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1. Introduction

The excess volatility puzzle (Shiller, 1981, and LeRoy and Porter, 1981) and the equity

premium puzzle (Mehra and Prescott, 1985) are two fundamental challenges to theoretical

models that have been developed in the finance and macroeconomics literature. Building a

production economy model that would satisfactorily account for both high aggregate stock

market volatility and the behavior of aggregate quantities has proven to be difficult and no

consensus model has arisen. In this paper we build a model in which variations in firms’

ability to raise external capital to take profitable projects lead to asset price volatility. We

calibrate the model to the U.S. data and find that it generates about 80% of the observed ag-

gregate stock market volatility. At the same time, the model generates time-series properties

of aggregate quantities that match the macroeconomic data.

Our model closely resembles the model described in Kiyotaki and Moore (2008). It is a

dynamic stochastic general equilibrium model with heterogeneous entrepreneurs, who face a

real and a financial friction. The real friction restricts entrepreneurs’ access to new projects.

In every period only a fraction of entrepreneurs find new profitable projects. Following the

literature, we assume that the arrival of profitable projects is i.i.d. over time and over en-

trepreneurs, see e.g. Angeletos (2007) and Kocherlakota (2009). We model an entrepreneur’s

ability to start a profitable project as his ability to produce new capital goods one-to-one

from the general consumption good. Entrepreneurs who cannot produce capital are willing

to buy claims to returns of other entrepreneurs’ projects to replace their depreciated capital.

We call these claims equity. Markets are incomplete and equity is the only financial asset

that is traded in the economy. The financial friction restricts new issuance of equity. We

assume that entrepreneurs can only leverage a fraction of the returns of the newly produced

capital, i.e. sell only a fraction of the new project as equity. On its own, this friction is

standard in the literature. The novel feature of our model is that the ratio of outside to total

financing of projects changes over time.

The interactions between these two frictions and the time variation in the financial friction

play an important role in the ability of our model to explain the asset price volatility.

Assuming that all entrepreneurs in the economy can produce new capital goods would imply

that the price of equity is constant at the cost at which capital is produced, i.e. at price

one. No entrepreneur would be willing to pay a higher price. Assuming heterogeneity in

entrepreneurs’ ability to produce new capital in the absence of the financial friction would

imply that the price of equity is always one as well. If the price was higher, an entrepreneur
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with the ability to produce new capital would find it profitable to increase his investment in

the project. He then would sell equity to the newly installed capital at a price that exceeds

the costs. However, if the fraction of entrepreneurs that can produce new capital goods and

the leverage ratio are relatively low, the price of equity will be greater than one. In that case,

fluctuations in the leverage ratio result in fluctuations in the price of equity. The intuition

behind this result is as follows. If the leverage ratio decreases, entrepreneurs with the ability

to produce new capital goods decrease their investment and their supply of new equity. This

decrease in supply increases the value of existing assets and therefore the price of equity will

increase. A similar logic applies for an increase in the leverage ratio. Consequently, as the

leverage ratio fluctuates over time so does the price of equity.

We calibrate the model and find that it generates about 80% of the quarterly volatility

in asset prices relative to the Dow Jones Total Stock Market Index. On the annual basis,

our benchmark model generates about 85% of the asset return volatility relative to the value

weighted market return. We construct a shadow risk free rate and find that our model

generates an annual equity premium of 1.6%. Finally, we find that time variation in the

financial friction contributes significantly to the volatility of investment, but not to the

volatility of output.

2. Related Literature

We build on Kiyotaki and Moore (2008), but our paper is different from theirs in the

questions of interest and several modeling features. They are interested in the existence of

money in a general equilibrium model and the optimal monetary policy responses to liquidity

shocks. We abstract from both money and liquidity shocks. In their model, entrepreneurs can

only sell a fraction of their asset holdings in a given time period. In our model, entrepreneurs

are able to sell all their financial asset holdings. Finally, entrepreneurs’ access to outside

capital is constant in Kiyotaki and Moore’s model while in our model it is time varying.

Theoretically, it has been argued that frictions in financial markets are important for

explaining the fluctuations of the aggregate macroeconomic quantities, see for instance

Bernanke and Gertler (1989), Kiyotaki and Moore (1997) and the review paper of Bernanke,

Gertler and Gilchrist (1999). In our model, financial frictions are important for explaining

not only the behavior of aggregate quantities but also the behavior of asset prices. Our

paper contributes to a growing literature that analyzes the effects of exogenous financial
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shocks. See for example Benk, Gillman and Kejak (2005), Christiano, Motto and Rostagno

(2007) and Jermann and Quadrini (2009), whose results suggest that financial shocks play

an important role for macroeconomic fluctuations. While these papers are mainly focused

on macroeconomic quantities, we are interested in asset prices as well.

Our results are in contrast with the findings of Gomes, Yaron and Zhang (2003), who

analyze a model in which financing frictions arise endogenously as an outcome of a private

information problem with costly monitoring. The only primitive shocks in their model are

total factor productivity (TFP) fluctuations. They find that the model generates only modest

asset return volatility. Other attempts to build models with financial frictions that would

generate a strong propagation of TFP shocks into the real economy and asset prices have

not been very successful either1. Therefore, a departing assumption of our model is that

fluctuations in productivity are not the only source of uncertainty in the economy. The

second source of uncertainty in our model are fluctuations in the fraction of a project an

entrepreneur can finance with outside capital2.

Our paper explains the volatility of asset prices by introducing financial frictions into a

dynamic general equilibrium model. However, other approaches have been taken to recon-

cile the asset price behavior with the predictions of consumption based asset pricing models.

In endowment economy models, introducing habit formation or Epstein-Zin recursive pref-

erences and changing the structure of the stochastic processes defining the consumption

stream have been shown to be able to explain the high volatility of asset prices. Examples

of this approach are Campbell and Cochrane (1999), who assume that agents have prefer-

ences with habit persistence and Bansal and Yaron (2004), who assume that agents have

recursive Epstein-Zin preferences and there is a long run risk component in the consumption

process. However, endowment economy models are silent about the behavior of aggregate

macroeconomic quantities.

Explaining the volatility of asset prices in production economies has proved more challeng-

ing. Following the success of habit formation preferences in endowment economy models,

Lettau and Uhlig (2000) incorporate the Campbell and Cochrane (1999) habit formation

structure into a production economy3. They argue that these preferences make the house-

holds locally very risk averse and find that consumption volatility in the model is by an

1See Kocherlakota (2000), Arias (2003), and Cordoba and Ripoll (2004) .
2We find that our model generates an asset return volatility very similar to Gomes, Yaron and Zhang (2003)
if we assume that this fraction is constant and fluctuations in TFP are the only source of uncertainty.
3Production economy models with Epstein-Zin preferences have so far not been successful in generating asset
price volatility, see e.g. Croce (2009) and Tallarini (2000).
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order of magnitude smaller than in the data. This result should not come as a surprise.

In the standard one-sector growth model without frictions, firms can adjust their capital to

reduce fluctuations in households’ consumption. This motive is further enforced by habit

persistence. To address this shortcoming, Jermann (1998) develops a production economy

model with habit persistence, capital adjustment costs and fixed labor. His model generates

high asset price volatility and a high equity premium, but it also generates a counterfactu-

ally high risk free rate volatility. This is a common problem of general equilibrium models

with habit persistence. Further, as documented by Boldrin, Christiano and Fisher (2001),

output is counterfactually smooth and negatively autocorrelated. In addition, dropping the

assumption that labor supply is fixed makes labor supply countercyclical. In our model

output is positively autocorrelated and volatile, and labor supply is procyclical.

Boldrin, Christiano and Fisher (2001) develop a model with habit persistence and limited

mobility of labor and capital across the consumption good and the investment good sector.

As in Jermann (1998) their model generates high asset price volatility at the cost of coun-

terfactually high volatility of the risk free rate. Moreover, their model cannot explain the

volatility of labor and investment. In contrast, our model generates the investment volatility

observed in the data. There is no risk free asset in our model. Therefore we construct a

shadow risk free rate and find that its volatility is about 50% of what Boldrin, Christiano

and Fisher get4.

The rest of our paper is organized as follows. Section 3 presents the model and section 4

characterizes the solution of the model. Section 5 describes our calibration procedure and

section 6 discusses the quantitative implications of the model. Section 7 presents a summary

of our sensitivity results and section 8 concludes.

4Christiano and Fisher (2003) add sector specific productivity shocks and adjustment costs to the Boldrin,
Christiano and Fisher model. Their model still generates counterfactually high risk free rate volatility and
counterfactually low investment volatility.
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3. The Model

Time is discrete and infinite. There are two types of agents: a unit measure of ex-ante

identical entrepreneurs who consume, produce and hold capital, but do not work, and a

unit measure of identical hand-to-mouth workers who work and consume, but do not hold

capital. There are two types of goods and two production technologies: a consumption good

and a capital good, and a technology to produce the consumption good and a technology

to produce the capital good. There is one type of financial asset traded: claims to returns

of capital. Each period is divided into two subperiods. In the first subperiod consumption

good is produced. In the second subperiod, capital good is produced and consumption and

asset trading take place.

We first describe the details of the two production technologies. Then we describe the

asset trading structure and the financial friction. Then we state the entrepreneurs’ and

workers’ optimization problems and define the competitive equilibrium.

3.1. Technology.

In the first subperiod of each time period t consumption good production takes place. All

entrepreneurs have access to the consumption good production technology. Entrepreneurs

face a stochastic productivity shock At which is common to all of them. An entrepreneur

who enters period t with capital kt and hires labor lt produces yt with the technology:

yt = Atk
γ
t l

1−γ
t

where, yt is the consumption good produced by the entrepreneur, At > 0 is the stochastic

productivity shock common to all entrepreneurs, kt is the capital of the entrepreneur, lt is

the labor hired by the entrepreneur, and γ is the capital share in the production of the

consumption good. Capital depreciates at rate δ during the consumption good production,

i.e. the entrepreneur enters the second subperiod with capital (1− δ)kt.
In the second subperiod, only a fraction π of entrepreneurs have the opportunity to start

new profitable projects. We model this ‘investment opportunity’ as the entrepreneurs’ ability

to access the capital good production technology. This technology enables them to produce

new capital one-to-one from the consumption good. The arrival of the opportunity to access

the capital good production technology is i.i.d. over time and over entrepreneurs. We call

entrepreneurs with access to the capital good production technology investing entrepreneurs

and entrepreneurs without this access non-investing entrepreneurs.
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3.2. Trading and Financial Frictions.

In the second subperiod, consumption, capital good production and asset trading take place.

There is one type of financial asset traded: claims to capital returns (we refer to these simply

as assets or equity). Before we proceed with the discussion of the asset trading structure,

we want to emphasize that the return per unit of capital is equal across entrepreneurs

independent of their capital holdings and independent of their opportunity to access the

capital good production technology. Therefore entrepreneurs are indifferent as to whose

equity they hold. To see this, consider the entrepreneur Toyoda with capital kTt . In the

first subperiod he hires labor on a competitive labor market at wage wt to maximize his

profit Profit(kTt ;At, wt) := At
(
kTt
)γ (

lTt
)1−γ −wtlTt . The optimal behavior of Toyoda implies

that he hires labor lTt =
[

(1−γ)At
wt

] 1
γ
kTt . This amount of labor equalizes the wage rate with

the marginal product of labor, i.e. wt = MPLt = (1 − γ)At
(
kTt
)γ

(lTt )−γ. Therefore,

Profit(kTt ;At, wt) = γAt

[
(1−γ)At

wt

] 1−γ
γ · kTt = rtk

T
t , where rt = γAt

[
(1−γ)At

wt

] 1−γ
γ

denotes the

return per unit of capital. Since all entrepreneurs face the same stochastic productivity

shock At and hire labor at the same wage wt (determined by aggregate market clearing), the

return on capital rt is the same for all entrepreneurs.

To understand the trading structure in our economy we first describe the asset holdings of

the entrepreneurs. Entrepreneurs can hold two types of assets: physical capital and equity

to other entrepreneurs’ capital returns. We define the individual state of the entrepreneur

T by (kTt , e
T
t , s

T
t ), where kTt is the physical capital held by the entrepreneur, eTt is equity to

other entrepreneurs’ capital and sTt is equity to entrepreneur T ’s own capital sold to other

entrepreneurs.

Physical capital kTt is used by the entrepreneur T in the consumption good production

and it depreciates at rate δ. We assume that physical capital is not traded in the econ-

omy. Equity eTt entitles the entrepreneur T to the stream of returns of eTt units of other

entrepreneurs’ capital. Since the underlying capital depreciates at rate δ, eTt depreciates at

rate δ as well. As we discussed above, entrepreneur Toyoda is indifferent between holding

equity of entrepreneur Ford and entrepreneur Durant, as they entitle Toyoda to the same

stream of returns per unit of this asset. sTt , which denotes claims to own capital returns

sold by entrepreneur T depreciates at rate δ as well. Therefore an entrepreneur with the

individual state (kTt , e
T
t , s

T
t ) is entitled to returns from kTt − sTt + eTt units of capital.

In the second subperiod, entrepreneurs are facing a financial constraint, which restricts

the amount of external financing. An investing entrepreneur that produces it units of new
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capital can at most sell θt fraction of returns from it. On the other hand we assume that

claims to already installed capital can be traded without restrictions. This implies that the

total amount of equity sold by period t (denoted as sTt+1) can be at most the sum of a fraction

θt of period t investment iTt and the depreciated period t capital holdings (1− δ)kTt :

(3.1) sTt+1 ≤ θti
T
t + (1− δ)kTt

To understand this constraint, we define kTt+1 = (1− δ)kTt + iTt and rewrite inequality (3.1)

as:

(3.2) kTt+1 − sTt+1 ≥ (1− θt)iTt

The left hand side of inequality (3.2) captures the net amount of returns to the en-

trepreneur T ’s own capital that he must carry into period t + 1. Since he can sell at most

θti
T
t of ‘new’ equity he must keep at least (1 − θt)iTt of the newly produced capital unsold,

which is captured in the right hand side of inequality (3.2). θt is assumed to be a stochastic

process which is common to all entrepreneurs.

3.3. Entrepreneurs’ Maximization Problem.

There is a unit measure of ex-ante identical entrepreneurs, who hold capital, trade assets and

consume, but do not work. Ex-post, entrepreneurs will differ in their capital and asset hold-

ings. The budget constraint of an entrepreneur with capital and asset holdings (kTt , e
T
t , s

T
t )

can be written as:

cTt + iTt + qt[k
T
t+1 − sTt+1 + eTt+1] ≤ rt[k

T
t − sTt + eTt ] + (1− δ)qt[kTt − sTt + eTt ] + qti

T
t

where rt is the return on capital. Therefore the first term on the right hand side is

the return that the entrepreneur T is entitled to. The second term is the market value of

his depreciated unsold capital and asset holdings. The third term is the market value of

equity to his newly installed capital at the market price qt. The left hand side sums up

his expenditure. He can consume cTt , invest iTt with investment being generated one-to-one

from the consumption good and carry unsold capital kTt+1 − sTt+1 or equity eTt+1 into period

t+ 1. These are traded at market price qt. The maximization problem of this entrepreneur

therefore is (we drop the T superscripts for simplicity):
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maxE0

∞∑
t=0

βt log ct s.t.

(BC) ct + it + qt[kt+1 − st+1 + et+1] ≤ [kt − st + et][rt + (1− δ)qt] + qtit

(FC1) kt+1 − st+1 ≥ (1− θt)it
(FC2) et+1 ≥ 0

In this problem expectations are taken over the stochastic processes for θt and At, equi-

librium processes for prices (taken as given and correctly forecasted by the entrepreneur)

and the arrival of the investment opportunity. If the entrepreneur happens not to have an

investment opportunity he must set it to zero. Note that the returns of the unsold capital

kt+1 − st+1 and claims to returns of other entrepreneurs’ capital et+1 are the same state by

state. Moreover trades in these assets in period t + 1 are not subject to any restrictions.

Therefore kt+1 − st+1 and outside equity et+1 are perfect substitutes and (FC1) binding is

equivalent to the no-short-sales (FC2) binding and we can sum them up without loss. The in-

tuition for the equivalence of (FC1) and (FC2) is quite straightforward: an entrepreneur who

has the investment opportunity and whose (FC1) is binding will sell all his other assets et to

take advantage of this profitable opportunity. Therefore, we can simplify the maximization

problem by defining net asset holdings nt := kt − st + et and writing:

maxE0

∞∑
t=0

βt log ct s.t.

(BC) ct + it + qtnt+1 ≤ nt[rt + (1− δ)qt] + qtit

(FC) nt+1 ≥ (1− θt)it

Having stated the maximization problem we can analyze the role of the real friction (only

a fraction of entrepreneurs can start a new project) and the financial friction (they can

only finance a fraction θ of new investment externally) in our model. Assuming that all

entrepreneurs in the economy have the ability to start new projects would imply that qt = 1

as no entrepreneur would be willing to pay more given that he can produce new capital at

price one. Assuming that investing entrepreneurs can finance all their new investment ex-

ternally, i.e. θt = 1, would lead to qt = 1 as well. If qt was larger than one then an investing

entrepreneur would be able to decrease his consumption by one unit, increase investment by

one unit and sell claims to the newly produced capital at qt > 1. Then he could increase his
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consumption by one unit back to the original level and he would end up with a net profit of

qt − 1 > 0. Therefore this cannot be an equilibrium and qt = 1 at all times. We conclude

that we need both these frictions to generate asset price volatility in our model. In fact, we

need the financial constraint (FC) to bind otherwise qt = 1 by a reasoning similar to the one

for θt = 1.

3.4. Workers’ Maximization Problem.

There is a unit measure of identical workers, i.e. agents who do not have access to consump-

tion good and capital good production technologies. In each period, a worker decides how

much to consume and how much labor to provide. For simplicity we assume that workers do

not participate in asset trading. A worker maximizes the expected lifetime utility subject to

a period-by-period budget constraint. His maximization problem is therefore static and can

be written as:

maxU

(
c′t −

ω

1 + η
(l′t)

1+η

)
s.t. c′t ≤ wtl

′
t

where c′t is the consumption of the worker in period t, l′t is the labor provided by the

worker in period t. U [.] is increasing and strictly concave function, ω > 0 and η > 0.

3.5. Equilibrium.

A competitive equilibrium is quantities for entrepreneurs [{cjt , i
j
t , n

j
t+1}∞t=0]j∈[0,1], quantities

for workers [{c
′j
t , l

′j
t , }∞t=0]j∈[0,1], and prices ({qt, rt, wt}∞t=0), such that quantities solve workers’

and entrepreneurs’ problems given prices, input prices wt, rt are determined competitively,

and markets clear.

3.6. Comparison with Kiyotaki and Moore (2008).

In this subsection we discuss the differences between our model and Kiyotaki and Moore’s.

In their model entrepreneurs can hold equity nt and fiat money mt. The price of money

in terms of the general consumption good is pt. They assume that the leverage ratio θ is

constant over time. An entrepreneur can sell all his money holdings but he can only sell a

fraction φt of his equity holdings. φt is a stochastic process common to all entrepreneurs.

The maximization problem of an entrepreneur in Kiyotaki and Moore’s model is:
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maxE0

∞∑
t=0

βt log ct s.t.

(BC) ct + it + qtnt+1 + ptmt+1 ≤ nt[rt + (1− δ)qt] + qtit + ptmt

(FC) nt+1 ≥ (1− θ)it + (1− φt)(1− δ)nt

In the real world equity trades happen continuously. It is hard to document a restriction

that puts a limit on the amount of equity an entrepreneur can sell in a given time period (in

our model a time period is a quarter). Therefore in our model entrepreneurs are able to sell

all their equity holdings, i.e. φt = 1 in every period. The focus of our work in not monetary

policy, therefore we have abstracted from fiat money in our model. Finally, we assume that

θ varies over time.

4. Characterization

In this section we solve the model and characterize the solution. We show that the so-

lution is determined by a single equation in the price of equity qt. This enables us to do a

comparative statics exercise in the exogenous shocks At and θt. Finally, to provide a bet-

ter understanding of the role of other exogenous parameters, namely δ and π, we derive

conditions under which the financial constraint binds in steady state.

4.1. Solving the Model.

We begin this section with a proof of a lemma that links the financial constraint to the price

of equity qt.

Lemma 4.1. Suppose that θt < 1. Then the financial constraint binds for all investing

entrepreneurs if and only if qt > 1.

Proof: The problem of an entrepreneur with asset holdings nt in this economy is:

maxE0

∞∑
t=0

βt log ct s.t.

(BC) ct + it + qtnt+1 ≤ nt[rt + (1− δ)qt] + qtit

(FC) nt+1 ≥ (1− θt)it
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If an entrepreneur does not have an investment opportunity at time t, he must set it = 0. If

he has an investment opportunity, we can derive the above stated result using the first order

condition with respect to it. We will denote the Lagrange multiplier on the budget constraint

by λt and the Lagrange multiplier on the financial constraint by µt. The budget constraint

always binds and therefore λt > 0. The necessary first order condition with respect to it is:

(qt − 1)λt = (1− θt)µt

This equation makes it clear that qt > 1 =⇒ µt > 0, the financial constraint binds and

also µt > 0 =⇒ qt > 1. The result does not depend on the initial asset holdings nt and

therefore applies to all investing entrepreneurs. �

The intuition for the sufficient part is as follows. If qt > 1 and the financial constraint does

not bind then the solution to the problem does not exist, because there will be arbitrage

opportunities for investing entrepreneurs. At any allocation an investing entrepreneur will

find it profitable to increase it by ∆ and consumption by (qt − 1)∆.

4.1.1. Simplifying the Workers’ Problem. In this section we simplify the workers’ problem.

We make use of this simplification in our quantitative analysis. We will show that output

does not depend on the current realization of θt and derive the relationships between labor

and consumption and aggregate output.

We can simplify the workers’ problems as their decisions do not directly depend on the

stochastic processes for At and θt. The representative worker solves:

maxU

(
c′t −

ω

1 + η
(l′t)

1+η

)
s.t. c′t ≤ wtl

′
t

Therefore:

l′t =
(wt
ω

)1/η

(4.1)

Equation (4.1) holds for each worker. Therefore the aggregate labor supply L′t can be

written as:

L′t =
(wt
ω

)1/η

(4.2)

The aggregate labor demand by the entrepreneurs Lt is determined by:

wt = At(1− γ)Kγ
t L
−γ
t
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In equilibrium supply equals demand, i.e. L′t = Lt and hence:

wt = ω
γ
η+γ [(1− γ)At]

η
η+γ K

ηγ
η+γ

t

Lt =

[
At(1− γ)

ω

] 1
γ+η

K
γ
γ+η

t

For the return on capital rt we get:

rt = AtγK
γ−1
t L1−γ

t = AtγK
γ−1
t

{[
At(1− γ)

ω

] 1
γ+η

K
γ
γ+η

t

}1−γ

=

= A
1+η
γ+η

t γ

[
1− γ
ω

] 1−γ
γ+η

K
η(γ−1)
γ+η

t

Thus we can express Lt, wt, rt as functions of parameters and aggregate states Kt, At only.

Note that Lt, wt, rt do not depend on the financial constraint parameter θt. Therefore in

period t, output Yt is not a function of θt. We can rewrite (4.2) as:

Lt =
(wt
ω

)1/η

=

(
MPLt
ω

)1/η

=

(
(1− γ)Yt
ωLt

)1/η

=⇒

L1+η
t =

(1− γ)Yt
ω

=⇒

(1 + η) logLt = log Yt + log
1− γ
ω

The implications for the dynamics of labor with respect to output are:

corr(logLt, log Yt) = 1

(1 + η)2var(logLt) = var(log Yt)

Since workers cannot save, aggregate workers’ consumption equals labor’s share in output

C ′t = (1− γ)Yt. Thus:

corr(logC ′t, log Yt) = 1

var(logC ′t) = var(log Yt)

Since workers consume a large fraction of total consumption in the economy (including

entrepreneurs’ consumption), this will affect the dynamics of total consumption relative to

output.
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4.1.2. Solving the Entrepreneurs’ Problem. The problem of an entrepreneur is:

maxE0

∞∑
t=0

βt log ct s.t.

(BC) ct + it + qtnt+1 ≤ nt[rt + (1− δ)qt] + qtit

(FC) nt+1 ≥ (1− θt)it

We can rewrite the budget constraint of an investing entrepreneur (denoted with a super-

script i) by plugging in for it from the financial constraint:

cit + qRt n
i
t+1 ≤ nt[rt + (1− δ)qt]

where qRt is the replacement cost of capital defined as:

qRt :=
1− θtqt
1− θt

If qt = 1 and the financial constraint does not bind5, the problem of an investing en-

trepreneur is the same as the problem of a non-investing entrepreneur. Note that in any

equilibrium it must be6 qt <
1
θt

. Finally note that the no-short-sale constraint nst+1 ≥ 0,

which is essentially the financial constraint of the non-investing entrepreneur7, does not

bind. To see this we have to consider two cases. If qt = 1 both types of entrepreneurs are

solving the same problem. The financial constraint of an investing entrepreneur with asset

holdings nt is not binding. This implies that the same is true for a non-investing entrepreneur

with asset holdings nt (right hand side of his financial constraint is 0 and therefore lower

than for the investing entrepreneur while the left hand sides are the same). If qt > 1 the

financial constraint for non-investing entrepreneurs cannot bind. If it did bind then they

would be selling equity as their financial constraint is nt+1 ≥ 0 and their equity holdings at

the beginning of the trading subperiod are (1 − δ)nt. This would imply that on aggregate

investing entrepreneurs are buying equity at price qt > 1, which they will not do since they

can produce capital at price one.

5We will ignore cases in which qt < 1. This is only possible if the level of capital is so high that aggregate
investment is 0. This will not happen in our quantitative exercises.
6To see that suppose qt ≥ 1

θt
and consider the following strategy of an entrepreneur with an investment

opportunity: take one unit of consumption good, convert it into capital, keep fraction 1−θt and sell fraction
θt of this capital as equity, get θtqt ≥ 1 units of consumption good (because of the price assumption). Convert
this into capital etc. This strategy makes it possible to increase one’s capital holdings beyond bounds, which
is inconsistent with equilibrium. This along with qt ≥ 1 implies that 0 < qRt ≤ 1.
7We denote their allocations with a superscript s.
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Log utility and linearity of the right hand side of the budget constraint in wealth guarantee

that the decision rules are linear. In the appendix, we prove the following lemma, which

verifies that this well-known result8 carries over into our environment with idiosyncratic

investment opportunity risk and the possibility of switching between regimes qt > 1 and

qt = 1.

Lemma 4.2. Individual policy functions are linear:

cit = (1− β)nt[rt + (1− δ)qt]

qRt n
i
t+1 = βnt[rt + (1− δ)qt]

cst = (1− β)nt[rt + qt(1− δ)]

qtn
s
t+1 = βnt[rt + qt(1− δ)]

where nt denotes the initial asset holdings of an entrepreneur. Superscript i denotes the

state in which this entrepreneur has an investment opportunity in period t and superscript

s denotes the state in which he does not have an investment opportunity in period t. With

linear policy rules, prices are functions of aggregate quantities only. Without linear policy

rules one would have to keep track of the whole asset distribution.

We will denote the aggregate quantities with capital letters and use the fact that the arrival

of the investment opportunity is i.i.d. This implies that entrepreneurs with an investment

opportunity hold fraction π of the total asset holdings in the economy at the beginning of

period t and investors without an investment opportunity hold fraction 1− π of all assets at

the beginning of period t. Integrating over individual policies thus yields:

Ci
t = (1− β)πNt[rt + (1− δ)qt](4.3)

qRt N
i
t+1 = βπNt[rt + (1− δ)qt](4.4)

Cs
t = (1− β)(1− π)Nt[rt + (1− δ)qt](4.5)

qtN
s
t+1 = β(1− π)Nt[rt + (1− δ)qt](4.6)

4.1.3. Equilibrium. By definition, aggregate capital in the economy is equal to the aggregate

amount of equity Nt. Therefore the dynamics of aggregate capital is determined by aggregate

equity holdings of investing and non-investing entrepreneurs: Nt+1 = N i
t+1 +N s

t+1.

8See Samuelson (1969).
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If qt = 1 the equilibrium aggregate quantities will be determined by the aggregate policy

function for capital (one can get the equation below by adding equations (4.4) and (4.6)):

Nt+1 = βNt[rt + (1− δ)]

rt = A
1+η
γ+η

t γ

[
1− γ
ω

] 1−γ
γ+η

N
η(γ−1)
γ+η

t

These two equations fully describe the aggregate behavior of the model. The second equa-

tion determines rt through the workers’ problem. The rest of the variables are determined

using the derived policy functions.

If qt > 1, the dynamics of the model is determined by the aggregate policies for N i
t+1, N

s
t+1,

market clearing conditions and the financial constraint aggregated over investing entrepreneurs.

Therefore the behavior of the model is determined by the following equations:

qRt N
i
t+1 = βπNt[rt + (1− δ)qt]

qtN
s
t+1 = β(1− π)Nt[rt + (1− δ)qt]

N i
t+1 = (1− θt)It

N s
t+1 +N i

t+1 = (1− δ)Nt + It

rt = A
1+η
γ+η

t γ

[
1− γ
ω

] 1−γ
γ+η

N
η(γ−1)
γ+η

t

qRt :=
1− θtqt
1− θ

Plugging in for N s
t+1, N

i
t+1 and It from the first three into the fourth one we get:

(1− δ) =
β(1− π)

qt
[rt + qt(1− δ)]−

θt
(1− θt)

βπ

qRt
[rt + (1− δ)qt](4.7)

Since rt is a function of states Nt, At, θt only, we can solve for qt as a function of these

states and then use (4.4) and (4.6) to compute Nt+1(Nt, At, θt).

4.2. Properties of the Solution.

4.2.1. Comparative statics in A and θ. In this subsection we study the properties of the

solution of our model when qt > 1. We analyze the effects of changes in At and θy on the

price of equity qt. We can write the net demand for equity by non-investing entrepreneurs

as:
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De : = N s
t+1 − (1− δ)(1− π)Nt = β(1− π)Nt[

rt
qt

+ 1− δ]− (1− δ)(1− π)Nt

De is a downward sloping demand function since ∂De

∂q
< 0. Net supply of equity by

investing entrepreneurs is given by:

Se : = π(1− δ)Nt + It −N i
t+1 = π(1− δ)Nt +

θt
(1− θt)

N i
t+1 =

= π(1− δ)Nt +
θt

(1− θt)
1

qRt
βπNt[rt + (1− δ)qt]

Se is an upward sloping supply function since ∂Se

∂q
> 0. In equilibrium Se = De, which

is equivalent to equation (4.7). Figure 4.1 shows the supply and demand functions for a

numerically computed example. In this example, we set N = 8.6, β = 0.99, η = 1, ω =

7.14, δ = 0.0226, A = 1, γ = 0.36, π = 0.01, θ = .2.

Figure 4.1: Demand and supply of equity as a function of the price of equity
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Next we analyze what happens when At or θt change. This is a comparative statics exer-

cise. We fix states Nt, At, θt, derive the asset supply and demand and the equilibrium price

qt. Then we redo the exercise for a different value of θt or At.
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(1) ∆θt. The equity demand curve De does not move. We can simplify Se to get:

Se = π(1− δ)Nt +
θt

(1− θtqt)
βπNt[rt + (1− δ)qt]

∂Se

∂θt
=

1

(1− θtqt)2
βπNt[rt + (1− δ)qt] > 0

Then if ∆θt > 0, the equity supply curve moves up and the equity price de-

creases and the quantity of equity traded increases. Figure 4.2 presents this argu-

ment through a numerically computed example. In this example, we set N = 8.6, β =

0.99, η = 1, ω = 7.14, δ = 0.0226, A = 1, γ = 0.36, π = 0.01, θlow = 0.2, θhigh = 0.3.

Figure 4.2: Demand and supply of equity for various levels of θ

0.2

0.3

0.4
demand

supply low θ

supply high θ

, E
qu

ity
 S

up
pl

y

0.0

0.1

1.0 1.2 1.4 1.6 1.8 2.0
Equity Price

Eq
ui

ty
 D

em
an

d,

(2) ∆At. The demand curve and the supply curve move up with ∆At > 0 because:

∂De

∂At
=

β(1− π)Nt
∂rt
∂At

qt
> 0(4.8)

∂Se

∂At
=

θt
(1− θtqt)

βπNt ·
∂rt
∂At

> 0(4.9)

These claims are true since ∂rt
∂At

> 0. Thus the volume of equity traded increases

unambiguously with At. As for the price of equity, equations (4.8) and (4.9) imply

that as long as 1−π− θtqt > 0, the demand curve moves more than the supply curve

implying an increase in price. Numerically, we find this to be the case around the
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equilibrium for small values of π. Figure 4.3 shows the effects of changes in At. The

shift of the supply curve is very small and the two supply curves are not distinguish-

able. In this example, we set N = 8.6, β = 0.99, η = 1, ω = 7.14, δ = 0.0226, Alow =

1, Ahigh = 1.1, γ = 0.36, π = 0.01, θ = 0.2.

Figure 4.3: Demand and supply of equity for various levels of A
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4.2.2. Characterization of Steady State Equilibria. There are two types of steady state equi-

libria: (1) equilibria in which the financial constraint binds and the price of equity is greater

than one, and (2) equilibria in which the financial constraint does not bind and the price of

equity is equal to one. Theorem 4.3 summarizes the conditions under which each of these

equilibria exists. We prove this theorem in the appendix, section A.1.

Theorem 4.3. In steady state the financial constraint binds and the price of equity is greater

than one if and only if θ < δ−π
δ

.

An example of a steady state, in which q = 1 is shown in Figure 4.4. It shows that at any

price q > 1 supply of equity exceeds demand. At price q = 1 investing entrepreneurs are

willing to supply any amount of equity that will not violate their financial constraint (any

amount less or equal to the amount defined by the intersection of the supply curve with the y

axis). Supply is indeterminate and asset trades are determined by demand. In this example

we set N = 8.6, β = 0.99, η = 1, ω = 7.14, δ = 0.0226, A = 1, γ = 0.36, π = 0.1, θ = 0.2.
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Figure 4.4: Demand and supply of equity as a function of the price of equity

1.0

1.5

demand

ld,
 E

qu
ity

 S
up

pl
y

0.0

0.5

1.0 1.2 1.4 1.6 1.8 2.0

supply

Eq
ui

ty
 D

em
an

d

Equity Price

If θ is small then in steady state q > 1 and the financial constraint binds. If q = 1 investing

entrepreneurs would not be willing to produce enough new capital without violating the

financial constraint to cover the demand for equity by the non-investing entrepreneurs. This

can be seen in Figure 4.1. At price one investing entrepreneurs are willing to supply any

amount less or equal to the amount defined by the intersection of the supply curve with the

y axis. Any larger amount would violate their financial constraint. Since at price one the

demand for equity exceeds supply the price of equity must increase. Therefore q > 1 and

the financial constraint binds.

5. Data and Model Specification

The time period for our data is 1964-2008. We obtain quarterly data from the Current

Employment Statistics provided by the Bureau of Labor Statistics, National Income and

Product Accounts and Fixed Asset Tables provided by the Bureau of Economic Analysis,

COMPUSTAT, Flow of Funds, CRSP and Global Financial Data. Details of the construction

of the time series can be found in appendix B.
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5.1. Model Specification.

We divide parameters and stochastic processes in the model into two groups. The first

group consists of utility and technology parameters. The second group consists of the pa-

rameter π capturing the fraction of firms with access to capital production technology, the

process for the ratio of outside to total financing of investment projects θt, and the process

for the total factor productivity At.

5.1.1. Utility and Technology Parameters. We divide utility and technology parameters into

two groups: 1) parameters that we take from the literature: share of capital in output pro-

duction α = 0.36, subjective discount factor β = 0.99 (adjusted for quarterly analysis), and

the labor supply elasticity parameter η = 19. 2) parameters that we choose so that our

model in steady state matches chosen moments in the data. The average annual nominal

investment to nominal capital ratio from 1964 to 2008 is 9.35%. To match this ratio in

the steady state of our model we set quarterly depreciation δ = 2.26%. We set the scaling

parameter of the workers’ utility function ω so that the labor supply in steady state is equal

to ls = 0.3. Table 5.1 summarizes our benchmark parameters.

Table 5.1: Benchmark Parameters

Parameter α β η δ ω

Value 0.36 0.99 1 0.0226 8.15

5.1.2. Parameter π and The Processes for θt and At. We estimate the fraction of firms that

have access to capital good production technology (i.e. π) as follows. Using annual firm

level data on net capital expenditures (variable capexv in the COMPUSTAT database), we

construct a time series for corporate investment. We then compute the smallest percentage of

firms who have done a certain percentage of total corporate investment. Figure 5.1 shows the

smallest percentage of firms who have done 70% to 90% of total corporate investment. This

figure shows that the majority of the corporate investment in done by a small percentage of

firms. Moreover these ratios have been stable over the last 25 years. 80% of total investment

has been done by about 6% of firms. Therefore we use annual π = 0.06 and perform a

sensitivity analysis in section 7.

9We will perform sensitivity analysis on β and η to check whether our results are affected by our choice of
these parameters.
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Figure 5.1: Concentration of firms’ investment
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This figure  shows  the smallest fraction of firms that accounts for 
90%, 80% and 70% of total investment by nonfinancial corporate sector.

Figure 5.2: External financing as a fraction of investment
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of  the nonfinancial corporate sector.
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We construct the series for θt from the data as follows. θ in the model stands for the

fraction of investment that is financed externally. Using Flow of Funds data we define for

the nonfinancial corporate sector:

θ =
Funds Raised in Markets

Capital Expenditures

For definitions of these variables, see appendix B. The series is shown in Figure 5.2.

We construct the series for total factor productivity At using the time series of output,

capital and labor assuming a Cobb-Douglas production technology with share of capital in

output production α = 0.36. We define ẑt = log(At), and use zt, the linearly detrended

version of ẑt as a realization of the shock process for the consumption good production

technology. Having constructed the series for zt and θt we estimate the stochastic processes

for zt and θt as follows.

zt+1 = ρzzt + εz,t

θt+1 = µθ + ρθ(θt − µθ) + εθ,t

E

(
εz,t

εθ,t

)2

=

[
σ2
εz corr(εz, εx)σεzσεθ

corr(εz, εx)σεzσεθ σ2
εθ

]

Table 5.2 summarizes our estimation of the TFP10 and θ processes. For the TFP process

we find that ρz = 0.95, σ2
z = 0.006022.

Table 5.2: Summary statistics for the TFP shock z and the θ processes

variable x µx ρx σεx corr(εz, εx)

θ 0.2844 0.6510 0.1679 -0.0736

z 0 0.9498 0.00602 1

10While the persistence parameter is standard in the literature, the standard deviation of the error term is
slightly lower that those used in previous studies (see e.g. Prescott, 1986). This is consistent with the recent
decrease in output volatility known as ”the great moderation”.
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6. Benchmark Empirical Results

We solve our model and simulate it by generating random series of the primitive shocks At

and θt using the estimated parameters for these processes11. Having simulated the model we

compute a set of statistics and compare them to the data. We find that our model matches

quite well the behavior of aggregate quantities and prices in the data. Our benchmark model

generates about 80% of the volatility in asset prices. We find that most of the volatility in

asset prices in our model comes from the volatility in the financial friction parameter θt.

Tables 6.1 and 6.2 summarize our benchmark results. In these two tables we present our

results for 3 different models to highlight the role of financial frictions. The model in column

(1) in Table 6.1 and Table 6.2 assumes that the financial constraint never binds. This is

the case for example for large values of π. In this case the price of equity qt is always one

and fluctuations in θ are irrelevant for the dynamics of the model. Volatility in reported

variables comes from the volatility in the TFP shock At. In column (2) in Table 6.1 and

Table 6.2 we present our results for a version of the model in which the financial constraint

binds, At is stochastic, but θt is constant at its mean level. This model highlights the role

of the financial constraint as a propagator of TFP shocks. In column (3) in Table 6.1 and

Table 6.2 we present our results for the model in which the financial constraint binds and

both θt and At are stochastic. Relative to the model of column (2) this model highlights the

role of fluctuations in θt.

6.1. Standard Business Cycle Statistics.

Table 6.1 summarizes our results for the standard business cycle statistics. We find that

financial frictions do not affect output volatility and persistence. This indicates that the

process for output in our model is determined by the process for the productivity shock

(assumed to be the same in the 3 versions of the model). As discussed in section 4 labor and

output are perfectly correlated and their relative volatility is determined by the parameter η.

Therefore the properties of labor supply are not affected by the financial friction parameter

θt either.

11We approximate the processes on a 25 point grid in the z × θ space using the Tauchen approximation
method, see Tauchen (1986), and then use At = exp(zt).
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Table 6.1: Standard Business-Cycle Statisticsa

Statisticc Datab (1) (2) (3)
FC not binding FC binding FC binding

θ constant θ stochastic
A stochastic A stochastic A stochastic

σY 1.52 1.18 1.19 1.18

σI 5.00 1.70 1.32 5.12

σC 0.85 1.01 1.15 1.93

σL 1.73 0.59 0.60 0.59

ρY 0.87 0.68 0.67 0.67

ρI 0.85 0.68 0.67 0.40

ρC 0.90 0.68 0.67 0.47

ρL 0.92 0.68 0.67 0.67

ρ(Y, I) 0.90 1.00 1.00 0.23

ρ(Y,C) 0.85 1.00 1.00 0.61

ρ(Y, L) 0.87 1.00 1.00 1.00

a Results for the models are based on 100 replications of size 180.
b σx is a standard deviation of variable x, ρx is the autocorrrelation of x and ρ(x, y) is the correlation between x and y. All

variables are logged and HP filtered before statistics are computed. Standard deviations are measured in percentage terms.
c This column contains quarterly statistics computed for the U.S. data in 1964:1 - 2008:4. Details of the construction of the

series are in the appendix, section B.

Column (1) contains results for a version of the model in which the financial constraint is not binding and the process for TFP

is estimated using U.S. data 1964:1 - 2008:4.

Column (2) contains results for a version of the model in which the financial constraint is binding, the process for TFP is

estimated using U.S. data 1964:1 - 2008:4 and θ is constant at its mean level .2845.

Column (3) contains results for a version of the model in which the financial constraint is binding and both the process for TFP

and θ is estimated using U.S. data 1964:1 - 2008:4.
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In contrast to output the behavior of investment is significantly affected by financial fric-

tions. In the model without financial frictions shown in column (1) of Table 6.1 invest-

ment is significantly less volatile than in the data. This seems to be at odds with the

results for the standard one-sector growth model, in which TFP shocks generate investment

volatility observed in the data. Our model of column (1) resembles the standard one sector

growth model, but there is one important difference. In our model investment is determined

by entrepreneurs only. Log utility implies that they save a fixed fraction of their income

rtKt + (1 − δ)Kt, which is significantly less volatile than workers’ income. This results in

the low investment volatility in this version of our model. For the case of constant θ and a

binding financial constraint shown in column (2) investment volatility is further decreased by

endogenous changes in q. If At increases the asset demand increases as discussed in section

4. However the increase in the equilibrium quantity demanded will be smaller than if supply

was infinitely elastics (column (1)). Therefore relatively less new capital will be produced

and investment will be less volatile.

Adding volatility in θt increases the investment volatility significantly as shown in column

(3) in Table 6.1. In fact investment volatility is slightly higher12 than in the data. This result

indicates that in our model shocks to θ play a more important role in investment fluctuations

than shocks to A. This assertion is further supported by the relatively low persistence of

investment coming from the lower persistence of θ relative to A. In contrast, we have argued

above that output dynamics is driven by shocks to A only. The low correlation between θ

and A that we estimated from the data therefore translates into the relatively low correlation

between investment and output.

6.2. Financial Statistics.

Table 6.2 summarizes our results for quarterly asset prices and returns. The return on

equity is defined as re = rt+(1−δ)qt
qt−1

− 1. The corresponding counterpart in the data is the

real value weighted stock return. We define the total market value in the model as qtNt.

The corresponding counterpart in the data is the series totval from he CRSP database. We

construct the model risk-free rate as follows. Shadow price of a risk free asset is:

pt(s
t) = βEt

[
u′(ct+1)

u′(ct)

]
12This is an improvement relative to models with habit persistence such as Boldrin, Christiano and Fisher
(2001) or Christiano and Fisher (2003), whose models do not generate enough investment volatility.
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Non-investing entrepreneurs are not constrained in their asset holdings whereas the in-

vesting entrepreneurs would like to sell more assets, but they cannot because of the financial

constraint. Therefore, we construct the risk free rate as the shadow risk free rate of the

unconstrained non-investing entrepreneurs13. We get:

rft =
1

pt(st)
=

1

qtEt

[
1

rt+1+(1−δ)qt+1

]
We compare this model variable to the real return on 3-month T-Bills.

Table 6.2 shows that the model without financial frictions in column (1) generates very

little volatility in equity returns and a very small equity premium. Recall that the price of

equity q = 1 at all times in this model. Therefore there are no capital gains and all volatility

in returns comes from the limited volatility of the return rt. The model in column (2) has

a constant θ and the financial constraint binding. It generates a standard deviation of the

equity return of 0.77%. This result is similar to Gomes, Yaron and Zhang (2003), who get

an equity return volatility of about 1% in a model with endogenous borrowing constraints

and TFP shocks the only source of uncertainty. This result highlights the fact that in our

model (and theirs as well) the financial constraint is not a strong enough propagator of TFP

shocks14. With no shocks to θ, investment, output and asset prices are driven by shocks to

TFP implying a high correlation between these variables as shown in the second panel in

column (2). Finally this version of the model generates only a very modest equity premium.

The success of our benchmark model with a stochastic θ is documented in the first panel

in column (3). Our model generates high asset return volatility comparable to the data.

It generates over 80% of the observed volatility in asset prices and total market value. In

addition our benchmark model generates a quarterly equity premium of 0.85%, which is

over 70% of what we see in the data. This is result is of particular interest considering that

entrepreneurs in our economy have logarithmic utility. As with investment, our results imply

that the dynamics of asset prices and returns in our model are driven by the dynamics of θt.

Therefore, we see a low persistence of qt and a low correlation between qt and Yt.

13This is similar in spirit to the exercise that Gomes, Yaron and Zhang (2003) perform for their incomplete
markets model. Alternatively, we could rationalize our choice by thinking about borrowing constrained
entrepreneurs. The risk free rate would then be determined by the shadow risk free rate of the non-investing
entrepreneurs, because investing entrepreneurs find investing and selling equity more profitable than buying
the risk free asset.
14We find that our model is able to generate high asset price volatility even with constant θ. However, we
would need to increase the volatility of TFP shocks significantly generating a counterfactually high volatility
in investment and output.
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Table 6.2: Quarterly Financial Statisticsa

Statisticc Datab (1) (2) (3)
FC not binding FC binding FC binding

θ constant θ stochastic
A stochastic A stochastic A stochastic

σq 11.85 0 0.93 9.69

σre 8.63 0.07 0.77 10.8

σval 10.72 0.13 0.92 9.74

ρq 0.74 1 0.67 0.38

ρ(q, Y ) 0.39 0 1.00 0.11

ρ(q, I) 0.38 0 1.00 -0.94

E(re) 1.49 1.01 0.89 1.36

E(rf ) 0.30 1.01 0.88 0.51

σfr 0.68 0.06 0.16 5.45

E(re)− E(rf ) 1.19 0.00 0.008 0.85

a Results for the models are based on 100 replications of size 180.
b σx is a standard deviation of variable x, ρx is the autocorrrelation of x and ρ(x, y) is the correlation between x and y. All

variables with the exception of the returns are logged and HP filtered before statistics are computed. Standard deviations and

returns are measured in percentage terms.
c This column contains quarterly statistics computed for the U.S. data in 1964:1 - 2008:4. An exception is the measure for asset

prices q, which was computed for 1974:1 - 2008:4. Details of the construction of the series are in the appendix, section B.

Column (1) contains results for a version of the model in which the financial constraint is not binding and the process for TFP

is estimated using U.S. data 1964:1 - 2008:4.

Column (2) contains results for a version of the model in which the financial constraint is binding, the process for TFP is

estimated using U.S. data 1964:1 - 2008:4 and θ is constant at its mean level .2845.

Column (3) contains results for a version of the model in which the financial constraint is binding and both the process for TFP

and θ is estimated using U.S. data 1964:1 - 2008:4.
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A shortcoming of our model is the counterfactual negative correlation between asset prices

and investment. We have shown in section 4 and in this section that fluctuations in A will

imply a positive correlation between investment and asset prices while fluctuations in θ will

imply a negative correlation between investment and asset prices. In this section we have

shown that the behavior of investment and asset prices is determined by shocks to θ rather

than by shocks to A, which implies the large negative correlation.

A general lesson to be taken from this result is the following. In this class of models

changes in the tightness of the financial constraint (parameter θ in our model) directly affect

the amount of investment, but do not affect the productivity of existing capital in any way.

A tighter constraint implies less investment and less new capital making old capital (and

new capital as well) more valuable to agents in the economy. Therefore tighter constraints

imply higher asset prices15.

In the data we find the correlation between our measure of asset prices and the financial

friction parameter θt to be 0.18. While this coefficient is not large and in fact not significant

our model captures only part of the story. To bring the model closer to the data we would

need to add e.g. a link between financial frictions and the productivity of current capital16.

This is the logical next step in this line of research. Building a richer model of this kind

would make it possible to determine when the ‘investment channel’ and when the ‘current

capital channel’ plays a role for aggregate quantities and asset prices.

6.3. Annual Returns Statistics. In Table 6.3 we compare annual returns in our bench-

mark model to those reported in Boldrin, Christiano and Fisher (2003). Our model generates

over 85% of the observed asset return volatility on the annual basis. This is somewhat less

than in Boldrin, Christiano and Fisher. Our model also generates a smaller equity premium,

that Boldrin, Christiano and Fisher’s model was designed to match. On the other hand

Boldrin, Christiano and Fisher’s risk free rate volatility is way above what we observe in the

data. Interestingly, our model is able to generate the volatility in asset returns with a much

smaller volatility in the risk free rate.

15We have found this to be true in the original Koyotaki and Moore (2008) model in which the friction takes
the form of limited resaleability. In this model an entrepreneur can only sell a fraction of his assets at a
point in time to finance new investments. Tightening this constraint implies a decrease in investment and
an increase in the asset price by the same logic.
16In a recent paper Jermann and Quadrini (2009) assume that firms need to borrow money in order to pay
their workers, who have to be paid in advance. Tightening of this constraint results in less workers hired,
which implies a decrease in productivity and the price of capital.
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Table 6.3: Yearly Returnsa

Statisticc Datab Benchmark BCF (2003)

E(re) 6.03 4.30 7.82

E(rf ) 1.23 2.68 1.19

σer 17.6 15.2 19.4

σfr 2.77 15.3 24.6

E(re)− E(rf ) 4.80 1.62 6.63

a Results for the Benchmark model are based on 100 replications of size 180.
b σx is a standard deviation of variable x. Returns are measured in percentage terms.
c This column contains quarterly statistics computed for the U.S. data in 1964:1 - 2008:4. Details of the construction of the

series are in the appendix, section B.

Column ‘Benchmark’ contains results for the benchmark version of our model in which the financial constraint is binding and

both the process for TFP and θ is estimated using U.S. data 1964:1 - 2008:4.

Column ‘BCF (2003)’ contains results from Boldrin, Christiano and Fisher (2003).

7. Sensitivity Analysis

In this section we provide a summary of our sensitivity analysis. All tables can be found

in the appendix, section C. In terms of our main result, we find the following. 1) Asset

price volatility is quite sensitive to the parameters of the θ process. 2) Asset price volatility

is sensitive to π. 3) Asset price volatility is unaffected by changes in the labor supply elas-

ticity parameter η. 4) Asset price volatility does not change significantly if we use standard

balanced growth path preferences for the workers. 5) Asset price volatility increases with

discount factor β. We discuss each of these results below.

7.1. Sensitivity to the parameters of the θ process. The parameters that define the

stochastic process for θ are: mean E[θ], persistence ρθ, variance of innovations σ2
εθ

and

correlation of innovations with innovations of the TFP process corr(εz, εθ). We find that

changes in corr(εz, εθ) do not play any role for the asset price volatility. Increasing ρθ

slightly increases the asset price volatility. We do not report these results in this paper and

focus instead on changes in σ2
εθ

and E[θ]. These results are reported in Table C.1. The
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asset price dynamics is driven by fluctuations in θ. Therefore, one would expect the asset

price volatility to be increasing in θ. This is what we see in column (2) of Table C.1. We

decrease the variance of innovations of the θ process to 50% of the benchmark value. Asset

price volatility decreases, but the model still generates over 60% of the asset price volatility

observed in the data. Volatility of investment decreases as well, but note that volatility and

persistence of output remain unaffected.

Our identification strategy assumes that the financial constraint binds for all investing

entrepreneurs at all times. If this was not the case it would not be possible to identify θ

in the data. The true θ would be higher than the borrowing data indicates. Therefore we

analyze to what extent our results depend on the chosen mean level of θ. We increase the

mean θ by 50% and keep all other parameters unchanged. In this version of the model,

the financial constraint binds if θt is small and it does not bind if θt is large. In the latter

case no entrepreneurs are constrained17. Consequently, we find that the asset price volatility

decreases to about 50% relative to the data. These results are reported in column (3) of

Table C.1.

Finally, we change the mean θ and the volatility of innovations of the θ process at the

same time. We decrease σ2
εθ

and increase E[θ] by 50%. These results are reported in column

(4) in Table C.1. The model generates about a quarter of the observed volatility in asset

prices and over 40% of the observed volatility in asset returns. This is much more than for

example in Gomes, Yaron and Zhang’s model. We conclude that in our model fluctuations

in financial frictions explain a large fraction of the observed asset price volatility for a wide

range of parameters of the θ process.

7.2. Sensitivity to the probability of having an investment opportunity π.

Table C.2 in the appendix, section C documents the importance of the parameter π for our

model. In theorem 4.3 we showed that in steady state θ < δ−π
δ
⇐⇒ q > 1. Note that

δ < π =⇒ q = 1 in steady state independent of θ. Recall that investing entrepreneurs

are able to sell all their current equity holdings at any point in time. If δ < π investing

entrepreneurs hold a relatively large share of aggregate wealth and sales of current equity

are enough to cover the demand for equity by non-investing entrepreneurs. Therefore q = 1

and the financial constraint does not bind. While we cannot directly map a steady state

17Because of linearity of entrepreneurs’ decision rules, our model can never have the financial constraint
binding for some investing entrepreneurs and not binding for others.
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statement into our dynamic equilibrium analysis it is clear that if π > δ we should not expect

the financial constraint to bind. If π is smaller than but close to δ, θ would have to be very

small in order for the financial constraint to bind and q > 1. In a dynamic equilibrium as

π −→ δ the financial constraint will bind (qt > 1) or not bind (qt = 1) depending on the

realization of θt. Overall we should expect the volatility of asset prices and investment to

decrease, which is exactly what we see in the table. The model still generates about 25%

of the observed asset price volatility if π = 0.02 (this corresponds to annual π ∼ 8%). If

π = 0.025 the financial constraint does not bind and qt = 1 in every period.

This result should not be viewed as a shortcoming specific to our model. Other models

with borrowing constraints have a similar feature (see e.g. Gomes, Yaron and Zhang, 2003).

To avoid a first best solution and generate interesting dynamics they need to make sure

that borrowing constrained entrepreneurs do not accumulate enough assets to escape the

borrowing constraint. Therefore these models assume that entrepreneurs discount the future

more heavily than households which guarantees that entrepreneurs will remain borrowing

constrained. In this paper we have argued that it is reasonable to think about entrepreneurs

being constrained in their ability to start new projects, but we have abstracted from several

factors that would make the financial constraint tighter. Letting households save would de-

crease the fraction of wealth held by entrepreneurs and a larger fraction of them would need

to have an investment opportunity in order to provide enough new capital for households

and non-investing entrepreneurs keeping the financial constraint slack. Therefore we could

increase π and still have the financial constraint not binding. Decreasing the discount fac-

tor β would enhance this effect by making the share of wealth held by entrepreneurs even

smaller. Analyzing these changes to our basic environment remains a task for future research.

7.3. Labor Supply Elasticity.

Our choice of the benchmark η implies a Frisch labor supply elasticity18 of one. While this

value is in the range that has been considered in the literature, it is by no means a consensus

in the profession. Therefore we consider both higher and lower values to see to what extent

our results depend on our choice of η. The implications of changes in η are particularly easy

to see for the relative volatility of output and labor. Recall from section 4 that labor supply

and output are tightly connected: corr(logLt, log Yt) = 1, (1 + η)2var(logLt) = var(log Yt).

Changing η therefore changes the relative volatility of labor and output. In fact, we find

18With these preferences η = 1
Frisch elasticity .
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that increasing (decreasing) η decreases (increases) both the volatility of output and labor.

The same is true for consumption. This is intuitive since workers’ consumption accounts for

64% of the aggregate output and even more of the aggregate consumption. However, the

asset price behavior is unaffected by labor supply elasticity. These results are summarized

in table C.3 in the appendix, section C.

7.4. Standard Balanced Growth Preferences, Constant Labor Supply.

In our model workers consume all their income period by period and adjust their labor sup-

ply depending on the current wage only. With balanced growth preferences workers’ labor

supply will be constant, because for these preferences the income and substitution effects

associated with a change in the wage rate cancel out. Therefore this version of the model

is equivalent to one in which workers’ labor supply is fixed. We report our results for this

version of the model in table C.3 in the appendix, section C. We find that while output and

consumption volatility decrease other statistics remain unaffected. In particular the asset

price behavior is almost identical to the benchmark version of our model with elastic labor

supply.

7.5. Sensitivity to the discount factor β.

Other studies have used very high discount factors in order to account for both asset prices

and macroeconomic quantities. Our results in table C.4 in the appendix, section C, show

that our model generates a high asset price volatility for a range of β’s. We consider β ∈
{0.98, 0.99, 0.999, 0.99999}. As β increases entrepreneurs become more patient postponing

consumption into the future. Since their share in output is constant at 0.36, investment

becomes more correlated with output. As a consequence investment becomes less volatile.

On the other hand the share of workers’ consumption in aggregate consumption increases

as well, which increases the correlation between aggregate consumption and output (recall

that the correlation between workers’ consumption and output equals one). This is the logic

behind the dynamics shown in the table. Importantly, asset price volatility is not affected

very much. It increases with β, but even for β = 0.98 it is still at about 2
3

of the level that

we observe in the data.
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8. Conclusion

In this paper we quantify the role of financial frictions in the behavior of asset prices and

aggregate macroeconomic quantities. We build an asset pricing model with heterogeneous

entrepreneurs, who face two frictions. First, in each period only a fraction of entrepreneurs

can start new projects. Second, a new project cannot be fully financed externally due to

a financial constraint. We allow the tightness of the financial constraint to vary over time.

We calibrate the model to the U.S. data and find that the model generates about 80% of

the asset price volatility relative to the aggregate stock market. At the same time the model

also fits key aspects of the behavior of aggregate quantities. The model generates a strong

propagation of financial shocks into asset prices and aggregate investment. Interestingly,

financial shocks do not propagate into output and therefore play a decisively secondary role

in the determination of output. Fluctuations in output are driven by TFP shocks.

Our paper contributes to the literature that has tried to reconcile the observed asset price

behavior with production economy models. As far as we know this is the first paper in

which financial frictions generate high asset price volatility. Financial frictions in the model

propagate into the economy through investment only. A tightening of the financial constraint

implies lower investment and an increase in the value of installed capital and in the price of

equity. The next step in this research agenda is building a more general model of financial

frictions. The model should include a second channel that would link financial frictions to

current capital productivity. Such a model would allow us to disentangle the roles of these

distinct channels in fluctuations in asset prices and aggregate quantities.
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Appendix A

A.1. Proof of Theorem 4.3. Theorem 4.3 says: θ < δ−π
δ
⇐⇒ in steady state FC binds

and q > 1.

Proof: (i) =⇒ We will prove this part by contradiction. We will assume qt = 1, pt = 0

and show that the supposition implies that the FC must be violated for some investing

entrepreneurs.

Denote by J the set of indexes identifying entrepreneurs with investment opportunity at

time t and use capital letters for aggregate variables. Since the arrival of the investment

opportunity is iid, investing entrepreneurs will hold a fraction π of the total equity holdings

at the beginning of period t :
∫
j∈J n

j
tdj = πNt. Since they solve the same problem as non-

investing entrepreneurs, they will hold a fraction π of total equity holdings in period t + 1

as well:
∫
j∈J n

j
t+1 = πNt+1. Now we will show that the financial constraint of some of these

entrepreneurs is violated. Suppose it was satisfied. Integrating over the set J we get:∫
j∈J

njt+1dj ≥ (1− θ)
∫
j∈J

ijtdj

πNt+1 ≥ (1− θ)It

In steady state Nt = Nt+1 = N and It = δN . Thus we can rewrite the above as:

π − (1− θ)δ ≥ 0

This contradicts our supposition. �

The proof makes it clear that θ ≥ δ−π
δ
⇐⇒ ∃ an equilibrium with the FC slack and q = 1.

(ii) ⇐= Suppose in steady state the financial constraint binds and q > 1. The behavior

of the model is then determined by the system of equations defined in section 4.1.3. Using

the steady state conditions Nt+1 = Nt and It = δNt and dropping the time indexes, we can

rewrite the system as:

qRN i = βπN [r + (1− δ)q]

qN s = β(1− π)N [r + (1− δ)q]

N i = (1− θ)δN

N s +N i = N
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This can be simplified to:

qR(1− θ)δN = βπN [r + (1− δ)q]

q [1− δ(1− θ)]N = β(1− π)N [r + (1− δ)q]

Plugging in for βN [r + q(1 − δ)] from the first one into the second one and simplifying

further we get:

πq [1− δ(1− θ)] = (1− π)(1− θq)δ

πq [1− δ(1− θ)] = (1− π)δ − θδ(1− π)q

q [π − πδ + πδθ + θδ − πθδ] = (1− π)

q =
(1− π)δ

π − πδ + θδ

q =
(1− π)δ

(1− π)δ + π − δ + θδ

Both the numerator and the denominator are positive and therefore q > 1 =⇒ π−δ+θδ <

0, which is equivalent to θ < δ−π
δ

. �

A.2. Proof of Lemma 4.2: Linearity of the policy rules. Lemma 4.2 states that the

policy rules are linear and of the following form:

cit = (1− β)nt[rt + (1− δ)qt]

qRt n
i
t+1 = βnt[rt + (1− δ)qt]

cst = (1− β)nt[rt + (1− δ)qt]

qtn
s
t+1 = βnt[rt + (1− δ)qt]

Proof: For the proof we find it useful to define the aggregate state of the economy as

st = (At, θt) and st = (s0, . . . , st). We consider a problem of one particular entrepreneur

indexed by his initial wealth n0. We define a variable ut that equals 1 if the entrepreneur has

an investment opportunity and equals 0 if he does not have not an investment opportunity

at time t. As before ut = (u0, . . . , ut). We denote probabilities by π(st), π(ut). Fixing K0

the problem of this entrepreneur is:



39

max
∞∑
t=0

∑
st

∑
ut

βtπ(st)π(ut) log ct(s
t, ut) s.t.

ut = 0 : ct(s
t, ut) + qt(s

t)nt+1(st, ut) ≤ nt(s
t−1, ut−1)[rt(s

t) + qt(s
t)(1− δ)] (λt(s

t, ut))

ut = 1 : ct(s
t, ut) + qRt (st)nt+1(st, ut) ≤ nt(s

t−1, ut−1)[rt(s
t) + qt(s

t)(1− δ)] (λt(s
t, ut))

The appropriate budget constraint applies depending on whether the entrepreneur has

or has not the investment opportunity. To make the notation clearer we will denote by a

superscript i allocations and Lagrange multipliers in the state in which the entrepreneur

has an investment opportunity at time t and by a superscript s allocations and Lagrange

multipliers in a state in which the entrepreneur does not have an investment opportunity at

time t. The first order conditions are:

βtπ(ut)π(st)
cst (st, ut)

= λst (s
t, ut)

λst (s
t, ut)qt(st) =

∑
st+1

[
λit+1(st+1, ut+1){rt+1(st+1) + (1− δ)qt+1(st+1)}+

+ λst+1(st+1, ut+1){rt+1(st+1) + (1− δ)qt+1(st+1)}
]

βtπ(ut)π(st)
cit(st, ut)

= λit(s
t, ut)

λit(s
t, ut)qRt (st) =

∑
st+1

[
λit+1(st+1, ut+1){rt+1(st+1) + (1− δ)qt+1(st+1)}+

+ λst+1(st+1, ut+1){rt+1(st+1) + (1− δ)qt+1(st+1)}
]

Now we verify that the proposed policies satisfy the FOC (which is enough by their

sufficiency). Plugging in for the Lagrange multipliers and using the iid assumption on the

arrival of the investment opportunity, we get:

qt(st)
cst (st, ut)

= β
∑
st+1

[π(st+1|st)(1− π)
cit+1(st+1, ut+1)

{rt+1(st+1) + (1− δ)qt+1(st+1)}+

+
π(st+1|st)π

cst+1(st+1, ut+1)
{rt+1(st+1) + (1− δ)qt+1(st+1)}

]
qRt (st)
cit(st, ut)

= β
∑
st+1

[π(st+1|st)(1− π)
cit+1(st+1, ut+1)

{rt+1(st+1) + (1− δ)qt+1(st+1)}+

+
π(st+1|st)π

cst+1(st+1, ut+1)
{rt+1(st+1) + (1− δ)qt+1(st+1)}

]
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Plugging in the proposed rules for cst+1(st+1, ut+1) and cit+1(st+1, ut+1), we get:

qt(st)
cst (st, ut)

= β
∑
st+1

[ π(st+1|st)(1− π)
(1− β)nst+1(st, ut)

+
π(st+1|st)π

(1− β)nst+1(st, ut)
]

qRt (st)
cit(st, ut)

= β
∑
st+1

[ π(st+1|st)(1− π)
(1− β)nit+1(st, ut)

+
π(st+1|st)π

(1− β)nit+1(st, ut)

]
These can be rewritten as:

(1− β)qt(s
t)nst+1(st, ut) = βcst(s

t, ut)

(1− β)qRt (st)nit+1(st, ut) = βcit(s
t, ut)

Given the budget constraints this confirms our initial guess independent of whether qt > 1

or qt = 1. �

Appendix B. Construction of Time Series

B.1. Macroeconomic variables.

Databases used for 1964q1 - 2008q4:

(1) CES-BLS: Current Employment Statistics survey published by the Bureau of Labor

Statistics.

(2) FAT-BEA: Fixed Asset Tables published by the Bureau of Economic Analysis.

(3) NIPA-BEA: National Income and Product Accounts published by the Bureau of

Economic Analysis.

(4) Flow of Funds.

Series generated:

(1) Hours L: from CES-BLS:

• Hours = average weekly hours · average number of workers.

• Average weekly hours: in private sector, series CES0500000036.

• Average number of workers: average number of workers in private sector over a

quarter computed using monthly data in series CES0500000001.

(2) Real capital K : we generate quarterly data by interpolating the yearly “ Fixed assets

and consumer durable goods”, line 2 in table 1.2 in FAT-BEA.

(3) Output Y : real GDP, line 1 in table 1.1.6 in NIPA-BEA.
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(4) TFP series At: generated from the capital and hours series as:

At =
Yt

L.64
t ·K .36

t

(5) Nominal capital NK : we generate quarterly data by interpolating the yearly “ Fixed

assets and consumer durable goods”, line 2 in table 1.1 in FAT-BEA.

(6) Nominal Investment NI = nominal private fixed investment + nominal durable con-

sumption good expenditure + nominal government gross investment.

• nominal private fixed investment: line 7 in table 1.1.5 in NIPA-BEA.

• nominal durable consumption good expenditure: line 4 in table 1.1.5 in NIPA-

BEA.

• nominal government gross investment: line 3 in table 3.9.5 in NIPA-BEA, does

not include investment in inventories.

(7) Real investment I: Nonfarm nonfinancial corporate businesses fixed investment, line

12 in the Flow of Funds table F.102 deflated using the deflator for Gross private

domestic investment constructed using line 7 in NIPA-BEA 1.1.5 and 1.1.6. We

choose this series because we use it to estimate θ. The time series properties of

various real investment measures are very similar. Excluding government, inventories

and durable consumption makes the series slightly more volatile (standard deviation

of 5.00% versus 4.41%).

(8) Real consumption C = Nondurable goods + Services.

• Nondurable goods: line 4 in table 1.1.5 in NIPA-BEA.

• Services: line 6 in table 1.1.5 in NIPA-BEA.

The real counterparts of these nominal series are only reported starting in 1995.

To generate the real series we deflated these nominal series by a Personal con-

sumption expenditure deflator constructed from line 2 in tables 1.1.5 and 1.1.6.

The correlation between the deflator for Personal consumption expenditure and

Nondurable goods and Services from 1995 onwards is .991 and .997, respectively.

B.2. Financial Variables.

(1) Asset price q was constructed from the Dow Jones Total Stock Market Index (Wilshire

5000) for the priod 1974 - 2008. We have constructed the same series for the S&P

500 Composite Price Index for the 1964 - 2008 period. The time series properties

of HP filtered logged versions of these indexes are very similar. Dow Jones Total
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Stock Market Index is slightly more volatile. Both raw series were recovered from

the Global Financial Data database and computed as averages over the given quarter.

(2) Asset return re: series vwretd from the CRSP database (Center for Research in

Security Prices), value weighted returns including distributions from NYSE, AMEX

and NASDAQ. We constructed quarterly data from monthly observations.

(3) Total market value val: series totval from he CRSP database. We constructed quar-

terly data as averages over monthly observations.

(4) Real risk free rate rf is the 3-month T-bill as priced on the secondary market recovered

from the Global Financial Data database deflated by CPI.

(5) CPI: nominal returns are deflated using the CPI series from the BLS database, series

ID: CPI-U, BLS CUUR0000SA0.

B.3. Construction of θ.

We construct a measure of θ from the Flow of Funds data for the non-financial corporate

sector:

θ =
Funds Raised in Markets

Capital Expenditures

The variables are:

• Net funds raised in markets: line 38 in table F.102, equals: net new equity issuance

(line 39) plus credit market instruments (line 40) for non-farm nonfinancial corporate

businesses

• Fixed investment: line 12 in table F.102, for non-farm nonfinancial corporate busi-

nesses
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Appendix C. Sensitivity Analysis

Table C.1: Quarterly Statisticsa - Sensitivity to Parameters of the θ Process

Statisticc Datab (1) (2) (3) (4)
σ2
εθ

= .172 σ2
εθ

= .122 σ2
εθ

= .172 σ2
εθ

= .122

E(θ) = .28 E(θ) = .28 E(θ) = .43 E(θ) = .43

σY 1.52 1.18 1.17 1.17 1.18
σI 5.00 5.12 3.77 2.93 2.07
σC 0.85 1.93 1.63 1.36 1.16
σL 1.73 0.59 0.58 0.59 0.59
ρY 0.87 0.67 0.68 0.68 0.67
ρI 0.85 0.40 0.41 0.38 0.48
ρC 0.90 0.47 0.52 0.53 0.61
ρL 0.92 0.67 0.68 0.68 0.67
ρ(Y, I) 0.90 0.23 0.30 0.48 0.73
ρ(Y,C) 0.85 0.61 0.72 0.80 0.92
ρ(Y,L) 0.87 1.00 1.00 1.00 1.00

σq 11.85 9.69 7.39 5.36 3.08
σre 8.63 10.77 8.15 6.37 3.71
σval 10.72 9.74 7.42 5.38 3.10
ρq 0.74 0.38 0.39 0.28 0.27
ρ(q, Y ) 0.39 0.11 0.16 0.11 0.13
ρ(q, I) 0.38 -0.94 -0.89 -0.81 -0.57
E(re) 1.49 1.36 1.18 1.13 1.04
E(rf ) 0.30 0.51 0.63 0.83 0.92
σfr 0.68 5.45 4.08 3.54 2.19
E(re)− E(rf ) 1.19 0.85 0.55 0.30 0.11

a Results for the models are based on 100 replications of size 180.
b σx is a standard deviation of variable x, ρx is the autocorrrelation of x and ρ(x, y) is the correlation between x and y. All
variables with the exception of the returns are logged and HP filtered before statistics are computed. Standard deviations and
returns are measured in percentage terms.
c This column contains quarterly statistics computed for the U.S. data in 1964:1 - 2008:4. An exception is the measure for asset

prices q, which was computed for 1974:1 - 2008:4. Details of the construction of the series are in the appendix, section B.
Column (1) contains results for the benchmark model. In this model the financial constraint is binding and both the process

for TFP and θ is estimated using U.S. data 1964:1 - 2008:4.
Columns (2), (3) and (4) contain results for versions of the model with various values for the parameters of the θ process. In

column (2) the variance of innovations in θ is 50% of the benchmark value. In column (3) the mean value of θ is increased
by 50% relative to benchmark. In column (4) both of these changes apply. Other than that the models are the same as the
benchmark model.
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Table C.2: Quarterly Statisticsa - Sensitivity to π

Statisticc Datab (1) (2) (3) (4)
π = .01 π = .015 π = .02 π = .025

σY 1.52 1.21 1.18 1.19 1.19
σI 5.00 9.99 5.12 2.10 1.71
σC 0.85 3.12 1.93 1.16 1.02
σL 1.73 0.60 0.59 0.59 0.60
ρY 0.87 0.68 0.67 0.68 0.67
ρI 0.85 0.42 0.40 0.48 0.67
ρC 0.90 0.47 0.47 0.59 0.67
ρL 0.92 0.68 0.67 0.68 0.67
ρ(Y, I) 0.90 0.03 0.23 0.74 1.00
ρ(Y,C) 0.85 0.47 0.61 0.92 1.00
ρ(Y,L) 0.87 1.00 1.00 1.00 1.00

σq 11.85 16.02 9.69 3.07 0
σre 8.63 17.31 10.77 3.84 0.07
σval 10.72 16.12 9.74 3.09 0.13
ρq 0.74 0.43 0.38 0.21 1
ρ(q, Y ) 0.39 0.16 0.11 0.10 0
ρ(q, I) 0.38 -0.97 -0.94 -0.59 0
E(re) 1.49 1.88 1.36 1.05 1.01
E(rf ) 0.30 -0.26 0.51 0.93 1.01
σfr 0.68 8.16 5.45 2.32 0.06
E(re)− E(rf ) 1.19 2.14 0.85 0.12 0.00

a Results for the models are based on 100 replications of size 180.
b σx is a standard deviation of variable x, ρx is the autocorrrelation of x and ρ(x, y) is the correlation between x and y. All
variables with the exception of the returns are logged and HP filtered before statistics are computed. Standard deviations and

returns are measured in percentage terms.
c This column contains quarterly statistics computed for the U.S. data in 1964:1 - 2008:4. An exception is the measure for asset
prices q, which was computed for 1974:1 - 2008:4. Details of the construction of the series are in the appendix, section B.

Column (2) contains results for the benchmark model with π = .015. In this model the financial constraint is binding and both

the process for TFP and θ is estimated using U.S. data 1964:1 - 2008:4.
Columns (1), (3) and (4) contain results for versions of the model with various values of π. Other than that the models are the

same as the benchmark model.
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Table C.3: Quarterly Statisticsa with Alternative Labor Supply Elasticity

Statisticc Datab (1) (2) (3) (4)
η = .5 η = 1 η = 2 constant labor

σY 1.52 1.41 1.18 1.03 0.79
σI 5.00 5.02 5.12 5.05 5.19
σC 0.85 2.75 1.93 1.55 1.79
σL 1.73 0.94 0.59 0.35 0
ρY 0.87 0.68 0.67 0.67 0.67
ρI 0.85 0.41 0.40 0.40 0.39
ρC 0.90 0.46 0.47 0.51 0.43
ρL 0.92 0.68 0.67 0.68 1
ρ(Y, I) 0.90 0.26 0.23 0.16 0.13
ρ(Y,C) 0.85 0.52 0.61 0.69 0.46
ρ(Y, L) 0.87 1.00 1.00 1.00 0

σq 11.85 9.49 9.69 9.71 10.07
σre 8.63 10.45 10.77 10.71 11.10
σval 10.72 9.54 9.74 9.76 10.12
ρq 0.74 0.40 0.38 0.39 0.39
ρ(q, Y ) 0.39 0.15 0.11 0.13 0.10
ρ(q, I) 0.38 -0.91 -0.94 -0.95 -0.97
E(re) 1.49 1.35 1.36 1.36 1.42
E(rf ) 0.30 0.66 0.51 0.48 0.62
σfr 0.68 5.36 5.45 5.45 5.61
E(re)− E(rf ) 1.19 0.69 0.85 0.88 0.80

a Results for the models are based on 100 replications of size 180.
b σx is a standard deviation of variable x, ρx is the autocorrrelation of x and ρ(x, y) is the correlation between x and y. All
variables with the exception of the returns are logged and HP filtered before statistics are computed. Standard deviations and

returns are measured in percentage terms.
c This column contains quarterly statistics computed for the U.S. data in 1964:1 - 2008:4. An exception is the measure for asset
prices q, which was computed for 1974:1 - 2008:4. Details of the construction of the series are in the appendix, section B.

Column (2) contains results for the benchmark model with η = 1. In this model the financial constraint is binding and both

the process for TFP and θ is estimated using U.S. data 1964:1 - 2008:4.
Columns (1) and (3) contain results for versions of the model with various values of η.

Column (4) contains results for a version of the model with constant labor supply. Other than that the models are the same as
the benchmark model.
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Table C.4: Quarterly Statisticsa - Sensitivity to β

Statisticc Datab (1) (2) (3) (4)
β = .98 β = .99 β = .999 β = .9999

σY 1.52 1.21 1.18 1.18 1.20
σI 5.00 7.85 5.12 1.36 1.20
σC 0.85 2.07 1.93 1.23 1.20
σL 1.73 0.60 0.59 0.59 0.60
ρY 0.87 0.68 0.67 0.68 0.68
ρI 0.85 0.40 0.40 0.61 0.68
ρC 0.90 0.48 0.47 0.64 0.68
ρL 0.92 0.68 0.67 0.68 0.68
ρ(Y, I) 0.90 0.13 0.23 0.87 1.00
ρ(Y,C) 0.85 0.60 0.61 0.96 1.00
ρ(Y,L) 0.87 1.00 1.00 1.00 1.00

σq 11.85 7.78 9.69 12.67 13.00
σre 8.63 8.54 10.77 14.27 14.68
σval 10.72 7.85 9.74 12.68 13.00
ρq 0.74 0.40 0.38 0.37 0.37
ρ(q, Y ) 0.39 0.16 0.11 0.07 0.08
ρ(q, I) 0.38 -0.95 -0.94 -0.42 0.02
E(re) 1.49 2.21 1.36 0.85 0.80
E(rf ) 0.30 1.63 0.51 -0.51 -0.63
σfr 0.68 4.42 5.45 7.20 7.44
E(re)− E(rf ) 1.19 0.58 0.85 1.36 1.44

a Results for the models are based on 100 replications of size 180.
b σx is a standard deviation of variable x, ρx is the autocorrrelation of x and ρ(x, y) is the correlation between x and y. All
variables with the exception of the returns are logged and HP filtered before statistics are computed. Standard deviations and

returns are measured in percentage terms.
c This column contains quarterly statistics computed for the U.S. data in 1964:1 - 2008:4. An exception is the measure for asset
prices q, which was computed for 1974:1 - 2008:4. Details of the construction of the series are in the appendix, section B.

Column (2) contains results for the benchmark model with β = .99. In this model the financial constraint is binding and both

the process for TFP and θ is estimated using U.S. data 1964:1 - 2008:4.
Columns (1), (3) and (4) contain results for versions of the model with various values of β. Other than that the models are the

same as the benchmark model.


