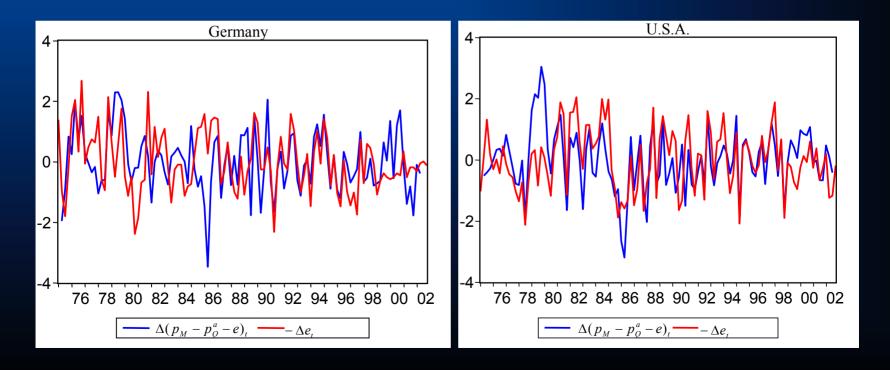
Incomplete pass-through in import markets and permanent vs. transitory exchange-rate shocks

2nd Workshop on Macroeconomic Policy Research, Magyar Nemzeti Bank, October 2-3, 2003


Martin Meurers, *ifo Institute for Economic Research, Munich, Germany*

- First-glance empirical evidence for incomplete pass-through (pricing-to-market) and economic rationale
- Estimation of import supply functions for the U.S., Japan, Germany, France, and Italy
- Permanent and transitory exchange-rate changes in the context of dynamic optimizing behavior
- Decomposition of real exchange rates into a permanent and a transitory component
- Re-estimation of import supply functions with decomposed exchange rates
- Conclusion

Changes in the value of a country's currency do not lead to congruent changes of import prices

Latest empirical evidence: e.g. Campa and Goldberg (2002), Pollard and Coughlin (2003)

 \Leftrightarrow Import prices in relation to foreign costs in common currency $[P_M/(P_Q^a \cdot E)]$ vary with the exchange rate (*E*).

Static PTM: Dornbusch (1987), Krugmann (1987)

$$P_{M}^{f} = \frac{\varepsilon}{1+\varepsilon} C^{f'}(M, P_{Q}^{a}) \qquad \varepsilon = \varepsilon (P_{Q} / P_{M}^{f} \cdot E)$$

$$(1) \quad P_{M}^{f} = \left[\frac{P_{Q}}{P_{M}^{f} \cdot E}\right]^{\psi} \cdot C^{f'}(M, P_{Q}^{a}) \qquad r = e + p_{Q}^{a} - p_{Q}$$

$$(2) \qquad p_{M} - p_{Q} = \gamma_{0} + (1-\gamma_{1})r$$

Dynamic PTM: Baldwin (1988), Froot and Klemperer (1989), Kasa (1992)

(3)
$$L_t = E_t \sum_{i=0}^{\infty} \theta^i [\lambda (p_{t+i} - \widetilde{p}_{t+i})^2 + \Delta p_{t+i}^2]$$
 $p_t = p_{M_t} - p_{Q_t}$
 $E_t \widetilde{p}_{t+i} = (1 - \gamma_1) E_t r_{t+i}$

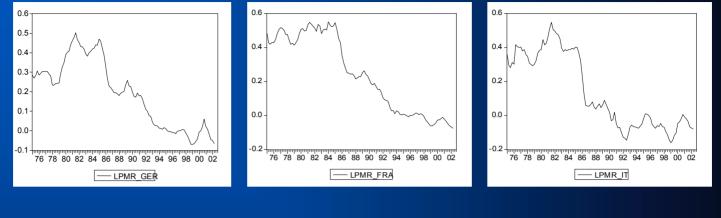
(7) $\Delta p_t = -(1-\mu)[p_{t-1} - (1-\gamma_1)r_{t-1}] + \iota' G(\theta, \mu, \Pi, A)\Delta z_t$

Oil price as additional determinant of import prices:

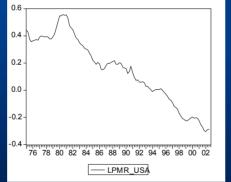
Table 1: Pair-wise correlations of oil prices with exchange rates and import prices						
	U.S.	Japan	Germany	France	Italy	
$Corr(\Delta r_t, \Delta p_{Oil_t})$	0.00	0.10	0.04	0.17	0.08	-
$Corr(\Delta p_t, \Delta p_{Oil_t})$	0.54	0.43	0.44	0.38	0.43	

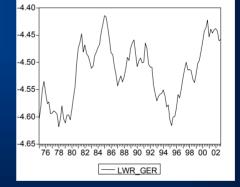
Unit-Root tests:

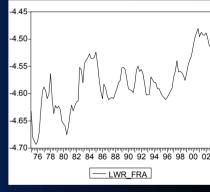
Augmented Dickey-Fuller: H_0 : $\alpha = 1$

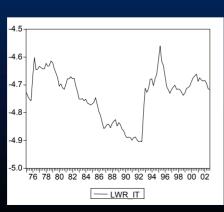

$$\Delta y_t = c_0 + (\alpha - 1)y_{t-1} + c_1 t + \sum_{i=1}^{k-1} \beta_i \Delta y_{t-i} + \varepsilon_t \qquad \varepsilon_t \sim IID(0, \sigma^2)$$

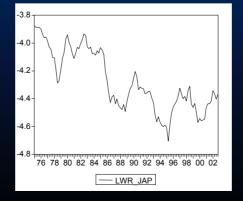
Kwiatkowski et al.: H_0 : d = 0

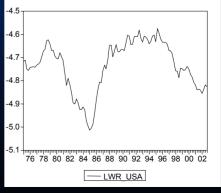

$$y_{t} = \alpha + \beta t + d\sum_{i=1}^{t} u_{i} + \varepsilon_{t} \qquad LM = \sum_{t=1}^{T} S_{t}^{2} / \hat{\sigma}_{\varepsilon}^{2} \qquad S_{t} = \sum_{i=1}^{t} e_{i}$$


3. Estimation of import supply functions


Relative import prices and real exchange rates







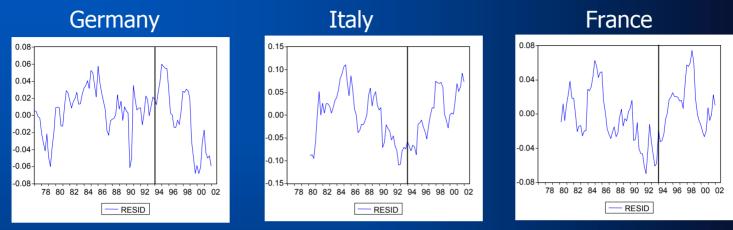

Results of the unit root tests

Table 1: Unit root tests for the real exchange rates						
variable	Lags (k)	det. comp.	ADF	ADF	KPSS	KPSS
		in test		1 st diff.	(l = 8)	1 st diff.
						(l = 8)
R_GER	4	C,T	-3.30*	-5.03***	0.128*	0.083
R_FRA	5	C,T	-3.31*	-5.32***	0.074	0.074
R_ITA	4	C,T	-2.46		0.157**	0.123
R_USA	5	C,T	-2.61	-3.55 ^{***} -4.98 ^{***}	0.105	0.050
R_JAP	6	C,T	-2.70	-4.98***	0.133*	0.199

Table 2: Unit root tests for the relative import prices and the oil price

				_	-	
variable	Lags (k)	det. comp.	ADF	ADF	KPSS	KPSS
		in test		1 st diff.	(l = 8)	1 st diff.
						(l = 8)
P_GER	6	C,T	-2.25		0.180**	0.147
P_FRA	5	C,T	-2.58	-4.15***	0.157**	0.118
P_ITA	7	C,T	-1.81	-3.96***	0.147^{**}	0.096
P_USA	7	C,T	-3.25*	-3.85***	0.136*	0.142
P_JAP	7	C,T	-2.53	-4.14***	0.111	0.072
POIL	1	С	-1.37	-5.23***	0.117	0.109
		•	•		•	•

Structural shifts in the European supply functions

Summary of ECM estimations: sample 1975:1-2002:2, T=110

Significance of $(1-\mu)$ suggests cointegrating import supply relations – except for France

	long run (1- γ_1)	short run
U.S.	0.48	0.28
Japan	0.86	0.75
Germany	0.95	0.65
France	0.92	0.69
Italy	0.83	0.50

- \rightarrow Coherence with results of previous studies
- → Hypothesis: different response to permanent and transitory exchange-rate changes matters

Summary of ECM estimations: sample 1975:1-2002:2, T=110

Significance of $(1-\mu)$ suggests cointegrating import supply relations – except for France

	long run (1- γ_1)	short run	
U.S.	0.48	0.28	
Japan	0.86	0.75	
Germany	0.95	0.65	
France	0.92	0.69	
Italy	0.83	0.50	

- \rightarrow Coherence with results of previous studies
- → Hypothesis: different response to permanent and transitory exchange-rate changes matters

A simple model for the decomposition of real exchange rate into a permanent component q_t and a transitory component s_t

(10a)
$$r_t = q_t + s_t$$

(10b) $q_t = q_{t-1} + u_t$ $(s_t, u_t) \sim \text{iid}[0, \text{diag}(\sigma_s^2, \sigma_u^2)]$
 $\rightarrow \Delta r_t = u_t + \Delta s_t$

Prediction of the target path in the adjustment cost model:

$$E_t r_{t+i} = r_t - s_t$$

Corresponding ECM for dynamic import supply function:

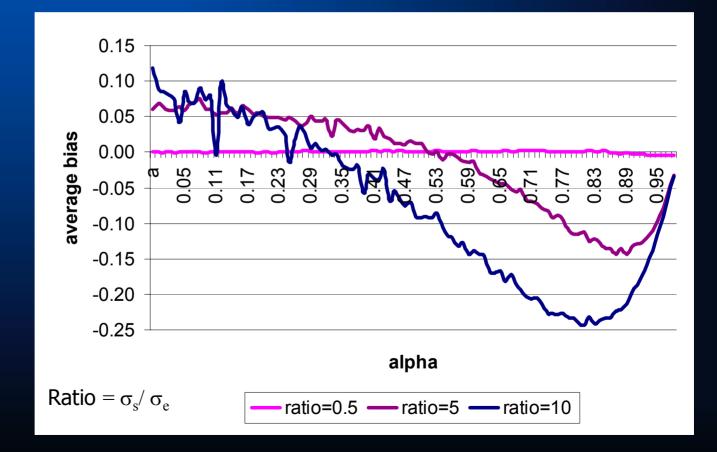
(11) $\Delta p_t = -(1-\mu)[p_{t-1} - (1-\gamma_1)r_{t-1}] + (1-\mu)(1-\gamma_1)\Delta r_t - (1-\mu)\theta\mu(1-\gamma_1)s_t$

4. Accounting for permanent and transitory exchange-rate changes

Implications for conventional estimates:

a) potential bias in estimated pass-through coefficientsb) imprecise forecasts

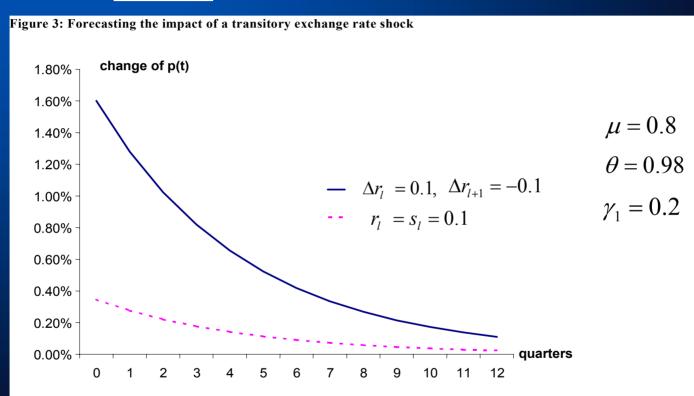
a) Monte-Carlo experiments to evaluate bias in estimates based on the simple model with AR(1) process for the transitory component s_t :


$$\begin{aligned} r_t &= q_t + s_t \\ s_t &= \alpha s_{t-1} + e_t \quad 0 \le \alpha < 1 \quad e_t \sim iidN(0, \sigma_e^2) \\ q_t &= q_{t-1} + u_t \quad u_t \sim iidN(0, \sigma_u^2) \end{aligned}$$

In general: tendency to underestimate the adjustment coefficient $(1-\mu)$, and the short run pass-through elasticity

Downward bias increases with the variance of transitory shocks e_t in relation to permanent shocks u_t

• Ambiguous results for the long run pass-through elasticity $(1-\gamma_1)$.


• Downward bias peaks at a relatively high degree of serial correlation in s_t .

4. Accounting for permanent and transitory exchange-rate changes

b) simulation of a temporary 10% depreciation at time t = k

- **1.** considering model (10a) and (10b): $r_l = s_l = 0.1$
- **2.** setting $\Delta r_l = 0.1$ and $\Delta r_{l+1} = -0.1$ in conventional ECM

 \rightarrow Extract transitory component s_t and include contemporaneous and possibly lagged values when estimating the dynamic import supply functions

Bivariate Blanchard-Quah decomposition:

- Joint process of two variables (x_t, z_t) is governed by two shocks
- One variable is stationary ⇒ no impact of shocks on long-run level
- Other variable is non-stationary, but one of the shocks is assumed to have no long-run impact
- \Rightarrow identification of two independent shocks from VMA representation of ($\Delta x_t, z_t$)

Lee and Chinn (2002): joint process of r_t and current account in relation to nominal GDP (CA_t) satisfy BQ assumptions:

- Two shocks govern the joint process: real demand and supply shocks (ε_t^r) and nominal (financial market) shocks (ε_t^n)
- CA is stationary
- Nominal shocks only have a temporary impact on r_t

Bivariate Blanchard-Quah decomposition

based on the joint process of r_t and current account in relation to nominal GDP (CA_t) - Lee and Chinn (2002):

assumptions:

- Two shocks govern the joint process: real demand and supply shocks (ε_t^r) and nominal (financial market) shocks (ε_t^n)
- CA is stationary
- Nominal shocks only have a temporary impact on r_t

Hypothesized model:

$$\begin{bmatrix} \Delta r \\ CA \end{bmatrix}_{t} = C(L) \begin{bmatrix} \varepsilon^{r} \\ \varepsilon^{n} \end{bmatrix}_{t}$$

Steps in the decomposition :

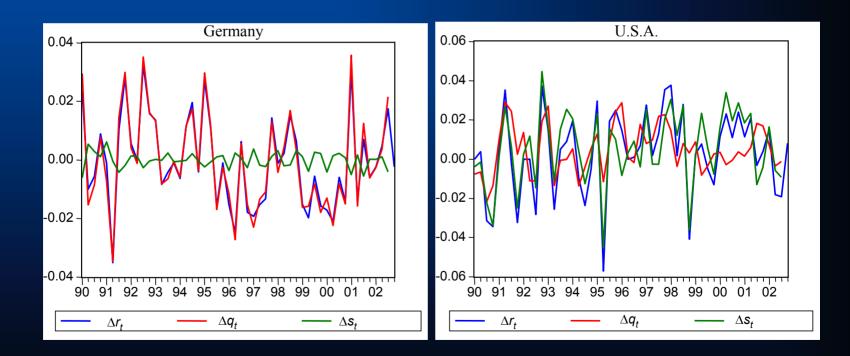
1. Unit-root tests for CA_t \rightarrow stationarity cannot be rejected

2. Estimation of the bivariate VAR:

$$\begin{bmatrix} \Delta r \\ CA \end{bmatrix}_{t} = A(L) \begin{bmatrix} \Delta r \\ CA \end{bmatrix}_{t-1} + \begin{bmatrix} e_{1} \\ e_{2} \end{bmatrix}_{t}$$

 \rightarrow selection of lag order using Akaike and Schwarz Bayesian criterion

3. Transformation into VMA:


$$\begin{bmatrix} \Delta r \\ CA \end{bmatrix}_{t} = (I - A(L)L)^{-1} \begin{bmatrix} e_{1} \\ e_{2} \end{bmatrix}_{t} = (I - A(L)L)^{-1} C(0) \begin{bmatrix} \varepsilon^{r} \\ \varepsilon^{n} \end{bmatrix}$$

4. Identification of C(0)shocks making use of: $[[I - A(1)]C(0)]_{1,2} = 0$

5. Calculation of transitory and permanent components in r_t

$$\Delta q_t = (1,0) \left[\left(I - A(L)L\right)^{-1} C(0) \begin{bmatrix} \varepsilon^r \\ 0 \end{bmatrix}_t \right] \quad \Delta s_t = (1,0) \left[\left(I - A(L)L\right)^{-1} C(0) \begin{bmatrix} 0 \\ \varepsilon^n \end{bmatrix}_t \right]$$

- For Japan, Germany, France, and Italy real shocks and permanent exchange rate movements dominate
- U.S. real exchange rate is dominated by nominal shocks and transitory changes

Results for the augmented ECMs including transitory exchange rate components s_{tr} s_{t-1} ,...:

- Only for the U.S. import price s_{t-1} has a significant impact, for other countries at most s_t.
- Transitory component enters with correct (negative) sign
- In many cases increase in short and long run pass-through

	long run (1- γ_1)	short run	
U.S.	0.79 ↑	0.44 ↑	
Japan	0.85 ~	0.75 ~	
Germany	1.00 ↑	0.63 ~	
France	1.38 ↑	0.74 ↑	
Italy	1.04 ↑	0.49 ~	

- Changes in coefficients are broadly consistent with simulations, exception is adjustment coefficient $(1-\mu)$

• Estimation of ECMs for import supply relationships confirms incomplete pass-through of exchange rates

• Quadratic adjustment cost model highlights role of expected persistence of exchange rate changes

implications for estimation and forecasting

 Accounting for permanent and transitory exchange-rate movements in many cases increases ECM estimates of short and long run pass-through

 Predictions of simulations for bias in estimates are not fully supported by the data

- indicative character of results
- more extensive study about implications for estimation
- alternative decompositions