ante and ex post tax rates).

As mentioned above, under a widely used class of non-separable per-period utility

functions, the tax rate on capital is pro-cyclical as long as labor is pro-cyclical.

We also show that if infrastructures depreciate at a faster pace than private capital,

which is supported by the data, then the ratio of infrastructures to private capital

is counter-cyclical. This result simply follows from the fact that because private

capital depreciates faster than infrastructures, the marginal product of capital needs

to be higher than the marginal product of infrastructures for their net returns to be

equalized. This result is not new, in the sense that Jones et al. (2005) show in a

model with two accumulable inputs (human and physical capital in their case) that

the input with the higher depreciation rate responds more to a positive shock than

the input with the lower depreciation rate. The reason is simple: shocks have a larger
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impact on the marginal product of the input which depreciates faster because the

marginal product is higher (around the steady state or, in their case, the balanced

growth path). As such, it should be clear that this result is entirely independent of

our timing assumption, as it also holds (in expectation) under the more conventional

timing used in Jones et al. (2005).

Despite pro-cyclical government spending and counter-cyclical taxes (on both cap-

ital and labor), nothing can be said about the value of government debt issued in the

period of a bad shock. This is because in equilibrium, with state-contingent debt, the

government tends to issue relatively few bonds that pay in the event of a bad shock

tomorrow. This opens up the possibility that the debt to be repaid in the period of

a bad shock is small enough to outweigh the extra spending and lower tax revenues

raised during the period, thereby making it possible for the value of new debt issued

to go down. Preliminary simulation results confirm that indeed the value of debt

issued in bad times can either increase or decrease.

The above results lead us to study optimal fiscal policy without state-contingent

debt. However, few results can be derived analytically in this case: only the pro-

cyclical nature of government spending can be shown to hold in general. We also

establish that under a very special per-period utility function—quasi-linear—capital

income should never be taxed. As such, our work here complements that of Farhi

(2005), who uses the conventional timing but imposes that the government sets capital

income tax rates one period ahead, also to mitigate the free lunch of ex post volatile

capital income tax rates.2 To the same end, Scott (2007) and Marcet and Scott

(2009) rule out capital income taxes altogether and show that the implications of

their model without state contingent debt is more consistent with the data than

models with state contingent debt. In particular, in models without state contingent

bonds, government debt and labor tax rates inherit a unit root component which, as

emphasized by Aiyagari et al. (2002) in a model without capital, lends some support

to Barro (1990)’s conjecture. Qualitatively, our simulations confirm that these results

hold even when the government sets capital tax rates optimally.

In related work, Lansing (1998) introduces government infrastructures in a model

similar to that of Chari et al. (1994). Our work differs from his along several dimen-

2As shown by Chari et al. (1994), merely ruling out state contingent debt in their framework
only serves to pin down the tax code and does not impose any restriction on the Ramsey problem.
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sions. First, he also uses the conventional timing, and therefore obtains results similar

to Chari et al. (1994) as far as capital income taxes are concerned. Second, we assume

constant returns to scale technologies only in inputs chosen by firms, as opposed to

the three inputs in the model (capital, labor, and government infrastructures). As

such, we need not make assumptions about profit taxation. Our assumption is also

consistent with the work of Aschauer (1989), who not only finds support for a produc-

tion technology which is constant returns to scale in private inputs, but also argues

that non-military structures should be part of the production function as these struc-

tures have a direct impact on productivity. Finally, we allow for the possibility that

the government sector faces shocks that are different from the private sector. In

particular, we pursue a specification in which the government sector is subject to

shocks that are perfectly correlated with but less volatile than shocks to the private

sector. Evidently, this shock structure increases the magnitude of the increase in

government infrastructures in recessions. This is the type of mechanism we eluded

to above, whereby recessions represent an opportunity for the government to use rel-

atively cheap resources to produce government infrastructures. Note, however, that

this last point is only important for quantitative purposes, as none of our analytical

results rely on that shock structure.

The rest of the paper is organized as follows. The economic environment is pre-

sented in the next section. In Sections 3 and 4 we set up and analyze Ramsey problem

with and without state-contingent debt, respectively. All our analytical results are

contained in these two sections. The model is calibrated in Section 5, where we discuss

our quantitative findings. A brief conclusion is offered in Section 6.

2 Economic Environment

The economic environment we consider is similar to that of Lansing (1998) who in

turn builds on Chari et al. (1994). Our benchmark model consists of a one-sector

stochastic neoclassical growth model modified so that government infrastructures are

an input into production which firms do not control. In contrast to Lansing (1998),

we assume firms have access to a technology which features constant returns to scale

in the two inputs they control, capital and labor, as opposed to all three inputs. It
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follows that in our environment the scale of firms is irrelevant and, since firms make

zero profits in equilibrium, there is no need to make an assumption regarding the

taxation of profits.

Output produced during the period can be used either for consumption, invest-

ment, or government spending. We distinguish between two types of government

spending: new infrastructures, which add to the un-depreciated stock of infrastruc-

tures inherited from the previous period, and non-government infrastructures. Simi-

larly, investment in new capital adds to the un-depreciated stock of capital inherited

from the previous period. As emphasized in the introduction, current investment (in

capital or infrastructures) becomes productive immediately.3

Although our benchmark model, is a one-sector model, for the purpose of simu-

lations we introduce the possibility that goods purchased by the government be pro-

duced by a technology that is less volatile than the technology that produces other

goods. Accordingly, the model presented in this section allows for that generality.

Each period the economy experiences one of finitely many events st ∈ S. We

denote histories of events by st = (s0, s1, . . . , st), where s0 is taken as given. As of

date 0, the probability that a particular history st will be realized is denoted π(st).

Production The (private goods) production technology is represented by a neoclas-

sical production function with constant returns to scale in capital (kp) and labor (lp)

yp(st) = fp
(
g(st), kp(st), lp(st), st

)
= Ap(st)g(st)γkp(st)αlp(st)1−α, (1)

where Ap(st) represents the state of technology in the private sector, yp(st) denotes

the aggregate (or per capita) level of output in the private sector, and kp(st) and

lp(st) denote capital and labor used in that sector. The distinguishing feature of this

technology is that government infrastructures, g(st), enter the production function.

However, since firms take government structures as given, this technology retains all

the properties of the standard neoclassical production function. In particular, the

capital to labor ratio is independent of scale, firms make zero profits in equilibrium,

3The assumption that government infrastructures become productive within the period is made
to maintain symmetry with private capital and therefore make the paper more readable: the results
are robust to the adoption of the conventional timing whereby government infrastructures put in
place today only become productive tomorrow.
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and factors are paid their marginal products:4

r̂(st) = f p
k

(
g(st), kp(st), lp(st), st

)− δ = f p
k (st)− δ; (2)

ŵ(st) = f p
l

(
g(st), kp(st), lp(st), st

)
= f p

l (st). (3)

The technology to produce government consumption goods (cg(st)) and new govern-

ment infrastructures (ig(st)) is identical to the private production technology,

cg(st) + ig(st) = f g
(
g(st), kg(st), lg(st), st

)
= Ag(st)g(st)γkg(st)αlg(st)1−α, (4)

except for the stochastic process governing the technology shock Ag(st).
5 We assume

that while the shock to this technology is perfectly correlated with the shock affecting

private production, its variance is a fraction θ of the variance of the private shock. Two

special cases are of particular interest: θ = 0 is a situation where the technology to

produce government infrastructures is not subject to any shock, and θ = 1 represents

a situation in which both shocks have identical properties. In the latter case, there is

no need to keep track of where factors are employed, and the model reduces to a one-

sector model. This is our benchmark economy. Also note that since both production

functions satisfy Inada conditions, both technologies will operate every period. As

discussed below, it follows that the government sector pays the same price on factors

of production as the private sector: r̂(st) = pg(st)f g
k (st)− δ and ŵ(st) = pg(st)f g

l (st),

where pg(st) is the ‘implicit relative price’ of government produced goods—in term

of private goods.6

Households The economy is populated by a large number of identical individuals

who live for an infinite number of periods and are endowed with one unit of time

every period. Individuals’ preferences are ordered according to the following utility

function ∞∑
t=0

∑

st

βtπ(st)U
(
c(st), l(st)

)
, (5)

4This is in contrast to Lansing (1998), who assumes constant returns to scale the three inputs:
government capital; private capital; and labor.

5Whether government consumption goods are produced using the private or the public technology
is immaterial. For calibration purposes, it is more attractive to have them produced by the public
sector to better match the share of labor employed in the public sector.

6Formally, the government minimizes the cost of producing a given amount of goods, i.e.
min{wlg + (r + δ)kg} subject to fg ≥ cg + ig. Then pg is the shadow value of an extra unit of
investment in government infrastructures, i.e. the Lagrange multiplier on the production constraint.
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where c(st) and l(st) represent consumption and hours worked at history st. We

assume that the felicity function is increasing in consumption and leisure (1 − ls
t
),

strictly concave, twice continuously differentiable, and satisfies the Inada conditions

for both consumption and leisure.

Each period individuals face the budget constraint

c(st)+k(st)+
∑
st+1

q(st+1|st)b(st+1|st) = w(st)l(st)+r(st)k(st)+k(st−1)+b(st|st−1) (6)

where w(st) = [1− τw(st)]ŵ(st) and r(st) = [1− τ k(st)]r̂(st), and where ‘hats’ denote

pre-tax prices. The fiscal policy instruments τw and τ k, as well as government debt

b(st+1|st) will be discussed in detail below.

Letting p(st) denote the Lagrange multiplier on the budget constraint at history st,

the first order necessary (and sufficient) conditions for a solution to the consumer’s

problem are given by (6) and

βtπ(st)Uc(s
t) = p(st), (7)

βtπ(st)Ul(s
t) = −w(st)p(st), (8)

at all dates t and histories st for consumption and labor,

− p(st)
(
1− r(st)

)
+

∑
st+1

p(st+1) = 0, (9)

at all dates t and histories st for capital,

− p(st)(q(st+1|st)) + p(st+1) = 0, (10)

at all dates t, histories st, and all states st+1 tomorrow for bond holdings, as well as

the transversality conditions

lim p(st)a(st) = 0, (11)

lim
∑

st+1
p(st+1)b(st+1|st) = 0. (12)

The conditions above assume that individuals are indifferent between supplying fac-

tors to private or public production, and that they supply strictly positive factors to

both sectors. Accordingly, it must be the case that after-tax wage rates are the same

in both sectors, and that returns on capital be equalized in both sectors, as mentioned

above.
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Proposition 1 An allocation solves the consumer’s problem if and only if it satisfies

equations (6)–(12), or, equivalently, if and only if it satisfies the implementability

constraint 7

∑

t,st

βtπ(st)
[
Uc(s

t)c(st) + Ul(s
t)l(st)

]
= A0, (13)

where A0 = Uc(s0)[k−1 + b−1], and a−1 and b−1 are initial amounts of capital and

government debt held by individuals.

Proof. The proof is standard. [See for example Chari et al. (1994).]

The Government The government in this economy has full control over the entire

fiscal policy in each period, except for the amount of government consumption cg(st),

which it takes as given. The fiscal policy instruments available to the government

consist of a proportional labor income tax τw(st); a proportional capital income

tax τ k(st); issuance of new government debt b(st+1|st); and investment in new in-

frastructures ig(s
t) which requires employing factors of production kg and ng. As

discussed before, investment in infrastructures becomes productive immediately: the

law of motion for government infrastructures is

g(st) = g(st−1) + ig(st)− δg(st), (14)

where δg is the depreciation rate of government structures.8

3 The Ramsey Problem

To study optimal policy in this environment, we set up a standard Ramsey problem.

As is well known, there is an equivalence between choosing fiscal policy instruments

directly and choosing allocations among an appropriately restricted set of allocations.9

7To obtain the implementability constraint, multiply the budget constraint (6) by p(st), add
them up, and use the first order conditions (7)–(10) to replace prices.

8This law for motion is equivalent to a specification where

g(st) = (1− δ̃g)
(
g(st−1) + ig(st)

)
,

with 1 + δg = 1/(1− δ̃g).
9See Chari and Kehoe (1999) or Erosa and Gervais (2001).
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The government’s problem consists of maximizing the utility of the representative

individual (5) subject to the implementability constraint (13) and feasibility. If we

denote λ the Lagrange multiplier on the implementability constraint, we can then

define the pseudo-welfare function W by

W
(
c(st), l(st)

)
= U

(
c(st), 1− l(st)

)
+ λ

[
Uc(s

t)c(st) + Ul(s
t)l(st)

]
.

The Ramsey problem is thus as follows:

max
∞∑

t=0

∑

st

βtπ(st)W
(
c(st), l(st)

)− λA0 (15)

subject to the feasibility constraints

c(st) + k(st) = Ap(st)g(st)γkp(st)αlp(st)1−α − δk(st) + k(st−1);

cg(st) + g(st) = Ag(st)g(st)γkg(st)αlg(st)1−α − δgg(st) + g(st−1),
(16)

where l(st) = lp(st) + lg(st) and k(st) = kp(st) + kg(st). It will prove useful to

define κ(st) as the fraction of the capital stock allocated to the private sector, that

is, kp(st) = κ(st)k(st) and kg(st) = (1 − κ(st))k(st). When the government sector

is subject to the same shock as the goods producing sector, the feasibility constraint

simply becomes

c(st) + cg(st) + k(st) + g(st)

= A(st)g(st)γk(st)αl(st)1−α − δk(st)− δgg(st) + k(st−1) + g(st−1). (17)

Proposition 2 If an allocation satisfies the constraints of the Ramsey problem, then

the allocation also satisfies the government budget constraint.

Proof. First multiply the second feasibility constraints in (16) by pg(st) and add it

to the first feasibility constraint

c(st) + k(st) + pg(st)cg(st) + pg(st)g(st)

= f p(st) + pg(st)f g(st) + k(st−1)− δk(st) + pg(st)[g(st−1)− δgg(st)].
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Since both production functions exhibit constant returns to scale in capital and labor,

we have

c(st) + k(st) + pg(st)cg(st) + pg(st)g(st)

= fp
k (st)kp(st) + fp

l (st)lp(st) + f g
k (st)pg(st)kg(st) + f g

l (st)pg(st)lg(st)

+ k(st−1)− δk(st) + pg(st)[g(st−1)− δgg(st)].

Since both sectors must pay the same price on factors (2)–(3) and k(st) = kp(st) +

kg(st) and l(st) = lp(st) + lp(st), and using the law of motion for government infras-

tructures (14) we have

c(st) + k(st) + pg(st)[cg(st) + ig(st)] = (r̂(st) + δ)k(st) + ŵ(st)l(st) + k(st−1)− δk(st).

Now if an allocation satisfies the implementability constraint, then it must satisfy

the budget constraint of individuals at all dates and histories. So we can use (6) to

replace c(st) + k(st) in the previous expression to obtain

w(st)l(st) + k(st−1) + b(st|st−1) + r(st))k(st)

−
∑
st+1

q(st+1|st)b(st+1|st) + pg(st)[cg(st) + ig(st)]

= r̂(st)k(st) + ŵ(st)l(st) + k(st−1).

Using the fact that ŵ(st)−w(st) = τw(st)ŵ(st) and similarly r̂(st)−r(st) = τ k(st)r̂(st),

rearranging the last expression we get

pg(st)[cg(st) + ig(st)] + b(st|st−1)

=
∑
st+1

q(st+1|st)b(st+1|st) + τw(st)ŵ(st)l(st) + τk(s
t)r̂(st)k(st),

which is the budget constraint faced by the government.

The government typically has more instruments than it needs, in the sense that

many tax systems can decentralize any given allocation (e.g. see Zhu (1992) or Chari

et al. (1994)). Such is not the case in our environment: our tax code is unique.

Essentially, this comes from the fact that the tax rate on capital is pined down by

the marginal product of capital as well as the optimality conditions (7) and (9).
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3.1 Optimality Conditions

Let βtφp(st) and βtpg(st)φg(st) be the Lagrange multipliers on the first and second

feasibility constraints in (16), respectively. The first order conditions with respect to

consumption and labor used to produce private goods and government infrastructures

are, respectively,

π(st)Wc(s
t) = φp(st), (18)

π(st)Wl(s
t) = −f p

l (st)φp(st), (19)

π(st)Wl(s
t) = −pg(st)f g

l (st)φg(st). (20)

Since f p
l (st) = pg(st)f g

l (st), the last two equations imply that φp(st) = φg(st) = φ(st)

for all t and st. The first order condition with respect to κ(st) is

βtφp(st)k(st)f p
k (st) = βtφg(st)pg(st)k(st)f g

k (st),

which implies that

fp
k (st) = pg(st)f g

k (st), (21)

as one should expect since the composition of the capital stock is chosen during the

period. The first order condition with respect to capital is given by

φp(st)
[−1 + κ(st)fp

k (st)− δ
]
+ β

∑
st+1

φp(st+1) + φg(st)pg(st)(1− κ(st))f g
k (st) = 0,

which, using (21), can be written as

φ(st)
[
1− (f p

k (st)− δ)
]

= β
∑
st+1

φ(st+1). (22)

Finally, the first order condition with respect to government infrastructures is given

by

φp(st)f p
g (st) + pg(st)φg(st)

[−1 + f g
g (st)− δg

]
+ β

∑
st+1

pg(st+1)φg(st+1) = 0,

or, simplifying,

φ(st)
[
pg(st)

(
1− (f g

g (st)− δg)
)− f p

g (st)
]

= β
∑
st+1

pg(st+1)φ(st+1). (23)
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3.2 Optimal Fiscal Policy

The rest of this section is devoted to characterize optimal fiscal policy. Our charac-

terization, which requires making assumptions about the form of the utility function,

involves in turn the labor income tax, the capital income tax, and finally government

infrastructure spending.

Our first two Propositions show that while the labor tax does not depend of the

state of the economy if the per-period utility is separable between consumption and

labor and both part exhibit constant elasticity of substitution (CES), it becomes

pro-cyclical when individual care about leisure, even if the utility function is CES in

leisure.

Proposition 3 Assume that the felicity function is separable with u(c) and v(l) both

exhibiting constant elasticity of substitution. Then the tax rate on labor income is

invariant to the productivity shock.

Proof. Combining the first order conditions with respect to consumption (18) and

labor (19) from the Ramsey problem and using (3), we get

− Wl(s
t)

Wc(st)
= ŵ(st). (24)

The derivatives Wc and Wl are given by

Wc(s
t) = (1 + λ)Uc(s

t) + λUc(s
t)Hc(s

t),

Wl(s
t) = (1 + λ)Ul(s

t) + λUl(s
t)Hl(s

t),

where

Hc(s
t) =

Uc,c(s
t)c(st) + Uc,l(s

t)l(st)

Uc(st)
,

Hl(s
t) =

Ul,c(s
t)c(st) + Ul,l(s

t)l(st)

Ul(st)
.

Now pick two histories as of date t, st and s̃t. From (24), it must be that

Wl(s
t)

Wc(st)ŵ(st)
=

Wl(s̃
t)

Wc(s̃t)ŵ(s̃t)
,
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or, equivalently,
[
1 + λ + λHl(s

t)
]
Ul(s

t)[
1 + λ + λHc(st)

]
Uc(st)ŵ(st)

=

[
1 + λ + λHl(s̃

t)
]
Ul(s̃

t)[
1 + λ + λHc(s̃t)

]
Uc(s̃t)ŵ(s̃t)

.

Since the felicity function is separable, the functions Hc and Hl become

Hc(s
t) =

Uc,c(s
t)c(st)

Uc(st)
,

Hl(s
t) =

Ul,l(s
t)l(st)

Ul(st)
.

And since the sub-utilities for consumption and labor are both from the constant

elasticity of substitution class of utility, that means both Hc and Hl are constant.

Accordingly, the last expression reduces to

Ul(s
t)Uc(s̃

t)

Uc(st)Ul(s̃t)
=

ŵ(st)

ŵ(s̃t)
.

But the first order conditions for consumption and labor from the household’s problem

(equations (7) and (8)) under histories st and s̃t imply

Ul(s
t)Uc(s̃

t)

Uc(st)Ul(s̃t)
=

w(st)

w(s̃t)
=

(1− τw(st))ŵ(st)

(1− τw(s̃t))ŵ(s̃t)
.

For the last two equations to hold it must be the case that τw(st) = τw(s̃t).

The intuition for this result is that because the elasticity of the labor supply does

not vary with the shock, there is no reason for the government to tax labor at rates

that vary with the shock. Note that the utility function as specified in (5) will not

generally satisfy the assumption of the above proposition, as individuals care about

leisure, as opposed to disliking labor. The following proposition shows that indeed

labor income taxes will in general not be constant when individuals care about leisure.

Proposition 4 Assume that the felicity function is given by u(c)v(l), with u(c) =

(1 − σ)−1c1−σ and v(l) = (1 − l)ν(1−σ) = (1 − l)η, with σ > 1 and ν > 0, and

ln(c) + η ln(1 − l) for σ = 1. Pick two states st and s̃t such that l(st) > l(s̃t). Then

τw(st) > τw(s̃t) if and only if

λ <
−1

(1− σ)(1 + ν)
. (25)
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Proof. From equations (7)–(8) and (24), the tax rate on labor income is given by

τw(st) =
λ
(
Hl(s

t)−Hc(s
t)

)

1 + λ + λHl(st)
. (26)

Under the stated utility function, Hc and Hl are such that

Hl(s
t)−Hc(s

t) =
−1

1− l(st)
,

Hl(s
t) = −σ +

1− ηl(st)

1− l(st)
.

Using these expression in equation (26) we have

τw(st) =
λ

1− λ(σ − 2)− l(st)
(
1 + λ(1− σ)(1 + ν)

) .

It follows that the tax rate is higher under state st than s̃t if the term in from of labor

is positive, which is the condition given above.

Notice that under logarithmic utility, i.e. when σ = 1, the condition is always

satisfied.10 In this case, as long as labor is pro-cyclical, so will the tax on labor

income. This Proposition is useful to interpret the finding in Chari et al. (1994) that

the correlation between the shock and labor taxes changes sign as they change the

risk aversion parameter. Notice as well that what is key here is whether the utility

function exhibits constant elasticity of substitution in labor or in leisure. When it is

CES in leisure, the labor supply elasticity varies with the level of the labor supply,

becoming more inelastic as the labor supply increases.

Our next results pertain to the tax on capital or interest income. We first show

that the interest income should not be taxed if the utility function is separable and

exhibits constant elasticity of substitution in consumption. We then argue that under

non-separable preferences, the tax rate on interest income is likely to be pro-cyclical.

Proposition 5 Assume that the felicity function is separable and u(c) exhibits con-

stant elasticity of substitution. Then the capital income tax is zero at all dates and

histories (other than the first period).

10Of course τw(st) = 0 if λ = 0.
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Proof. Recall that the first order conditions (7) and (9) from the households’ problem

imply that

(1− r(st)) =
∑
st+1

βπ(st+1)Uc(s
t+1)

π(st)Uc(st)
. (27)

Similarly, combining first order conditions (18) and (22) from the Ramsey problem

we have [
1− (fp

k (st)− δ)
]

= (1− r̂(st)) =
∑
st+1

βπ(st+1)Wc(s
t+1)

π(st)Wc(st)
. (28)

But with separable utility and constant elasticity of substitution,

Wc(s
t) = (1 + λ + λHc(st))Uc(s

t) = (1 + λ− λσ)Uc(s
t),

where σ is the inverse of the intertemporal elasticity of substitution. Hence we can

replace Wc with Uc in equation (28). But then the only way for both equation (28)

and equation (27) to hold is if we have τ k(st) = 0.

This Proposition is in sharp contrast to the results in Chari et al. (1994), where

the ex post tax rate on capital income is extremely volatile. The intuition is that

in their set up, the return on investment made today is taxed tomorrow. Since the

investment decision has already been made when the tax authority sets the tax rate

on capital income, this instrument is extremely useful to absorb shocks to the budget

of the government. For example, if the economy experiences a bad shock today,

then the government will tax capital income at a high rate to absorb the loss in

revenue. The more persistent the shock is, the higher the tax rate. In fact, under

standard parameter specifications, the increase in capital income taxes is so large

that the government runs a surplus in the period of the bad shock, thereby absorbing

the future path of low government revenue with very little change to the tax rate

on labor income. Of course, the tax authority always promises individuals that on

average capital income will not be taxed. This is what Chari et al. (1994) refer to as

the ex ante tax rate on capital income, which, under the assumptions of proposition 5,

is zero.

In our setup, the return on capital is known at the time individuals make their

investment decision, thereby eliminating the distinction between ex ante and ex post

taxes on capital. In particular, the tax authority no longer has the ability to absorb

shocks in an essentially non-distortionary fashion.
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Under more general preferences, the tax rate on capital will not in general be

equal to zero. For instance, if U(c, l) = u(c)v(l), with u(c) = (1 − σ)−1c1−σ and

v(l) = (1 − l)ν(1−σ) = (1 − l)η, with σ > 1 and ν > 0, then capital income will tend

to be subsidized in bad times and taxed in good times. To see this, note that the

function Hc(s
t) under this utility function is given by

Hc(s
t) = −σ − η

l(st)

1− l(st)
,

which, since η < 0, is increasing in l. Now from equations (27) and (28), we have

1− r(st)

1− r̂(st)
=

∑
st+1

π(st+1|st)
(
1 + λ + λHc(st)

)
Uc(s

t+1)∑
st+1

π(st+1|st)
(
1 + λ + λHc(st+1)

)
Uc(st+1)

. (29)

When this ratio is smaller than 1, capital income is subsidized, and capital income is

taxed if the ratio is greater than 1. In particular, capital income is subsidized when

Hc(s
t) is relatively low, i.e. when the labor supply is relatively low. Much like the

labor income tax, the capital income tax is thus likely to be pro-cyclical as long as

labor is pro-cyclical.

We now move on to study the behavior of government infrastructures over the

business cycle. The following Proposition states that in a one-sector growth model,

if government infrastructures depreciate at the same rate as capital, then the ratio of

the two stocks of capital will always be constant.

Proposition 6 Assume that feasibility is given by (17) and that δg = δ. Then the

ratio of government infrastructures to capital is constant at all dates and histories,

and is given by g(st)/k(st) = γ/α.

Proof. With only one production function, the first order conditions with respect to

capital and government infrastructures become

φ(st)
[
1− (fk(s

t)− δ)
]

= β
∑
st+1

φ(st+1),

φ(st)
[
1− (fg(s

t)− δg)
]

= β
∑
st+1

φ(st+1),

which, since δg = δ implies that

αy(st)

k(st)
=

γy(st)

g(st)
.
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As we will see in the next section, however, government infrastructures and capital

do not depreciate at the same rate. In particular, for the historical stocks of infras-

tructure and capital to be consistent with historical series on investment in capital

and infrastructures, it must be the case that infrastructures depreciate at a much

slower pace than capital. In other words, fk(s
t) > fg(s

t). As our next Proposition

shows, this is sufficient for the ratio of g/k to be counter-cyclical.

Proposition 7 Assume that δg < δ. Then g/k is counter-cyclical.

Proof. Pick two states st and s̃t such that productivity is higher in state st then in

state s̃t. Without loss of generality, assume that A(s̃t) = 1, and that fk(s̃
t) − δ =

fg(s̃
t)− δg for some g̃(s̃t), k̃(s̃t) and l̃(s̃t). Clearly, with A(st) = ω < 1,

ωfk(s̃
t)− δ < ωfg(s̃

t)− δg,

which implies that g(st)/k(s(t)) > g̃(st)/k̃(s(t)) for the equality of the marginal

products to hold under state st.

This result is not new, in the sense that Jones et al. (2005) show in a model with

two accumulable inputs (human and physical capital in their case) that the input

with the higher depreciation rate responds more to a positive shock than the input

with the lower depreciation rate. The reason is simple: shocks have a larger impact

on the marginal product of the input which depreciates faster because the marginal

product is higher (around the steady state or, in their case, the balanced growth

path). of course, this Proposition only states that investment in infrastructures will

be high relative to investment in capital, not that investment in infrastructures will be

higher than otherwise. The direction of investment in infrastructures itself depends on

parameter values. As it turns out, under our benchmark calibration, which only seeks

to have the right long run ratios of government infrastructures to capital and as well

as the right investment ratios, government spending (investment) in infrastructures

goes up in bad times.

18



4 Ruling out State-Contingent Debt

Ruling out state-contingent debt in the standard neoclassical growth model has proven

difficult. As shown in Chari and Kehoe (1999), ruling out state-contingent debt in

this model amounts to imposing, at all dates, implementability constraints of the

form11

∞∑
t=m

∑

st

βt−mπ(st|sm)
[
Uc(st)c(st) + Ul(s

t)l(st)
]

= Uc(s
m)

(
k(sm−1) + b(sm−1)

)
. (30)

Notice that relative to Chari et al. (1994) or Scott (2007), the right-hand-side of

(30) does not involve the after-tax interest rate. This is a direct consequence of

our timing assumption, which greatly simplifies the problem as there is no need to

impose that the interest rate need to be consistent with an Euler equation which

depends on consumption today and tomorrow. In particular, we can directly apply

the methodology developed by Marcet and Marimon (1994) to obtain the following

Ramsey problem in Lagrangian form:

max
∞∑

t=0

∑

st

βtπ(st)
{

U(c(st), l(st)) + µ(st)
[
Uc(s

t)c(st) + Ul(s
t)l(st)

]

− λ(st)Uc(s
t)

[
k(st−1) + b(st−1)

]}
, (31)

where µ(st) = µ(st−1) + λ(st) and µ−1 = 0, subject to feasibility (17) at all dates and

history, given k(−1) and b(−1).

4.1 Analysis

We first establish that the evolution of the multiplier µ, which reflects the distor-

tionary nature of taxation over time, contains a permanent component—a result first

discussed in Aiyagari et al. (2002) in a model without capital, and more recently by

Scott (2007) in a model with capital in which capital income taxation is ruled out. To

establish this result, notice that the first-order condition for government debt states

that ∑

st+1|st

βt+1π(st+1)λ(st+1)Uc(s
t+1) = 0. (32)

11Imposing this constraint at all nodes is equivalent to imposing the consumer’s budget constraint
period by period.
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Now since λ(st+1) = µ(st+1) − µ(st), multiplying λ(st+1) by Uc(s
t+1) and using (32)

establishes that

µ(st) =

∑
st+1

π(st+1|st)Uc(s
t+1)µ(st+1)∑

st+1
π(st+1|st)Uc(st+1)

, (33)

so that the multiplier µ follows a risk-adjusted Martingale. An interesting special

case, which we study in more details below, is one where the felicity function is

quasi-linear, i.e. U(c, l) = c + v(l). In this case, the marginal utility of consumption

is constant at unity, and so the stochastic process for the multiplier µ becomes a

martingale. Indeed, Farhi (2005) shows that if the government faces natural debt

limits and the stochastic process governing the state st converges to a unique (non-

degenerate) stationary distribution, then µt converges to zero, which implies that the

Ramsey allocation converges to a first-best allocation (i.e. all taxes are zero in the

long run). This result holds in our economy as well.

In general not much can be said analytically about the behavior of optimal taxes

in this environment. In particular, nothing can be said about the labor income taxes,

at least as far as we can tell. For the capital income tax, we will now establish one

special case where it is always zero. If we let βtπ(st)φ(st) be the multipliers on the

feasibility constraint, the first order condition with respect to capital reads

−
∑

st+1|st

βt+1π(st+1)λ(st+1)Uc(s
t+1)

− βtπ(st)φ(st)
(
1− (

fk(s
t)− δ

))
+

∑

st+1|st

βt+1π(st+1)φ(st+1) = 0,

which, given (32), implies that

1− (
fk(s

t)− δ
)

= 1− r̂(st) =

∑
st+1|st βπ(st+1)φ(st+1)

π(st)φ(st)
. (34)

As usual, recalling equation (27)—which holds here as well—interest income should

not be taxes if the shadow value of resources is equal to marginal utility at all dates

and states, i.e. if φ(st) = Uc(s
t). This will in general not be the case, even under a

per-period utility function separable between consumption and leisure. In this case,

the value of the multiplier φ, from the first order condition for consumption, is given
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by

φ(st) = Uc(s
t)

[
1 + µ(st)

(
Ucc(s

t)c(st)

Uc(st)

+ 1

)
− λ(st)

Ucc(s
t)

Uc(st)

(
k(st−1) + b(st−1)

)]
.

(35)

Clearly, the term inside the square brackets will not in general be equal to one. There

is, however, one special case under which we can establish that capital income should

not be taxed, as we state in the following proposition.

Proposition 8 If the per-period utility function is quasi-linear in consumption, i.e.

U(c, l) = c + v(l), then the tax rate on capital income is zero.

Proof. First note that under this utility function, because the marginal utility of

consumption is fixed at unity, (27) implies that 1− r(st) = β. From (35), the value of

the multiplier on the feasibility constraint is given by φ(st) = 1+µ(st). Furthermore,

(33) implies that µ(st) =
∑

st+1
π(st+1|st)µ(st+1). Using these facts in equation (34)

imply that r̂ = β.

Before moving to simulations, we note that Propositions 6 and 7 continue to hold

in this environment. This follows simply by comparing the first order condition for

government infrastructures, given by

π(st)φ(st)
(
1− (

fg(s
t)− δg

))
= β

∑

st+1|st

π(st+1)φ(st+1),

to the optimality condition for capital (34).

5 Simulations

To be completed.

6 Conclusion

This paper revisits the question as to how fiscal policy should be conducted over the

business cycle. We do so in a standard neoclassical growth model modified along two
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important dimensions: (i) we introduce government infrastructures as an (government

chosen) input into production which firms take as given, and (ii) we assume that

investment becomes productive immediately.

Under a widely used class of utility functions, we show that in bad times the

government should: (i) lower the tax rate on labor income, (ii) lower the tax rate on

capital income; and (iii) increase spending (or investment) in infrastructures. While

the increase in spending only relies on the fact that infrastructures depreciate at

a slower pace than business capital, the fact that the capital income tax is pro-

cyclical comes from our timing assumption. Quantitatively, following a one-standard

deviation negative productivity shock, the tax break amounts to 0.45% of GDP (most

of which is accounted for by the labor income tax) and government spending increases

by 0.62% of GDP. Despite the counter-cyclical nature of fiscal policy, the behavior of

(state-contingent) government debt is not pinned down by the model. Accordingly, we

study a situation in which the government is precluded from issuing state-contingent

bonds. Aside from the pro-cyclical nature of government spending, very little can be

said about optimal tax rates in this case.

Overall our findings support the adoption of a counter-cyclical fiscal policy whereby

taxes should be cut and productive government expenditures increased. However, it

should be emphasized that infrastructures only constitute a small fraction of overall

government spending, and that our theory is silent as to how the rest of government

spending should be set.
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